Changes in molecuilder/src/tesselation.cpp [591f15:246a3c]
- File:
-
- 1 edited
-
molecuilder/src/tesselation.cpp (modified) (74 diffs)
Legend:
- Unmodified
- Added
- Removed
-
molecuilder/src/tesselation.cpp
r591f15 r246a3c 35 35 * \param *Walker TesselPoint this boundary point represents 36 36 */ 37 BoundaryPointSet::BoundaryPointSet(TesselPoint * constWalker) :37 BoundaryPointSet::BoundaryPointSet(TesselPoint * Walker) : 38 38 LinesCount(0), 39 39 node(Walker), … … 61 61 * \param *line line to add 62 62 */ 63 void BoundaryPointSet::AddLine( BoundaryLineSet * constline)63 void BoundaryPointSet::AddLine(class BoundaryLineSet *line) 64 64 { 65 65 Info FunctionInfo(__func__); … … 105 105 * \param number number of the list 106 106 */ 107 BoundaryLineSet::BoundaryLineSet( BoundaryPointSet * constPoint[2], const int number)107 BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], const int number) 108 108 { 109 109 Info FunctionInfo(__func__); … … 115 115 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding. 116 116 Point[1]->AddLine(this); // 117 // set skipped to false118 skipped = false;119 // clear triangles list120 Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl;121 };122 123 /** Constructor of BoundaryLineSet with two endpoints.124 * Adds line automatically to each endpoints' LineMap125 * \param *Point1 first boundary point126 * \param *Point2 second boundary point127 * \param number number of the list128 */129 BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point1, BoundaryPointSet * const Point2, const int number)130 {131 Info FunctionInfo(__func__);132 // set number133 Nr = number;134 // set endpoints in ascending order135 SetEndpointsOrdered(endpoints, Point1, Point2);136 // add this line to the hash maps of both endpoints137 Point1->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.138 Point2->AddLine(this); //139 117 // set skipped to false 140 118 skipped = false; … … 193 171 * \param *triangle to add 194 172 */ 195 void BoundaryLineSet::AddTriangle( BoundaryTriangleSet * consttriangle)173 void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle) 196 174 { 197 175 Info FunctionInfo(__func__); … … 204 182 * \return true - common endpoint present, false - not connected 205 183 */ 206 bool BoundaryLineSet::IsConnectedTo(c onst BoundaryLineSet * const line) const184 bool BoundaryLineSet::IsConnectedTo(class BoundaryLineSet *line) 207 185 { 208 186 Info FunctionInfo(__func__); … … 219 197 * \return true - triangles are convex, false - concave or less than two triangles connected 220 198 */ 221 bool BoundaryLineSet::CheckConvexityCriterion() const199 bool BoundaryLineSet::CheckConvexityCriterion() 222 200 { 223 201 Info FunctionInfo(__func__); … … 243 221 int i=0; 244 222 class BoundaryPointSet *node = NULL; 245 for(TriangleMap:: const_iterator runner = triangles.begin(); runner != triangles.end(); runner++) {223 for(TriangleMap::iterator runner = triangles.begin(); runner != triangles.end(); runner++) { 246 224 //Log() << Verbose(0) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl; 247 225 NormalCheck.AddVector(&runner->second->NormalVector); … … 286 264 * \return true - point is of the line, false - is not 287 265 */ 288 bool BoundaryLineSet::ContainsBoundaryPoint(c onst BoundaryPointSet * const point) const266 bool BoundaryLineSet::ContainsBoundaryPoint(class BoundaryPointSet *point) 289 267 { 290 268 Info FunctionInfo(__func__); … … 299 277 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise 300 278 */ 301 class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(c onst BoundaryPointSet * const point) const279 class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(class BoundaryPointSet *point) 302 280 { 303 281 Info FunctionInfo(__func__); … … 339 317 * \param number number of triangle 340 318 */ 341 BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], constint number) :319 BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number) : 342 320 Nr(number) 343 321 { … … 398 376 * \param &OtherVector direction vector to make normal vector unique. 399 377 */ 400 void BoundaryTriangleSet::GetNormalVector( constVector &OtherVector)378 void BoundaryTriangleSet::GetNormalVector(Vector &OtherVector) 401 379 { 402 380 Info FunctionInfo(__func__); … … 410 388 }; 411 389 412 /** Finds the point on the triangle \a *BTS th rough which the line defined by \a *MolCenter and \a *x crosses.390 /** Finds the point on the triangle \a *BTS the line defined by \a *MolCenter and \a *x crosses through. 413 391 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane 414 * Th us we test if it's really on the plane and whether it's inside the triangle on the plane or not.392 * This we test if it's really on the plane and whether it's inside the triangle on the plane or not. 415 393 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line 416 394 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between … … 422 400 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle. 423 401 */ 424 bool BoundaryTriangleSet::GetIntersectionInsideTriangle( const Vector * const MolCenter, const Vector * const x, Vector * const Intersection) const425 { 426 Info FunctionInfo(__func__);402 bool BoundaryTriangleSet::GetIntersectionInsideTriangle(Vector *MolCenter, Vector *x, Vector *Intersection) 403 { 404 Info FunctionInfo(__func__); 427 405 Vector CrossPoint; 428 406 Vector helper; … … 433 411 } 434 412 435 Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl;436 Log() << Verbose(1) << "INFO: Line is from " << *MolCenter << " to " << *x << "." << endl;437 Log() << Verbose(1) << "INFO: Intersection is " << *Intersection << "." << endl;438 439 if (Intersection->DistanceSquared(endpoints[0]->node->node) < MYEPSILON) {440 Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl;441 return true;442 } else if (Intersection->DistanceSquared(endpoints[1]->node->node) < MYEPSILON) {443 Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl;444 return true;445 } else if (Intersection->DistanceSquared(endpoints[2]->node->node) < MYEPSILON) {446 Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl;447 return true;448 }449 413 // Calculate cross point between one baseline and the line from the third endpoint to intersection 450 414 int i=0; … … 453 417 helper.CopyVector(endpoints[(i+1)%3]->node->node); 454 418 helper.SubtractVector(endpoints[i%3]->node->node); 455 CrossPoint.SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector 456 const double s = CrossPoint.ScalarProduct(&helper)/helper.NormSquared(); 457 Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl; 458 if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) { 459 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl; 460 i=4; 461 break; 462 } 419 } else 463 420 i++; 464 } else421 if (i>2) 465 422 break; 466 } while ( i<3);423 } while (CrossPoint.NormSquared() < MYEPSILON); 467 424 if (i==3) { 468 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl; 425 eLog() << Verbose(0) << "Could not find any cross points, something's utterly wrong here!" << endl; 426 } 427 CrossPoint.SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector 428 429 // check whether intersection is inside or not by comparing length of intersection and length of cross point 430 if ((CrossPoint.NormSquared() - helper.NormSquared()) < MYEPSILON) { // inside 469 431 return true; 470 } else { 471 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " outside of triangle." << endl;432 } else { // outside! 433 Intersection->Zero(); 472 434 return false; 473 435 } 474 };475 476 /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.477 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane478 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.479 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line480 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between481 * the first two basepoints) or not.482 * \param *x point483 * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector484 * \return Distance squared between \a *x and closest point inside triangle485 */486 double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector * const x, Vector * const ClosestPoint) const487 {488 Info FunctionInfo(__func__);489 Vector Direction;490 491 // 1. get intersection with plane492 Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << *x << "." << endl;493 GetCenter(&Direction);494 if (!ClosestPoint->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, x, &Direction)) {495 ClosestPoint->CopyVector(x);496 }497 498 // 2. Calculate in plane part of line (x, intersection)499 Vector InPlane;500 InPlane.CopyVector(x);501 InPlane.SubtractVector(ClosestPoint); // points from plane intersection to straight-down point502 InPlane.ProjectOntoPlane(&NormalVector);503 InPlane.AddVector(ClosestPoint);504 505 Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl;506 Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << *x << "." << endl;507 Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl;508 509 // Calculate cross point between one baseline and the desired point such that distance is shortest510 double ShortestDistance = -1.;511 bool InsideFlag = false;512 Vector CrossDirection[3];513 Vector CrossPoint[3];514 Vector helper;515 for (int i=0;i<3;i++) {516 // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point517 