1 | /** \file vector.cpp
|
---|
2 | *
|
---|
3 | * Function implementations for the class vector.
|
---|
4 | *
|
---|
5 | */
|
---|
6 |
|
---|
7 | #include "molecules.hpp"
|
---|
8 |
|
---|
9 |
|
---|
10 | /************************************ Functions for class vector ************************************/
|
---|
11 |
|
---|
12 | /** Constructor of class vector.
|
---|
13 | */
|
---|
14 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
|
---|
15 |
|
---|
16 | /** Constructor of class vector.
|
---|
17 | */
|
---|
18 | Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
|
---|
19 |
|
---|
20 | /** Desctructor of class vector.
|
---|
21 | */
|
---|
22 | Vector::~Vector() {};
|
---|
23 |
|
---|
24 | /** Calculates square of distance between this and another vector.
|
---|
25 | * \param *y array to second vector
|
---|
26 | * \return \f$| x - y |^2\f$
|
---|
27 | */
|
---|
28 | double Vector::DistanceSquared(const Vector *y) const
|
---|
29 | {
|
---|
30 | double res = 0.;
|
---|
31 | for (int i=NDIM;i--;)
|
---|
32 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
33 | return (res);
|
---|
34 | };
|
---|
35 |
|
---|
36 | /** Calculates distance between this and another vector.
|
---|
37 | * \param *y array to second vector
|
---|
38 | * \return \f$| x - y |\f$
|
---|
39 | */
|
---|
40 | double Vector::Distance(const Vector *y) const
|
---|
41 | {
|
---|
42 | double res = 0.;
|
---|
43 | for (int i=NDIM;i--;)
|
---|
44 | res += (x[i]-y->x[i])*(x[i]-y->x[i]);
|
---|
45 | return (sqrt(res));
|
---|
46 | };
|
---|
47 |
|
---|
48 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
49 | * \param *y array to second vector
|
---|
50 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
51 | * \return \f$| x - y |\f$
|
---|
52 | */
|
---|
53 | double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const
|
---|
54 | {
|
---|
55 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
---|
56 | Vector Shiftedy, TranslationVector;
|
---|
57 | int N[NDIM];
|
---|
58 | matrix[0] = cell_size[0];
|
---|
59 | matrix[1] = cell_size[1];
|
---|
60 | matrix[2] = cell_size[3];
|
---|
61 | matrix[3] = cell_size[1];
|
---|
62 | matrix[4] = cell_size[2];
|
---|
63 | matrix[5] = cell_size[4];
|
---|
64 | matrix[6] = cell_size[3];
|
---|
65 | matrix[7] = cell_size[4];
|
---|
66 | matrix[8] = cell_size[5];
|
---|
67 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
68 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
69 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
70 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
71 | // create the translation vector
|
---|
72 | TranslationVector.Zero();
|
---|
73 | for (int i=NDIM;i--;)
|
---|
74 | TranslationVector.x[i] = (double)N[i];
|
---|
75 | TranslationVector.MatrixMultiplication(matrix);
|
---|
76 | // add onto the original vector to compare with
|
---|
77 | Shiftedy.CopyVector(y);
|
---|
78 | Shiftedy.AddVector(&TranslationVector);
|
---|
79 | // get distance and compare with minimum so far
|
---|
80 | tmp = Distance(&Shiftedy);
|
---|
81 | if (tmp < res) res = tmp;
|
---|
82 | }
|
---|
83 | return (res);
|
---|
84 | };
|
---|
85 |
|
---|
86 | /** Calculates distance between this and another vector in a periodic cell.
|
---|
87 | * \param *y array to second vector
|
---|
88 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
---|
89 | * \return \f$| x - y |^2\f$
|
---|
90 | */
|
---|
91 | double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const
|
---|
92 | {
|
---|
93 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
|
---|
94 | Vector Shiftedy, TranslationVector;
|
---|
95 | int N[NDIM];
|
---|
96 | matrix[0] = cell_size[0];
|
---|
97 | matrix[1] = cell_size[1];
|
---|
98 | matrix[2] = cell_size[3];
|
---|
99 | matrix[3] = cell_size[1];
|
---|
100 | matrix[4] = cell_size[2];
|
---|
101 | matrix[5] = cell_size[4];
|
---|
102 | matrix[6] = cell_size[3];
|
---|
103 | matrix[7] = cell_size[4];
|
---|
104 | matrix[8] = cell_size[5];
|
---|
105 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
---|
106 | for (N[0]=-1;N[0]<=1;N[0]++)
|
---|
107 | for (N[1]=-1;N[1]<=1;N[1]++)
|
---|
108 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
---|
109 | // create the translation vector
|
---|
110 | TranslationVector.Zero();
|
---|
111 | for (int i=NDIM;i--;)
|
---|
112 | TranslationVector.x[i] = (double)N[i];
|
---|
113 | TranslationVector.MatrixMultiplication(matrix);
|
---|
114 | // add onto the original vector to compare with
|
---|
115 | Shiftedy.CopyVector(y);
|
---|
116 | Shiftedy.AddVector(&TranslationVector);
|
---|
117 | // get distance and compare with minimum so far
|
---|
118 | tmp = DistanceSquared(&Shiftedy);
|
---|
119 | if (tmp < res) res = tmp;
|
---|
120 | }
|
---|
121 | return (res);
|
---|
122 | };
|
---|
123 |
|
---|
124 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
---|
125 | * \param *out ofstream for debugging messages
|
---|
126 | * Tries to translate a vector into each adjacent neighbouring cell.
