source: src/vector.cpp@ 421a1f

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 421a1f was 421a1f, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Added a method that allows simple construction of new normalized Vectors from old ones

  • Property mode set to 100644
File size: 12.6 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "Helpers/MemDebug.hpp"
8
9#include "vector.hpp"
10#include "VectorContent.hpp"
11#include "verbose.hpp"
12#include "World.hpp"
13#include "Helpers/Assert.hpp"
14#include "Helpers/fast_functions.hpp"
15#include "Exceptions/MathException.hpp"
16
17#include <iostream>
18#include <gsl/gsl_blas.h>
19
20
21using namespace std;
22
23
24/************************************ Functions for class vector ************************************/
25
26/** Constructor of class vector.
27 */
28Vector::Vector()
29{
30 content = new VectorContent();
31};
32
33/**
34 * Copy constructor
35 */
36
37Vector::Vector(const Vector& src)
38{
39 content = new VectorContent();
40 gsl_vector_memcpy(content->content, src.content->content);
41}
42
43/** Constructor of class vector.
44 */
45Vector::Vector(const double x1, const double x2, const double x3)
46{
47 content = new VectorContent();
48 gsl_vector_set(content->content,0,x1);
49 gsl_vector_set(content->content,1,x2);
50 gsl_vector_set(content->content,2,x3);
51};
52
53Vector::Vector(VectorContent *_content) :
54 content(_content)
55{}
56
57/**
58 * Assignment operator
59 */
60Vector& Vector::operator=(const Vector& src){
61 // check for self assignment
62 if(&src!=this){
63 gsl_vector_memcpy(content->content, src.content->content);
64 }
65 return *this;
66}
67
68/** Desctructor of class vector.
69 */
70Vector::~Vector() {
71 delete content;
72};
73
74/** Calculates square of distance between this and another vector.
75 * \param *y array to second vector
76 * \return \f$| x - y |^2\f$
77 */
78double Vector::DistanceSquared(const Vector &y) const
79{
80 double res = 0.;
81 for (int i=NDIM;i--;)
82 res += (at(i)-y[i])*(at(i)-y[i]);
83 return (res);
84};
85
86/** Calculates distance between this and another vector.
87 * \param *y array to second vector
88 * \return \f$| x - y |\f$
89 */
90double Vector::distance(const Vector &y) const
91{
92 return (sqrt(DistanceSquared(y)));
93};
94
95Vector Vector::getClosestPoint(const Vector &point) const{
96 // the closest point to a single point space is always the single point itself
97 return *this;
98}
99
100/** Calculates scalar product between this and another vector.
101 * \param *y array to second vector
102 * \return \f$\langle x, y \rangle\f$
103 */
104double Vector::ScalarProduct(const Vector &y) const
105{
106 double res = 0.;
107 gsl_blas_ddot(content->content, y.content->content, &res);
108 return (res);
109};
110
111
112/** Calculates VectorProduct between this and another vector.
113 * -# returns the Product in place of vector from which it was initiated
114 * -# ATTENTION: Only three dim.
115 * \param *y array to vector with which to calculate crossproduct
116 * \return \f$ x \times y \f&
117 */
118void Vector::VectorProduct(const Vector &y)
119{
120 Vector tmp;
121 for(int i=NDIM;i--;)
122 tmp[i] = at((i+1)%NDIM)*y[(i+2)%NDIM] - at((i+2)%NDIM)*y[(i+1)%NDIM];
123 (*this) = tmp;
124};
125
126
127/** projects this vector onto plane defined by \a *y.
128 * \param *y normal vector of plane
129 * \return \f$\langle x, y \rangle\f$
130 */
131void Vector::ProjectOntoPlane(const Vector &y)
132{
133 Vector tmp;
134 tmp = y;
135 tmp.Normalize();
136 tmp.Scale(ScalarProduct(tmp));
137 *this -= tmp;
138};
139
140/** Calculates the minimum distance of this vector to the plane.
141 * \sa Vector::GetDistanceVectorToPlane()
142 * \param *out output stream for debugging
143 * \param *PlaneNormal normal of plane
144 * \param *PlaneOffset offset of plane
145 * \return distance to plane
146 */
147double Vector::DistanceToSpace(const Space &space) const
148{
149 return space.distance(*this);
150};
151
152/** Calculates the projection of a vector onto another \a *y.
153 * \param *y array to second vector
154 */
155void Vector::ProjectIt(const Vector &y)
156{
157 (*this) += (-ScalarProduct(y))*y;
158};
159
160/** Calculates the projection of a vector onto another \a *y.
161 * \param *y array to second vector
162 * \return Vector
163 */
164Vector Vector::Projection(const Vector &y) const
165{
166 Vector helper = y;
167 helper.Scale((ScalarProduct(y)/y.NormSquared()));
168
169 return helper;
170};
171
172/** Calculates norm of this vector.
