[bcfb77] | 1 | #!@PYTHON@
|
---|
[bfbb62] | 2 |
|
---|
| 3 | # Boxmaker 1.0
|
---|
[239cc5] | 4 | # Creates tremolo-datafiles with arbitrary size and specific density from a single input molecule,
|
---|
| 5 | # supporting numerous pre- and postprocessing features such as unit conversion.
|
---|
[bfbb62] | 6 | # Gregor Bollerhey - bollerhe@ins.uni-bonn.de
|
---|
| 7 |
|
---|
| 8 |
|
---|
[5735ba] | 9 | import re, os, os.path, sys, operator
|
---|
[2aa9ef] | 10 | import pyMoleCuilder as mol
|
---|
[5735ba] | 11 |
|
---|
[0ad49c] | 12 | avogadro = 6.022143e23
|
---|
| 13 |
|
---|
[0c83d8] | 14 | class c_opt():
|
---|
| 15 | basename = None
|
---|
| 16 | tremofiledir = './'
|
---|
| 17 | potentialsfiledir = './'
|
---|
| 18 | outfilename = 'out'
|
---|
| 19 |
|
---|
| 20 | source = None
|
---|
| 21 | molarmass = None
|
---|
| 22 | density = None
|
---|
| 23 | temp = None
|
---|
| 24 |
|
---|
| 25 | number = '1000'
|
---|
| 26 |
|
---|
| 27 | cubicdomain = 'on'
|
---|
| 28 | cubiccell = 'off'
|
---|
[32bc47] | 29 | autorotate = 'off'
|
---|
[0c83d8] | 30 | autodim = 'on'
|
---|
[32bc47] | 31 | postprocess = 'on'
|
---|
[0ad49c] | 32 | automass = 'on'
|
---|
[0c83d8] | 33 |
|
---|
| 34 | def update(self, name, value):
|
---|
[0ad49c] | 35 | shortcuts = {'tf': 'temofiledir', 'pf': 'potentialsfiledir', 'o': 'outfilename',
|
---|
| 36 | 'i': 'source', 'm': 'molarmass', 'rho': 'density',
|
---|
| 37 | 't': 'temp', 'n': 'number', 'cd': 'cubicdomain',
|
---|
| 38 | 'cc': 'cubiccell', 'ar': 'autorotate', 'ad': 'autodim',
|
---|
| 39 | 'pp': 'postprocess', 'am': 'automass'}
|
---|
[751d7f1] | 40 |
|
---|
| 41 | if name in shortcuts:
|
---|
| 42 | name = shortcuts[name]
|
---|
| 43 |
|
---|
[0c83d8] | 44 | if name in dir(self):
|
---|
| 45 | exec('self.%s = "%s"' % (name, value))
|
---|
| 46 | else:
|
---|
| 47 | print 'Warning: Unknown option:', name
|
---|
| 48 |
|
---|
| 49 |
|
---|
| 50 | def ReadSettings(opt):
|
---|
| 51 | # Obtain basename
|
---|
[5735ba] | 52 | if len(sys.argv) >= 2:
|
---|
[0c83d8] | 53 | opt.basename = sys.argv[1]
|
---|
[5735ba] | 54 | else:
|
---|
[0c83d8] | 55 | print 'Usage: boxmaker.py <basename> [options]'
|
---|
[5735ba] | 56 | exit()
|
---|
[0c83d8] | 57 |
|
---|
| 58 | # Read settings file
|
---|
[751d7f1] | 59 | try:
|
---|
| 60 | with open('boxmaker.' + opt.basename) as f:
|
---|
| 61 | for line in f:
|
---|
| 62 | if len(line) > 0 and line[0] != '#':
|
---|
| 63 | L, S, R = line.partition('=')
|
---|
| 64 | opt.update(L.strip(), R.strip())
|
---|
| 65 | except IOError:
|
---|
| 66 | print 'Warning: Configuration file not readable, CLI only'
|
---|
[0c83d8] | 67 |
|
---|