|
---|
127 | */
|
---|
128 | void Vector::KeepPeriodic(ofstream *out, double *matrix)
|
---|
129 | {
|
---|
130 | // int N[NDIM];
|
---|
131 | // bool flag = false;
|
---|
132 | //vector Shifted, TranslationVector;
|
---|
133 | Vector TestVector;
|
---|
134 | // *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
---|
135 | // *out << Verbose(2) << "Vector is: ";
|
---|
136 | // Output(out);
|
---|
137 | // *out << endl;
|
---|
138 | TestVector.CopyVector(this);
|
---|
139 | TestVector.InverseMatrixMultiplication(matrix);
|
---|
140 | for(int i=NDIM;i--;) { // correct periodically
|
---|
141 | if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
|
---|
142 | TestVector.x[i] += ceil(TestVector.x[i]);
|
---|
143 | } else {
|
---|
144 | TestVector.x[i] -= floor(TestVector.x[i]);
|
---|
145 | }
|
---|
146 | }
|
---|
147 | TestVector.MatrixMultiplication(matrix);
|
---|
148 | CopyVector(&TestVector);
|
---|
149 | // *out << Verbose(2) << "New corrected vector is: ";
|
---|
150 | // Output(out);
|
---|
151 | // *out << endl;
|
---|
152 | // *out << Verbose(1) << "End of KeepPeriodic." << endl;
|
---|
153 | };
|
---|
154 |
|
---|
155 | /** Calculates scalar product between this and another vector.
|
---|
156 | * \param *y array to second vector
|
---|
157 | * \return \f$\langle x, y \rangle\f$
|
---|
158 | */
|
---|
159 | double Vector::ScalarProduct(const Vector *y) const
|
---|
160 | {
|
---|
161 | double res = 0.;
|
---|
162 | for (int i=NDIM;i--;)
|
---|
163 | res += x[i]*y->x[i];
|
---|
164 | return (res);
|
---|
165 | };
|
---|
166 |
|
---|
167 |
|
---|
168 | /** Calculates VectorProduct between this and another vector.
|
---|
169 | * -# returns the Product in place of vector from which it was initiated
|
---|
170 | * -# ATTENTION: Only three dim.
|
---|
171 | * \param *y array to vector with which to calculate crossproduct
|
---|
172 | * \return \f$ x \times y \f&
|
---|
173 | */
|
---|
174 | void Vector::VectorProduct(const Vector *y)
|
---|
175 | {
|
---|
176 | Vector tmp;
|
---|
177 | tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
|
---|
178 | tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
|
---|
179 | tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
|
---|
180 | this->CopyVector(&tmp);
|
---|
181 |
|
---|
182 | };
|
---|
183 |
|
---|
184 |
|
---|
185 | /** projects this vector onto plane defined by \a *y.
|
---|
186 | * \param *y normal vector of plane
|
---|
187 | * \return \f$\langle x, y \rangle\f$
|
---|
188 | */
|
---|
189 | void Vector::ProjectOntoPlane(const Vector *y)
|
---|
190 | {
|
---|
191 | Vector tmp;
|
---|
192 | tmp.CopyVector(y);
|
---|
193 | tmp.Normalize();
|
---|
194 | tmp.Scale(ScalarProduct(&tmp));
|
---|
195 | this->SubtractVector(&tmp);
|
---|
196 | };
|
---|
197 |
|
---|
198 | /** Calculates the projection of a vector onto another \a *y.
|
---|
199 | * \param *y array to second vector
|
---|
200 | * \return \f$\langle x, y \rangle\f$
|
---|
201 | */
|
---|
202 | double Vector::Projection(const Vector *y) const
|
---|
203 | {
|
---|
204 | return (ScalarProduct(y));
|
---|
205 | };
|
---|
206 |
|
---|
207 | /** Calculates norm of this vector.
|
---|
208 | * \return \f$|x|\f$
|
---|
209 | */
|
---|
210 | double Vector::Norm() const
|
---|
211 | {
|
---|
212 | double res = 0.;
|
---|
213 | for (int i=NDIM;i--;)
|
---|
214 | res += this->x[i]*this->x[i];
|
---|
215 | return (sqrt(res));
|
---|
216 | };
|
---|
217 |
|
---|
218 | /** Normalizes this vector.
|
---|
219 | */
|
---|
220 | void Vector::Normalize()
|
---|
221 | {
|
---|
222 | double res = 0.;
|
---|
223 | for (int i=NDIM;i--;)
|
---|
224 | res += this->x[i]*this->x[i];
|
---|
225 | if (fabs(res) > MYEPSILON)
|
---|
226 | res = 1./sqrt(res);
|
---|
227 | Scale(&res);
|
---|
228 | };
|
---|
229 |
|
---|
230 | /** Zeros all components of this vector.
