Changes in src/tesselation.cpp [125b3c:244a84]
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
src/tesselation.cpp
r125b3c r244a84 35 35 * \param *Walker TesselPoint this boundary point represents 36 36 */ 37 BoundaryPointSet::BoundaryPointSet(TesselPoint * Walker) :37 BoundaryPointSet::BoundaryPointSet(TesselPoint * const Walker) : 38 38 LinesCount(0), 39 39 node(Walker), … … 61 61 * \param *line line to add 62 62 */ 63 void BoundaryPointSet::AddLine( class BoundaryLineSet *line)63 void BoundaryPointSet::AddLine(BoundaryLineSet * const line) 64 64 { 65 65 Info FunctionInfo(__func__); … … 105 105 * \param number number of the list 106 106 */ 107 BoundaryLineSet::BoundaryLineSet( class BoundaryPointSet *Point[2], const int number)107 BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point[2], const int number) 108 108 { 109 109 Info FunctionInfo(__func__); … … 115 115 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding. 116 116 Point[1]->AddLine(this); // 117 // set skipped to false 118 skipped = false; 119 // clear triangles list 120 Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl; 121 }; 122 123 /** Constructor of BoundaryLineSet with two endpoints. 124 * Adds line automatically to each endpoints' LineMap 125 * \param *Point1 first boundary point 126 * \param *Point2 second boundary point 127 * \param number number of the list 128 */ 129 BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point1, BoundaryPointSet * const Point2, const int number) 130 { 131 Info FunctionInfo(__func__); 132 // set number 133 Nr = number; 134 // set endpoints in ascending order 135 SetEndpointsOrdered(endpoints, Point1, Point2); 136 // add this line to the hash maps of both endpoints 137 Point1->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding. 138 Point2->AddLine(this); // 117 139 // set skipped to false 118 140 skipped = false; … … 171 193 * \param *triangle to add 172 194 */ 173 void BoundaryLineSet::AddTriangle( class BoundaryTriangleSet *triangle)195 void BoundaryLineSet::AddTriangle(BoundaryTriangleSet * const triangle) 174 196 { 175 197 Info FunctionInfo(__func__); … … 182 204 * \return true - common endpoint present, false - not connected 183 205 */ 184 bool BoundaryLineSet::IsConnectedTo(c lass BoundaryLineSet *line)206 bool BoundaryLineSet::IsConnectedTo(const BoundaryLineSet * const line) const 185 207 { 186 208 Info FunctionInfo(__func__); … … 197 219 * \return true - triangles are convex, false - concave or less than two triangles connected 198 220 */ 199 bool BoundaryLineSet::CheckConvexityCriterion() 221 bool BoundaryLineSet::CheckConvexityCriterion() const 200 222 { 201 223 Info FunctionInfo(__func__); … … 221 243 int i=0; 222 244 class BoundaryPointSet *node = NULL; 223 for(TriangleMap:: iterator runner = triangles.begin(); runner != triangles.end(); runner++) {245 for(TriangleMap::const_iterator runner = triangles.begin(); runner != triangles.end(); runner++) { 224 246 //Log() << Verbose(0) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl; 225 247 NormalCheck.AddVector(&runner->second->NormalVector); … … 264 286 * \return true - point is of the line, false - is not 265 287 */ 266 bool BoundaryLineSet::ContainsBoundaryPoint(c lass BoundaryPointSet *point)288 bool BoundaryLineSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const 267 289 { 268 290 Info FunctionInfo(__func__); … … 277 299 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise 278 300 */ 279 class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(c lass BoundaryPointSet *point)301 class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(const BoundaryPointSet * const point) const 280 302 { 281 303 Info FunctionInfo(__func__); … … 317 339 * \param number number of triangle 318 340 */ 319 BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * line[3],int number) :341 BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) : 320 342 Nr(number) 321 343 { … … 376 398 * \param &OtherVector direction vector to make normal vector unique. 377 399 */ 378 void BoundaryTriangleSet::GetNormalVector( Vector &OtherVector)400 void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector) 379 401 { 380 402 Info FunctionInfo(__func__); … … 388 410 }; 389 411 390 /** Finds the point on the triangle \a *BTS th e line defined by \a *MolCenter and \a *x crosses through.412 /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses. 391 413 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane 392 * Th is we test if it's really on the plane and whether it's inside the triangle on the plane or not.414 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not. 393 415 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line 394 416 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between … … 400 422 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle. 401 423 */ 402 bool BoundaryTriangleSet::GetIntersectionInsideTriangle( Vector *MolCenter, Vector *x, Vector *Intersection)403 { 404 424 bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector * const MolCenter, const Vector * const x, Vector * const Intersection) const 425 { 426 Info FunctionInfo(__func__); 405 427 Vector CrossPoint; 406 428 Vector helper; … … 411 433 } 412 434 435 Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl; 436 Log() << Verbose(1) << "INFO: Line is from " << *MolCenter << " to " << *x << "." << endl; 437 Log() << Verbose(1) << "INFO: Intersection is " << *Intersection << "." << endl; 438 439 if (Intersection->DistanceSquared(endpoints[0]->node->node) < MYEPSILON) { 440 Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl; 441 return true; 442 } else if (Intersection->DistanceSquared(endpoints[1]->node->node) < MYEPSILON) { 443 Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl; 444 return true; 445 } else if (Intersection->DistanceSquared(endpoints[2]->node->node) < MYEPSILON) { 446 Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl; 447 return true; 448 } 413 449 // Calculate cross point between one baseline and the line from the third endpoint to intersection 414 450 int i=0; … … 417 453 helper.CopyVector(endpoints[(i+1)%3]->node->node); 418 454 helper.SubtractVector(endpoints[i%3]->node->node); 455 CrossPoint.SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector 456 const double s = CrossPoint.ScalarProduct(&helper)/helper.NormSquared(); 457 Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl; 458 if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) { 459 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl; 460 i=4; 461 break; 462 } 463 i++; 419 464 } else 420 i++;421 if (i>2)422 465 break; 423 } while ( CrossPoint.NormSquared() < MYEPSILON);466 } while (i<3); 424 467 if (i==3) { 425 eLog() << Verbose(0) << "Could not find any cross points, something's utterly wrong here!" << endl; 426 } 427 CrossPoint.SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector 428 429 // check whether intersection is inside or not by comparing length of intersection and length of cross point 430 if ((CrossPoint.NormSquared() - helper.NormSquared()) < MYEPSILON) { // inside 468 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl; 431 469 return true; 432 } else { // outside!433 Intersection->Zero();470 } else { 471 Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " outside of triangle." << endl; 434 472 return false; 435 473 } 474 }; 475 476 /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses. 477 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane 478 