source: src/vector.cpp@ 0e01b4

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 0e01b4 was 1829c4, checked in by Tillmann Crueger <crueger@…>, 15 years ago

FIX: Bug that caused memory corruption in Vector::GetOneNormalVector() when a two component system was given

  • Property mode set to 100644
File size: 18.4 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7
8#include "vector.hpp"
9#include "verbose.hpp"
10#include "World.hpp"
11#include "Helpers/Assert.hpp"
12#include "Helpers/fast_functions.hpp"
13
14#include <iostream>
15
16using namespace std;
17
18
19/************************************ Functions for class vector ************************************/
20
21/** Constructor of class vector.
22 */
23Vector::Vector()
24{
25 x[0] = x[1] = x[2] = 0.;
26};
27
28/**
29 * Copy constructor
30 */
31
32Vector::Vector(const Vector& src)
33{
34 x[0] = src[0];
35 x[1] = src[1];
36 x[2] = src[2];
37}
38
39/** Constructor of class vector.
40 */
41Vector::Vector(const double x1, const double x2, const double x3)
42{
43 x[0] = x1;
44 x[1] = x2;
45 x[2] = x3;
46};
47
48/**
49 * Assignment operator
50 */
51Vector& Vector::operator=(const Vector& src){
52 // check for self assignment
53 if(&src!=this){
54 x[0] = src[0];
55 x[1] = src[1];
56 x[2] = src[2];
57 }
58 return *this;
59}
60
61/** Desctructor of class vector.
62 */
63Vector::~Vector() {};
64
65/** Calculates square of distance between this and another vector.
66 * \param *y array to second vector
67 * \return \f$| x - y |^2\f$
68 */
69double Vector::DistanceSquared(const Vector &y) const
70{
71 double res = 0.;
72 for (int i=NDIM;i--;)
73 res += (x[i]-y[i])*(x[i]-y[i]);
74 return (res);
75};
76
77/** Calculates distance between this and another vector.
78 * \param *y array to second vector
79 * \return \f$| x - y |\f$
80 */
81double Vector::Distance(const Vector &y) const
82{
83 return (sqrt(DistanceSquared(y)));
84};
85
86/** Calculates distance between this and another vector in a periodic cell.
87 * \param *y array to second vector
88 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
89 * \return \f$| x - y |\f$
90 */
91double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
92{
93 double res = Distance(y), tmp, matrix[NDIM*NDIM];
94 Vector Shiftedy, TranslationVector;
95 int N[NDIM];
96 matrix[0] = cell_size[0];
97 matrix[1] = cell_size[1];
98 matrix[2] = cell_size[3];
99 matrix[3] = cell_size[1];
100 matrix[4] = cell_size[2];
101 matrix[5] = cell_size[4];
102 matrix[6] = cell_size[3];
103 matrix[7] = cell_size[4];
104 matrix[8] = cell_size[5];
105 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
106 for (N[0]=-1;N[0]<=1;N[0]++)
107 for (N[1]=-1;N[1]<=1;N[1]++)
108 for (N[2]=-1;N[2]<=1;N[2]++) {
109 // create the translation vector
110 TranslationVector.Zero();
111 for (int i=NDIM;i--;)
112 TranslationVector[i] = (double)N[i];
113 TranslationVector.MatrixMultiplication(matrix);
114 // add onto the original vector to compare with
115 Shiftedy = y + TranslationVector;
116 // get distance and compare with minimum so far
117 tmp = Distance(Shiftedy);
118 if (tmp < res) res = tmp;
119 }
120 return (res);
121};
122
123/** Calculates distance between this and another vector in a periodic cell.
124 * \param *y array to second vector
125 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
126 * \return \f$| x - y |^2\f$
127 */
128double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
129{
130 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
131 Vector Shiftedy, TranslationVector;
132 int N[NDIM];
133 matrix[0] = cell_size[0];
134 matrix[1] = cell_size[1];
135 matrix[2] = cell_size[3];
136 matrix[3] = cell_size[1];
137 matrix[4] = cell_size[2];
138 matrix[5] = cell_size[4];
139 matrix[6] = cell_size[3];
140 matrix[7] = cell_size[4];
141 matrix[8] = cell_size[5];
142 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
143 for (N[0]=-1;N[0]<=1;N[0]++)
144 for (N[1]=-1;N[1]<=1;N[1]++)
145 for (N[2]=-1;N[2]<=1;N[2]++) {
146 // create the translation vector
147 TranslationVector.Zero();
148 for (int i=NDIM;i--;)
149 TranslationVector[i] = (double)N[i];
150 TranslationVector.MatrixMultiplication(matrix);
151 // add onto the original vector to compare with
152 Shiftedy = y + TranslationVector;
153 // get distance and compare with minimum so far
154 tmp = DistanceSquared(Shiftedy);
155 if (tmp < res) res = tmp;
156 }
157 return (res);
158};
159
160/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
161 * \param *out ofstream for debugging messages
162 * Tries to translate a vector into each adjacent neighbouring cell.