| 68 | # Parse parameters
|
---|
| 69 | i = 2
|
---|
| 70 | while i < len(sys.argv):
|
---|
| 71 | L = sys.argv[i]
|
---|
| 72 |
|
---|
| 73 | if L[0] in '+-':
|
---|
| 74 | LN = L[1:]
|
---|
| 75 |
|
---|
| 76 | if L[0] == '+':
|
---|
| 77 | R = 'on'
|
---|
| 78 | else:
|
---|
| 79 | R = 'off'
|
---|
| 80 | else:
|
---|
| 81 | LN = L
|
---|
| 82 | i += 1
|
---|
| 83 | R = sys.argv[i]
|
---|
| 84 |
|
---|
| 85 | opt.update(LN, R)
|
---|
| 86 | i += 1
|
---|
| 87 |
|
---|
| 88 |
|
---|
| 89 | def ReadUnits(opt):
|
---|
| 90 | lines = [] # The file needs to be processed twice, so we save the lines in the first run
|
---|
| 91 |
|
---|
| 92 | with open(opt.tremofiledir + opt.basename + '.tremolo') as f:
|
---|
[5735ba] | 93 | for line in f:
|
---|
| 94 | if len(line) > 0 and line[0] != '#':
|
---|
| 95 | line = line.strip()
|
---|
[0c83d8] | 96 | lines.append(line)
|
---|
| 97 |
|
---|
[5735ba] | 98 | if 'systemofunits' in line:
|
---|
| 99 | L, S, SOU = line.partition('=')
|
---|
[0c83d8] | 100 | SOU = SOU.strip()[:-1] # Remove semicolon
|
---|
| 101 |
|
---|
[5735ba] | 102 | if SOU == 'custom':
|
---|
| 103 | units = {}
|
---|
[39cbae] | 104 | quantities = ['length', 'mass', 'temperature']
|
---|
[0c83d8] | 105 |
|
---|
[5735ba] | 106 | for quantity in quantities:
|
---|
[0c83d8] | 107 | units[quantity] = [None, None] # Init with scaling factor and unit 'None'.
|
---|
| 108 |
|
---|
[5735ba] | 109 | for line in lines:
|
---|
| 110 | for quantity in quantities:
|
---|
| 111 | if quantity in line:
|
---|
| 112 | L, S, R = line.partition('=')
|
---|
[0c83d8] | 113 | R = R.strip()[:-1] # Remove semicolon
|
---|
| 114 |
|
---|
[5735ba] | 115 | if 'scalingfactor' in line:
|
---|
[39cbae] | 116 | units[quantity][0] = float(R)
|
---|
[5735ba] | 117 | else:
|
---|
| 118 | units[quantity][1] = R
|
---|
[0c83d8] | 119 |
|
---|
[5735ba] | 120 | elif SOU == 'kcalpermole':
|
---|
[39cbae] | 121 | units = {'length': [1.0, 'angstrom'], 'mass': [1.0, 'u'], 'temperature': [503.556, 'K']}
|
---|
[0c83d8] | 122 |
|
---|
[5735ba] | 123 | elif SOU == 'evolt':
|
---|
[39cbae] | 124 | units = {'length': [1.0, 'angstrom'], 'mass': [1.0, 'u'], 'temperature': [11604.0, 'K']}
|
---|
[0c83d8] | 125 |
|
---|
[5735ba] | 126 | else: # SI
|
---|
[39cbae] | 127 | units = {'length': [1.0, 'm'], 'mass': [1.0, 'kg'], 'temperature': [1.0, 'K']}
|
---|
[0c83d8] | 128 |
|
---|
[5735ba] | 129 | return units
|
---|
[0c83d8] | 130 |
|
---|
| 131 |
|
---|
[5735ba] | 132 | def ConvertUnits(have, want):
|
---|
[39cbae] | 133 | if have[0] == '!':
|
---|
| 134 | return float(have[1:])
|
---|
| 135 |
|
---|
[0c83d8] | 136 | # Redo with pipes?