Direction.CopyVector(endpoints[(i+1)%3]->node->node);518 Direction.SubtractVector(endpoints[i%3]->node->node);519 // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);520 CrossPoint[i].GetIntersectionWithPlane(&Direction, &InPlane, endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node);521 CrossDirection[i].CopyVector(&CrossPoint[i]);522 CrossDirection[i].SubtractVector(&InPlane);523 CrossPoint[i].SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector524 const double s = CrossPoint[i].ScalarProduct(&Direction)/Direction.NormSquared();525 Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl;526 if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) {527 CrossPoint[i].AddVector(endpoints[i%3]->node->node); // make cross point absolute again528 Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << *endpoints[i%3]->node->node << " and " << *endpoints[(i+1)%3]->node->node << "." << endl;529 const double distance = CrossPoint[i].DistanceSquared(x);530 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {531 ShortestDistance = distance;532 ClosestPoint->CopyVector(&CrossPoint[i]);533 }534 } else535 CrossPoint[i].Zero();536 }537 InsideFlag = true;538 for (int i=0;i<3;i++) {539 const double sign = CrossDirection[i].ScalarProduct(&CrossDirection[(i+1)%3]);540 const double othersign = CrossDirection[i].ScalarProduct(&CrossDirection[(i+2)%3]);;541 if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign542 InsideFlag = false;543 }544 if (InsideFlag) {545 ClosestPoint->CopyVector(&InPlane);546 ShortestDistance = InPlane.DistanceSquared(x);547 } else { // also check endnodes548 for (int i=0;i<3;i++) {549 const double distance = x->DistanceSquared(endpoints[i]->node->node);550 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {551 ShortestDistance = distance;552 ClosestPoint->CopyVector(endpoints[i]->node->node);553 }554 }555 }556 Log() << Verbose(1) << "INFO: Closest Point is " << *ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl;557 return ShortestDistance;558 436 }; 559 437 … … 562 440 * \return true - line is of the triangle, false - is not 563 441 */ 564 bool BoundaryTriangleSet::ContainsBoundaryLine(c onst BoundaryLineSet * const line) const442 bool BoundaryTriangleSet::ContainsBoundaryLine(class BoundaryLineSet *line) 565 443 { 566 444 Info FunctionInfo(__func__); … … 575 453 * \return true - point is of the triangle, false - is not 576 454 */ 577 bool BoundaryTriangleSet::ContainsBoundaryPoint(c onst BoundaryPointSet * const point) const455 bool BoundaryTriangleSet::ContainsBoundaryPoint(class BoundaryPointSet *point) 578 456 { 579 457 Info FunctionInfo(__func__); … … 588 466 * \return true - point is of the triangle, false - is not 589 467 */ 590 bool BoundaryTriangleSet::ContainsBoundaryPoint(c onst TesselPoint * const point) const468 bool BoundaryTriangleSet::ContainsBoundaryPoint(class TesselPoint *point) 591 469 { 592 470 Info FunctionInfo(__func__); … … 601 479 * \return true - is the very triangle, false - is not 602 480 */ 603 bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const 604 { 605 Info FunctionInfo(__func__); 606 Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl; 481 bool BoundaryTriangleSet::IsPresentTupel(class BoundaryPointSet *Points[3]) 482 { 483 Info FunctionInfo(__func__); 607 484 return (((endpoints[0] == Points[0]) 608 485 || (endpoints[0] == Points[1]) … … 624 501 * \return true - is the very triangle, false - is not 625 502 */ 626 bool BoundaryTriangleSet::IsPresentTupel(c onst BoundaryTriangleSet * const T) const503 bool BoundaryTriangleSet::IsPresentTupel(class BoundaryTriangleSet *T) 627 504 { 628 505 Info FunctionInfo(__func__); … … 646 523 * \return pointer third endpoint or NULL if line does not belong to triangle. 647 524 */ 648 class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(c onst BoundaryLineSet * const line) const525 class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(class BoundaryLineSet *line) 649 526 { 650 527 Info FunctionInfo(__func__); … … 663 540 * \param *center central point on return. 664 541 */ 665 void BoundaryTriangleSet::GetCenter(Vector * const center) const542 void BoundaryTriangleSet::GetCenter(Vector *center) 666 543 { 667 544 Info FunctionInfo(__func__); … … 670 547 center->AddVector(endpoints[i]->node->node); 671 548 center->Scale(1./3.); 672 Log() << Verbose(1) << "INFO: Center is at " << *center << "." << endl;673 549 } 674 550 … … 1546 1422 TesselPoint *Walker = NULL; 1547 1423 Vector *Center = cloud->GetCenter(); 1548 TriangleList*triangles = NULL;1424 list<BoundaryTriangleSet*> *triangles = NULL; 1549 1425 bool AddFlag = false; 1550 1426 LinkedCell *BoundaryPoints = NULL; … … 1561 1437 Log() << Verbose(0) << "Current point is " << *Walker << "." << endl; 1562 1438 // get the next triangle 1563 triangles = FindClosestTrianglesTo Vector(Walker->node, BoundaryPoints);1439 triangles = FindClosestTrianglesToPoint(Walker->node, BoundaryPoints); 1564 1440 BTS = triangles->front(); 1565 1441 if ((triangles == NULL) || (BTS->ContainsBoundaryPoint(Walker))) { … … 1711 1587 bool insertNewLine = true; 1712 1588 1713 LineMap::iterator FindLine = a->lines.find(b->node->nr); 1714 if (FindLine != a->lines.end()) { 1715 Log() << Verbose(1) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl; 1716 1589 if (a->lines.find(b->node->nr) != a->lines.end()) { 1590 LineMap::iterator FindLine = a->lines.find(b->node->nr); 1717 1591 pair<LineMap::iterator,LineMap::iterator> FindPair; 1718 1592 FindPair = a->lines.equal_range(b->node->nr); 1593 Log() << Verbose(1) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl; 1719 1594 1720 1595 for (FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) { … … 2040 1915 double maxCoordinate[NDIM]; 2041 1916 BoundaryLineSet BaseLine; 1917 Vector Oben; 2042 1918 Vector helper; 2043 1919 Vector Chord; 2044 1920 Vector SearchDirection; 2045 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers 2046 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in 2047 Vector SphereCenter; 2048 Vector NormalVector; 2049 2050 NormalVector.Zero(); 1921 1922 Oben.Zero(); 2051 1923 2052 1924 for (i = 0; i < 3; i++) { … … 2083 1955 BTS = NULL; 2084 1956 for (int k=0;k<NDIM;k++) { 2085 NormalVector.Zero();2086 NormalVector.x[k] = 1.;1957 Oben.Zero(); 1958 Oben.x[k] = 1.; 2087 1959 BaseLine.endpoints[0] = new BoundaryPointSet(MaxPoint[k]); 2088 1960 Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine.endpoints[0]->node << "." << endl; … … 2091 1963 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant. 2092 1964 2093 FindSecondPointForTesselation(BaseLine.endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...1965 FindSecondPointForTesselation(BaseLine.endpoints[0]->node, Oben, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_... 2094 1966 if (Temporary == NULL) // have we found a second point? 2095 1967 continue; 2096 1968 BaseLine.endpoints[1] = new BoundaryPointSet(Temporary); 2097 1969 2098 // construct center of circle 2099 CircleCenter.CopyVector(BaseLine.endpoints[0]->node->node); 2100 CircleCenter.AddVector(BaseLine.endpoints[1]->node->node); 2101 CircleCenter.Scale(0.5); 2102 2103 // construct normal vector of circle 2104 CirclePlaneNormal.CopyVector(BaseLine.endpoints[0]->node->node); 2105 CirclePlaneNormal.SubtractVector(BaseLine.endpoints[1]->node->node); 2106 2107 double radius = CirclePlaneNormal.NormSquared(); 1970 helper.CopyVector(BaseLine.endpoints[0]->node->node); 1971 helper.SubtractVector(BaseLine.endpoints[1]->node->node); 1972 helper.Normalize(); 1973 Oben.ProjectOntoPlane(&helper); 1974 Oben.Normalize(); 1975 helper.VectorProduct(&Oben); 1976 ShortestAngle = 2.*M_PI; // This will indicate the quadrant. 1977 1978 Chord.CopyVector(BaseLine.endpoints[0]->node->node); // bring into calling function 1979 Chord.SubtractVector(BaseLine.endpoints[1]->node->node); 1980 double radius = Chord.ScalarProduct(&Chord); 2108 1981 double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.); 2109 2110 NormalVector.ProjectOntoPlane(&CirclePlaneNormal); 2111 NormalVector.Normalize(); 2112 ShortestAngle = 2.*M_PI; // This will indicate the quadrant. 2113 2114 SphereCenter.CopyVector(&NormalVector); 2115 SphereCenter.Scale(CircleRadius); 2116 SphereCenter.AddVector(&CircleCenter); 2117 // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized) 1982 helper.CopyVector(&Oben); 1983 helper.Scale(CircleRadius); 1984 // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized) 2118 1985 2119 1986 // look in one direction of baseline for initial candidate 2120 SearchDirection.MakeNormalVector(&C irclePlaneNormal, &NormalVector); // whether we look "left" first or "right" first is not important ...1987 SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ... 2121 1988 2122 1989 // adding point 1 and point 2 and add the line between them … … 2126 1993 //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << helper << ".