163 */
164void Vector::KeepPeriodic(const double * const matrix)
165{
166 // int N[NDIM];
167 // bool flag = false;
168 //vector Shifted, TranslationVector;
169 // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
170 // Log() << Verbose(2) << "Vector is: ";
171 // Output(out);
172 // Log() << Verbose(0) << endl;
173 InverseMatrixMultiplication(matrix);
174 for(int i=NDIM;i--;) { // correct periodically
175 if (at(i) < 0) { // get every coefficient into the interval [0,1)
176 at(i) += ceil(at(i));
177 } else {
178 at(i) -= floor(at(i));
179 }
180 }
181 MatrixMultiplication(matrix);
182 // Log() << Verbose(2) << "New corrected vector is: ";
183 // Output(out);
184 // Log() << Verbose(0) << endl;
185 // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
186};
187
188/** Calculates scalar product between this and another vector.
189 * \param *y array to second vector
190 * \return \f$\langle x, y \rangle\f$
191 */
192double Vector::ScalarProduct(const Vector &y) const
193{
194 double res = 0.;
195 for (int i=NDIM;i--;)
196 res += x[i]*y[i];
197 return (res);
198};
199
200
201/** Calculates VectorProduct between this and another vector.
202 * -# returns the Product in place of vector from which it was initiated
203 * -# ATTENTION: Only three dim.
204 * \param *y array to vector with which to calculate crossproduct
205 * \return \f$ x \times y \f&
206 */
207void Vector::VectorProduct(const Vector &y)
208{
209 Vector tmp;
210 tmp[0] = x[1]* (y[2]) - x[2]* (y[1]);
211 tmp[1] = x[2]* (y[0]) - x[0]* (y[2]);
212 tmp[2] = x[0]* (y[1]) - x[1]* (y[0]);
213 (*this) = tmp;
214};
215
216
217/** projects this vector onto plane defined by \a *y.
218 * \param *y normal vector of plane
219 * \return \f$\langle x, y \rangle\f$
220 */
221void Vector::ProjectOntoPlane(const Vector &y)
222{
223 Vector tmp;
224 tmp = y;
225 tmp.Normalize();
226 tmp.Scale(ScalarProduct(tmp));
227 *this -= tmp;
228};
229
230/** Calculates the minimum distance vector of this vector to the plane.
231 * \param *out output stream for debugging
232 * \param *PlaneNormal normal of plane
233 * \param *PlaneOffset offset of plane
234 * \return distance to plane
235 * \return distance vector onto to plane
236 */
237Vector Vector::GetDistanceVectorToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const
238{
239 Vector temp = (*this) - PlaneOffset;
240 temp.MakeNormalTo(PlaneNormal);
241 temp.Scale(-1.);
242 // then add connecting vector from plane to point
243 temp += (*this)-PlaneOffset;
244 double sign = temp.ScalarProduct(PlaneNormal);
245 if (fabs(sign) > MYEPSILON)
246 sign /= fabs(sign);
247 else
248 sign = 0.;
249
250 temp.Normalize();
251 temp.Scale(sign);
252 return temp;
253};
254
255
256/** Calculates the minimum distance of this vector to the plane.
257 * \sa Vector::GetDistanceVectorToPlane()
258 * \param *out output stream for debugging
259 * \param *PlaneNormal normal of plane
260 * \param *PlaneOffset offset of plane
261 * \return distance to plane
262 */
263double Vector::DistanceToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const
264{
265 return GetDistanceVectorToPlane(PlaneNormal,PlaneOffset).Norm();
266};
267
268/** Calculates the projection of a vector onto another \a *y.
269 * \param *y array to second vector
270 */
271void Vector::ProjectIt(const Vector &y)
272{
273 (*this) += (-ScalarProduct(y))*y;
274};
275
276/** Calculates the projection of a vector onto another \a *y.
277 * \param *y array to second vector
278 * \return Vector
279 */
280Vector Vector::Projection(const Vector &y) const
281{
282 Vector helper = y;
283 helper.Scale((ScalarProduct(y)/y.NormSquared()));
284
285 return helper;
286};
287
288/** Calculates norm of this vector.
289 * \return \f$|x|\f$
290 */
291double Vector::Norm() const
292{
293 return (sqrt(NormSquared()));
294};
295
296/** Calculates squared norm of this vector.