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not. 479 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line 480 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between 481 * the first two basepoints) or not. 482 * \param *x point 483 * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector 484 * \return Distance squared between \a *x and closest point inside triangle 485 */ 486 double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector * const x, Vector * const ClosestPoint) const 487 { 488 Info FunctionInfo(__func__); 489 Vector Direction; 490 491 // 1. get intersection with plane 492 Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << *x << "." << endl; 493 GetCenter(&Direction); 494 if (!ClosestPoint->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, x, &Direction)) { 495 ClosestPoint->CopyVector(x); 496 } 497 498 // 2. Calculate in plane part of line (x, intersection) 499 Vector InPlane; 500 InPlane.CopyVector(x); 501 InPlane.SubtractVector(ClosestPoint); // points from plane intersection to straight-down point 502 InPlane.ProjectOntoPlane(&NormalVector); 503 InPlane.AddVector(ClosestPoint); 504 505 Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl; 506 Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << *x << "." << endl; 507 Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl; 508 509 // Calculate cross point between one baseline and the desired point such that distance is shortest 510 double ShortestDistance = -1.; 511 bool InsideFlag = false; 512 Vector CrossDirection[3]; 513 Vector CrossPoint[3]; 514 Vector helper; 515 for (int i=0;i<3;i++) { 516 // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point 517 Direction.CopyVector(endpoints[(i+1)%3]->node->node); 518 Direction.SubtractVector(endpoints[i%3]->node->node); 519 // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal); 520 CrossPoint[i].GetIntersectionWithPlane(&Direction, &InPlane, endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node); 521 CrossDirection[i].CopyVector(&CrossPoint[i]); 522 CrossDirection[i].SubtractVector(&InPlane); 523 CrossPoint[i].SubtractVector(endpoints[i%3]->node->node); // cross point was returned as absolute vector 524 const double s = CrossPoint[i].ScalarProduct(&Direction)/Direction.NormSquared(); 525 Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl; 526 if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) { 527 CrossPoint[i].AddVector(endpoints[i%3]->node->node); // make cross point absolute again 528 Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << *endpoints[i%3]->node->node << " and " << *endpoints[(i+1)%3]->node->node << "." << endl; 529 const double distance = CrossPoint[i].DistanceSquared(x); 530 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) { 531 ShortestDistance = distance; 532 ClosestPoint->CopyVector(&CrossPoint[i]); 533 } 534 } else 535 CrossPoint[i].Zero(); 536 } 537 InsideFlag = true; 538 for (int i=0;i<3;i++) { 539 const double sign = CrossDirection[i].ScalarProduct(&CrossDirection[(i+1)%3]); 540 const double othersign = CrossDirection[i].ScalarProduct(&CrossDirection[(i+2)%3]);; 541 if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign 542 InsideFlag = false; 543 } 544 if (InsideFlag) { 545 ClosestPoint->CopyVector(&InPlane); 546 ShortestDistance = InPlane.DistanceSquared(x); 547 } else { // also check endnodes 548 for (int i=0;i<3;i++) { 549 const double distance = x->DistanceSquared(endpoints[i]->node->node); 550 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) { 551 ShortestDistance = distance; 552 ClosestPoint->CopyVector(endpoints[i]->node->node); 553 } 554 } 555 } 556 Log() << Verbose(1) << "INFO: Closest Point is " << *ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl; 557 return ShortestDistance; 436 558 }; 437 559 … … 440 562 * \return true - line is of the triangle, false - is not 441 563 */ 442 bool BoundaryTriangleSet::ContainsBoundaryLine(c lass BoundaryLineSet *line)564 bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const 443 565 { 444 566 Info FunctionInfo(__func__); … … 453 575 * \return true - point is of the triangle, false - is not 454 576 */ 455 bool BoundaryTriangleSet::ContainsBoundaryPoint(c lass BoundaryPointSet *point)577 bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const 456 578 { 457 579 Info FunctionInfo(__func__); … … 466 588 * \return true - point is of the triangle, false - is not 467 589 */ 468 bool BoundaryTriangleSet::ContainsBoundaryPoint(c lass TesselPoint *point)590 bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const 469 591 { 470 592 Info FunctionInfo(__func__); … … 479 601 * \return true - is the very triangle, false - is not 480 602 */ 481 bool BoundaryTriangleSet::IsPresentTupel(class BoundaryPointSet *Points[3]) 482 { 483 Info FunctionInfo(__func__); 603 bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const 604 { 605 Info FunctionInfo(__func__); 606 Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl; 484 607 return (((endpoints[0] == Points[0]) 485 608 || (endpoints[0] == Points[1]) … … 501 624 * \return true - is the very triangle, false - is not 502 625 */ 503 bool BoundaryTriangleSet::IsPresentTupel(c lass BoundaryTriangleSet *T)626 bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const 504 627 { 505 628 Info FunctionInfo(__func__); … … 523 646 * \return pointer third endpoint or NULL if line does not belong to triangle. 524 647 */ 525 class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(c lass BoundaryLineSet *line)648 class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const 526 649 { 527 650 Info FunctionInfo(__func__); … … 540 663 * \param *center central point on return. 541 664 */ 542 void BoundaryTriangleSet::GetCenter(Vector * center)665 void BoundaryTriangleSet::GetCenter(Vector * const center) const 543 666 { 544 667 Info FunctionInfo(__func__); … … 547 670 center->AddVector(endpoints[i]->node->node); 548 671 center->Scale(1./3.); 672 Log() << Verbose(1) << "INFO: Center is at " << *center << "." << endl; 549 673 } 550 674 … … 815 939 TesselPoint::TesselPoint() 816 940 { 817 Info FunctionInfo(__func__);941 //Info FunctionInfo(__func__); 818 942 node = NULL; 819 943 nr = -1; … … 825 949 TesselPoint::~TesselPoint() 826 950 { 827 Info FunctionInfo(__func__);951 //Info FunctionInfo(__func__); 828 952 }; 829 953 … … 852 976 PointCloud::PointCloud() 853 977 { 854 Info FunctionInfo(__func__);978 //Info FunctionInfo(__func__); 855 979 }; 856 980 … … 859 983 PointCloud::~PointCloud() 860 984 { 861 Info FunctionInfo(__func__);985 //Info FunctionInfo(__func__); 862 986 }; 863 987 … … 1050 1174 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster 1051 1175 */ 1052 void 1053 Tesselation::GuessStartingTriangle() 1176 void Tesselation::GuessStartingTriangle() 1054 1177 { 1055 1178 Info FunctionInfo(__func__); … … 1422 1545 TesselPoint *Walker = NULL; 1423 1546 Vector *Center = cloud->GetCenter(); 1424 list<BoundaryTriangleSet*>*triangles = NULL;1547 TriangleList *triangles = NULL; 1425 1548 bool AddFlag = false; 1426 1549 LinkedCell *BoundaryPoints = NULL; … … 1437 1560 Log() << Verbose(0) << "Current point is " << *Walker << "." << endl; 1438 1561 // get the next triangle 1439 triangles = FindClosestTrianglesTo Point(Walker->node, BoundaryPoints);1562 triangles = FindClosestTrianglesToVector(Walker->node, BoundaryPoints); 1440 1563 BTS = triangles->front(); 1441 1564 if ((triangles == NULL) || (BTS->ContainsBoundaryPoint(Walker))) { … … 2338 2461 2339 2462 // fill the set of neighbours 2340 