\n"; 2127 1994 CandidateForTesselation OptCandidates(&BaseLine); 2128 FindThirdPointForTesselation( NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC);1995 FindThirdPointForTesselation(Oben, SearchDirection, helper, OptCandidates, NULL, RADIUS, LC); 2129 1996 Log() << Verbose(0) << "List of third Points is:" << endl; 2130 1997 for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++) { … … 2300 2167 Vector CircleCenter; 2301 2168 Vector CirclePlaneNormal; 2302 Vector RelativeSphereCenter;2169 Vector OldSphereCenter; 2303 2170 Vector SearchDirection; 2304 2171 Vector helper; … … 2307 2174 double radius, CircleRadius; 2308 2175 2176 Log() << Verbose(0) << "Current baseline is " << *CandidateLine.BaseLine << " of triangle " << T << "." << endl; 2309 2177 for (int i=0;i<3;i++) 2310 if ((T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[0]->node) && (T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[1]->node)) {2178 if ((T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[0]->node) && (T.endpoints[i]->node != CandidateLine.BaseLine->endpoints[1]->node)) 2311 2179 ThirdNode = T.endpoints[i]->node; 2312 break;2313 }2314 Log() << Verbose(0) << "Current baseline is " << *CandidateLine.BaseLine << " with ThirdNode " << *ThirdNode << " of triangle " << T << "." << endl;2315 2180 2316 2181 // construct center of circle … … 2326 2191 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal); 2327 2192 if (radius/4. < RADIUS*RADIUS) { 2328 // construct relative sphere center with now known CircleCenter2329 RelativeSphereCenter.CopyVector(&T.SphereCenter);2330 RelativeSphereCenter.SubtractVector(&CircleCenter);2331 2332 2193 CircleRadius = RADIUS*RADIUS - radius/4.; 2333 2194 CirclePlaneNormal.Normalize(); 2334 2195 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl; 2335 2196 2336 Log() << Verbose(1) << "INFO: OldSphereCenter is at " << T.SphereCenter << "." << endl; 2337 2338 // construct SearchDirection and an "outward pointer" 2339 SearchDirection.MakeNormalVector(&RelativeSphereCenter, &CirclePlaneNormal); 2340 helper.CopyVector(&CircleCenter); 2197 // construct old center 2198 GetCenterofCircumcircle(&OldSphereCenter, *T.endpoints[0]->node->node, *T.endpoints[1]->node->node, *T.endpoints[2]->node->node); 2199 helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones 2200 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter); 2201 helper.Scale(sqrt(RADIUS*RADIUS - radius)); 2202 OldSphereCenter.AddVector(&helper); 2203 OldSphereCenter.SubtractVector(&CircleCenter); 2204 Log() << Verbose(1) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl; 2205 2206 // construct SearchDirection 2207 SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal); 2208 helper.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node); 2341 2209 helper.SubtractVector(ThirdNode->node); 2342 2210 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards! 2343 2211 SearchDirection.Scale(-1.); 2212 SearchDirection.ProjectOntoPlane(&OldSphereCenter); 2213 SearchDirection.Normalize(); 2344 2214 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl; 2345 if (fabs( RelativeSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {2215 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { 2346 2216 // rotated the wrong way! 2347 2217 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl; … … 2349 2219 2350 2220 // add third point 2351 FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdNode, RADIUS, LC);2221 FindThirdPointForTesselation(T.NormalVector, SearchDirection, OldSphereCenter, CandidateLine, ThirdNode, RADIUS, LC); 2352 2222 2353 2223 } else { … … 2462 2332 2463 2333 // fill the set of neighbours 2464 TesselPointSet SetOfNeighbours; 2334 Center.CopyVector(CandidateLine.BaseLine->endpoints[1]->node->node); 2335 Center.SubtractVector(TurningPoint->node); 2336 set<TesselPoint*> SetOfNeighbours; 2465 2337 SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node); 2466 2338 for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++) 2467 2339 SetOfNeighbours.insert(*Runner); 2468 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->node);2340 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, &Center); 2469 2341 2470 2342 // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles) 2471 Log() << Verbose(0) << "List of Candidates for Turning Point: " << *TurningPoint << "." << endl;2472 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner)2473 Log() << Verbose(0) << **TesselRunner << endl;2474 2343 TesselPointList::iterator Runner = connectedClosestPoints->begin(); 2475 2344 TesselPointList::iterator Sprinter = Runner; … … 2481 2350 AddTesselationPoint((*Sprinter), 2); 2482 2351 2352 Center.CopyVector(&CandidateLine.OptCenter); 2483 2353 // add the lines 2484 2354 AddTesselationLine(TPS[0], TPS[1], 0); … … 2489 2359 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount); 2490 2360 AddTesselationTriangle(); 2491 BTS->GetCenter(&Center); 2492 Center.SubtractVector(&CandidateLine.OptCenter); 2493 BTS->SphereCenter.CopyVector(&CandidateLine.OptCenter); 2361 Center.Scale(-1.); 2494 2362 BTS->GetNormalVector(Center); 2495 2363 … … 2497 2365 Runner = Sprinter; 2498 2366 Sprinter++; 2499 Log() << Verbose(0) << "Current Runner is " << **Runner << "." << endl;2500 if (Sprinter != connectedClosestPoints->end())2501 Log() << Verbose(0) << " There are still more triangles to add." << endl;2502 2367 } 2503 2368 delete(connectedClosestPoints); … … 2901 2766 Vector NewNormalVector; // normal vector of the Candidate's triangle 2902 2767 Vector helper, OptCandidateCenter, OtherOptCandidateCenter; 2903 Vector RelativeOldSphereCenter;2904 Vector NewPlaneCenter;2905 2768 double CircleRadius; // radius of this circle 2906 2769 double radius; 2907 double otherradius;2908 2770 double alpha, Otheralpha; // angles (i.e. parameter for the circle). 2909 2771 int N[NDIM], Nlower[NDIM], Nupper[NDIM]; … … 2921 2783 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node); 2922 2784 2923 RelativeOldSphereCenter.CopyVector(&OldSphereCenter);2924 RelativeOldSphereCenter.SubtractVector(&CircleCenter);2925 2926 2785 // calculate squared radius TesselPoint *ThirdNode,f circle 2927 radius = CirclePlaneNormal. NormSquared()/4.;2928 if (radius < RADIUS*RADIUS) {2929 CircleRadius = RADIUS*RADIUS - radius ;2786 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal); 2787 if (radius/4. < RADIUS*RADIUS) { 2788 CircleRadius = RADIUS*RADIUS - radius/4.; 2930 2789 CirclePlaneNormal.Normalize(); 2931 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;2790 //Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl; 2932 2791 2933 2792 // test whether old center is on the band's plane 2934 if (fabs( RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {2935 eLog() << Verbose(1) << "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;2936 RelativeOldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);2937 } 2938 radius = RelativeOldSphereCenter.NormSquared();2793 if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) { 2794 eLog() << Verbose(1) << "Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl; 2795 OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal); 2796 } 2797 radius = OldSphereCenter.ScalarProduct(&OldSphereCenter); 2939 2798 if (fabs(radius - CircleRadius) < HULLEPSILON) { 2940 Log() << Verbose(1) << "INFO: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << "." << endl;2799 //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl; 2941 2800 2942 2801 // check SearchDirection 2943 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;2944 if (fabs( RelativeOldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!2802 //Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl; 2803 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way! 2945 2804 eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl; 2946 2805 } … … 2973 2832 2974 2833 // check for three unique points 2975 Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter<< "." << endl;2834 Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " at " << *(Candidate->node) << "." << endl; 2976 2835 if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node) ){ 2977 2836 2978 // find center on the plane2979 GetCenterofCircumcircle(&New PlaneCenter, *CandidateLine.BaseLine->endpoints[0]->node->node, *CandidateLine.BaseLine->endpoints[1]->node->node, *Candidate->node);2980 Log() << Verbose(1) << "INFO: NewPlaneCenter is " << NewPlaneCenter << "." << endl;2981 2982 if ( NewNormalVector.MakeNormalVector(CandidateLine.BaseLine->endpoints[0]->node->node, CandidateLine.BaseLine->endpoints[1]->node->node, Candidate->node)2983 && (fabs(NewNormalVector. NormSquared()) > HULLEPSILON)2837 // construct both new centers 2838 GetCenterofCircumcircle(&NewSphereCenter, *CandidateLine.BaseLine->endpoints[0]->node->node, *CandidateLine.BaseLine->endpoints[1]->node->node, *Candidate->node); 2839 OtherNewSphereCenter.CopyVector(&NewSphereCenter); 2840 2841 if ((NewNormalVector.MakeNormalVector(CandidateLine.BaseLine->endpoints[0]->node->node, CandidateLine.BaseLine->endpoints[1]->node->node, Candidate->node)) 2842 && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON) 2984 2843 ) { 2844 helper.CopyVector(&NewNormalVector); 2985 2845 Log() << Verbose(1) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl; 2986 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&NewPlaneCenter); 2987 Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl; 2988 Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl; 2989 Log() << Verbose(1) << "INFO: Radius of CircumCenterCircle is " << radius << "." << endl; 2846 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&NewSphereCenter); 2990 2847 if (radius < RADIUS*RADIUS) { 2991 otherradius = CandidateLine.BaseLine->endpoints[1]->node->node->DistanceSquared(&NewPlaneCenter);2992 if (fabs(radius - otherradius) > HULLEPSILON) {2993 eLog() << Verbose(1) << "Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius-otherradius) << endl;2994 }2995 // construct both new centers2996 NewSphereCenter.CopyVector(&NewPlaneCenter);2997 OtherNewSphereCenter.CopyVector(&NewPlaneCenter);2998 helper.CopyVector(&NewNormalVector);2999 2848 helper.Scale(sqrt(RADIUS*RADIUS - radius)); 3000 Log() << Verbose(2) << "INFO: Distance of New PlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper<< " with sphere radius " << RADIUS << "." << endl;2849 Log() << Verbose(2) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << " with sphere radius " << RADIUS << "." << endl; 3001 2850 NewSphereCenter.AddVector(&helper); 2851 NewSphereCenter.SubtractVector(&CircleCenter); 3002 2852 Log() << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl; 2853 3003 2854 // OtherNewSphereCenter is created by the same vector just in the other direction 3004 2855 helper.Scale(-1.); 3005 2856 OtherNewSphereCenter.AddVector(&helper); 2857 OtherNewSphereCenter.SubtractVector(&CircleCenter); 3006 2858 Log() << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl; 3007 2859 … … 3009 2861 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection); 3010 2862 alpha = min(alpha, Otheralpha); 3011 3012 2863 // if there is a better candidate, drop the current list and add the new candidate 3013 2864 // otherwise ignore the new candidate and keep the list … … 3041 2892 } 3042 2893 } 2894 3043 2895 } else { 3044 2896 Log() << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl; … … 3084 2936 const BoundaryLineSet * lines[2] = { line1, line2 }; 3085 2937 class BoundaryPointSet *node = NULL; 3086 PointMapOrderMap;3087 PointTestPairOrderTest;2938 map<int, class BoundaryPointSet *> OrderMap; 2939 pair<map<int, class BoundaryPointSet *>::iterator, bool> OrderTest; 3088 2940 for (int i = 0; i < 2; i++) 3089 2941 // for both lines … … 3105 2957 }; 3106 2958 3107 /** Finds the boundary points that are closest to a given Vector \a *x.3108 * \param *out output stream for debugging3109 * \param *x Vector to look from3110 * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL.3111 */3112 DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector *x, const LinkedCell* LC) const3113 {3114 Info FunctionInfo(__func__);3115 PointMap::const_iterator FindPoint;3116 int N[NDIM], Nlower[NDIM], Nupper[NDIM];3117 3118 if (LinesOnBoundary.empty()) {3119 eLog() << Verbose(1) << "There is no tesselation structure to compare the point with, please create one first." << endl;3120 return NULL;3121 }3122 3123 // gather all points close to the desired one3124 LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly3125 for(int i=0;i<NDIM;i++) // store indices of this cell3126 N[i] = LC->n[i];3127 Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;3128 3129 DistanceToPointMap * points = new DistanceToPointMap;3130 LC->GetNeighbourBounds(Nlower, Nupper);3131 //Log() << Verbose(1) << endl;3132 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)3133 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)3134 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {3135 const LinkedNodes *List = LC->GetCurrentCell();3136 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;3137 if (List != NULL) {3138 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {3139 FindPoint = PointsOnBoundary.find((*Runner)->nr);3140 if (FindPoint != PointsOnBoundary.end()) {3141 points->insert(DistanceToPointPair (FindPoint->second->node->node->DistanceSquared(x), FindPoint->second) );3142 Log() << Verbose(1) << "INFO: Putting " << *FindPoint->second << " into the list." << endl;3143 }3144 }3145 } else {3146 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;3147 }3148 }3149 3150 // check whether we found some points3151 if (points->empty()) {3152 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl;3153 delete(points);3154 return NULL;3155 }3156 return points;3157 };3158 3159 /** Finds the boundary line that is closest to a given Vector \a *x.3160 * \param *out output stream for debugging3161 * \param *x Vector to look from3162 * \return closest BoundaryLineSet or NULL in degenerate case.3163 */3164 BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector *x, const LinkedCell* LC) const3165 {3166 Info FunctionInfo(__func__);3167 3168 // get closest points3169 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x,LC);3170 if (points == NULL) {3171 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl;3172 return NULL;3173 }3174 3175 // for each point, check its lines, remember closest3176 Log() << Verbose(1) << "Finding closest BoundaryLine to " << *x << " ... " << endl;3177 BoundaryLineSet *ClosestLine = NULL;3178 double MinDistance = -1.;3179 Vector helper;3180 Vector Center;3181 Vector BaseLine;3182 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {3183 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {3184 // calculate closest point on line to desired point3185 helper.CopyVector((LineRunner->second)->endpoints[0]->node->node);3186 helper.AddVector((LineRunner->second)->endpoints[1]->node->node);3187 helper.Scale(0.5);3188 Center.CopyVector(x);3189 Center.SubtractVector(&helper);3190 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);3191 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);3192 Center.ProjectOntoPlane(&BaseLine);3193 const double distance = Center.NormSquared();3194 if ((ClosestLine == NULL) || (distance < MinDistance)) {3195 // additionally calculate intersection on line (whether it's on the line section or not)3196 helper.CopyVector(x);3197 helper.SubtractVector((LineRunner->second)->endpoints[0]->node->node);3198 helper.SubtractVector(&Center);3199 const double lengthA = helper.ScalarProduct(&BaseLine);3200 helper.CopyVector(x);3201 helper.SubtractVector((LineRunner->second)->endpoints[1]->node->node);3202 helper.SubtractVector(&Center);3203 const double lengthB = helper.ScalarProduct(&BaseLine);3204 if (lengthB*lengthA < 0) { // if have different sign3205 ClosestLine = LineRunner->second;3206 MinDistance = distance;3207 Log() << Verbose(1) << "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << "." << endl;3208 } else {3209 Log() << Verbose(1) << "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << "." << endl;3210 }3211 } else {3212 Log() << Verbose(1) << "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << "." << endl;3213 }3214 }3215 }3216 delete(points);3217 // check whether closest line is "too close" :), then it's inside3218 if (ClosestLine == NULL) {3219 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl;3220 return NULL;3221 }3222 return ClosestLine;3223 };3224 3225 3226 2959 /** Finds the triangle that is closest to a given Vector \a *x. 3227 2960 * \param *out output stream for debugging 3228 2961 * \param *x Vector to look from 3229 * \return BoundaryTriangleSet of nearest triangle or NULL. 3230 */ 3231 TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector *x, const LinkedCell* LC) const 3232 { 3233 Info FunctionInfo(__func__); 3234 3235 // get closest points 3236 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x,LC); 3237 if (points == NULL) { 3238 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl; 2962 * \return list of BoundaryTriangleSet of nearest triangles or NULL in degenerate case. 2963 */ 2964 list<BoundaryTriangleSet*> * Tesselation::FindClosestTrianglesToPoint(const Vector *x, const LinkedCell* LC) const 2965 { 2966 Info FunctionInfo(__func__); 2967 TesselPoint *trianglePoints[3]; 2968 TesselPoint *SecondPoint = NULL; 2969 list<BoundaryTriangleSet*> *triangles = NULL; 2970 2971 if (LinesOnBoundary.empty()) { 2972 eLog() << Verbose(1) << "Error: There is no tesselation structure to compare the point with, please create one first."; 3239 2973 return NULL; 3240 2974 } 3241 3242 // for each point, check its lines, remember closest 3243 Log() << Verbose(1) << "Finding closest BoundaryTriangle to " << *x << " ... " << endl; 3244 LineSet ClosestLines; 3245 double MinDistance = 1e+16; 3246 Vector BaseLineIntersection; 3247 Vector Center; 3248 Vector BaseLine; 3249 Vector BaseLineCenter; 3250 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) { 3251 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) { 3252 3253 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node); 3254 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3255 const double lengthBase = BaseLine.NormSquared(); 3256 3257 BaseLineIntersection.CopyVector(x); 3258 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[0]->node->node); 3259 const double lengthEndA = BaseLineIntersection.NormSquared(); 3260 3261 BaseLineIntersection.CopyVector(x); 3262 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3263 const double lengthEndB = BaseLineIntersection.NormSquared(); 3264 3265 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint 3266 const double lengthEnd = Min(lengthEndA, lengthEndB); 3267 if (lengthEnd - MinDistance < -MYEPSILON) { // new best line 3268 ClosestLines.clear(); 3269 ClosestLines.insert(LineRunner->second); 3270 MinDistance = lengthEnd; 3271 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << "." << endl; 