|
---|
231 | */
|
---|
232 | void Vector::Zero()
|
---|
233 | {
|
---|
234 | for (int i=NDIM;i--;)
|
---|
235 | this->x[i] = 0.;
|
---|
236 | };
|
---|
237 |
|
---|
238 | /** Zeros all components of this vector.
|
---|
239 | */
|
---|
240 | void Vector::One(double one)
|
---|
241 | {
|
---|
242 | for (int i=NDIM;i--;)
|
---|
243 | this->x[i] = one;
|
---|
244 | };
|
---|
245 |
|
---|
246 | /** Initialises all components of this vector.
|
---|
247 | */
|
---|
248 | void Vector::Init(double x1, double x2, double x3)
|
---|
249 | {
|
---|
250 | x[0] = x1;
|
---|
251 | x[1] = x2;
|
---|
252 | x[2] = x3;
|
---|
253 | };
|
---|
254 |
|
---|
255 | /** Checks whether vector has all components zero.
|
---|
256 | * @return true - vector is zero, false - vector is not
|
---|
257 | */
|
---|
258 | bool Vector::IsNull()
|
---|
259 | {
|
---|
260 | return (fabs(x[0]+x[1]+x[2]) < MYEPSILON);
|
---|
261 | };
|
---|
262 |
|
---|
263 | /** Calculates the angle between this and another vector.
|
---|
264 | * \param *y array to second vector
|
---|
265 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
---|
266 | */
|
---|
267 | double Vector::Angle(const Vector *y) const
|
---|
268 | {
|
---|
269 | double angle = this->ScalarProduct(y)/Norm()/y->Norm();
|
---|
270 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
---|
271 | //cout << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
---|
272 | if (angle < -1)
|
---|
273 | angle = -1;
|
---|
274 | if (angle > 1)
|
---|
275 | angle = 1;
|
---|
276 | return acos(angle);
|
---|
277 | };
|
---|
278 |
|
---|
279 | /** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
|
---|
280 | * \param *axis rotation axis
|
---|
281 | * \param alpha rotation angle in radian
|
---|
282 | */
|
---|
283 | void Vector::RotateVector(const Vector *axis, const double alpha)
|
---|
284 | {
|
---|
285 | Vector a,y;
|
---|
286 | // normalise this vector with respect to axis
|
---|
287 | a.CopyVector(this);
|
---|
288 | a.Scale(Projection(axis));
|
---|
289 | SubtractVector(&a);
|
---|
290 | // construct normal vector
|
---|
291 | y.MakeNormalVector(axis,this);
|
---|
292 | y.Scale(Norm());
|
---|
293 | // scale normal vector by sine and this vector by cosine
|
---|
294 | y.Scale(sin(alpha));
|
---|
295 | Scale(cos(alpha));
|
---|
296 | // add scaled normal vector onto this vector
|
---|
297 | AddVector(&y);
|
---|
298 | // add part in axis direction
|
---|
299 | AddVector(&a);
|
---|
300 | };
|
---|
301 |
|
---|
302 | /** Sums vector \a to this lhs component-wise.
|
---|
303 | * \param a base vector
|
---|
304 | * \param b vector components to add
|
---|
305 | * \return lhs + a
|
---|
306 | */
|
---|
307 | Vector& operator+=(Vector& a, const Vector& b)
|
---|
308 | {
|
---|
309 | a.AddVector(&b);
|
---|
310 | return a;
|
---|
311 | };
|
---|
312 | /** factor each component of \a a times a double \a m.
|
---|
313 | * \param a base vector
|
---|
314 | * \param m factor
|
---|
315 | * \return lhs.x[i] * m
|
---|
316 | */
|
---|
317 | Vector& operator*=(Vector& a, const double m)
|
---|
318 | {
|
---|
319 | a.Scale(m);
|
---|
320 | return a;
|
---|
321 | };
|
---|
322 |
|
---|
323 | /** Sums two vectors \a and \b component-wise.
|
---|
324 | * \param a first vector
|
---|
325 | * \param b second vector
|
---|
326 | * \return a + b
|
---|
327 | */
|
---|
328 | Vector& operator+(const Vector& a, const Vector& b)
|
---|
329 | {
|
---|
330 | Vector *x = new Vector;
|
---|
331 | x->CopyVector(&a);
|
---|
332 | x->AddVector(&b);
|
---|
333 | return *x;
|
---|
334 | };
|
---|
335 |
|
---|
336 | /** Factors given vector \a a times \a m.
|
---|
337 | * \param a vector
|
---|
338 | * \param m factor
|
---|
339 | * \return a + b
|
---|
340 | */
|
---|
341 | Vector& operator*(const Vector& a, const double m)
|
---|
342 | {
|
---|
343 | Vector *x = new Vector;
|
---|
344 | x->CopyVector(&a);
|
---|
345 | x->Scale(m);
|
---|
346 | return *x;
|
---|
347 | };
|
---|
348 |
|
---|
349 | /** Prints a 3dim vector.
|
---|
350 | * prints no end of line.