173 * \return \f$|x|\f$
174 */
175double Vector::Norm() const
176{
177 return (sqrt(NormSquared()));
178};
179
180/** Calculates squared norm of this vector.
181 * \return \f$|x|^2\f$
182 */
183double Vector::NormSquared() const
184{
185 return (ScalarProduct(*this));
186};
187
188/** Normalizes this vector.
189 */
190void Vector::Normalize()
191{
192 double factor = Norm();
193 (*this) *= 1/factor;
194};
195
196Vector Vector::getNormalized() const{
197 Vector res= *this;
198 res.Normalize();
199 return res;
200}
201
202/** Zeros all components of this vector.
203 */
204void Vector::Zero()
205{
206 at(0)=at(1)=at(2)=0;
207};
208
209/** Zeros all components of this vector.
210 */
211void Vector::One(const double one)
212{
213 at(0)=at(1)=at(2)=one;
214};
215
216/** Checks whether vector has all components zero.
217 * @return true - vector is zero, false - vector is not
218 */
219bool Vector::IsZero() const
220{
221 return (fabs(at(0))+fabs(at(1))+fabs(at(2)) < MYEPSILON);
222};
223
224/** Checks whether vector has length of 1.
225 * @return true - vector is normalized, false - vector is not
226 */
227bool Vector::IsOne() const
228{
229 return (fabs(Norm() - 1.) < MYEPSILON);
230};
231
232/** Checks whether vector is normal to \a *normal.
233 * @return true - vector is normalized, false - vector is not
234 */
235bool Vector::IsNormalTo(const Vector &normal) const
236{
237 if (ScalarProduct(normal) < MYEPSILON)
238 return true;
239 else
240 return false;
241};
242
243/** Checks whether vector is normal to \a *normal.
244 * @return true - vector is normalized, false - vector is not
245 */
246bool Vector::IsEqualTo(const Vector &a) const
247{
248 bool status = true;
249 for (int i=0;i<NDIM;i++) {
250 if (fabs(at(i) - a[i]) > MYEPSILON)
251 status = false;
252 }
253 return status;
254};
255
256/** Calculates the angle between this and another vector.
257 * \param *y array to second vector
258 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
259 */
260double Vector::Angle(const Vector &y) const
261{
262 double norm1 = Norm(), norm2 = y.Norm();
263 double angle = -1;
264 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
265 angle = this->ScalarProduct(y)/norm1/norm2;
266 // -1-MYEPSILON occured due to numerical imprecision, catch ...
267 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
268 if (angle < -1)
269 angle = -1;
270 if (angle > 1)
271 angle = 1;
272 return acos(angle);
273};
274
275
276double& Vector::operator[](size_t i){
277 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
278 return *gsl_vector_ptr (content->content, i);
279}
280
281const double& Vector::operator[](size_t i) const{
282 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
283 return *gsl_vector_ptr (content->content, i);
284}
285
286double& Vector::at(size_t i){
287 return (*this)[i];
288}
289
290const double& Vector::at(size_t i) const{
291 return (*this)[i];
292}
293
294VectorContent* Vector::get(){
295 return content;
296}
297
298/** Compares vector \a to vector \a b component-wise.
299 * \param a base vector
300 * \param b vector components to add
301 * \return a == b
302 */
303bool Vector::operator==(const Vector& b) const
304{
305 return IsEqualTo(b);
306};
307
308bool Vector::operator!=(const Vector& b) const
309{
310 return !IsEqualTo(b);
311}
312
313/** Sums vector \a to this lhs component-wise.
314 * \param a base vector
315 * \param b vector components to add
316 * \return lhs + a
317 */
318const Vector& Vector::operator+=(const Vector& b)
319{
320 this->AddVector(b);
321 return *this;
322};
323
324/** Subtracts vector \a from this lhs component-wise.
325 * \param a base vector
326 * \param b vector components to add
327 * \return lhs - a
328 */
329const Vector& Vector::operator-=(const Vector& b)
330{
331 this->SubtractVector(b);
332 return *this;
333};
334
335/** factor each component of \a a times a double \a m.
336 * \param a base vector
337 * \param m factor
338 * \return lhs.x[i] * m
339 */
340const Vector& operator*=(Vector& a, const double m)
341{
342 a.Scale(m);
343 return a;
344};
345
346/** Sums two vectors \a and \b component-wise.
347 * \param a first vector
348 * \param b second vector
349 * \return a + b
350 */
351Vector const Vector::operator+(const Vector& b) const
352{
353 Vector x = *this;
354 x.AddVector(b);
355 return x;
356};
357
358/** Subtracts vector \a from \b component-wise.
359 * \param a first vector
360 * \param b second vector
361 * \return a - b
362 */
363Vector const Vector::operator-(const Vector& b) const
364{
365 Vector x = *this;
366 x.SubtractVector(b);
367 return x;
368};
369
370/** Factors given vector \a a times \a m.
