1 | /* Molecular Vibrations Analyser - VibrAlyzer
|
---|
2 | *
|
---|
3 | * This programme fourier transforms input from ESPACK (temperature output)
|
---|
4 | * in order to make the automated retrieval of vibrational frequencies possible.
|
---|
5 | */
|
---|
6 |
|
---|
7 | #include <stdio.h>
|
---|
8 | #include <stdlib.h>
|
---|
9 | #include <math.h>
|
---|
10 |
|
---|
11 | /** Main routine.
|
---|
12 | * The routine needs a file name to be read as the temperature file, and also
|
---|
13 | * a frequency range (start and steps). Standard one-dimensional fourier-trans-
|
---|
14 | * formation via a simple discrete integration over the given values from the
|
---|
15 | * file is performed and the result returned on stdout.
|
---|
16 | * \param argc parameter count
|
---|
17 | * \param **argv array of parameter (array of chars)
|
---|
18 | * \return error code
|
---|
19 | */
|
---|
20 | int main(int argc, char **argv)
|
---|
21 | {
|
---|
22 | FILE *temperature_file; // file with temperature values
|
---|
23 | double *time_steps, *temperatures; // contain data value pairs
|
---|
24 | int counter; // keeps track of data pairs array size
|
---|
25 | double freq_start, freq_step, freq_end; // frequency start and step width (end determined by number of points in temp.file)
|
---|
26 | char *filename; // filename of temp.file
|
---|
27 | char line[255]; // line buffer for parsing the temperature file
|
---|
28 | int i; // runtime variable
|
---|
29 | double result, iresult; // temporary result value for fourier transformation
|
---|
30 | double frequency; // current frequency during dumb O(N^2) integration
|
---|
31 | double gauge; // conversion to atomic units for time axis
|
---|
32 |
|
---|
33 | // Check for needed arguments
|
---|
34 | if (argc < 4) {
|
---|
35 | printf("Molecular Vibrations Analyser - VibrAlyzer\n\n");
|
---|
36 | printf("Usage: %s <time gauge> <freq.step> <temperature file>\n", argv[0]);
|
---|
37 | printf("\t<time gauge>\tConversion factor from step count to atomic time\n");
|
---|
38 | printf("\t<freq.start>\tstart of frequency for fourier transform in atomic units\n");
|
---|
39 | printf("\t<freq.step>\tstep width of frequency for fourier transform in atomic units\n");
|
---|
40 | printf("\t<temperature file>\tfile with (time step, temperature)-pairs\n");
|
---|
41 | exit(1);
|
---|
42 | } else {
|
---|
43 | gauge = atof(argv[1]);
|
---|
44 | freq_start = atof(argv[2]);
|
---|
45 | freq_step = atof(argv[3]);
|
---|
46 | filename = argv[4];
|
---|
47 | }
|
---|
48 |
|
---|
49 | // read in file into buffer array
|
---|
50 | temperature_file=fopen(filename, "r");
|
---|
51 | if (temperature_file == NULL) { // check whether file could be opened
|
---|
52 | printf("Could not open temperature file named '%s'!\n", filename);
|
---|
53 | exit(255);
|
---|
54 | }
|
---|
55 | // check number of pairs
|
---|
56 | counter=0;
|
---|
57 | while (fgets(line,255, temperature_file)) {
|
---|
58 | sscanf(line,"%lg %lg", &result, &iresult);
|
---|
59 | counter++;
|
---|
60 | }
|
---|
61 | // ... allocate ...
|
---|
62 | time_steps = malloc(counter*sizeof(double));
|
---|
63 | temperatures = malloc(counter*sizeof(double));
|
---|
64 | fclose(temperature_file);
|
---|
65 | // ... and parse in
|
---|
66 | temperature_file=fopen(filename, "r");
|
---|
67 | counter=0;
|
---|
68 | while (fgets(line,255, temperature_file)) {
|
---|
69 | sscanf(line,"%lg %lg", &time_steps[counter], &temperatures[counter]);
|
---|
70 | //fprintf(stderr, "%lg\t%lg\n", time_steps[counter], temperatures[counter]);
|
---|
71 | counter++;
|
---|
72 | }
|
---|
73 | // auto-set good values for start and step based on step range
|
---|
74 | if ((freq_start == -1) || (freq_step == -1)) {
|
---|
75 | // we cannot detect frequencies above twice a time step and not below half the time range
|
---|
76 | freq_start = 1./(fabs(time_steps[counter-1] - time_steps[0])*gauge);
|
---|
77 | freq_step = ( 1./(fabs(time_steps[1] - time_steps[0])*gauge) - 1./(fabs(time_steps[counter-1] - time_steps[0])*gauge) )/counter;
|
---|
78 | fprintf(stderr, "Using %lg and frequency start and %lg as step size.\n", freq_start/(2.*2.*M_PI), freq_step/(2.*2.*M_PI));
|
---|
79 | } else {
|
---|
80 | freq_start *= (2.*2.*M_PI);
|
---|
81 | freq_step *= (2.*2.*M_PI);
|
---|
82 | }
|
---|
83 |
|
---|
84 | // for debugging only: print read values
|
---|
85 | //for(i=0;i<(counter-1);i++) {
|
---|
86 | // printf("%lg\t%lg\n",time_steps[i],temperatures[i]);
|
---|
87 | //}
|
---|
88 |
|
---|
89 | printf("#frequency(a.u.)\tcos\tsin");
|
---|
90 | // discretely integrate over desired frequency range
|
---|
91 | freq_end = freq_start+freq_step*counter-1;
|
---|
92 | for(frequency = freq_start;frequency < freq_end;frequency += freq_step) {
|
---|
93 | result = iresult = 0.;
|
---|
94 | for(i=0;i<(counter-1);i++) {
|
---|
95 | result += temperatures[i] * cos(frequency * time_steps[i]*gauge);
|
---|
96 | iresult += temperatures[i] * sin(frequency * time_steps[i]*gauge);
|
---|
97 | }
|
---|
98 | // NOTE: It is by definition freq over 2*pi, however as the temperature curve counts double (there are two
|
---|
99 | // standstills, one at the perihel one at the aphel!) we insert this factor to make the plots automatically
|
---|
100 | // have the correct frequency!
|
---|
101 | printf("%lg\t%lg\t%lg\n",frequency/(2.*2.*M_PI),result/(counter-1),iresult/(counter-1));
|
---|
102 | }
|
---|
103 |
|
---|
104 | // dis'alloc and end
|
---|
105 | exit(0);
|
---|
106 | }
|
---|