Center.CopyVector(CandidateLine.BaseLine->endpoints[1]->node->node); 2341 Center.SubtractVector(TurningPoint->node); 2342 set<TesselPoint*> SetOfNeighbours; 2463 TesselPointSet SetOfNeighbours; 2343 2464 SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node); 2344 2465 for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++) 2345 2466 SetOfNeighbours.insert(*Runner); 2346 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, &Center);2467 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->node); 2347 2468 2348 2469 // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles) 2470 Log() << Verbose(0) << "List of Candidates for Turning Point: " << *TurningPoint << "." << endl; 2471 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner) 2472 Log() << Verbose(0) << **TesselRunner << endl; 2349 2473 TesselPointList::iterator Runner = connectedClosestPoints->begin(); 2350 2474 TesselPointList::iterator Sprinter = Runner; … … 2356 2480 AddTesselationPoint((*Sprinter), 2); 2357 2481 2358 2359 2482 // add the lines 2360 2483 AddTesselationLine(TPS[0], TPS[1], 0); … … 2373 2496 Runner = Sprinter; 2374 2497 Sprinter++; 2498 Log() << Verbose(0) << "Current Runner is " << **Runner << "." << endl; 2499 if (Sprinter != connectedClosestPoints->end()) 2500 Log() << Verbose(0) << " There are still more triangles to add." << endl; 2375 2501 } 2376 2502 delete(connectedClosestPoints); … … 2957 3083 const BoundaryLineSet * lines[2] = { line1, line2 }; 2958 3084 class BoundaryPointSet *node = NULL; 2959 map<int, class BoundaryPointSet *>OrderMap;2960 pair<map<int, class BoundaryPointSet *>::iterator, bool>OrderTest;3085 PointMap OrderMap; 3086 PointTestPair OrderTest; 2961 3087 for (int i = 0; i < 2; i++) 2962 3088 // for both lines … … 2978 3104 }; 2979 3105 3106 /** Finds the boundary points that are closest to a given Vector \a *x. 3107 * \param *out output stream for debugging 3108 * \param *x Vector to look from 3109 * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL. 3110 */ 3111 DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector *x, const LinkedCell* LC) const 3112 { 3113 Info FunctionInfo(__func__); 3114 PointMap::const_iterator FindPoint; 3115 int N[NDIM], Nlower[NDIM], Nupper[NDIM]; 3116 3117 if (LinesOnBoundary.empty()) { 3118 eLog() << Verbose(1) << "There is no tesselation structure to compare the point with, please create one first." << endl; 3119 return NULL; 3120 } 3121 3122 // gather all points close to the desired one 3123 LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly 3124 for(int i=0;i<NDIM;i++) // store indices of this cell 3125 N[i] = LC->n[i]; 3126 Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl; 3127 3128 DistanceToPointMap * points = new DistanceToPointMap; 3129 LC->GetNeighbourBounds(Nlower, Nupper); 3130 //Log() << Verbose(1) << endl; 3131 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++) 3132 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++) 3133 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) { 3134 const LinkedNodes *List = LC->GetCurrentCell(); 3135 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl; 3136 if (List != NULL) { 3137 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) { 3138 FindPoint = PointsOnBoundary.find((*Runner)->nr); 3139 if (FindPoint != PointsOnBoundary.end()) { 3140 points->insert(DistanceToPointPair (FindPoint->second->node->node->DistanceSquared(x), FindPoint->second) ); 3141 Log() << Verbose(1) << "INFO: Putting " << *FindPoint->second << " into the list." << endl; 3142 } 3143 } 3144 } else { 3145 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl; 3146 } 3147 } 3148 3149 // check whether we found some points 3150 if (points->empty()) { 3151 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl; 3152 delete(points); 3153 return NULL; 3154 } 3155 return points; 3156 }; 3157 3158 /** Finds the boundary line that is closest to a given Vector \a *x. 3159 * \param *out output stream for debugging 3160 * \param *x Vector to look from 3161 * \return closest BoundaryLineSet or NULL in degenerate case. 3162 */ 3163 BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector *x, const LinkedCell* LC) const 3164 { 3165 Info FunctionInfo(__func__); 3166 3167 // get closest points 3168 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x,LC); 3169 if (points == NULL) { 3170 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl; 3171 return NULL; 3172 } 3173 3174 // for each point, check its lines, remember closest 3175 Log() << Verbose(1) << "Finding closest BoundaryLine to " << *x << " ... " << endl; 3176 BoundaryLineSet *ClosestLine = NULL; 3177 double MinDistance = -1.; 3178 Vector helper; 3179 Vector Center; 3180 Vector BaseLine; 3181 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) { 3182 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) { 3183 // calculate closest point on line to desired point 3184 helper.CopyVector((LineRunner->second)->endpoints[0]->node->node); 3185 helper.AddVector((LineRunner->second)->endpoints[1]->node->node); 3186 helper.Scale(0.5); 3187 Center.CopyVector(x); 3188 Center.SubtractVector(&helper); 3189 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node); 3190 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3191 Center.ProjectOntoPlane(&BaseLine); 3192 const double distance = Center.NormSquared(); 3193 if ((ClosestLine == NULL) || (distance < MinDistance)) { 3194 // additionally calculate intersection on line (whether it's on the line section or not) 3195 helper.CopyVector(x); 3196 helper.SubtractVector((LineRunner->second)->endpoints[0]->node->node); 3197 helper.SubtractVector(&Center); 3198 const double lengthA = helper.ScalarProduct(&BaseLine); 3199 helper.CopyVector(x); 3200 helper.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3201 helper.SubtractVector(&Center); 3202 const double lengthB = helper.ScalarProduct(&BaseLine); 3203 if (lengthB*lengthA < 0) { // if have different sign 3204 ClosestLine = LineRunner->second; 3205 MinDistance = distance; 3206 Log() << Verbose(1) << "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << "." << endl; 3207 } else { 3208 Log() << Verbose(1) << "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << "." << endl; 3209 } 3210 } else { 3211 Log() << Verbose(1) << "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << "." << endl; 3212 } 3213 } 3214 } 3215 delete(points); 3216 // check whether closest line is "too close" :), then it's inside 3217 if (ClosestLine == NULL) { 3218 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl; 3219 return NULL; 3220 } 3221 return ClosestLine; 3222 }; 3223 3224 2980 3225 /** Finds the triangle that is closest to a given Vector \a *x. 2981 3226 * \param *out output stream for debugging 2982 3227 * \param *x Vector to look from 2983 * \return list of BoundaryTriangleSet of nearest triangles or NULL in degenerate case. 2984 */ 2985 list<BoundaryTriangleSet*> * Tesselation::FindClosestTrianglesToPoint(const Vector *x, const LinkedCell* LC) const 2986 { 2987 Info FunctionInfo(__func__); 2988 TesselPoint *trianglePoints[3]; 2989 TesselPoint *SecondPoint = NULL; 2990 list<BoundaryTriangleSet*> *triangles = NULL; 2991 2992 if (LinesOnBoundary.empty()) { 2993 eLog() << Verbose(1) << "Error: There is no tesselation structure to compare the point with, please create one first."; 3228 * \return BoundaryTriangleSet of nearest triangle or NULL. 3229 */ 3230 TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector *x, const LinkedCell* LC) const 3231 { 3232 