3272 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate 3273 ClosestLines.insert(LineRunner->second); 3274 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << "." << endl; 3275 } else { // line is worse 3276 Log() << Verbose(1) << "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << "." << endl; 3277 } 3278 } else { // intersection is closer, calculate 3279 // calculate closest point on line to desired point 3280 BaseLineIntersection.CopyVector(x); 3281 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3282 Center.CopyVector(&BaseLineIntersection); 3283 Center.ProjectOntoPlane(&BaseLine); 3284 BaseLineIntersection.SubtractVector(&Center); 3285 const double distance = BaseLineIntersection.NormSquared(); 3286 if (Center.NormSquared() > BaseLine.NormSquared()) { 3287 eLog() << Verbose(0) << "Algorithmic error: In second case we have intersection outside of baseline!" << endl; 3288 } 3289 if ((ClosestLines.empty()) || (distance < MinDistance)) { 3290 ClosestLines.insert(LineRunner->second); 3291 MinDistance = distance; 3292 Log() << Verbose(1) << "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << "." << endl; 3293 } else { 3294 Log() << Verbose(2) << "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << "." << endl; 3295 } 3296 } 3297 } 3298 } 3299 delete(points); 3300 3301 // check whether closest line is "too close" :), then it's inside 3302 if (ClosestLines.empty()) { 2975 Log() << Verbose(1) << "Finding closest Tesselpoint to " << *x << " ... " << endl; 2976 trianglePoints[0] = FindClosestPoint(x, SecondPoint, LC); 2977 2978 // check whether closest point is "too close" :), then it's inside 2979 if (trianglePoints[0] == NULL) { 3303 2980 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl; 3304 2981 return NULL; 3305 2982 } 3306 TriangleList * candidates = new TriangleList; 3307 for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++) 3308 for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) { 3309 candidates->push_back(Runner->second); 3310 } 3311 return candidates; 2983 if (trianglePoints[0]->node->DistanceSquared(x) < MYEPSILON) { 2984 Log() << Verbose(1) << "Point is right on a tesselation point, no nearest triangle." << endl; 2985 PointMap::const_iterator PointRunner = PointsOnBoundary.find(trianglePoints[0]->nr); 2986 triangles = new list<BoundaryTriangleSet*>; 2987 if (PointRunner != PointsOnBoundary.end()) { 2988 for(LineMap::iterator LineRunner = PointRunner->second->lines.begin(); LineRunner != PointRunner->second->lines.end(); LineRunner++) 2989 for(TriangleMap::iterator TriangleRunner = LineRunner->second->triangles.begin(); TriangleRunner != LineRunner->second->triangles.end(); TriangleRunner++) 2990 triangles->push_back(TriangleRunner->second); 2991 triangles->sort(); 2992 triangles->unique(); 2993 } else { 2994 PointRunner = PointsOnBoundary.find(SecondPoint->nr); 2995 trianglePoints[0] = SecondPoint; 2996 if (PointRunner != PointsOnBoundary.end()) { 2997 for(LineMap::iterator LineRunner = PointRunner->second->lines.begin(); LineRunner != PointRunner->second->lines.end(); LineRunner++) 2998 for(TriangleMap::iterator TriangleRunner = LineRunner->second->triangles.begin(); TriangleRunner != LineRunner->second->triangles.end(); TriangleRunner++) 2999 triangles->push_back(TriangleRunner->second); 3000 triangles->sort(); 3001 triangles->unique(); 3002 } else { 3003 eLog() << Verbose(1) << "I cannot find a boundary point to the tessel point " << *trianglePoints[0] << "." << endl; 3004 return NULL; 3005 } 3006 } 3007 } else { 3008 set<TesselPoint*> *connectedPoints = GetAllConnectedPoints(trianglePoints[0]); 3009 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(connectedPoints, trianglePoints[0], x); 3010 delete(connectedPoints); 3011 if (connectedClosestPoints != NULL) { 3012 trianglePoints[1] = connectedClosestPoints->front(); 3013 trianglePoints[2] = connectedClosestPoints->back(); 3014 for (int i=0;i<3;i++) { 3015 if (trianglePoints[i] == NULL) { 3016 eLog() << Verbose(1) << "IsInnerPoint encounters serious error, point " << i << " not found." << endl; 3017 } 3018 //Log() << Verbose(1) << "List of triangle points:" << endl; 3019 //Log() << Verbose(2) << *trianglePoints[i] << endl; 3020 } 3021 3022 triangles = FindTriangles(trianglePoints); 3023 Log() << Verbose(1) << "List of possible triangles:" << endl; 3024 for(list<BoundaryTriangleSet*>::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) 3025 Log() << Verbose(2) << **Runner << endl; 3026 3027 delete(connectedClosestPoints); 3028 } else { 3029 triangles = NULL; 3030 eLog() << Verbose(2) << "There is no circle of connected points!" << endl; 3031 } 3032 } 3033 3034 if ((triangles == NULL) || (triangles->empty())) { 3035 eLog() << Verbose(1) << "There is no nearest triangle. Please check the tesselation structure."; 3036 delete(triangles); 3037 return NULL; 3038 } else 3039 return triangles; 3312 3040 }; 3313 3041 … … 3318 3046 * \return list of BoundaryTriangleSet of nearest triangles or NULL. 3319 3047 */ 3320 class BoundaryTriangleSet * Tesselation::FindClosestTriangleTo Vector(const Vector *x, const LinkedCell* LC) const3048 class BoundaryTriangleSet * Tesselation::FindClosestTriangleToPoint(const Vector *x, const LinkedCell* LC) const 3321 3049 { 3322 3050 Info FunctionInfo(__func__); 3323 3051 class BoundaryTriangleSet *result = NULL; 3324 TriangleList *triangles = FindClosestTrianglesToVector(x, LC); 3325 TriangleList candidates; 3052 list<BoundaryTriangleSet*> *triangles = FindClosestTrianglesToPoint(x, LC); 3326 3053 Vector Center; 3327 Vector helper; 3328 3329 if ((triangles == NULL) || (triangles->empty())) 3054 3055 if (triangles == NULL) 3330 3056 return NULL; 3331 3057 3332 // go through all and pick the one with the best alignment to x 3333 double MinAlignment = 2.*M_PI; 3334 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) { 3335 (*Runner)->GetCenter(&Center); 3336 helper.CopyVector(x); 3337 helper.SubtractVector(&Center); 3338 const double Alignment = helper.Angle(&(*Runner)->NormalVector); 3339 if (Alignment < MinAlignment) { 3340 result = *Runner; 3341 MinAlignment = Alignment; 3342 Log() << Verbose(1) << "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << "." << endl; 3343 } else { 3344 Log() << Verbose(1) << "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << "." << endl; 3058 if (triangles->size() == 1) { // there is no degenerate case 3059 result = triangles->front(); 3060 Log() << Verbose(1) << "Normal Vector of this triangle is " << result->NormalVector << "." << endl; 3061 } else { 3062 result = triangles->front(); 3063 result->GetCenter(&Center); 3064 Center.SubtractVector(x); 3065 Log() << Verbose(1) << "Normal Vector of this front side is " << result->NormalVector << "." << endl; 3066 if (Center.ScalarProduct(&result->NormalVector) < 0) { 3067 result = triangles->back(); 3068 Log() << Verbose(1) << "Normal Vector of this back side is " << result->NormalVector << "." << endl; 3069 if (Center.ScalarProduct(&result->NormalVector) < 0) { 3070 eLog() << Verbose(1) << "Front and back side yield NormalVector in wrong direction!" << endl; 3071 } 3345 3072 } 3346 3073 } 3347 3074 delete(triangles); 3348 3349 3075 return result; 3350 3076 }; 3351 3077 3352 /** Checks whether the provided Vector is within the Tesselation structure. 3353 * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value. 3354 * @param point of which to check the position 3355 * @param *LC LinkedCell structure 3356 * 3357 * @return true if the point is inside the Tesselation structure, false otherwise 3358 */ 3359 bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const 3360 { 3361 return (GetDistanceSquaredToSurface(Point, LC) < MYEPSILON); 3362 } 3363 3364 /** Returns the distance to the surface given by the tesselation. 3365 * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points 3366 * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the 3367 * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's 3368 * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle(). 3369 * In the end we additionally find the point on the triangle who was smallest distance to \a Point: 3370 * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane. 3371 * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds. 3372 * -# If inside, take it to calculate closest distance 3373 * -# If not, take intersection with BoundaryLine as distance 3374 * 3375 * @note distance is squared despite it still contains a sign to determine in-/outside! 3078 /** Checks whether the provided Vector is within the tesselation structure. 3376 3079 * 3377 3080 * @param point of which to check the position 3378 3081 * @param *LC LinkedCell structure 3379 3082 * 3380 * @return >0 if outside, ==0 if on surface, <0 if inside (Note that distance can be at most LinkedCell::RADIUS.)3381 */ 3382 double Tesselation::GetDistanceSquaredToSurface(const Vector &Point, const LinkedCell* const LC) const3383 { 3384 Info FunctionInfo(__func__);3385 class BoundaryTriangleSet *result = FindClosestTriangleTo Vector(&Point, LC);3083 * @return true if the point is inside the tesselation structure, false otherwise 3084 */ 3085 bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const 3086 { 3087 Info FunctionInfo(__func__); 3088 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(&Point, LC); 3386 3089 Vector Center; 3387 Vector helper;3388 Vector DistanceToCenter;3389 Vector Intersection;3390 double distance = 0.;3391 3090 3392 3091 if (result == NULL) {// is boundary point or only point in point cloud? 