|
---|
[f894fe] | 137 | #sys.stdout.write("units '%s' '%s'\n" % (have, want))
|
---|
[5735ba] | 138 | ret = os.system("units '%s' '%s' > temp_units_output" % (have, want))
|
---|
[0c83d8] | 139 |
|
---|
[5735ba] | 140 | if ret == 0:
|
---|
| 141 | with open('temp_units_output') as f:
|
---|
| 142 | line = f.readline()
|
---|
[0c83d8] | 143 |
|
---|
[5735ba] | 144 | os.system('rm temp_units_output')
|
---|
[0c83d8] | 145 |
|
---|
[5735ba] | 146 | return float(line[3:-1])
|
---|
| 147 | else:
|
---|
| 148 | raise NameError('UnitError')
|
---|
[0ad49c] | 149 |
|
---|
| 150 |
|
---|
[f894fe] | 151 | def GetSourceMolareMass(opt, units):
|
---|
| 152 | mol.SelectionAllAtoms()
|
---|
| 153 | mass_sum = mol.AnalysisCalculateMolarMass()
|
---|
| 154 | have = ("%f atomicmassunit" % mass_sum)
|
---|
| 155 | want = ("%f*%s" % tuple(units['mass']))
|
---|
| 156 | return ConvertUnits(have, want)*avogadro
|
---|
[0c83d8] | 157 |
|
---|
| 158 |
|
---|
[c0c85f] | 159 | def UpdateSettingsAndSource(opt):
|
---|
[0c83d8] | 160 | # Map boolean values
|
---|
[c0c85f] | 161 | boolmap = {'on': True, 'off': False}
|
---|
| 162 |
|
---|
[0ad49c] | 163 | for name in ['cubicdomain', 'cubiccell', 'autorotate', 'autodim', 'postprocess', 'automass']:
|
---|
[0c83d8] | 164 | value = eval('opt.' + name)
|
---|
[5735ba] | 165 |
|
---|
[c0c85f] | 166 | if value in boolmap:
|
---|
| 167 | value = boolmap[value]
|
---|
[0c83d8] | 168 | else:
|
---|
| 169 | print 'Not a boolean value:', value
|
---|
| 170 | exit()
|
---|
| 171 |
|
---|
| 172 | exec('opt.' + name + '= value')
|
---|
| 173 |
|
---|
| 174 | # Convert dimensions
|
---|
| 175 | if opt.autodim:
|
---|
| 176 | units = ReadUnits(opt)
|
---|
| 177 |
|
---|
[0ad49c] | 178 | if not opt.automass:
|
---|
| 179 | have = opt.molarmass
|
---|
| 180 | want = '%f*%s / mol' % tuple(units['mass'])
|
---|
| 181 | opt.molarmass = ConvertUnits(have, want)
|
---|
[0c83d8] | 182 |
|
---|
| 183 | have = opt.density
|
---|
[39cbae] | 184 | want = '(%f*%s) ' % tuple(units['mass']) + '/ (%f*%s)**3' % tuple(units['length'])
|
---|
[0c83d8] | 185 | opt.density = ConvertUnits(have, want)
|
---|
[39cbae] | 186 |
|
---|
| 187 | if opt.temp:
|
---|
| 188 | have = opt.temp
|
---|
| 189 | want = '%f*%s' % tuple(units['temperature'])
|
---|
| 190 | opt.temp = ConvertUnits(have, want)
|
---|
[0c83d8] | 191 | else:
|
---|
[0ad49c] | 192 | if not opt.automass:
|
---|
| 193 | opt.molarmass = float(opt.molarmass)
|
---|
| 194 |
|
---|
[0c83d8] | 195 | opt.density = float(opt.density)
|
---|
[0ad49c] | 196 |
|
---|
| 197 | if opt.temp:
|
---|
| 198 | opt.temp = float(opt.temp)
|
---|
[0c83d8] | 199 |
|
---|
| 200 | # Number might be an integer or a 3-vector
|
---|
| 201 | nvec = opt.number.split()
|
---|
| 202 | if len(nvec) == 3:
|
---|
| 203 | opt.number = [0]*3
|
---|
| 204 |
|
---|
[5735ba] | 205 | for i in range(3):
|
---|
[0c83d8] | 206 | opt.number[i] = int(nvec[i])
|
---|
[5735ba] | 207 | else:
|
---|
[0c83d8] | 208 | opt.number = int(opt.number)