Info FunctionInfo(__func__); 3233 3234 // get closest points 3235 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x,LC); 3236 if (points == NULL) { 3237 eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl; 2994 3238 return NULL; 2995 3239 } 2996 Log() << Verbose(1) << "Finding closest Tesselpoint to " << *x << " ... " << endl; 2997 trianglePoints[0] = FindClosestPoint(x, SecondPoint, LC); 2998 2999 // check whether closest point is "too close" :), then it's inside 3000 if (trianglePoints[0] == NULL) { 3240 3241 // for each point, check its lines, remember closest 3242 Log() << Verbose(1) << "Finding closest BoundaryTriangle to " << *x << " ... " << endl; 3243 LineSet ClosestLines; 3244 double MinDistance = 1e+16; 3245 Vector BaseLineIntersection; 3246 Vector Center; 3247 Vector BaseLine; 3248 Vector BaseLineCenter; 3249 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) { 3250 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) { 3251 3252 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node); 3253 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3254 const double lengthBase = BaseLine.NormSquared(); 3255 3256 BaseLineIntersection.CopyVector(x); 3257 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[0]->node->node); 3258 const double lengthEndA = BaseLineIntersection.NormSquared(); 3259 3260 BaseLineIntersection.CopyVector(x); 3261 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3262 const double lengthEndB = BaseLineIntersection.NormSquared(); 3263 3264 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint 3265 const double lengthEnd = Min(lengthEndA, lengthEndB); 3266 if (lengthEnd - MinDistance < -MYEPSILON) { // new best line 3267 ClosestLines.clear(); 3268 ClosestLines.insert(LineRunner->second); 3269 MinDistance = lengthEnd; 3270 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << "." << endl; 3271 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate 3272 ClosestLines.insert(LineRunner->second); 3273 Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << "." << endl; 3274 } else { // line is worse 3275 Log() << Verbose(1) << "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << "." << endl; 3276 } 3277 } else { // intersection is closer, calculate 3278 // calculate closest point on line to desired point 3279 BaseLineIntersection.CopyVector(x); 3280 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node); 3281 Center.CopyVector(&BaseLineIntersection); 3282 Center.ProjectOntoPlane(&BaseLine); 3283 BaseLineIntersection.SubtractVector(&Center); 3284 const double distance = BaseLineIntersection.NormSquared(); 3285 if (Center.NormSquared() > BaseLine.NormSquared()) { 3286 eLog() << Verbose(0) << "Algorithmic error: In second case we have intersection outside of baseline!" << endl; 3287 } 3288 if ((ClosestLines.empty()) || (distance < MinDistance)) { 3289 ClosestLines.insert(LineRunner->second); 3290 MinDistance = distance; 3291 Log() << Verbose(1) << "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << "." << endl; 3292 } else { 3293 Log() << Verbose(2) << "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << "." << endl; 3294 } 3295 } 3296 } 3297 } 3298 delete(points); 3299 3300 // check whether closest line is "too close" :), then it's inside 3301 if (ClosestLines.empty()) { 3001 3302 Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl; 3002 3303 return NULL; 3003 3304 } 3004 if (trianglePoints[0]->node->DistanceSquared(x) < MYEPSILON) { 3005 Log() << Verbose(1) << "Point is right on a tesselation point, no nearest triangle." << endl; 3006 PointMap::const_iterator PointRunner = PointsOnBoundary.find(trianglePoints[0]->nr); 3007 triangles = new list<BoundaryTriangleSet*>; 3008 if (PointRunner != PointsOnBoundary.end()) { 3009 for(LineMap::iterator LineRunner = PointRunner->second->lines.begin(); LineRunner != PointRunner->second->lines.end(); LineRunner++) 3010 for(TriangleMap::iterator TriangleRunner = LineRunner->second->triangles.begin(); TriangleRunner != LineRunner->second->triangles.end(); TriangleRunner++) 3011 triangles->push_back(TriangleRunner->second); 3012 triangles->sort(); 3013 triangles->unique(); 3014 } else { 3015 PointRunner = PointsOnBoundary.find(SecondPoint->nr); 3016 trianglePoints[0] = SecondPoint; 3017 if (PointRunner != PointsOnBoundary.end()) { 3018 for(LineMap::iterator LineRunner = PointRunner->second->lines.begin(); LineRunner != PointRunner->second->lines.end(); LineRunner++) 3019 for(TriangleMap::iterator TriangleRunner = LineRunner->second->triangles.begin(); TriangleRunner != LineRunner->second->triangles.end(); TriangleRunner++) 3020 triangles->push_back(TriangleRunner->second); 3021 triangles->sort(); 3022 triangles->unique(); 3023 } else { 3024 eLog() << Verbose(1) << "I cannot find a boundary point to the tessel point " << *trianglePoints[0] << "." << endl; 3025 return NULL; 3026 } 3027 } 3028 } else { 3029 set<TesselPoint*> *connectedPoints = GetAllConnectedPoints(trianglePoints[0]); 3030 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(connectedPoints, trianglePoints[0], x); 3031 delete(connectedPoints); 3032 if (connectedClosestPoints != NULL) { 3033 trianglePoints[1] = connectedClosestPoints->front(); 3034 trianglePoints[2] = connectedClosestPoints->back(); 3035 for (int i=0;i<3;i++) { 3036 if (trianglePoints[i] == NULL) { 3037 eLog() << Verbose(1) << "IsInnerPoint encounters serious error, point " << i << " not found." << endl; 3038 } 3039 //Log() << Verbose(1) << "List of triangle points:" << endl; 3040 //Log() << Verbose(2) << *trianglePoints[i] << endl; 3041 } 3042 3043 triangles = FindTriangles(trianglePoints); 3044 Log() << Verbose(1) << "List of possible triangles:" << endl; 3045 for(list<BoundaryTriangleSet*>::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) 3046 Log() << Verbose(2) << **Runner << endl; 3047 3048 delete(connectedClosestPoints); 3049 } else { 3050 triangles = NULL; 3051 eLog() << Verbose(2) << "There is no circle of connected points!" << endl; 3052 } 3053 } 3054 3055 if ((triangles == NULL) || (triangles->empty())) { 3056 eLog() << Verbose(1) << "There is no nearest triangle. Please check the tesselation structure."; 3057 delete(triangles); 3058 return NULL; 3059 } else 3060 return triangles; 3305 TriangleList * candidates = new TriangleList; 3306 for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++) 3307 for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) { 3308 candidates->push_back(Runner->second); 3309 } 3310 return candidates; 3061 3311 }; 3062 3312 … … 3067 3317 * \return list of BoundaryTriangleSet of nearest triangles or NULL. 3068 3318 */ 3069 class BoundaryTriangleSet * Tesselation::FindClosestTriangleTo Point(const Vector *x, const LinkedCell* LC) const3319 class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector *x, const LinkedCell* LC) const 3070 3320 { 3071 3321 Info FunctionInfo(__func__); 3072 3322 class BoundaryTriangleSet *result = NULL; 3073 list<BoundaryTriangleSet*> *triangles = FindClosestTrianglesToPoint(x, LC); 3323 TriangleList *triangles = FindClosestTrianglesToVector(x, LC); 3324 TriangleList candidates; 3074 3325 Vector Center; 3075 3076 if (triangles == NULL) 3326 Vector helper; 3327 3328 if ((triangles == NULL) || (triangles->empty())) 3077 3329 return NULL; 3078 3330 3079 if (triangles->size() == 1) { // there is no degenerate case 3080 result = triangles->front(); 3081 Log() << Verbose(1) << "Normal Vector of this triangle is " << result->NormalVector << "." << endl; 3082 } else { 3083 result = triangles->front(); 3084 result->GetCenter(&Center); 3085 Center.SubtractVector(x); 3086 Log() << Verbose(1) << "Normal Vector of this front side is " << result->NormalVector << "." << endl; 3087 if (Center.ScalarProduct(&result->NormalVector) < 0) { 3088 result = triangles->back(); 3089 Log() << Verbose(1) << "Normal Vector of this back side is " << result->NormalVector << "." << endl; 3090 if (Center.ScalarProduct(&result->NormalVector) < 0) { 3091 eLog() << Verbose(1) << "Front and back side yield NormalVector in wrong direction!" << endl; 3092 } 3331 // go through all and pick the one with the best alignment to x 3332 double MinAlignment = 2.