1 | /*
|
---|
2 | * vector_ops.cpp
|
---|
3 | *
|
---|
4 | * Created on: Apr 1, 2010
|
---|
5 | * Author: crueger
|
---|
6 | */
|
---|
7 |
|
---|
8 | #include "vector.hpp"
|
---|
9 | #include "Plane.hpp"
|
---|
10 | #include "log.hpp"
|
---|
11 | #include "verbose.hpp"
|
---|
12 | #include "gslmatrix.hpp"
|
---|
13 | #include "leastsquaremin.hpp"
|
---|
14 | #include "info.hpp"
|
---|
15 | #include "Helpers/fast_functions.hpp"
|
---|
16 | #include "Exceptions/LinearDependenceException.hpp"
|
---|
17 |
|
---|
18 | #include <gsl/gsl_linalg.h>
|
---|
19 | #include <gsl/gsl_matrix.h>
|
---|
20 | #include <gsl/gsl_permutation.h>
|
---|
21 | #include <gsl/gsl_vector.h>
|
---|
22 |
|
---|
23 | /**
|
---|
24 | * !@file
|
---|
25 | * These files defines several common operation on vectors that should not
|
---|
26 | * become part of the main vector class, because they are either to complex
|
---|
27 | * or need methods from other subsystems that should not be moved to
|
---|
28 | * the LinAlg-Subsystem
|
---|
29 | */
|
---|
30 |
|
---|
31 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
|
---|
32 | * \param *vectors set of vectors
|
---|
33 | * \param num number of vectors
|
---|
34 | * \return true if success, false if failed due to linear dependency
|
---|
35 | */
|
---|
36 | bool LSQdistance(Vector &res,const Vector **vectors, int num)
|
---|
37 | {
|
---|
38 | int j;
|
---|
39 |
|
---|
40 | for (j=0;j<num;j++) {
|
---|
41 | Log() << Verbose(1) << j << "th atom's vector: " << vectors[j] << endl;
|
---|
42 | }
|
---|
43 |
|
---|
44 | int np = 3;
|
---|
45 | struct LSQ_params par;
|
---|
46 |
|
---|
47 | const gsl_multimin_fminimizer_type *T =
|
---|
48 | gsl_multimin_fminimizer_nmsimplex;
|
---|
49 | gsl_multimin_fminimizer *s = NULL;
|
---|
50 | gsl_vector *ss, *y;
|
---|
51 | gsl_multimin_function minex_func;
|
---|
52 |
|
---|
53 | size_t iter = 0, i;
|
---|
54 | int status;
|
---|
55 | double size;
|
---|
56 |
|
---|
57 | /* Initial vertex size vector */
|
---|
58 | ss = gsl_vector_alloc (np);
|
---|
59 | y = gsl_vector_alloc (np);
|
---|
60 |
|
---|
61 | /* Set all step sizes to 1 */
|
---|
62 | gsl_vector_set_all (ss, 1.0);
|
---|
63 |
|
---|
64 | /* Starting point */
|
---|
65 | par.vectors = vectors;
|
---|
66 | par.num = num;
|
---|
67 |
|
---|
68 | for (i=NDIM;i--;)
|
---|
69 | gsl_vector_set(y, i, (vectors[0]->at(i) - vectors[1]->at(i))/2.);
|
---|
70 |
|
---|
71 | /* Initialize method and iterate */
|
---|
72 | minex_func.f = &LSQ;
|
---|
73 | minex_func.n = np;
|
---|
74 | minex_func.params = (void *)∥
|
---|
75 |
|
---|
76 | s = gsl_multimin_fminimizer_alloc (T, np);
|
---|
77 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
|
---|
78 |
|
---|
79 | do
|
---|
80 | {
|
---|
81 | iter++;
|
---|
82 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
83 |
|
---|
84 | if (status)
|
---|
85 | break;
|
---|
86 |
|
---|
87 | size = gsl_multimin_fminimizer_size (s);
|
---|
88 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
89 |
|
---|
90 | if (status == GSL_SUCCESS)
|
---|
91 | {
|
---|
92 | printf ("converged to minimum at\n");
|
---|
93 | }
|
---|
94 |
|
---|
95 | printf ("%5d ", (int)iter);
|
---|
96 | for (i = 0; i < (size_t)np; i++)
|
---|
97 | {
|
---|
98 | printf ("%10.3e ", gsl_vector_get (s->x, i));
|
---|
99 | }
|
---|
100 | printf ("f() = %7.3f size = %.3f\n", s->fval, size);
|
---|
101 | }
|
---|
102 | while (status == GSL_CONTINUE && iter < 100);
|
---|
103 |
|
---|
104 | for (i=(size_t)np;i--;)
|
---|
105 | res[i] = gsl_vector_get(s->x, i);
|
---|
106 | gsl_vector_free(y);
|
---|
107 | gsl_vector_free(ss);
|
---|
108 | gsl_multimin_fminimizer_free (s);
|
---|
109 |
|
---|
110 | return true;
|
---|
111 | };
|
---|
112 |
|
---|
113 | /** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha.
|
---|
114 | * \param *axis rotation axis
|
---|
115 | * \param alpha rotation angle in radian
|
---|
116 | */
|
---|
117 | Vector RotateVector(const Vector &vec,const Vector &axis, const double alpha)
|
---|
118 | {
|
---|
119 | Vector a,y;
|
---|
120 | Vector res;
|
---|
121 | // normalise this vector with respect to axis
|
---|
122 | a = vec;
|
---|
123 | a.ProjectOntoPlane(axis);
|
---|
124 | // construct normal vector
|
---|
125 | try {
|
---|
126 | y = Plane(axis,a,0).getNormal();
|
---|
127 | }
|
---|
128 | catch (LinearDependenceException &excp) {
|
---|
129 | // The normal vector cannot be created if there is linar dependency.