|
---|
351 | * \param *out output stream
|
---|
352 | */
|
---|
353 | bool Vector::Output(ofstream *out) const
|
---|
354 | {
|
---|
355 | if (out != NULL) {
|
---|
356 | *out << "(";
|
---|
357 | for (int i=0;i<NDIM;i++) {
|
---|
358 | *out << x[i];
|
---|
359 | if (i != 2)
|
---|
360 | *out << ",";
|
---|
361 | }
|
---|
362 | *out << ")";
|
---|
363 | return true;
|
---|
364 | } else
|
---|
365 | return false;
|
---|
366 | };
|
---|
367 |
|
---|
368 | ostream& operator<<(ostream& ost, const Vector& m)
|
---|
369 | {
|
---|
370 | ost << "(";
|
---|
371 | for (int i=0;i<NDIM;i++) {
|
---|
372 | ost << m.x[i];
|
---|
373 | if (i != 2)
|
---|
374 | ost << ",";
|
---|
375 | }
|
---|
376 | ost << ")";
|
---|
377 | return ost;
|
---|
378 | };
|
---|
379 |
|
---|
380 | /** Scales each atom coordinate by an individual \a factor.
|
---|
381 | * \param *factor pointer to scaling factor
|
---|
382 | */
|
---|
383 | void Vector::Scale(double **factor)
|
---|
384 | {
|
---|
385 | for (int i=NDIM;i--;)
|
---|
386 | x[i] *= (*factor)[i];
|
---|
387 | };
|
---|
388 |
|
---|
389 | void Vector::Scale(double *factor)
|
---|
390 | {
|
---|
391 | for (int i=NDIM;i--;)
|
---|
392 | x[i] *= *factor;
|
---|
393 | };
|
---|
394 |
|
---|
395 | void Vector::Scale(double factor)
|
---|
396 | {
|
---|
397 | for (int i=NDIM;i--;)
|
---|
398 | x[i] *= factor;
|
---|
399 | };
|
---|
400 |
|
---|
401 | /** Translate atom by given vector.
|
---|
402 | * \param trans[] translation vector.
|
---|
403 | */
|
---|
404 | void Vector::Translate(const Vector *trans)
|
---|
405 | {
|
---|
406 | for (int i=NDIM;i--;)
|
---|
407 | x[i] += trans->x[i];
|
---|
408 | };
|
---|
409 |
|
---|
410 | /** Do a matrix multiplication.
|
---|
411 | * \param *matrix NDIM_NDIM array
|
---|
412 | */
|
---|
413 | void Vector::MatrixMultiplication(double *M)
|
---|
414 | {
|
---|
415 | Vector C;
|
---|
416 | // do the matrix multiplication
|
---|
417 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
---|
418 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
---|
419 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
---|
420 | // transfer the result into this
|
---|
421 | for (int i=NDIM;i--;)
|
---|
422 | x[i] = C.x[i];
|
---|
423 | };
|
---|
424 |
|
---|
425 | /** Do a matrix multiplication with \a *matrix' inverse.
|
---|
426 | * \param *matrix NDIM_NDIM array
|
---|
427 | */
|
---|
428 | void Vector::InverseMatrixMultiplication(double *A)
|
---|
429 | {
|
---|
430 | Vector C;
|
---|
431 | double B[NDIM*NDIM];
|
---|
432 | double detA = RDET3(A);
|
---|
433 | double detAReci;
|
---|
434 |
|
---|
435 | // calculate the inverse B
|
---|
436 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
---|
437 | detAReci = 1./detA;
|
---|
438 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
439 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
440 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
441 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
442 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
443 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
444 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
445 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
446 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
447 |
|
---|
448 | // do the matrix multiplication
|
---|
449 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
---|
450 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
---|
451 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
---|
452 | // transfer the result into this
|
---|
453 | for (int i=NDIM;i--;)
|
---|
454 | x[i] = C.x[i];
|
---|
455 | } else {
|
---|
456 | cerr << "ERROR: inverse of matrix does not exists!" << endl;
|
---|
457 | }
|
---|
458 | };
|
---|
459 |
|
---|
460 |
|
---|
461 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
---|
462 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
---|
463 | * \param *x1 first vector
|
---|
464 | * \param *x2 second vector
|
---|
465 | * \param *x3 third vector
|
---|
466 | * \param *factors three-component vector with the factor for each given vector
|
---|
467 | */
|
---|
468 | void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors)
|
---|
469 | {
|
---|
470 | for(int i=NDIM;i--;)
|
---|
471 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
|
---|
472 | };
|
---|
473 |
|
---|
474 | /** Mirrors atom against a given plane.
|
---|
475 | * \param n[] normal vector of mirror plane.
|
---|
476 | */
|
---|
477 | void Vector::Mirror(const Vector *n)
|
---|
478 | {
|
---|
479 | double projection;
|
---|
480 | projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
|
---|
481 | // withdraw projected vector twice from original one
|
---|
482 | cout << Verbose(1) << "Vector: ";
|
---|
483 | Output((ofstream *)&cout);
|
---|
484 | cout << "\t";
|
---|
485 | for (int i=NDIM;i--;)
|
---|
486 | x[i] -= 2.*projection*n->x[i];
|
---|
487 | cout << "Projected vector: ";
|
---|
488 | Output((ofstream *)&cout);
|
---|
489 | cout << endl;
|
---|
490 | };
|
---|
491 |
|
---|
492 | /** Calculates normal vector for three given vectors (being three points in space).