*M_PI; 3333 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) { 3334 (*Runner)->GetCenter(&Center); 3335 helper.CopyVector(x); 3336 helper.SubtractVector(&Center); 3337 const double Alignment = helper.Angle(&(*Runner)->NormalVector); 3338 if (Alignment < MinAlignment) { 3339 result = *Runner; 3340 MinAlignment = Alignment; 3341 Log() << Verbose(1) << "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << "." << endl; 3342 } else { 3343 Log() << Verbose(1) << "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << "." << endl; 3093 3344 } 3094 3345 } 3095 3346 delete(triangles); 3347 3096 3348 return result; 3097 3349 }; 3098 3350 3099 /** Checks whether the provided Vector is within the tesselation structure. 3351 /** Checks whether the provided Vector is within the Tesselation structure. 3352 * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value. 3353 * @param point of which to check the position 3354 * @param *LC LinkedCell structure 3355 * 3356 * @return true if the point is inside the Tesselation structure, false otherwise 3357 */ 3358 bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const 3359 { 3360 return (GetDistanceSquaredToSurface(Point, LC) < MYEPSILON); 3361 } 3362 3363 /** Returns the distance to the surface given by the tesselation. 3364 * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points 3365 * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the 3366 * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's 3367 * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle(). 3368 * In the end we additionally find the point on the triangle who was smallest distance to \a Point: 3369 * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane. 3370 * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds. 3371 * -# If inside, take it to calculate closest distance 3372 * -# If not, take intersection with BoundaryLine as distance 3373 * 3374 * @note distance is squared despite it still contains a sign to determine in-/outside! 3100 3375 * 3101 3376 * @param point of which to check the position 3102 3377 * @param *LC LinkedCell structure 3103 3378 * 3104 * @return true if the point is inside the tesselation structure, false otherwise 3105 */ 3106 bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const 3107 { 3108 Info FunctionInfo(__func__); 3109 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(&Point, LC); 3379 * @return >0 if outside, ==0 if on surface, <0 if inside 3380 */ 3381 double Tesselation::GetDistanceSquaredToTriangle(const Vector &Point, const BoundaryTriangleSet* const triangle) const 3382 { 3383 Info FunctionInfo(__func__); 3110 3384 Vector Center; 3111 3112 if (result == NULL) {// is boundary point or only point in point cloud? 3113 Log() << Verbose(1) << Point << " is the only point in vicinity." << endl; 3114 return false; 3115 } 3116 3117 result->GetCenter(&Center); 3385 Vector helper; 3386 Vector DistanceToCenter; 3387 Vector Intersection; 3388 double distance = 0.; 3389 3390 if (triangle == NULL) {// is boundary point or only point in point cloud? 3391 Log() << Verbose(1) << "No triangle given!" << endl; 3392 return -1.; 3393 } else { 3394 Log() << Verbose(1) << "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << "." << endl; 3395 } 3396 3397 triangle->GetCenter(&Center); 3118 3398 Log() << Verbose(2) << "INFO: Central point of the triangle is " << Center << "." << endl; 3119 Center.SubtractVector(&Point); 3120 Log() << Verbose(2) << "INFO: Vector from center to point to test is " << Center << "." << endl; 3121 if (Center.ScalarProduct(&result->NormalVector) > -MYEPSILON) { 3122 Log() << Verbose(1) << Point << " is an inner point." << endl; 3123 return true; 3399 DistanceToCenter.CopyVector(&Center); 3400 DistanceToCenter.SubtractVector(&Point); 3401 Log() << Verbose(2) << "INFO: Vector from point to test to center is " << DistanceToCenter << "." << endl; 3402 3403 // check whether we are on boundary 3404 if (fabs(DistanceToCenter.ScalarProduct(&triangle->NormalVector)) < MYEPSILON) { 3405 // calculate whether inside of triangle 3406 DistanceToCenter.CopyVector(&Point); 3407 Center.CopyVector(&Point); 3408 Center.SubtractVector(&triangle->NormalVector); // points towards MolCenter 3409 DistanceToCenter.AddVector(&triangle->NormalVector); // points outside 3410 Log() << Verbose(1) << "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << "." << endl; 3411 if (triangle->GetIntersectionInsideTriangle(&Center, &DistanceToCenter, &Intersection)) { 3412 Log() << Verbose(1) << Point << " is inner point: sufficiently close to boundary, " << Intersection << "." << endl; 3413 return 0.; 3414 } else { 3415 Log() << Verbose(1) << Point << " is NOT an inner point: on triangle plane but outside of triangle bounds." << endl; 3416 return false; 3417 } 3124 3418 } else { 3125 Log() << Verbose(1) << Point << " is NOT an inner point." << endl; 3126 return false; 3127 } 3128 } 3129 3130 /** Checks whether the provided TesselPoint is within the tesselation structure. 3131 * 3132 * @param *Point of which to check the position 3133 * @param *LC Linked Cell structure 3134 * 3135 * @return true if the point is inside the tesselation structure, false otherwise 3136 */ 3137 bool Tesselation::IsInnerPoint(const TesselPoint * const Point, const LinkedCell* const LC) const 3138 { 3139 Info FunctionInfo(__func__); 3140 return IsInnerPoint(*(Point->node), LC); 3141 } 3419 // calculate smallest distance 3420 distance = triangle->GetClosestPointInsideTriangle(&Point, &Intersection); 3421 Log() << Verbose(1) << "Closest point on triangle is " << Intersection << "." << endl; 3422 3423 // then check direction to boundary 3424 if (DistanceToCenter.ScalarProduct(&triangle->NormalVector) > MYEPSILON) { 3425 Log() << Verbose(1) << Point << " is an inner point, " << distance << " below surface." << endl; 3426 return -distance; 3427 } else { 3428 Log() << Verbose(1) << Point << " is NOT an inner point, " << distance << " above surface." << endl; 3429 return +distance; 3430 } 3431 } 3432 }; 3433 3434 /** Calculates distance to a tesselated surface. 3435 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle(). 