297 * \return \f$|x|^2\f$
298 */
299double Vector::NormSquared() const
300{
301 return (ScalarProduct(*this));
302};
303
304/** Normalizes this vector.
305 */
306void Vector::Normalize()
307{
308 double factor = Norm();
309 (*this) *= 1/factor;
310};
311
312/** Zeros all components of this vector.
313 */
314void Vector::Zero()
315{
316 at(0)=at(1)=at(2)=0;
317};
318
319/** Zeros all components of this vector.
320 */
321void Vector::One(const double one)
322{
323 at(0)=at(1)=at(2)=one;
324};
325
326/** Checks whether vector has all components zero.
327 * @return true - vector is zero, false - vector is not
328 */
329bool Vector::IsZero() const
330{
331 return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
332};
333
334/** Checks whether vector has length of 1.
335 * @return true - vector is normalized, false - vector is not
336 */
337bool Vector::IsOne() const
338{
339 return (fabs(Norm() - 1.) < MYEPSILON);
340};
341
342/** Checks whether vector is normal to \a *normal.
343 * @return true - vector is normalized, false - vector is not
344 */
345bool Vector::IsNormalTo(const Vector &normal) const
346{
347 if (ScalarProduct(normal) < MYEPSILON)
348 return true;
349 else
350 return false;
351};
352
353/** Checks whether vector is normal to \a *normal.
354 * @return true - vector is normalized, false - vector is not
355 */
356bool Vector::IsEqualTo(const Vector &a) const
357{
358 bool status = true;
359 for (int i=0;i<NDIM;i++) {
360 if (fabs(x[i] - a[i]) > MYEPSILON)
361 status = false;
362 }
363 return status;
364};
365
366/** Calculates the angle between this and another vector.
367 * \param *y array to second vector
368 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
369 */
370double Vector::Angle(const Vector &y) const
371{
372 double norm1 = Norm(), norm2 = y.Norm();
373 double angle = -1;
374 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
375 angle = this->ScalarProduct(y)/norm1/norm2;
376 // -1-MYEPSILON occured due to numerical imprecision, catch ...
377 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
378 if (angle < -1)
379 angle = -1;
380 if (angle > 1)
381 angle = 1;
382 return acos(angle);
383};
384
385
386double& Vector::operator[](size_t i){
387 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
388 return x[i];
389}
390
391const double& Vector::operator[](size_t i) const{
392 ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
393 return x[i];
394}
395
396double& Vector::at(size_t i){
397 return (*this)[i];
398}
399
400const double& Vector::at(size_t i) const{
401 return (*this)[i];
402}
403
404double* Vector::get(){
405 return x;
406}
407
408/** Compares vector \a to vector \a b component-wise.
409 * \param a base vector
410 * \param b vector components to add
411 * \return a == b
412 */
413bool Vector::operator==(const Vector& b) const
414{
415 return IsEqualTo(b);
416};
417
418/** Sums vector \a to this lhs component-wise.
419 * \param a base vector
420 * \param b vector components to add
421 * \return lhs + a
422 */
423const Vector& Vector::operator+=(const Vector& b)
424{
425 this->AddVector(b);
426 return *this;
427};
428
429/** Subtracts vector \a from this lhs component-wise.
430 * \param a base vector
431 * \param b vector components to add
432 * \return lhs - a
433 */
434const Vector& Vector::operator-=(const Vector& b)
435{
436 this->SubtractVector(b);
437 return *this;
438};
439
440/** factor each component of \a a times a double \a m.
441 * \param a base vector
442 * \param m factor
443 * \return lhs.x[i] * m
444 */
445const Vector& operator*=(Vector& a, const double m)
446{
447 a.Scale(m);
448 return a;
449};
450
451/** Sums two vectors \a and \b component-wise.
452 * \param a first vector
453 * \param b second vector
454 * \return a + b
455 */
456Vector const Vector::operator+(const Vector& b) const
457{
458 Vector x = *this;
459 x.AddVector(b);
460 return x;
461};
462
463/** Subtracts vector \a from \b component-wise.
464 * \param a first vector
465 * \param b second vector
466 * \return a - b
467 */
468Vector const Vector::operator-(const Vector& b) const
469{
470 Vector x = *this;
471 x.SubtractVector(b);
472 return x;
473};
474
475/** Factors given vector \a a times \a m.
476 * \param a vector
477 * \param m factor
478 * \return m * a
479 */
480Vector const operator*(const Vector& a, const double m)
481{
482 Vector x(a);
483 x.Scale(m);
484 return x;
485};
486
487/** Factors given vector \a a times \a m.