|
---|
493 | * Makes this vector orthonormal to the three given points, making up a place in 3d space.
|
---|
494 | * \param *y1 first vector
|
---|
495 | * \param *y2 second vector
|
---|
496 | * \param *y3 third vector
|
---|
497 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
498 | */
|
---|
499 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3)
|
---|
500 | {
|
---|
501 | Vector x1, x2;
|
---|
502 |
|
---|
503 | x1.CopyVector(y1);
|
---|
504 | x1.SubtractVector(y2);
|
---|
505 | x2.CopyVector(y3);
|
---|
506 | x2.SubtractVector(y2);
|
---|
507 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
|
---|
508 | cout << Verbose(4) << "Given vectors are linear dependent." << endl;
|
---|
509 | return false;
|
---|
510 | }
|
---|
511 | // cout << Verbose(4) << "relative, first plane coordinates:";
|
---|
512 | // x1.Output((ofstream *)&cout);
|
---|
513 | // cout << endl;
|
---|
514 | // cout << Verbose(4) << "second plane coordinates:";
|
---|
515 | // x2.Output((ofstream *)&cout);
|
---|
516 | // cout << endl;
|
---|
517 |
|
---|
518 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
519 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
520 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
521 | Normalize();
|
---|
522 |
|
---|
523 | return true;
|
---|
524 | };
|
---|
525 |
|
---|
526 |
|
---|
527 | /** Calculates orthonormal vector to two given vectors.
|
---|
528 | * Makes this vector orthonormal to two given vectors. This is very similar to the other
|
---|
529 | * vector::MakeNormalVector(), only there three points whereas here two difference
|
---|
530 | * vectors are given.
|
---|
531 | * \param *x1 first vector
|
---|
532 | * \param *x2 second vector
|
---|
533 | * \return true - success, vectors are linear independent, false - failure due to linear dependency
|
---|
534 | */
|
---|
535 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2)
|
---|
536 | {
|
---|
537 | Vector x1,x2;
|
---|
538 | x1.CopyVector(y1);
|
---|
539 | x2.CopyVector(y2);
|
---|
540 | Zero();
|
---|
541 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
|
---|
542 | cout << Verbose(4) << "Given vectors are linear dependent." << endl;
|
---|
543 | return false;
|
---|
544 | }
|
---|
545 | // cout << Verbose(4) << "relative, first plane coordinates:";
|
---|
546 | // x1.Output((ofstream *)&cout);
|
---|
547 | // cout << endl;
|
---|
548 | // cout << Verbose(4) << "second plane coordinates:";
|
---|
549 | // x2.Output((ofstream *)&cout);
|
---|
550 | // cout << endl;
|
---|
551 |
|
---|
552 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
|
---|
553 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
|
---|
554 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
|
---|
555 | Normalize();
|
---|
556 |
|
---|
557 | return true;
|
---|
558 | };
|
---|
559 |
|
---|
560 | /** Calculates orthonormal vector to one given vectors.
|
---|
561 | * Just subtracts the projection onto the given vector from this vector.
|
---|
562 | * \param *x1 vector
|
---|
563 | * \return true - success, false - vector is zero
|
---|
564 | */
|
---|
565 | bool Vector::MakeNormalVector(const Vector *y1)
|
---|
566 | {
|
---|
567 | bool result = false;
|
---|
568 | Vector x1;
|
---|
569 | x1.CopyVector(y1);
|
---|
570 | x1.Scale(x1.Projection(this));
|
---|
571 | SubtractVector(&x1);
|
---|
572 | for (int i=NDIM;i--;)
|
---|
573 | result = result || (fabs(x[i]) > MYEPSILON);
|
---|
574 |
|
---|
575 | return result;
|
---|
576 | };
|
---|
577 |
|
---|
578 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
---|
579 | * Just scan how many components of given *vector are unequal to zero and
|
---|
580 | * try to get the skp of both to be zero accordingly.
