[12d20c] | 1 | import pyMoleCuilder as mol
|
---|
| 2 | import sys, os, math
|
---|
| 3 | import numpy
|
---|
| 4 |
|
---|
| 5 | if len(sys.argv) < 5:
|
---|
| 6 | print 'Usage: '+sys.argv[0]+' <input> <path> <steps> <no_atoms> <use bondgraph>'
|
---|
| 7 | sys.exit(1)
|
---|
| 8 |
|
---|
| 9 | steps=int(sys.argv[3])
|
---|
| 10 | equilibrium_distance=1.6
|
---|
| 11 | no_atoms=int(sys.argv[4])
|
---|
| 12 | inputfile=sys.argv[1]
|
---|
| 13 | forcespath=sys.argv[2]
|
---|
| 14 | forcesfile="ising.forces"
|
---|
| 15 | use_bondgraph=sys.argv[5]
|
---|
| 16 |
|
---|
| 17 | # creating input file
|
---|
| 18 | atomstart=7.6-1.6*math.floor(no_atoms/2)
|
---|
| 19 | print "Creating "+inputfile
|
---|
| 20 | with open(inputfile, 'w') as f:
|
---|
| 21 | f.write("# ATOMDATA\ttype\tId\tx=3\tu=3\tF=3\tneighbors=4\n")
|
---|
| 22 | f.write("# Box\t20\t0\t0\t0\t20\t0\t0\t0\t20\n")
|
---|
| 23 | for i in range(1, no_atoms+1):
|
---|
| 24 | atompos=atomstart+1.6*float(i)
|
---|
| 25 | if i==math.floor(no_atoms/2+1):
|
---|
| 26 | atompos=atompos-.5
|
---|
| 27 | if i==1:
|
---|
| 28 | f.write("C\t%d\t%lg\t10\t10\t0\t0\t0\t0\t0\t0\t%d\t0\t0\t0\n" % (i, atompos, i+1));
|
---|
| 29 | elif i==no_atoms:
|
---|
| 30 | f.write("C\t%d\t%lg\t10\t10\t0\t0\t0\t0\t0\t0\t%d\t0\t0\t0\n" % (i, atompos, i-1));
|
---|
| 31 | else:
|
---|
| 32 | f.write("C\t%d\t%lg\t10\t10\t0\t0\t0\t0\t0\t0\t%d\t%d\t0\t0\n" % (i, atompos, i-1, i+1));
|
---|
| 33 |
|
---|
| 34 | print "Parsing from "+inputfile
|
---|
| 35 | mol.WorldInput(inputfile)
|
---|
| 36 | mol.SelectionAllAtoms()
|
---|
| 37 | mol.CommandVerbose("4")
|
---|
| 38 |
|
---|
| 39 | # calculate damping factor from finite geometric series
|
---|
| 40 | # s_n/a = \sum^{n-1}_{k=0} r^k = (1-r^n)/(1-r) -> s_(n+1)/a -1 = \sum^{n}_{k=1} r^k = (1-r^(n+1))/(1-r) - 1
|
---|
| 41 | # \sum^{n}_{k=1} r^k := 1 and 1 = (1-r^(n+1))/(1-r) - 1 -> 2*(1-r) = 1 - r^(n+1) -> 1 - 2*r + r^(n+1) = 0
|
---|
| 42 | # find root: p[0] is coefficient of monomial with highest power
|
---|
| 43 | p=[0.] * (no_atoms+1)
|
---|
| 44 | p[0]=1.
|
---|
| 45 | p[no_atoms-1]=-2.
|
---|
| 46 | p[no_atoms]=1.
|
---|
| 47 | zeros=numpy.roots(p)
|
---|
| 48 | print("Roots of p "+str(p)+" are "+str(zeros))
|
---|
| 49 | damping=numpy.real(zeros[-1])
|
---|
| 50 | print "Using damping factor of "+str(damping)
|
---|
| 51 |
|
---|
| 52 | for i in range(0, steps):
|
---|
| 53 | # TODO: Python interface should have something to iterate over selected atoms
|
---|
| 54 | # and molecules and get information on their internal status
|
---|
| 55 |
|
---|
| 56 | # read current atomic positions
|
---|
| 57 | outputfile=forcespath+'/'+forcesfile+'.xyz'
|
---|
| 58 | try:
|
---|
| 59 | os.remove(outputfile)
|
---|
| 60 | except: OSError
|
---|
| 61 | #
|
---|
| 62 | mol.WorldOutputAs(outputfile)
|
---|
| 63 | mol.wait()
|
---|
| 64 | distances=[]
|
---|
| 65 | coords=[0.,0.,0.]
|
---|
| 66 | try:
|
---|
| 67 | skiplines=2+i*(1+1+no_atoms+1) # no_atoms, comment, no_atoms atoms, empty line
|
---|
| 68 | with open(outputfile) as f:
|
---|
| 69 | for line in f:
|
---|
| 70 | if skiplines != 0:
|
---|
| 71 | skiplines=skiplines-1
|
---|
| 72 | continue
|
---|
| 73 | line=line.replace('\t',' ')
|
---|
| 74 | print "LINE: "+line
|
---|
| 75 | [elementtype, X, Y, Z] = line.split(' ', 4)
|
---|
| 76 | if coords!=[0.,0.,0.]:
|
---|
| 77 | distances.append(math.sqrt((coords[0]-float(X))**2+(coords[1]-float(Y))**2+(coords[2]-float(Z))**2))
|
---|
| 78 | coords=[float(X),float(Y),float(Z)]
|
---|
| 79 | except IOError:
|
---|
| 80 | print 'Warning: '+outputfile+' not readable.'
|
---|
| 81 | sys.exit(1)
|
---|
| 82 |
|
---|
| 83 | assert(len(distances)==no_atoms-1)
|
---|
| 84 |
|
---|
| 85 | #
|
---|
| 86 | # generate Ising model forces and store in file
|
---|
| 87 | #
|
---|
| 88 | # i.e. we have spring forces between neighboring atoms depending on their distance
|
---|
| 89 | forces=[]
|
---|
| 90 | for d in distances:
|
---|
| 91 | forces.append( d - equilibrium_distance );
|
---|
| 92 |
|
---|
| 93 | # generate new forces file
|
---|
| 94 |
|
---|
| 95 | with open(forcespath+'/'+forcesfile, 'w') as f:
|
---|
| 96 | f.write('# atom\tf_x\tf_y\tf_z\n')
|
---|
| 97 | for i in range(len(distances)+1):
|
---|
| 98 | force=0
|
---|
| 99 | if i!=0:
|
---|
| 100 | force=force-forces[i-1]
|
---|
| 101 | if (i != len(distances)):
|
---|
| 102 | force=force+forces[i]
|
---|
| 103 | f.write("%d\t%f\t0.\t0.\n" % (i+1, force))
|
---|
| 104 |
|
---|
[93fd2a6] | 105 | mol.MoleculeForceAnnealing(forcespath+'/'+forcesfile, ".1", "%d" % (steps), "%d" % (no_atoms-1), "%lg" % (damping), use_bondgraph)
|
---|
[12d20c] | 106 | mol.wait()
|
---|
| 107 |
|
---|
[93fd2a6] | 108 | sys.exit(0)
|
---|