371 * \param a vector
372 * \param m factor
373 * \return m * a
374 */
375Vector const operator*(const Vector& a, const double m)
376{
377 Vector x(a);
378 x.Scale(m);
379 return x;
380};
381
382/** Factors given vector \a a times \a m.
383 * \param m factor
384 * \param a vector
385 * \return m * a
386 */
387Vector const operator*(const double m, const Vector& a )
388{
389 Vector x(a);
390 x.Scale(m);
391 return x;
392};
393
394ostream& operator<<(ostream& ost, const Vector& m)
395{
396 ost << "(";
397 for (int i=0;i<NDIM;i++) {
398 ost << m[i];
399 if (i != 2)
400 ost << ",";
401 }
402 ost << ")";
403 return ost;
404};
405
406
407void Vector::ScaleAll(const double *factor)
408{
409 for (int i=NDIM;i--;)
410 at(i) *= factor[i];
411};
412
413void Vector::ScaleAll(const Vector &factor){
414 gsl_vector_mul(content->content, factor.content->content);
415}
416
417
418void Vector::Scale(const double factor)
419{
420 gsl_vector_scale(content->content,factor);
421};
422
423std::pair<Vector,Vector> Vector::partition(const Vector &rhs) const{
424 double factor = ScalarProduct(rhs)/rhs.NormSquared();
425 Vector res= factor * rhs;
426 return make_pair(res,(*this)-res);
427}
428
429std::pair<pointset,Vector> Vector::partition(const pointset &points) const{
430 Vector helper = *this;
431 pointset res;
432 for(pointset::const_iterator iter=points.begin();iter!=points.end();++iter){
433 pair<Vector,Vector> currPart = helper.partition(*iter);
434 res.push_back(currPart.first);
435 helper = currPart.second;
436 }
437 return make_pair(res,helper);
438}
439
440/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
441 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
442 * \param *x1 first vector
443 * \param *x2 second vector
444 * \param *x3 third vector
445 * \param *factors three-component vector with the factor for each given vector
446 */
447void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
448{
449 (*this) = (factors[0]*x1) +
450 (factors[1]*x2) +
451 (factors[2]*x3);
452};
453
454/** Calculates orthonormal vector to one given vectors.
455 * Just subtracts the projection onto the given vector from this vector.
456 * The removed part of the vector is Vector::Projection()
457 * \param *x1 vector
458 * \return true - success, false - vector is zero
459 */
460bool Vector::MakeNormalTo(const Vector &y1)
461{
462 bool result = false;
463 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
464 Vector x1 = factor * y1;
465 SubtractVector(x1);
466 for (int i=NDIM;i--;)
467 result = result || (fabs(at(i)) > MYEPSILON);
468
469 return result;
470};
471
472/** Creates this vector as one of the possible orthonormal ones to the given one.
473 * Just scan how many components of given *vector are unequal to zero and
474 * try to get the skp of both to be zero accordingly.
475 * \param *vector given vector
476 * \return true - success, false - failure (null vector given)
477 */
478bool Vector::GetOneNormalVector(const Vector &GivenVector)
479{
480 int Components[NDIM]; // contains indices of non-zero components
481 int Last = 0; // count the number of non-zero entries in vector
482 int j; // loop variables
483 double norm;
484
485 for (j=NDIM;j--;)
486 Components[j] = -1;
487
488 // in two component-systems we need to find the one position that is zero
489 int zeroPos = -1;
490 // find two components != 0
491 for (j=0;j<NDIM;j++){
492 if (fabs(GivenVector[j]) > MYEPSILON)
493 Components[Last++] = j;
494 else
495 // this our zero Position
496 zeroPos = j;
497 }
498
499 switch(Last) {
500 case 3: // threecomponent system
501 // the position of the zero is arbitrary in three component systems
502 zeroPos = Components[2];
503 case 2: // two component system
504 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
505 at(zeroPos) = 0.;
506 // in skp both remaining parts shall become zero but with opposite sign and third is zero
507 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
508 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
509 return true;
510 break;
511 case 1: // one component system
512 // set sole non-zero component to 0, and one of the other zero component pendants to 1
513 at((Components[0]+2)%NDIM) = 0.;
514 at((Components[0]+1)%NDIM) = 1.;
515 at(Components[0]) = 0.;
516 return true;
517 break;
518 default:
519 return false;
520 }
521};
522
523/** Adds vector \a *y componentwise.
524 * \param *y vector
525 */
526void Vector::AddVector(const Vector &y)
527{
528 gsl_vector_add(content->content, y.content->content);
529}
530
531/** Adds vector \a *y componentwise.
532 * \param *y vector
533 */
534void Vector::SubtractVector(const Vector &y)
535{
536 gsl_vector_sub(content->content, y.content->content);
537}
538
539
540// some comonly used vectors
541const Vector zeroVec(0,0,0);
542const Vector unitVec[NDIM]={Vector(1,0,0),Vector(0,1,0),Vector(0,0,1)};
Note: See TracBrowser for help on using the repository browser.