|
---|
581 | * \param *vector given vector
|
---|
582 | * \return true - success, false - failure (null vector given)
|
---|
583 | */
|
---|
584 | bool Vector::GetOneNormalVector(const Vector *GivenVector)
|
---|
585 | {
|
---|
586 | int Components[NDIM]; // contains indices of non-zero components
|
---|
587 | int Last = 0; // count the number of non-zero entries in vector
|
---|
588 | int j; // loop variables
|
---|
589 | double norm;
|
---|
590 |
|
---|
591 | cout << Verbose(4);
|
---|
592 | GivenVector->Output((ofstream *)&cout);
|
---|
593 | cout << endl;
|
---|
594 | for (j=NDIM;j--;)
|
---|
595 | Components[j] = -1;
|
---|
596 | // find two components != 0
|
---|
597 | for (j=0;j<NDIM;j++)
|
---|
598 | if (fabs(GivenVector->x[j]) > MYEPSILON)
|
---|
599 | Components[Last++] = j;
|
---|
600 | cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
|
---|
601 |
|
---|
602 | switch(Last) {
|
---|
603 | case 3: // threecomponent system
|
---|
604 | case 2: // two component system
|
---|
605 | norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
|
---|
606 | x[Components[2]] = 0.;
|
---|
607 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
---|
608 | x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
|
---|
609 | x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
|
---|
610 | return true;
|
---|
611 | break;
|
---|
612 | case 1: // one component system
|
---|
613 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
---|
614 | x[(Components[0]+2)%NDIM] = 0.;
|
---|
615 | x[(Components[0]+1)%NDIM] = 1.;
|
---|
616 | x[Components[0]] = 0.;
|
---|
617 | return true;
|
---|
618 | break;
|
---|
619 | default:
|
---|
620 | return false;
|
---|
621 | }
|
---|
622 | };
|
---|
623 |
|
---|
624 | /** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
|
---|
625 | * \param *A first plane vector
|
---|
626 | * \param *B second plane vector
|
---|
627 | * \param *C third plane vector
|
---|
628 | * \return scaling parameter for this vector
|
---|
629 | */
|
---|
630 | double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C)
|
---|
631 | {
|
---|
632 | // cout << Verbose(3) << "For comparison: ";
|
---|
633 | // cout << "A " << A->Projection(this) << "\t";
|
---|
634 | // cout << "B " << B->Projection(this) << "\t";
|
---|
635 | // cout << "C " << C->Projection(this) << "\t";
|
---|
636 | // cout << endl;
|
---|
637 | return A->Projection(this);
|
---|
638 | };
|
---|
639 |
|
---|
640 | /** Creates a new vector as the one with least square distance to a given set of \a vectors.
|
---|
641 | * \param *vectors set of vectors
|
---|
642 | * \param num number of vectors
|
---|
643 | * \return true if success, false if failed due to linear dependency
|
---|
644 | */
|
---|
645 | bool Vector::LSQdistance(Vector **vectors, int num)
|
---|
646 | {
|
---|
647 | int j;
|
---|
648 |
|
---|
649 | for (j=0;j<num;j++) {
|
---|
650 | cout << Verbose(1) << j << "th atom's vector: ";
|
---|
651 | (vectors[j])->Output((ofstream *)&cout);
|
---|
652 | cout << endl;
|
---|
653 | }
|
---|
654 |
|
---|
655 | int np = 3;
|
---|
656 | struct LSQ_params par;
|
---|
657 |
|
---|
658 | const gsl_multimin_fminimizer_type *T =
|
---|
659 | gsl_multimin_fminimizer_nmsimplex;
|
---|
660 | gsl_multimin_fminimizer *s = NULL;
|
---|
661 | gsl_vector *ss, *y;
|
---|
662 | gsl_multimin_function minex_func;
|
---|
663 |
|
---|
664 | size_t iter = 0, i;
|
---|
665 | int status;
|
---|
666 | double size;
|
---|
667 |
|
---|
668 | /* Initial vertex size vector */
|
---|
669 | ss = gsl_vector_alloc (np);
|
---|
670 | y = gsl_vector_alloc (np);
|
---|
671 |
|
---|
672 | /* Set all step sizes to 1 */
|
---|
673 | gsl_vector_set_all (ss, 1.0);
|
---|
674 |
|
---|
675 | /* Starting point */
|
---|
676 | par.vectors = vectors;
|
---|
677 | par.num = num;
|
---|
678 |
|
---|
679 | for (i=NDIM;i--;)
|
---|
680 | gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
|
---|
681 |
|
---|
682 | /* Initialize method and iterate */
|
---|
683 | minex_func.f = &LSQ;
|
---|
684 | minex_func.n = np;
|
---|
685 | minex_func.params = (void *)∥
|
---|
686 |
|
---|
687 | s = gsl_multimin_fminimizer_alloc (T, np);
|
---|
688 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
|
---|
689 |
|
---|
690 | do
|
---|
691 | {
|
---|
692 | iter++;
|
---|
693 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
694 |
|
---|
695 | if (status)
|
---|
696 | break;
|
---|
697 |
|
---|
698 | size = gsl_multimin_fminimizer_size (s);
|
---|
699 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
700 |
|
---|
701 | if (status == GSL_SUCCESS)
|
---|
702 | {
|
---|
703 | printf ("converged to minimum at\n");
|
---|
704 | }
|
---|
705 |
|
---|
706 | printf ("%5d ", (int)iter);
|
---|
707 | for (i = 0; i < (size_t)np; i++)
|
---|
708 | {
|
---|
709 | printf ("%10.3e ", gsl_vector_get (s->x, i));
|
---|
710 | }
|
---|
711 | printf ("f() = %7.3f size = %.3f\n", s->fval, size);
|
---|
712 | }
|
---|
713 | while (status == GSL_CONTINUE && iter < 100);
|
---|
714 |
|
---|
715 | for (i=(size_t)np;i--;)
|
---|
716 | this->x[i] = gsl_vector_get(s->x, i);
|
---|
717 | gsl_vector_free(y);
|
---|
718 | gsl_vector_free(ss);
|
---|
719 | gsl_multimin_fminimizer_free (s);
|
---|
720 |
|
---|
721 | return true;
|
---|
722 | };
|
---|
723 |
|
---|
724 | /** Adds vector \a *y componentwise.