|
---|
[0ad49c] | 209 |
|
---|
[f894fe] | 210 | InitialiseSource(opt)
|
---|
[c0c85f] | 211 |
|
---|
[0ad49c] | 212 | # Automatic source mass
|
---|
| 213 | if opt.automass:
|
---|
[f894fe] | 214 | opt.molarmass = GetSourceMolareMass(opt, units)
|
---|
[0ad49c] | 215 | print '======== MOLAR MASS:', opt.molarmass
|
---|
[0c83d8] | 216 |
|
---|
| 217 |
|
---|
| 218 | def FindBestCube(opt):
|
---|
| 219 | newroot = int( round(opt.number**(1./3)) )
|
---|
| 220 | newnumber = newroot**3
|
---|
| 221 |
|
---|
| 222 | if newnumber != opt.number:
|
---|
| 223 | print 'Warning: Number changed to %d.' % newnumber
|
---|
| 224 |
|
---|
| 225 | return [newroot] * 3
|
---|
| 226 |
|
---|
| 227 |
|
---|
| 228 | def FindBestCuboid(opt):
|
---|
| 229 | n = opt.number
|
---|
| 230 |
|
---|
| 231 | # Prime factors of n
|
---|
| 232 | factors = []
|
---|
| 233 |
|
---|
| 234 | for i in [2, 3]:
|
---|
| 235 | while n % i == 0:
|
---|
| 236 | factors.append(i)
|
---|
| 237 | n /= 2
|
---|
| 238 |
|
---|
[5735ba] | 239 | t = 5
|
---|
| 240 | diff = 2
|
---|
[0c83d8] | 241 |
|
---|
[5735ba] | 242 | while t*t <= n:
|
---|
[0c83d8] | 243 | while n % t == 0:
|
---|
| 244 | factors.append(t)
|
---|
| 245 | n /= t
|
---|
| 246 |
|
---|
[5735ba] | 247 | t = t + diff
|
---|
| 248 | diff = 6 - diff
|
---|
[0c83d8] | 249 |
|
---|
[5735ba] | 250 | if n > 1:
|
---|
[0c83d8] | 251 | factors.append(n)
|
---|
| 252 |
|
---|
| 253 | # Even distribution of current biggest prime to each vector -> similar sizes
|
---|
| 254 | if len(factors) < 3:
|
---|
| 255 | print 'Warning: Not enough prime factors - falling back to cubic placement'
|
---|
| 256 | return FindBestCube(opt)
|
---|
| 257 |
|
---|
| 258 | factors.sort()
|
---|
[5735ba] | 259 | distri = [[],[],[]]
|
---|
| 260 | current = 0
|
---|
[0c83d8] | 261 |
|
---|
| 262 | for factor in factors:
|
---|
| 263 | distri[current].append(factor)
|
---|
[5735ba] | 264 | current += 1
|
---|
| 265 | if current == 3:
|
---|
| 266 | current = 0
|
---|
[0c83d8] | 267 |
|
---|
| 268 | result = [0]*3
|
---|
| 269 |
|
---|
| 270 | print '======== CUBOID USED:',
|
---|
| 271 |
|
---|
[5735ba] | 272 | for i in range(3):
|
---|
[0c83d8] | 273 | result[i] = int( reduce(operator.mul, distri[i]) )
|
---|
| 274 |
|
---|
| 275 | print result
|
---|
[5735ba] | 276 | return result
|
---|
[0c83d8] | 277 |
|
---|
| 278 |
|
---|
| 279 | def GetSourceBBabs(opt):
|
---|
[f894fe] | 280 | mol.WorldCenterOnEdge()
|
---|
| 281 | bb = mol.AnalysisCalculateBoundingBox()
|
---|
| 282 | bbmin = [bb[0], bb[2], bb[4]]
|
---|
| 283 | bbmax = [bb[1], bb[3], bb[5]]
|
---|
[5735ba] | 284 |
|
---|
| 285 | bb = [0.0]*3
|
---|
[0c83d8] | 286 |
|
---|
[5735ba] | 287 | for i in range(3):
|
---|
[0c83d8] | 288 | bb[i] = abs(bbmax[i] - bbmin[i])
|
---|
| 289 |
|
---|
[5735ba] | 290 | return bb
|
---|
[c0c85f] | 291 |
|
---|
| 292 |
|
---|
[f894fe] | 293 | def InitialiseSource(opt):
|
---|
[c0c85f] | 294 | potfilepath = opt.potentialsfiledir + opt.basename + '.potentials'