3436 * \param &Point point to calculate distance from 3437 * \param *LC needed for finding closest points fast 3438 * \return distance squared to closest point on surface 3439 */ 3440 double Tesselation::GetDistanceSquaredToSurface(const Vector &Point, const LinkedCell* const LC) const 3441 { 3442 BoundaryTriangleSet *triangle = FindClosestTriangleToVector(&Point, LC); 3443 const double distance = GetDistanceSquaredToTriangle(Point, triangle); 3444 return Min(distance, LC->RADIUS); 3445 }; 3142 3446 3143 3447 /** Gets all points connected to the provided point by triangulation lines. … … 3147 3451 * @return set of the all points linked to the provided one 3148 3452 */ 3149 set<TesselPoint*>* Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const3150 { 3151 Info FunctionInfo(__func__); 3152 set<TesselPoint*> *connectedPoints = new set<TesselPoint*>;3453 TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const 3454 { 3455 Info FunctionInfo(__func__); 3456 TesselPointSet *connectedPoints = new TesselPointSet; 3153 3457 class BoundaryPointSet *ReferencePoint = NULL; 3154 3458 TesselPoint* current; … … 3191 3495 } 3192 3496 3193 if (connectedPoints-> size() == 0) { // if have not found any points3497 if (connectedPoints->empty()) { // if have not found any points 3194 3498 eLog() << Verbose(1) << "We have not found any connected points to " << *Point<< "." << endl; 3195 3499 return NULL; … … 3212 3516 * @return list of the all points linked to the provided one 3213 3517 */ 3214 list<TesselPoint*> * Tesselation::GetCircleOfSetOfPoints(set<TesselPoint*>*SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const3518 TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const 3215 3519 { 3216 3520 Info FunctionInfo(__func__); 3217 3521 map<double, TesselPoint*> anglesOfPoints; 3218 list<TesselPoint*> *connectedCircle = new list<TesselPoint*>; 3219 Vector center; 3522 TesselPointList *connectedCircle = new TesselPointList; 3220 3523 Vector PlaneNormal; 3221 3524 Vector AngleZero; 3222 3525 Vector OrthogonalVector; 3223 3526 Vector helper; 3527 const TesselPoint * const TrianglePoints[3] = {Point, NULL, NULL}; 3528 TriangleList *triangles = NULL; 3224 3529 3225 3530 if (SetOfNeighbours == NULL) { … … 3230 3535 3231 3536 // calculate central point 3232 for (set<TesselPoint*>::const_iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)3233 center.AddVector((*TesselRunner)->node);3234 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size()3235 // << "; scale factor " << 1.0/connectedPoints.size();3236 center.Scale(1.0/SetOfNeighbours->size());3237 Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center<< "." << endl;3238 3239 // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points3240 PlaneNormal. CopyVector(Point->node);3241 PlaneNormal.SubtractVector(¢er);3537 triangles = FindTriangles(TrianglePoints); 3538 if ((triangles != NULL) && (!triangles->empty())) { 3539 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) 3540 PlaneNormal.AddVector(&(*Runner)->NormalVector); 3541 } else { 3542 eLog() << Verbose(0) << "Could not find any triangles for point " << *Point << "." << endl; 3543 performCriticalExit(); 3544 } 3545 PlaneNormal.Scale(1.0/triangles->size()); 3546 Log() << Verbose(1) << "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << "." << endl; 3242 3547 PlaneNormal.Normalize(); 3243 Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;3244 3548 3245 3549 // construct one orthogonal vector … … 3267 3571 3268 3572 // go through all connected points and calculate angle 3269 for ( set<TesselPoint*>::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {3573 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) { 3270 3574 helper.CopyVector((*listRunner)->node); 3271 3575 helper.SubtractVector(Point->node); … … 3283 3587 } 3284 3588 3589 /** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point. 3590 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points 3591 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given 3592 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the 3593 * triangle we are looking for. 3594 * 3595 * @param *SetOfNeighbours all points for which the angle should be calculated 3596 * @param *Point of which get all connected points 3597 * @param *Reference Reference vector for zero angle or NULL for no preference 3598 * @return list of the all points linked to the provided one 3599 */ 3600 TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const 3601 { 3602 Info FunctionInfo(__func__); 3603 map<double, TesselPoint*> anglesOfPoints; 3604 TesselPointList *connectedCircle = new TesselPointList; 3605 Vector center; 3606 Vector PlaneNormal; 3607 Vector AngleZero; 3608 Vector OrthogonalVector; 3609 Vector helper; 3610 3611 if (SetOfNeighbours == NULL) { 3612 eLog() << Verbose(2) << "Could not find any connected points!" << endl; 3613 delete(connectedCircle); 3614 return NULL; 3615 } 3616 3617 // check whether there's something to do 3618 if (SetOfNeighbours->size() < 3) { 3619 for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++) 3620 connectedCircle->push_back(*TesselRunner); 3621 return connectedCircle; 3622 } 3623 3624 Log() << Verbose(1) << "INFO: Point is " << *Point << " and Reference is " << *Reference << "." << endl; 3625 // calculate central point 3626 3627 TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin(); 3628 TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin(); 3629 TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin(); 3630 TesselB++; 3631 TesselC++; 3632 TesselC++; 3633 int counter = 0; 3634 while (TesselC != SetOfNeighbours->end()) { 3635 helper.MakeNormalVector((*TesselA)->node, (*TesselB)->node, (*TesselC)->node); 3636 Log() << Verbose(0) << "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper << endl; 3637 counter++; 3638 TesselA++; 3639 TesselB++; 3640 TesselC++; 3641 PlaneNormal.AddVector(&helper); 3642 } 3643 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size() 3644 // << "; scale factor " << counter; 3645 PlaneNormal.Scale(1.0/(double)counter); 3646 // Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl; 3647 // 3648 // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points 3649 // PlaneNormal.CopyVector(Point->node); 3650 // PlaneNormal.SubtractVector(¢er); 3651 // PlaneNormal.Normalize(); 3652 Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl; 3653 3654 // construct one orthogonal vector 3655 if (Reference != NULL) { 3656 AngleZero.CopyVector(Reference); 3657 AngleZero.SubtractVector(Point->node); 3658 AngleZero.ProjectOntoPlane(&PlaneNormal); 3659 } 3660 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON )) { 3661 Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl; 3662 AngleZero.CopyVector((*SetOfNeighbours->begin())->node); 3663 AngleZero.SubtractVector(Point->node); 3664 AngleZero.ProjectOntoPlane(&PlaneNormal); 3665 if (AngleZero.NormSquared() < MYEPSILON) { 3666 eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl; 3667 performCriticalExit(); 3668 } 3669 } 3670 Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl; 3671 if (AngleZero.NormSquared() > MYEPSILON) 3672 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero); 3673 else 3674 OrthogonalVector.MakeNormalVector(&PlaneNormal); 3675 Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl; 3676 3677 // go through all connected points and calculate angle 3678 pair <map<double, TesselPoint*>::iterator, bool > InserterTest; 3679 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) { 3680 helper.CopyVector((*listRunner)->node); 3681 helper.SubtractVector(Point->node); 3682 helper.ProjectOntoPlane(&PlaneNormal); 3683 double angle = GetAngle(helper, AngleZero, OrthogonalVector); 3684 if (angle > M_PI) // the correction is of no use here (and not desired) 3685 angle = 2.