|
---|
725 | * \param *y vector
|
---|
726 | */
|
---|
727 | void Vector::AddVector(const Vector *y)
|
---|
728 | {
|
---|
729 | for (int i=NDIM;i--;)
|
---|
730 | this->x[i] += y->x[i];
|
---|
731 | }
|
---|
732 |
|
---|
733 | /** Adds vector \a *y componentwise.
|
---|
734 | * \param *y vector
|
---|
735 | */
|
---|
736 | void Vector::SubtractVector(const Vector *y)
|
---|
737 | {
|
---|
738 | for (int i=NDIM;i--;)
|
---|
739 | this->x[i] -= y->x[i];
|
---|
740 | }
|
---|
741 |
|
---|
742 | /** Copy vector \a *y componentwise.
|
---|
743 | * \param *y vector
|
---|
744 | */
|
---|
745 | void Vector::CopyVector(const Vector *y)
|
---|
746 | {
|
---|
747 | for (int i=NDIM;i--;)
|
---|
748 | this->x[i] = y->x[i];
|
---|
749 | }
|
---|
750 |
|
---|
751 |
|
---|
752 | /** Asks for position, checks for boundary.
|
---|
753 | * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
|
---|
754 | * \param check whether bounds shall be checked (true) or not (false)
|
---|
755 | */
|
---|
756 | void Vector::AskPosition(double *cell_size, bool check)
|
---|
757 | {
|
---|
758 | char coords[3] = {'x','y','z'};
|
---|
759 | int j = -1;
|
---|
760 | for (int i=0;i<3;i++) {
|
---|
761 | j += i+1;
|
---|
762 | do {
|
---|
763 | cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
|
---|
764 | cin >> x[i];
|
---|
765 | } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
|
---|
766 | }
|
---|
767 | };
|
---|
768 |
|
---|
769 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
|
---|
770 | * This is linear system of equations to be solved, however of the three given (skp of this vector\
|
---|
771 | * with either of the three hast to be zero) only two are linear independent. The third equation
|
---|
772 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
|
---|
773 | * where very often it has to be checked whether a certain value is zero or not and thus forked into
|
---|
774 | * another case.
|
---|
775 | * \param *x1 first vector
|
---|
776 | * \param *x2 second vector
|
---|
777 | * \param *y third vector
|
---|
778 | * \param alpha first angle
|
---|
779 | * \param beta second angle
|
---|
780 | * \param c norm of final vector
|
---|
781 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
|
---|
782 | * \bug this is not yet working properly
|
---|
783 | */
|
---|
784 | bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c)
|
---|
785 | {
|
---|
786 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
|
---|
787 | double ang; // angle on testing
|
---|
788 | double sign[3];
|
---|
789 | int i,j,k;
|
---|
790 | A = cos(alpha) * x1->Norm() * c;
|
---|
791 | B1 = cos(beta + M_PI/2.) * y->Norm() * c;
|
---|
792 | B2 = cos(beta) * x2->Norm() * c;
|
---|
793 | C = c * c;
|
---|
794 | cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
|
---|
795 | int flag = 0;
|
---|
796 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
|
---|
797 | if (fabs(x1->x[1]) > MYEPSILON) {
|
---|
798 | flag = 1;
|
---|
799 | } else if (fabs(x1->x[2]) > MYEPSILON) {
|
---|
800 | flag = 2;
|
---|
801 | } else {
|
---|
802 | return false;
|
---|
803 | }
|
---|
804 | }
|
---|
805 | switch (flag) {
|
---|
806 | default:
|
---|
807 | case 0:
|
---|
808 | break;
|
---|
809 | case 2:
|
---|
810 | flip(&x1->x[0],&x1->x[1]);
|
---|
811 | flip(&x2->x[0],&x2->x[1]);
|
---|
812 | flip(&y->x[0],&y->x[1]);
|
---|
813 | //flip(&x[0],&x[1]);
|
---|
814 | flip(&x1->x[1],&x1->x[2]);
|
---|
815 | flip(&x2->x[1],&x2->x[2]);
|
---|
816 | flip(&y->x[1],&y->x[2]);
|
---|
817 | //flip(&x[1],&x[2]);
|
---|
818 | case 1:
|
---|
819 | flip(&x1->x[0],&x1->x[1]);
|
---|
820 | flip(&x2->x[0],&x2->x[1]);
|
---|
821 | flip(&y->x[0],&y->x[1]);
|
---|
822 | //flip(&x[0],&x[1]);
|
---|
823 | flip(&x1->x[1],&x1->x[2]);
|
---|
824 | flip(&x2->x[1],&x2->x[2]);
|
---|
825 | flip(&y->x[1],&y->x[2]);
|
---|
826 | //flip(&x[1],&x[2]);
|
---|
827 | break;
|
---|
828 | }
|
---|
829 | // now comes the case system
|
---|
830 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
|
---|
831 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
|
---|
832 | D3 = y->x[0]/x1->x[0]*A-B1;
|
---|
833 | cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