|
---|
[2aa9ef] | 295 | mol.ParserParseTremoloPotentials(potfilepath)
|
---|
| 296 | mol.MoleculeLoad(opt.source)
|
---|
[c0c85f] | 297 |
|
---|
| 298 | if opt.autorotate:
|
---|
[2aa9ef] | 299 | mol.SelectAllAtoms()
|
---|
| 300 | mol.RotateToPrincipalAxisSystem("0 1 0")
|
---|
[5735ba] | 301 |
|
---|
[0c83d8] | 302 | # Global options with sensible default parameters
|
---|
| 303 | opt = c_opt()
|
---|
[5735ba] | 304 |
|
---|
[0c83d8] | 305 | ReadSettings(opt)
|
---|
[c0c85f] | 306 | UpdateSettingsAndSource(opt)
|
---|
[5735ba] | 307 |
|
---|
[0c83d8] | 308 | if type(opt.number) == type([]):
|
---|
| 309 | # Number is a vector - use it without any modification
|
---|
| 310 | nbox = opt.number
|
---|
[5735ba] | 311 | else:
|
---|
[0c83d8] | 312 | if opt.cubicdomain:
|
---|
| 313 | nbox = FindBestCube(opt)
|
---|
[5735ba] | 314 | else:
|
---|
[0c83d8] | 315 | nbox = FindBestCuboid(opt)
|
---|
[5735ba] | 316 |
|
---|
[0c83d8] | 317 | VolumePerMolecule = opt.molarmass / (avogadro * opt.density)
|
---|
| 318 | cell = [VolumePerMolecule**(1./3)] * 3
|
---|
[5735ba] | 319 |
|
---|
[0c83d8] | 320 | if not opt.cubiccell:
|
---|
| 321 | try:
|
---|
| 322 | bb = GetSourceBBabs(opt)
|
---|
| 323 | print '======== BBOX:', bb
|
---|
| 324 | # Scaling factor - the molecules bounding box is scaled to fit the volume suiting the density
|
---|
| 325 | s = (VolumePerMolecule / (bb[0]*bb[1]*bb[2])) ** (1./3)
|
---|
| 326 |
|
---|
| 327 | if s < 1:
|
---|
| 328 | print 'Warning: Molecular cells will overlap.'
|
---|
| 329 |
|
---|
| 330 | for i in range(3):
|
---|
| 331 | cell[i] = bb[i]*s
|
---|
| 332 | except ZeroDivisionError:
|
---|
| 333 | print 'Warning: Singularity in bounding box, falling back to cubic cell.'
|
---|
[5735ba] | 334 |
|
---|
[0c83d8] | 335 |
|
---|
[5735ba] | 336 | print '======== CELL: ', cell
|
---|
| 337 |
|
---|
| 338 | mol.CommandVerbose('0')
|
---|
| 339 | mol.WorldCenterInBox('%f 0 0 %f 0 %f' % tuple(cell))
|
---|
| 340 | mol.WorldRepeatBox('%d %d %d' % tuple(nbox))
|
---|
[0c83d8] | 341 | mol.WorldOutput(opt.outfilename + '.data')
|
---|
| 342 | mol.WorldOutput(opt.outfilename + '.xyz')
|
---|
[5735ba] | 343 |
|
---|
| 344 | domain = [0.0]*3
|
---|
| 345 |
|
---|
| 346 | for i in range(3):
|
---|
| 347 | domain[i] = cell[i]*nbox[i]
|
---|
[0c83d8] | 348 |
|
---|
[5735ba] | 349 | print '======== DOMAIN: ', domain
|
---|
[32bc47] | 350 |
|
---|
| 351 | # Postprocessing
|
---|
| 352 |
|
---|
| 353 | if opt.postprocess:
|
---|
| 354 | with open(opt.outfilename + '.data') as f:
|
---|
| 355 | ofile = f.read()
|
---|
| 356 |
|
---|
| 357 | with open(opt.outfilename + '.data', 'w') as f:
|
---|
| 358 | f.write('# INPUTCONV shift center\n')
|
---|
| 359 |
|
---|
| 360 | if opt.temp:
|
---|
| 361 | f.write('# INPUTCONV temp %.4f\n' % opt.temp)
|
---|
| 362 |
|
---|
| 363 | f.write(ofile)
|
---|
| 364 |
|
---|
[c0c85f] | 365 | os.system('rm temp_source.data temp_source.xyz')
|
---|