*M_PI - angle; 3686 Log() << Verbose(0) << "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << "." << endl; 3687 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner))); 3688 if (!InserterTest.second) { 3689 eLog() << Verbose(0) << "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner) << endl; 3690 performCriticalExit(); 3691 } 3692 } 3693 3694 for(map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) { 3695 connectedCircle->push_back(AngleRunner->second); 3696 } 3697 3698 return connectedCircle; 3699 } 3700 3285 3701 /** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path. 3286 3702 * … … 3289 3705 * @return list of the all points linked to the provided one 3290 3706 */ 3291 list<list<TesselPoint*> *>* Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const3707 ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const 3292 3708 { 3293 3709 Info FunctionInfo(__func__); 3294 3710 map<double, TesselPoint*> anglesOfPoints; 3295 list< list<TesselPoint*> *> *ListOfPaths = new list<list<TesselPoint*>*>;3296 list<TesselPoint*>*connectedPath = NULL;3711 list< TesselPointList *> *ListOfPaths = new list< TesselPointList *>; 3712 TesselPointList *connectedPath = NULL; 3297 3713 Vector center; 3298 3714 Vector PlaneNormal; … … 3331 3747 } else if (!LineRunner->second) { 3332 3748 LineRunner->second = true; 3333 connectedPath = new list<TesselPoint*>;3749 connectedPath = new TesselPointList; 3334 3750 triangle = NULL; 3335 3751 CurrentLine = runner->second; … … 3405 3821 * @return list of the closed paths 3406 3822 */ 3407 list<list<TesselPoint*> *>* Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const3408 { 3409 Info FunctionInfo(__func__); 3410 list< list<TesselPoint*>*> *ListofPaths = GetPathsOfConnectedPoints(Point);3411 list< list<TesselPoint*> *> *ListofClosedPaths = new list<list<TesselPoint*>*>;3412 list<TesselPoint*>*connectedPath = NULL;3413 list<TesselPoint*>*newPath = NULL;3823 ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const 3824 { 3825 Info FunctionInfo(__func__); 3826 list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point); 3827 list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *>; 3828 TesselPointList *connectedPath = NULL; 3829 TesselPointList *newPath = NULL; 3414 3830 int count = 0; 3415 3831 3416 3832 3417 list<TesselPoint*>::iterator CircleRunner;3418 list<TesselPoint*>::iterator CircleStart;3419 3420 for(list< list<TesselPoint*>*>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {3833 TesselPointList::iterator CircleRunner; 3834 TesselPointList::iterator CircleStart; 3835 3836 for(list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) { 3421 3837 connectedPath = *ListRunner; 3422 3838 … … 3427 3843 3428 3844 // go through list, look for reappearance of starting Point and create list 3429 list<TesselPoint*>::iterator Marker = CircleStart;3845 TesselPointList::iterator Marker = CircleStart; 3430 3846 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) { 3431 3847 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point 3432 3848 // we have a closed circle from Marker to new Marker 3433 3849 Log() << Verbose(1) << count+1 << ". closed path consists of: "; 3434 newPath = new list<TesselPoint*>;3435 list<TesselPoint*>::iterator CircleSprinter = Marker;3850 newPath = new TesselPointList; 3851 TesselPointList::iterator CircleSprinter = Marker; 3436 3852 for (; CircleSprinter != CircleRunner; CircleSprinter++) { 3437 3853 newPath->push_back(*CircleSprinter); … … 3467 3883 * \return pointer to allocated list of triangles 3468 3884 */ 3469 set<BoundaryTriangleSet*>*Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const3470 { 3471 Info FunctionInfo(__func__); 3472 set<BoundaryTriangleSet*> *connectedTriangles = new set<BoundaryTriangleSet*>;3885 TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const 3886 { 3887 Info FunctionInfo(__func__); 3888 TriangleSet *connectedTriangles = new TriangleSet; 3473 3889 3474 3890 if (Point == NULL) { … … 3519 3935 } 3520 3936 3521 list< list<TesselPoint*>*> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);3522 list<TesselPoint*>*connectedPath = NULL;3937 list<TesselPointList *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node); 3938 TesselPointList *connectedPath = NULL; 3523 3939 3524 3940 // gather all triangles 3525 3941 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) 3526 3942 count+=LineRunner->second->triangles.size(); 3527 map<class BoundaryTriangleSet *, int>Candidates;3943 TriangleMap Candidates; 3528 3944 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) { 3529 3945 line = LineRunner->second; 3530 3946 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) { 3531 3947 triangle = TriangleRunner->second; 3532 Candidates.insert( pair<class BoundaryTriangleSet *, int> (triangle, triangle->Nr) );3948 Candidates.insert( TrianglePair (triangle->Nr, triangle) ); 3533 3949 } 3534 3950 } … … 3537 3953 count=0; 3538 3954 NormalVector.Zero(); 3539 for ( map<class BoundaryTriangleSet *, int>::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {3540 Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner-> first) << "." << endl;3541 NormalVector.SubtractVector(&Runner-> first->NormalVector); // has to point inward3542 RemoveTesselationTriangle(Runner-> first);3955 for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) { 3956 Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner->second) << "." << endl; 3957 NormalVector.SubtractVector(&Runner->second->NormalVector); // has to point inward 3958 RemoveTesselationTriangle(Runner->second); 3543 3959 count++; 3544 3960 } 3545 3961 Log() << Verbose(1) << count << " triangles were removed." << endl; 3546 3962 3547 list< list<TesselPoint*>*>::iterator ListAdvance = ListOfClosedPaths->begin();3548 list< list<TesselPoint*>*>::iterator ListRunner = ListAdvance;3549 map<class BoundaryTriangleSet *, int>::iterator NumberRunner = Candidates.begin();3550 list<TesselPoint*>::iterator StartNode, MiddleNode, EndNode;3963 list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin(); 3964 list<TesselPointList *>::iterator ListRunner = ListAdvance; 3965 TriangleMap::iterator NumberRunner = Candidates.begin(); 3966 TesselPointList::iterator StartNode, MiddleNode, EndNode; 3551 3967 double angle; 3552 3968 double smallestangle; … … 3562 3978 3563 3979 // re-create all triangles by going through connected points list 3564 list<class BoundaryLineSet *>NewLines;3980 LineList NewLines; 3565 3981 for (;!connectedPath->empty();) { 3566 3982 // search middle node with widest angle to next neighbours … … 3668 4084 // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing) 3669 4085 if (NewLines.size() > 1) { 3670 list<class BoundaryLineSet *>::iterator Candidate;4086 LineList::iterator Candidate; 3671 4087 class BoundaryLineSet *OtherBase = NULL; 3672 4088 double tmp, maxgain; 3673 4089 do { 3674 4090 maxgain = 0; 3675 for( list<class BoundaryLineSet *>::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {4091 for(LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) { 3676 4092 tmp = PickFarthestofTwoBaselines(*Runner); 3677 4093 if (maxgain < tmp) { … … 3715 4131 * Finds triangles belonging to the three provided points. 