|
---|
834 | if (fabs(D1) < MYEPSILON) {
|
---|
835 | cout << Verbose(2) << "D1 == 0!\n";
|
---|
836 | if (fabs(D2) > MYEPSILON) {
|
---|
837 | cout << Verbose(3) << "D2 != 0!\n";
|
---|
838 | x[2] = -D3/D2;
|
---|
839 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
|
---|
840 | E2 = -x1->x[1]/x1->x[0];
|
---|
841 | cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
842 | F1 = E1*E1 + 1.;
|
---|
843 | F2 = -E1*E2;
|
---|
844 | F3 = E1*E1 + D3*D3/(D2*D2) - C;
|
---|
845 | cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
846 | if (fabs(F1) < MYEPSILON) {
|
---|
847 | cout << Verbose(4) << "F1 == 0!\n";
|
---|
848 | cout << Verbose(4) << "Gleichungssystem linear\n";
|
---|
849 | x[1] = F3/(2.*F2);
|
---|
850 | } else {
|
---|
851 | p = F2/F1;
|
---|
852 | q = p*p - F3/F1;
|
---|
853 | cout << Verbose(4) << "p " << p << "\tq " << q << endl;
|
---|
854 | if (q < 0) {
|
---|
855 | cout << Verbose(4) << "q < 0" << endl;
|
---|
856 | return false;
|
---|
857 | }
|
---|
858 | x[1] = p + sqrt(q);
|
---|
859 | }
|
---|
860 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
861 | } else {
|
---|
862 | cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
|
---|
863 | return false;
|
---|
864 | }
|
---|
865 | } else {
|
---|
866 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
|
---|
867 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
|
---|
868 | cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
---|
869 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
|
---|
870 | F2 = -(E1*E2 + D2*D3/(D1*D1));
|
---|
871 | F3 = E1*E1 + D3*D3/(D1*D1) - C;
|
---|
872 | cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
---|
873 | if (fabs(F1) < MYEPSILON) {
|
---|
874 | cout << Verbose(3) << "F1 == 0!\n";
|
---|
875 | cout << Verbose(3) << "Gleichungssystem linear\n";
|
---|
876 | x[2] = F3/(2.*F2);
|
---|
877 | } else {
|
---|
878 | p = F2/F1;
|
---|
879 | q = p*p - F3/F1;
|
---|
880 | cout << Verbose(3) << "p " << p << "\tq " << q << endl;
|
---|
881 | if (q < 0) {
|
---|
882 | cout << Verbose(3) << "q < 0" << endl;
|
---|
883 | return false;
|
---|
884 | }
|
---|
885 | x[2] = p + sqrt(q);
|
---|
886 | }
|
---|
887 | x[1] = (-D2 * x[2] - D3)/D1;
|
---|
888 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
---|
889 | }
|
---|
890 | switch (flag) { // back-flipping
|
---|
891 | default:
|
---|
892 | case 0:
|
---|
893 | break;
|
---|
894 | case 2:
|
---|
895 | flip(&x1->x[0],&x1->x[1]);
|
---|
896 | flip(&x2->x[0],&x2->x[1]);
|
---|
897 | flip(&y->x[0],&y->x[1]);
|
---|
898 | flip(&x[0],&x[1]);
|
---|
899 | flip(&x1->x[1],&x1->x[2]);
|
---|
900 | flip(&x2->x[1],&x2->x[2]);
|
---|
901 | flip(&y->x[1],&y->x[2]);
|
---|
902 | flip(&x[1],&x[2]);
|
---|
903 | case 1:
|
---|
904 | flip(&x1->x[0],&x1->x[1]);
|
---|
905 | flip(&x2->x[0],&x2->x[1]);
|
---|
906 | flip(&y->x[0],&y->x[1]);
|
---|
907 | //flip(&x[0],&x[1]);
|
---|
908 | flip(&x1->x[1],&x1->x[2]);
|
---|
909 | flip(&x2->x[1],&x2->x[2]);
|
---|
910 | flip(&y->x[1],&y->x[2]);
|
---|
911 | flip(&x[1],&x[2]);
|
---|
912 | break;
|
---|
913 | }
|
---|
914 | // one z component is only determined by its radius (without sign)
|
---|
915 | // thus check eight possible sign flips and determine by checking angle with second vector
|
---|
916 | for (i=0;i<8;i++) {
|
---|
917 | // set sign vector accordingly
|
---|
918 | for (j=2;j>=0;j--) {
|
---|
919 | k = (i & pot(2,j)) << j;
|
---|
920 | cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
|
---|
921 | sign[j] = (k == 0) ? 1. : -1.;
|
---|
922 | }
|
---|
923 | cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
|
---|
924 | // apply sign matrix
|
---|
925 | for (j=NDIM;j--;)
|
---|
926 | x[j] *= sign[j];
|
---|
927 | // calculate angle and check
|
---|
928 | ang = x2->Angle (this);
|
---|
929 | cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
|
---|
930 | if (fabs(ang - cos(beta)) < MYEPSILON) {
|
---|
931 | break;
|
---|
932 | }
|
---|
933 | // unapply sign matrix (is its own inverse)
|
---|
934 | for (j=NDIM;j--;)
|
---|
935 | x[j] *= sign[j];
|
---|
936 | }
|
---|
937 | return true;
|
---|
938 | };
|
---|