3393 3092 Log() << Verbose(1) << Point << " is the only point in vicinity." << endl; 3394 return LC->RADIUS; 3395 } else { 3396 Log() << Verbose(1) << "INFO: Closest triangle found is " << *result << " with normal vector " << result->NormalVector << "." << endl; 3093 return false; 3397 3094 } 3398 3095 3399 3096 result->GetCenter(&Center); 3400 3097 Log() << Verbose(2) << "INFO: Central point of the triangle is " << Center << "." << endl; 3401 DistanceToCenter.CopyVector(&Center); 3402 DistanceToCenter.SubtractVector(&Point); 3403 Log() << Verbose(2) << "INFO: Vector from point to test to center is " << DistanceToCenter << "." << endl; 3404 3405 // check whether we are on boundary 3406 if (fabs(DistanceToCenter.ScalarProduct(&result->NormalVector)) < MYEPSILON) { 3407 // calculate whether inside of triangle 3408 DistanceToCenter.CopyVector(&Point); 3409 Center.CopyVector(&Point); 3410 Center.SubtractVector(&result->NormalVector); // points towards MolCenter 3411 DistanceToCenter.AddVector(&result->NormalVector); // points outside 3412 Log() << Verbose(1) << "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << "." << endl; 3413 if (result->GetIntersectionInsideTriangle(&Center, &DistanceToCenter, &Intersection)) { 3414 Log() << Verbose(1) << Point << " is inner point: sufficiently close to boundary, " << Intersection << "." << endl; 3415 return 0.; 3416 } else { 3417 Log() << Verbose(1) << Point << " is NOT an inner point: on triangle plane but outside of triangle bounds." << endl; 3418 return false; 3419 } 3098 Center.SubtractVector(&Point); 3099 Log() << Verbose(2) << "INFO: Vector from center to point to test is " << Center << "." << endl; 3100 if (Center.ScalarProduct(&result->NormalVector) > -MYEPSILON) { 3101 Log() << Verbose(1) << Point << " is an inner point." << endl; 3102 return true; 3420 3103 } else { 3421 // calculate smallest distance 3422 distance = result->GetClosestPointInsideTriangle(&Point, &Intersection); 3423 Log() << Verbose(1) << "Closest point on triangle is " << Intersection << "." << endl; 3424 distance = Min(distance, (LC->RADIUS*LC->RADIUS)); 3425 3426 // then check direction to boundary 3427 if (DistanceToCenter.ScalarProduct(&result->NormalVector) > MYEPSILON) { 3428 Log() << Verbose(1) << Point << " is an inner point, " << distance << " below surface." << endl; 3429 return -distance; 3430 } else { 3431 Log() << Verbose(1) << Point << " is NOT an inner point, " << distance << " above surface." << endl; 3432 return +distance; 3433 } 3434 } 3435 }; 3104 Log() << Verbose(1) << Point << " is NOT an inner point." << endl; 3105 return false; 3106 } 3107 } 3108 3109 /** Checks whether the provided TesselPoint is within the tesselation structure. 3110 * 3111 * @param *Point of which to check the position 3112 * @param *LC Linked Cell structure 3113 * 3114 * @return true if the point is inside the tesselation structure, false otherwise 3115 */ 3116 bool Tesselation::IsInnerPoint(const TesselPoint * const Point, const LinkedCell* const LC) const 3117 { 3118 Info FunctionInfo(__func__); 3119 return IsInnerPoint(*(Point->node), LC); 3120 } 3436 3121 3437 3122 /** Gets all points connected to the provided point by triangulation lines. … … 3441 3126 * @return set of the all points linked to the provided one 3442 3127 */ 3443 TesselPointSet* Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const3444 { 3445 Info FunctionInfo(__func__); 3446 TesselPointSet *connectedPoints = new TesselPointSet;3128 set<TesselPoint*> * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const 3129 { 3130 Info FunctionInfo(__func__); 3131 set<TesselPoint*> *connectedPoints = new set<TesselPoint*>; 3447 3132 class BoundaryPointSet *ReferencePoint = NULL; 3448 3133 TesselPoint* current; … … 3485 3170 } 3486 3171 3487 if (connectedPoints-> empty()) { // if have not found any points3172 if (connectedPoints->size() == 0) { // if have not found any points 3488 3173 eLog() << Verbose(1) << "We have not found any connected points to " << *Point<< "." << endl; 3489 3174 return NULL; … … 3506 3191 * @return list of the all points linked to the provided one 3507 3192 */ 3508 TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet*SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const3193 list<TesselPoint*> * Tesselation::GetCircleOfSetOfPoints(set<TesselPoint*> *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const 3509 3194 { 3510 3195 Info FunctionInfo(__func__); 3511 3196 map<double, TesselPoint*> anglesOfPoints; 3512 TesselPointList *connectedCircle = new TesselPointList; 3197 list<TesselPoint*> *connectedCircle = new list<TesselPoint*>; 3198 Vector center; 3513 3199 Vector PlaneNormal; 3514 3200 Vector AngleZero; 3515 3201 Vector OrthogonalVector; 3516 3202 Vector helper; 3517 const TesselPoint * const TrianglePoints[3] = {Point, NULL, NULL};3518 TriangleList *triangles = NULL;3519 3203 3520 3204 if (SetOfNeighbours == NULL) { … … 3525 3209 3526 3210 // calculate central point 3527 triangles = FindTriangles(TrianglePoints);3528 if ((triangles != NULL) && (!triangles->empty())) {3529 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)3530 PlaneNormal.AddVector(&(*Runner)->NormalVector);3531 } else {3532 eLog() << Verbose(0) << "Could not find any triangles for point " << *Point<< "." << endl;3533 performCriticalExit(); 3534 }3535 PlaneNormal. Scale(1.0/triangles->size());3536 Log() << Verbose(1) << "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << "." << endl;3211 for (set<TesselPoint*>::const_iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++) 3212 center.AddVector((*TesselRunner)->node); 3213 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size() 3214 // << "; scale factor " << 1.0/connectedPoints.size(); 3215 center.Scale(1.0/SetOfNeighbours->size()); 3216 Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl; 3217 3218 // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points 3219 PlaneNormal.CopyVector(Point->node); 3220 PlaneNormal.SubtractVector(¢er); 3537 3221 PlaneNormal.Normalize(); 3222 Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl; 3538 3223 3539 3224 // construct one orthogonal vector … … 3561 3246 3562 3247 // go through all connected points and calculate angle 3563 for ( TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {3248 for (set<TesselPoint*>::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) { 3564 3249 helper.CopyVector((*listRunner)->node); 3565 3250 helper.SubtractVector(Point->node); … … 3577 3262 } 3578 3263 3579 /** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.3580 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points3581 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given3582 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the3583 * triangle we are looking for.3584 *3585 * @param *SetOfNeighbours all points for which the angle should be calculated3586 * @param *Point of which get all connected points3587 * @param *Reference Reference vector for zero angle or NULL for no preference3588 * @return list of the all points linked to the provided one3589 */3590 TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const3591 {3592 Info FunctionInfo(__func__);3593 map<double, TesselPoint*> anglesOfPoints;3594 TesselPointList *connectedCircle = new TesselPointList;3595 Vector center;3596 Vector PlaneNormal;3597 Vector AngleZero;3598 Vector OrthogonalVector;3599 Vector helper;3600 3601 if (SetOfNeighbours == NULL) {3602 eLog() << Verbose(2) << "Could not find any connected points!" << endl;3603 delete(connectedCircle);3604 return NULL;3605 }3606 3607 // check whether there's something to do3608 if (SetOfNeighbours->size() < 3) {3609 for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)3610 connectedCircle->push_back(*TesselRunner);3611 return connectedCircle;3612 }3613 3614 Log() << Verbose(1) << "INFO: Point is " << *Point << " and Reference is " << *Reference << "." << endl;3615 // calculate central point3616 3617 TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin();3618 TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin();3619 TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin();3620 TesselB++;3621 TesselC++;3622 TesselC++;3623 int counter = 0;3624 while (TesselC != SetOfNeighbours->end()) {3625 helper.MakeNormalVector((*TesselA)->node, (*TesselB)->node, (*TesselC)->node);3626 Log() << Verbose(0) << "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper << endl;3627 counter++;3628 TesselA++;3629 TesselB++;3630 TesselC++;3631 PlaneNormal.AddVector(&helper);3632 }3633 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size()3634 // << "; scale factor " << counter;3635 PlaneNormal.Scale(1.0/(double)counter);3636 // Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl;3637 //3638 // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points3639 // PlaneNormal.CopyVector(Point->node);3640 // PlaneNormal.SubtractVector(¢er);3641 // PlaneNormal.Normalize();3642 Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;3643 3644 // construct one orthogonal vector3645 if (Reference != NULL) {3646 AngleZero.CopyVector(Reference);3647 AngleZero.SubtractVector(Point->node);3648 AngleZero.ProjectOntoPlane(&PlaneNormal);3649 }3650 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON )) {3651 Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl;3652 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);3653 AngleZero.SubtractVector(Point->node);3654 AngleZero.ProjectOntoPlane(&PlaneNormal);3655 if (AngleZero.NormSquared() < MYEPSILON) {3656 eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl;3657 performCriticalExit();3658 }3659 }3660 Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;3661 if (AngleZero.NormSquared() > MYEPSILON)3662 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);3663 else3664 OrthogonalVector.MakeNormalVector(&PlaneNormal);3665 Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;3666 3667 // go through all connected points and calculate angle3668 pair <map<double, TesselPoint*>::iterator, bool > InserterTest;3669 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {3670 helper.CopyVector((*listRunner)->node);3671 helper.SubtractVector(Point->node);3672 helper.ProjectOntoPlane(&PlaneNormal);3673 double angle = GetAngle(helper, AngleZero, OrthogonalVector);3674 if (angle > M_PI) // the correction is of no use here (and not desired)3675 angle = 2.