3716 4132 * 3717 * @param *Points[3] list, is expected to contain three points 4133 * @param *Points[3] list, is expected to contain three points (NULL means wildcard) 3718 4134 * 3719 4135 * @return triangles which belong to the provided points, will be empty if there are none, 3720 4136 * will usually be one, in case of degeneration, there will be two 3721 4137 */ 3722 list<BoundaryTriangleSet*>*Tesselation::FindTriangles(const TesselPoint* const Points[3]) const3723 { 3724 Info FunctionInfo(__func__); 3725 list<BoundaryTriangleSet*> *result = new list<BoundaryTriangleSet*>;4138 TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const 4139 { 4140 Info FunctionInfo(__func__); 4141 TriangleList *result = new TriangleList; 3726 4142 LineMap::const_iterator FindLine; 3727 4143 TriangleMap::const_iterator FindTriangle; 3728 4144 class BoundaryPointSet *TrianglePoints[3]; 4145 size_t NoOfWildcards = 0; 3729 4146 3730 4147 for (int i = 0; i < 3; i++) { 3731 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr);3732 if (FindPoint != PointsOnBoundary.end()) {3733 TrianglePoints[i] = FindPoint->second;4148 if (Points[i] == NULL) { 4149 NoOfWildcards++; 4150 TrianglePoints[i] = NULL; 3734 4151 } else { 3735 TrianglePoints[i] = NULL; 3736 } 3737 } 3738 3739 // checks lines between the points in the Points for their adjacent triangles 3740 for (int i = 0; i < 3; i++) { 3741 if (TrianglePoints[i] != NULL) { 3742 for (int j = i+1; j < 3; j++) { 3743 if (TrianglePoints[j] != NULL) { 3744 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap! 3745 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); 3746 FindLine++) { 3747 for (FindTriangle = FindLine->second->triangles.begin(); 3748 FindTriangle != FindLine->second->triangles.end(); 3749 FindTriangle++) { 3750 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) { 3751 result->push_back(FindTriangle->second); 4152 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr); 4153 if (FindPoint != PointsOnBoundary.end()) { 4154 TrianglePoints[i] = FindPoint->second; 4155 } else { 4156 TrianglePoints[i] = NULL; 4157 } 4158 } 4159 } 4160 4161 switch (NoOfWildcards) { 4162 case 0: // checks lines between the points in the Points for their adjacent triangles 4163 for (int i = 0; i < 3; i++) { 4164 if (TrianglePoints[i] != NULL) { 4165 for (int j = i+1; j < 3; j++) { 4166 if (TrianglePoints[j] != NULL) { 4167 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap! 4168 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); 4169 FindLine++) { 4170 for (FindTriangle = FindLine->second->triangles.begin(); 4171 FindTriangle != FindLine->second->triangles.end(); 4172 FindTriangle++) { 4173 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) { 4174 result->push_back(FindTriangle->second); 4175 } 4176 } 3752 4177 } 4178 // Is it sufficient to consider one of the triangle lines for this. 4179 return result; 3753 4180 } 3754 4181 } 3755 // Is it sufficient to consider one of the triangle lines for this.3756 return result;3757 4182 } 3758 4183 } 3759 } 4184 break; 4185 case 1: // copy all triangles of the respective line 4186 { 4187 int i=0; 4188 for (; i < 3; i++) 4189 if (TrianglePoints[i] == NULL) 4190 break; 4191 for (FindLine = TrianglePoints[(i+1)%3]->lines.find(TrianglePoints[(i+2)%3]->node->nr); // is a multimap! 4192 (FindLine != TrianglePoints[(i+1)%3]->lines.end()) && (FindLine->first == TrianglePoints[(i+2)%3]->node->nr); 4193 FindLine++) { 4194 for (FindTriangle = FindLine->second->triangles.begin(); 4195 FindTriangle != FindLine->second->triangles.end(); 4196 FindTriangle++) { 4197 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) { 4198 result->push_back(FindTriangle->second); 4199 } 4200 } 4201 } 4202 break; 4203 } 4204 case 2: // copy all triangles of the respective point 4205 { 4206 int i=0; 4207 for (; i < 3; i++) 4208 if (TrianglePoints[i] != NULL) 4209 break; 4210 for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++) 4211 for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++) 4212 result->push_back(triangle->second); 4213 result->sort(); 4214 result->unique(); 4215 break; 4216 } 4217 case 3: // copy all triangles 4218 { 4219 for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++) 4220 result->push_back(triangle->second); 4221 break; 4222 } 4223 default: 4224 eLog() << Verbose(0) << "Number of wildcards is greater than 3, cannot happen!" << endl; 4225 performCriticalExit(); 4226 break; 3760 4227 } 3761 4228 … … 3800 4267 * in the list, once as key and once as value 3801 4268 */ 3802 map<int, int>* Tesselation::FindAllDegeneratedLines()4269 IndexToIndex * Tesselation::FindAllDegeneratedLines() 3803 4270 { 3804 4271 Info FunctionInfo(__func__); 3805 4272 UniqueLines AllLines; 3806 map<int, int> * DegeneratedLines = new map<int, int>;4273 IndexToIndex * DegeneratedLines = new IndexToIndex; 3807 4274 3808 4275 // sanity check … … 3825 4292 3826 4293 Log() << Verbose(0) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl; 3827 map<int,int>::iterator it;4294 IndexToIndex::iterator it; 3828 4295 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) { 3829 4296 const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first); … … 3844 4311 * in the list, once as key and once as value 3845 4312 */ 3846 map<int, int>* Tesselation::FindAllDegeneratedTriangles()3847 { 3848 Info FunctionInfo(__func__); 3849 map<int, int>* DegeneratedLines = FindAllDegeneratedLines();3850 map<int, int> * DegeneratedTriangles = new map<int, int>;4313 IndexToIndex * Tesselation::FindAllDegeneratedTriangles() 4314 { 4315 Info FunctionInfo(__func__); 4316 IndexToIndex * DegeneratedLines = FindAllDegeneratedLines(); 4317 IndexToIndex * DegeneratedTriangles = new IndexToIndex; 3851 4318 3852 4319 TriangleMap::iterator TriangleRunner1, TriangleRunner2; … … 3854 4321 class BoundaryLineSet *line1 = NULL, *line2 = NULL; 3855 4322 3856 for ( map<int, int>::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {4323 for (IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) { 3857 4324 // run over both lines' triangles 3858 4325 Liner = LinesOnBoundary.find(LineRunner->first); … … 3875 4342 3876 4343 Log() << Verbose(0) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl; 3877 map<int,int>::iterator it;4344 IndexToIndex::iterator it; 3878 4345 for (it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++) 3879 4346 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl; … … 3889 4356 { 3890 4357 Info FunctionInfo(__func__); 3891 map<int, int>* DegeneratedTriangles = FindAllDegeneratedTriangles();4358 IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles(); 3892 4359 TriangleMap::iterator finder; 3893 4360 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL; 3894 4361 int count = 0; 3895 4362 3896 for ( map<int, int>::iterator TriangleKeyRunner = DegeneratedTriangles->begin();4363 for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); 3897 4364 TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner 3898 4365 ) { … … 3982 4449 // find nearest boundary point 3983 4450 class TesselPoint *BackupPoint = NULL; 3984 class TesselPoint *NearestPoint = FindClosest Point(point->node, BackupPoint, LC);4451 class TesselPoint *NearestPoint = FindClosestTesselPoint(point->node, BackupPoint, LC); 3985 4452 class BoundaryPointSet *NearestBoundaryPoint = NULL; 3986 4453 PointMap::iterator PointRunner; … … 4149 4616 4150 4617 /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector 4151 map <int, int>*DegeneratedTriangles = FindAllDegeneratedTriangles();4618 IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles(); 4152 4619 set < BoundaryPointSet *> EndpointCandidateList; 4153 4620 pair < set < BoundaryPointSet *>::iterator, bool > InsertionTester; … … 4301 4768 } 4302 4769 4303 map<int, int>* SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();4770 IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles(); 4304 4771 Log() << Verbose(0) << "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:" << endl; 4305 map<int,int>::iterator it;4772 IndexToIndex::iterator it; 4306 4773 for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++) 4307 4774 Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl;
Note:
See TracChangeset
for help on using the changeset viewer.