|
---|
130 | // Then the vector to rotate is on the axis and any rotation leads to the vector itself.
|
---|
131 | return vec;
|
---|
132 | }
|
---|
133 | y.Scale(vec.Norm());
|
---|
134 | // scale normal vector by sine and this vector by cosine
|
---|
135 | y.Scale(sin(alpha));
|
---|
136 | a.Scale(cos(alpha));
|
---|
137 | res = vec.Projection(axis);
|
---|
138 | // add scaled normal vector onto this vector
|
---|
139 | res += y;
|
---|
140 | // add part in axis direction
|
---|
141 | res += a;
|
---|
142 | return res;
|
---|
143 | };
|
---|
144 |
|
---|
145 | /** Calculates the intersection of the two lines that are both on the same plane.
|
---|
146 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
|
---|
147 | * \param *out output stream for debugging
|
---|
148 | * \param *Line1a first vector of first line
|
---|
149 | * \param *Line1b second vector of first line
|
---|
150 | * \param *Line2a first vector of second line
|
---|
151 | * \param *Line2b second vector of second line
|
---|
152 | * \return true - \a this will contain the intersection on return, false - lines are parallel
|
---|
153 | */
|
---|
154 | Vector GetIntersectionOfTwoLinesOnPlane(const Vector &Line1a, const Vector &Line1b, const Vector &Line2a, const Vector &Line2b)
|
---|
155 | {
|
---|
156 | Info FunctionInfo(__func__);
|
---|
157 |
|
---|
158 | Vector res;
|
---|
159 |
|
---|
160 | auto_ptr<GSLMatrix> M = auto_ptr<GSLMatrix>(new GSLMatrix(4,4));
|
---|
161 |
|
---|
162 | M->SetAll(1.);
|
---|
163 | for (int i=0;i<3;i++) {
|
---|
164 | M->Set(0, i, Line1a[i]);
|
---|
165 | M->Set(1, i, Line1b[i]);
|
---|
166 | M->Set(2, i, Line2a[i]);
|
---|
167 | M->Set(3, i, Line2b[i]);
|
---|
168 | }
|
---|
169 |
|
---|
170 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
|
---|
171 | //for (int i=0;i<4;i++) {
|
---|
172 | // for (int j=0;j<4;j++)
|
---|
173 | // cout << "\t" << M->Get(i,j);
|
---|
174 | // cout << endl;
|
---|
175 | //}
|
---|
176 | if (fabs(M->Determinant()) > MYEPSILON) {
|
---|
177 | Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
|
---|
178 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
179 | }
|
---|
180 |
|
---|
181 | Log() << Verbose(1) << "INFO: Line1a = " << Line1a << ", Line1b = " << Line1b << ", Line2a = " << Line2a << ", Line2b = " << Line2b << "." << endl;
|
---|
182 |
|
---|
183 |
|
---|
184 | // constuct a,b,c
|
---|
185 | Vector a = Line1b - Line1a;
|
---|
186 | Vector b = Line2b - Line2a;
|
---|
187 | Vector c = Line2a - Line1a;
|
---|
188 | Vector d = Line2b - Line1b;
|
---|
189 | Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
|
---|
190 | if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
|
---|
191 | res.Zero();
|
---|
192 | Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
|
---|
193 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
194 | }
|
---|
195 |
|
---|
196 | // check for parallelity
|
---|
197 | Vector parallel;
|
---|
198 | double factor = 0.;
|
---|
199 | if (fabs(a.ScalarProduct(b)*a.ScalarProduct(b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
|
---|
200 | parallel = Line1a - Line2a;
|
---|
201 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
202 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
203 | res = Line2a;
|
---|
204 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
205 | return res;
|
---|
206 | } else {
|
---|
207 | parallel = Line1a - Line2b;
|
---|
208 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
209 | if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
|
---|
210 | res = Line2b;
|
---|
211 | Log() << Verbose(1) << "Lines conincide." << endl;
|
---|
212 | return res;
|
---|
213 | }
|
---|
214 | }
|
---|
215 | Log() << Verbose(1) << "Lines are parallel." << endl;
|
---|
216 | res.Zero();
|
---|
217 | throw LinearDependenceException(__FILE__,__LINE__);
|
---|
218 | }
|
---|
219 |
|
---|
220 | // obtain s
|
---|
221 | double s;
|
---|
222 | Vector temp1, temp2;
|
---|
223 | temp1 = c;
|
---|
224 | temp1.VectorProduct(b);
|
---|
225 | temp2 = a;
|
---|
226 | temp2.VectorProduct(b);
|
---|
227 | Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
|
---|
228 | if (fabs(temp2.NormSquared()) > MYEPSILON)
|
---|
229 | s = temp1.ScalarProduct(temp2)/temp2.NormSquared();
|
---|
230 | else
|
---|
231 | s = 0.;
|
---|
232 | Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
|
---|
233 |
|
---|
234 | // construct intersection
|
---|
235 | res = a;
|
---|
236 | res.Scale(s);
|
---|
237 | res += Line1a;
|
---|
238 | Log() << Verbose(1) << "Intersection is at " << res << "." << endl;
|
---|
239 |
|
---|
240 | return res;
|
---|
241 | };
|
---|