*M_PI - angle;3676 Log() << Verbose(0) << "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << "." << endl;3677 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner)));3678 if (!InserterTest.second) {3679 eLog() << Verbose(0) << "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner) << endl;3680 performCriticalExit();3681 }3682 }3683 3684 for(map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {3685 connectedCircle->push_back(AngleRunner->second);3686 }3687 3688 return connectedCircle;3689 }3690 3691 3264 /** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path. 3692 3265 * … … 3695 3268 * @return list of the all points linked to the provided one 3696 3269 */ 3697 list< TesselPointList*> * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const3270 list<list<TesselPoint*> *> * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const 3698 3271 { 3699 3272 Info FunctionInfo(__func__); 3700 3273 map<double, TesselPoint*> anglesOfPoints; 3701 list< TesselPointList *> *ListOfPaths = new list< TesselPointList*>;3702 TesselPointList*connectedPath = NULL;3274 list<list<TesselPoint*> *> *ListOfPaths = new list<list<TesselPoint*> *>; 3275 list<TesselPoint*> *connectedPath = NULL; 3703 3276 Vector center; 3704 3277 Vector PlaneNormal; … … 3737 3310 } else if (!LineRunner->second) { 3738 3311 LineRunner->second = true; 3739 connectedPath = new TesselPointList;3312 connectedPath = new list<TesselPoint*>; 3740 3313 triangle = NULL; 3741 3314 CurrentLine = runner->second; … … 3811 3384 * @return list of the closed paths 3812 3385 */ 3813 list< TesselPointList*> * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const3814 { 3815 Info FunctionInfo(__func__); 3816 list< TesselPointList*> *ListofPaths = GetPathsOfConnectedPoints(Point);3817 list< TesselPointList *> *ListofClosedPaths = new list<TesselPointList*>;3818 TesselPointList*connectedPath = NULL;3819 TesselPointList*newPath = NULL;3386 list<list<TesselPoint*> *> * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const 3387 { 3388 Info FunctionInfo(__func__); 3389 list<list<TesselPoint*> *> *ListofPaths = GetPathsOfConnectedPoints(Point); 3390 list<list<TesselPoint*> *> *ListofClosedPaths = new list<list<TesselPoint*> *>; 3391 list<TesselPoint*> *connectedPath = NULL; 3392 list<TesselPoint*> *newPath = NULL; 3820 3393 int count = 0; 3821 3394 3822 3395 3823 TesselPointList::iterator CircleRunner;3824 TesselPointList::iterator CircleStart;3825 3826 for(list< TesselPointList*>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {3396 list<TesselPoint*>::iterator CircleRunner; 3397 list<TesselPoint*>::iterator CircleStart; 3398 3399 for(list<list<TesselPoint*> *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) { 3827 3400 connectedPath = *ListRunner; 3828 3401 … … 3833 3406 3834 3407 // go through list, look for reappearance of starting Point and create list 3835 TesselPointList::iterator Marker = CircleStart;3408 list<TesselPoint*>::iterator Marker = CircleStart; 3836 3409 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) { 3837 3410 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point 3838 3411 // we have a closed circle from Marker to new Marker 3839 3412 Log() << Verbose(1) << count+1 << ". closed path consists of: "; 3840 newPath = new TesselPointList;3841 TesselPointList::iterator CircleSprinter = Marker;3413 newPath = new list<TesselPoint*>; 3414 list<TesselPoint*>::iterator CircleSprinter = Marker; 3842 3415 for (; CircleSprinter != CircleRunner; CircleSprinter++) { 3843 3416 newPath->push_back(*CircleSprinter); … … 3873 3446 * \return pointer to allocated list of triangles 3874 3447 */ 3875 TriangleSet*Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const3876 { 3877 Info FunctionInfo(__func__); 3878 TriangleSet *connectedTriangles = new TriangleSet;3448 set<BoundaryTriangleSet*> *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const 3449 { 3450 Info FunctionInfo(__func__); 3451 set<BoundaryTriangleSet*> *connectedTriangles = new set<BoundaryTriangleSet*>; 3879 3452 3880 3453 if (Point == NULL) { … … 3925 3498 } 3926 3499 3927 list< TesselPointList*> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);3928 TesselPointList*connectedPath = NULL;3500 list<list<TesselPoint*> *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node); 3501 list<TesselPoint*> *connectedPath = NULL; 3929 3502 3930 3503 // gather all triangles 3931 3504 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) 3932 3505 count+=LineRunner->second->triangles.size(); 3933 TriangleMapCandidates;3506 map<class BoundaryTriangleSet *, int> Candidates; 3934 3507 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) { 3935 3508 line = LineRunner->second; 3936 3509 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) { 3937 3510 triangle = TriangleRunner->second; 3938 Candidates.insert( TrianglePair (triangle->Nr, triangle) );3511 Candidates.insert( pair<class BoundaryTriangleSet *, int> (triangle, triangle->Nr) ); 3939 3512 } 3940 3513 } … … 3943 3516 count=0; 3944 3517 NormalVector.Zero(); 3945 for ( TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {3946 Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner-> second) << "." << endl;3947 NormalVector.SubtractVector(&Runner-> second->NormalVector); // has to point inward3948 RemoveTesselationTriangle(Runner-> second);3518 for (map<class BoundaryTriangleSet *, int>::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) { 3519 Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner->first) << "." << endl; 3520 NormalVector.SubtractVector(&Runner->first->NormalVector); // has to point inward 3521 RemoveTesselationTriangle(Runner->first); 3949 3522 count++; 3950 3523 } 3951 3524 Log() << Verbose(1) << count << " triangles were removed." << endl; 3952 3525 3953 list< TesselPointList*>::iterator ListAdvance = ListOfClosedPaths->begin();3954 list< TesselPointList*>::iterator ListRunner = ListAdvance;3955 TriangleMap::iterator NumberRunner = Candidates.begin();3956 TesselPointList::iterator StartNode, MiddleNode, EndNode;3526 list<list<TesselPoint*> *>::iterator ListAdvance = ListOfClosedPaths->begin(); 3527 list<list<TesselPoint*> *>::iterator ListRunner = ListAdvance; 3528 map<class BoundaryTriangleSet *, int>::iterator NumberRunner = Candidates.begin(); 3529 list<TesselPoint*>::iterator StartNode, MiddleNode, EndNode; 3957 3530 double angle; 3958 3531 double smallestangle; … … 3968 3541 3969 3542 // re-create all triangles by going through connected points list 3970 LineListNewLines;3543 list<class BoundaryLineSet *> NewLines; 3971 3544 for (;!connectedPath->empty();) { 3972 3545 // search middle node with widest angle to next neighbours … … 4074 3647 // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing) 4075 3648 if (NewLines.size() > 1) { 4076 LineList::iterator Candidate;3649 list<class BoundaryLineSet *>::iterator Candidate; 4077 3650 class BoundaryLineSet *OtherBase = NULL; 4078 3651 double tmp, maxgain; 4079 3652 do { 4080 3653 maxgain = 0; 4081 for( LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {3654 for(list<class BoundaryLineSet *>::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) { 4082 3655 tmp = PickFarthestofTwoBaselines(*Runner); 4083 3656 if (maxgain < tmp) { … … 4121 3694 * Finds triangles belonging to the three provided points. 4122 3695 * 4123 * @param *Points[3] list, is expected to contain three points (NULL means wildcard)3696 * @param *Points[3] list, is expected to contain three points 4124 3697 * 4125 3698 * @return triangles which belong to the provided points, will be empty if there are none, 4126 3699 * will usually be one, in case of degeneration, there will be two 4127 3700 */ 4128 TriangleList*Tesselation::FindTriangles(const TesselPoint* const Points[3]) const4129 { 4130 Info FunctionInfo(__func__); 4131 TriangleList *result = new TriangleList;3701 list<BoundaryTriangleSet*> *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const 3702 { 3703 Info FunctionInfo(__func__); 3704 list<BoundaryTriangleSet*> *result = new list<BoundaryTriangleSet*>; 4132 3705 LineMap::const_iterator FindLine; 4133 3706 TriangleMap::const_iterator FindTriangle; 4134 3707 class BoundaryPointSet *TrianglePoints[3]; 4135 size_t NoOfWildcards = 0;4136 3708 4137 3709 for (int i = 0; i < 3; i++) { 4138 if (Points[i] == NULL) { 4139 NoOfWildcards++; 3710 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr); 3711 if (FindPoint != PointsOnBoundary.end()) { 3712 TrianglePoints[i] = FindPoint->second; 3713 } else { 4140 3714 TrianglePoints[i] = NULL; 4141 } else { 4142 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr); 4143 if (FindPoint != PointsOnBoundary.end()) { 4144 TrianglePoints[i] = FindPoint->second; 4145 } else { 4146 TrianglePoints[i] = NULL; 4147 } 4148 } 4149 } 4150 4151 switch (NoOfWildcards) { 4152 case 0: // checks lines between the points in the Points for their adjacent triangles 4153 for (int i = 0; i < 3; i++) { 4154 if (TrianglePoints[i] != NULL) { 4155 for (int j = i+1; j < 3; j++) { 4156 if (TrianglePoints[j] != NULL) { 4157 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap! 4158 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); 4159 FindLine++) { 4160 for (FindTriangle = FindLine->second->triangles.begin(); 4161 FindTriangle != FindLine->second->triangles.end(); 4162 FindTriangle++) { 4163 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) { 4164 result->push_back(FindTriangle->second); 4165 } 4166 } 3715 } 3716 } 3717 3718 // checks lines between the points in the Points for their adjacent triangles 3719 for (int i = 0; i < 3; i++) { 3720 if (TrianglePoints[i] != NULL) { 3721 for (int j = i+1; j < 3; j++) { 3722 if (TrianglePoints[j] != NULL) { 3723 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap! 3724 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); 3725 FindLine++) { 3726 for (FindTriangle = FindLine->second->triangles.begin(); 3727 FindTriangle != FindLine->second->triangles.end(); 3728 FindTriangle++) { 3729 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) { 3730 result->push_back(FindTriangle->second); 4167 3731 } 4168 // Is it sufficient to consider one of the triangle lines for this.4169 return result;4170 3732 } 4171 3733 } 3734 // Is it sufficient to consider one of the triangle lines for this. 3735 return result; 4172 3736 } 4173 3737 } 4174 break; 4175 case 1: // copy all triangles of the respective line 4176 { 4177 int i=0; 4178 for (; i < 3; i++) 4179 if (TrianglePoints[i] == NULL) 4180 break; 4181 for (FindLine = TrianglePoints[(i+1)%3]->lines.find(TrianglePoints[(i+2)%3]->node->nr); // is a multimap! 4182 (FindLine != TrianglePoints[(i+1)%3]->lines.end()) && (FindLine->first == TrianglePoints[(i+2)%3]->node->nr); 4183 FindLine++) { 4184 for (FindTriangle = FindLine->second->triangles.begin(); 4185 FindTriangle != FindLine->second->triangles.end(); 4186 FindTriangle++) { 4187 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) { 4188 result->push_back(FindTriangle->second); 4189 } 4190 } 4191 } 4192 break; 4193 } 4194 case 2: // copy all triangles of the respective point 4195 { 4196 int i=0; 4197 for (; i < 3; i++) 4198 if (TrianglePoints[i] != NULL) 4199 break; 4200 for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++) 4201 for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++) 4202 result->push_back(triangle->second); 4203 result->sort(); 4204 result->unique(); 4205 break; 4206 } 4207 case 3: // copy all triangles 4208 { 4209 for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++) 4210 result->push_back(triangle->second); 4211 break; 4212 } 4213 default: 4214 eLog() << Verbose(0) << "Number of wildcards is greater than 3, cannot happen!" << endl; 4215 performCriticalExit(); 4216 break; 3738 } 4217 3739 } 4218 3740 … … 4257 3779 * in the list, once as key and once as value 4258 3780 */ 4259 IndexToIndex* Tesselation::FindAllDegeneratedLines()3781 map<int, int> * Tesselation::FindAllDegeneratedLines() 4260 3782 { 4261 3783 Info FunctionInfo(__func__); 4262 3784 UniqueLines AllLines; 4263 IndexToIndex * DegeneratedLines = new IndexToIndex;3785 map<int, int> * DegeneratedLines = new map<int, int>; 4264 3786 4265 3787 // sanity check … … 4282 3804 4283 3805 Log() << Verbose(0) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl; 4284 IndexToIndex::iterator it;3806 map<int,int>::iterator it; 4285 3807 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) { 4286 3808 const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first); … … 4301 3823 * in the list, once as key and once as value 4302 3824 */ 4303 IndexToIndex* Tesselation::FindAllDegeneratedTriangles()4304 { 4305 Info FunctionInfo(__func__); 4306 IndexToIndex* DegeneratedLines = FindAllDegeneratedLines();4307 IndexToIndex * DegeneratedTriangles = new IndexToIndex;3825 map<int, int> * Tesselation::FindAllDegeneratedTriangles() 3826 { 3827 Info FunctionInfo(__func__); 3828 map<int, int> * DegeneratedLines = FindAllDegeneratedLines(); 3829 map<int, int> * DegeneratedTriangles = new map<int, int>; 4308 3830 4309 3831 TriangleMap::iterator TriangleRunner1, TriangleRunner2; … … 4311 3833 class BoundaryLineSet *line1 = NULL, *line2 = NULL; 4312 3834 4313 for ( IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {3835 for (map<int, int>::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) { 4314 3836 // run over both lines' triangles 4315 3837 Liner = LinesOnBoundary.find(LineRunner->first); … … 4332 3854 4333 3855 Log() << Verbose(0) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl; 4334 IndexToIndex::iterator it;3856 map<int,int>::iterator it; 4335 3857 for (it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++) 4336 3858 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl; … … 4346 3868 { 4347 3869 Info FunctionInfo(__func__); 4348 IndexToIndex* DegeneratedTriangles = FindAllDegeneratedTriangles();3870 map<int, int> * DegeneratedTriangles = FindAllDegeneratedTriangles(); 4349 3871 TriangleMap::iterator finder; 4350 3872 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL; 4351 3873 int count = 0; 4352 3874 4353 for ( IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin();3875 for (map<int, int>::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); 4354 3876 TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner 4355 3877 ) { … … 4439 3961 // find nearest boundary point 4440 3962 class TesselPoint *BackupPoint = NULL; 4441 class TesselPoint *NearestPoint = FindClosest TesselPoint(point->node, BackupPoint, LC);3963 class TesselPoint *NearestPoint = FindClosestPoint(point->node, BackupPoint, LC); 4442 3964 class BoundaryPointSet *NearestBoundaryPoint = NULL; 4443 3965 PointMap::iterator PointRunner; … … 4606 4128 4607 4129 /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector 4608 IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles();4609 4130 set < BoundaryPointSet *> EndpointCandidateList; 4610 4131 pair < set < BoundaryPointSet *>::iterator, bool > InsertionTester; … … 4617 4138 for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++) 4618 4139 for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) { 4619 if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) { 4620 TriangleInsertionTester = TriangleVectors.insert( pair< int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)) ); 4621 if (TriangleInsertionTester.second) 4622 Log() << Verbose(1) << " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list." << endl; 4623 } else { 4624 Log() << Verbose(1) << " NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one." << endl; 4625 } 4140 TriangleInsertionTester = TriangleVectors.insert( pair< int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)) ); 4141 if (TriangleInsertionTester.second) 4142 Log() << Verbose(1) << " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list." << endl; 4626 4143 } 4627 4144 // check whether there are two that are parallel … … 4696 4213 /// 4a. Gather all triangles of this polygon 4697 4214 TriangleSet *T = (*PolygonRunner)->GetAllContainedTrianglesFromEndpoints(); 4698 4699 // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do.4700 if (T->size() == 2) {4701 Log() << Verbose(1) << " Skipping degenerated polygon, is just a (already simply degenerated) triangle." << endl;4702 delete(T);4703 continue;4704 }4705 4706 // check whether number is even4707 // If this case occurs, we have to think about it!4708 // The Problem is probably due to two degenerated polygons being connected by a bridging, non-degenerated polygon, as somehow one node has4709 // connections to either polygon ...4710 if (T->size() % 2 != 0) {4711 eLog() << Verbose(0) << " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!" << endl;4712 performCriticalExit();4713 }4714 4215 4715 4216 TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator … … 4758 4259 } 4759 4260 4760 IndexToIndex* SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();4261 map<int, int> * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles(); 4761 4262 Log() << Verbose(0) << "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:" << endl; 4762 IndexToIndex::iterator it;4263 map<int,int>::iterator it; 4763 4264 for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++) 4764 4265 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl;
Note:
See TracChangeset
for help on using the changeset viewer.