488 * \param m factor
489 * \param a vector
490 * \return m * a
491 */
492Vector const operator*(const double m, const Vector& a )
493{
494 Vector x(a);
495 x.Scale(m);
496 return x;
497};
498
499ostream& operator<<(ostream& ost, const Vector& m)
500{
501 ost << "(";
502 for (int i=0;i<NDIM;i++) {
503 ost << m[i];
504 if (i != 2)
505 ost << ",";
506 }
507 ost << ")";
508 return ost;
509};
510
511
512void Vector::ScaleAll(const double *factor)
513{
514 for (int i=NDIM;i--;)
515 x[i] *= factor[i];
516};
517
518
519
520void Vector::Scale(const double factor)
521{
522 for (int i=NDIM;i--;)
523 x[i] *= factor;
524};
525
526/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
527 * \param *M matrix of box
528 * \param *Minv inverse matrix
529 */
530void Vector::WrapPeriodically(const double * const M, const double * const Minv)
531{
532 MatrixMultiplication(Minv);
533 // truncate to [0,1] for each axis
534 for (int i=0;i<NDIM;i++) {
535 x[i] += 0.5; // set to center of box
536 while (x[i] >= 1.)
537 x[i] -= 1.;
538 while (x[i] < 0.)
539 x[i] += 1.;
540 }
541 MatrixMultiplication(M);
542};
543
544/** Do a matrix multiplication.
545 * \param *matrix NDIM_NDIM array
546 */
547void Vector::MatrixMultiplication(const double * const M)
548{
549 // do the matrix multiplication
550 at(0) = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
551 at(1) = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
552 at(2) = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
553};
554
555/** Do a matrix multiplication with the \a *A' inverse.
556 * \param *matrix NDIM_NDIM array
557 */
558bool Vector::InverseMatrixMultiplication(const double * const A)
559{
560 double B[NDIM*NDIM];
561 double detA = RDET3(A);
562 double detAReci;
563
564 // calculate the inverse B
565 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
566 detAReci = 1./detA;
567 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
568 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
569 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
570 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
571 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
572 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
573 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
574 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
575 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
576
577 // do the matrix multiplication
578 at(0) = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
579 at(1) = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
580 at(2) = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
581
582 return true;
583 } else {
584 return false;
585 }
586};
587
588
589/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
590 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
591 * \param *x1 first vector
592 * \param *x2 second vector
593 * \param *x3 third vector
594 * \param *factors three-component vector with the factor for each given vector
595 */
596void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
597{
598 (*this) = (factors[0]*x1) +
599 (factors[1]*x2) +
600 (factors[2]*x3);
601};
602
603/** Mirrors atom against a given plane.
604 * \param n[] normal vector of mirror plane.
605 */
606void Vector::Mirror(const Vector &n)
607{
608 double projection;
609 projection = ScalarProduct(n)/n.NormSquared(); // remove constancy from n (keep as logical one)
610 // withdraw projected vector twice from original one
611 for (int i=NDIM;i--;)
612 at(i) -= 2.*projection*n[i];
613};
614
615/** Calculates orthonormal vector to one given vectors.
616 * Just subtracts the projection onto the given vector from this vector.
617 * The removed part of the vector is Vector::Projection()
618 * \param *x1 vector
619 * \return true - success, false - vector is zero
620 */
621bool Vector::MakeNormalTo(const Vector &y1)
622{
623 bool result = false;
624 double factor = y1.ScalarProduct(*this)/y1.NormSquared();
625 Vector x1;
626 x1 = factor * y1;
627 SubtractVector(x1);
628 for (int i=NDIM;i--;)
629 result = result || (fabs(x[i]) > MYEPSILON);
630
631 return result;
632};
633
634/** Creates this vector as one of the possible orthonormal ones to the given one.
635 * Just scan how many components of given *vector are unequal to zero and
636 * try to get the skp of both to be zero accordingly.
637 * \param *vector given vector
638 * \return true - success, false - failure (null vector given)
639 */
640bool Vector::GetOneNormalVector(const Vector &GivenVector)
641{
642 int Components[NDIM]; // contains indices of non-zero components
643 int Last = 0; // count the number of non-zero entries in vector
644 int j; // loop variables
645 double norm;
646
647 for (j=NDIM;j--;)
648 Components[j] = -1;
649
650 // in two component-systems we need to find the one position that is zero
651 int zeroPos = -1;
652 // find two components != 0
653 for (j=0;j<NDIM;j++){
654 if (fabs(GivenVector[j]) > MYEPSILON)
655 Components[Last++] = j;
656 else
657 // this our zero Position
658 zeroPos = j;
659 }
660
661 switch(Last) {
662 case 3: // threecomponent system
663 // the position of the zero is arbitrary in three component systems
664 zeroPos = Components[2];
665 case 2: // two component system
666 norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
667 at(zeroPos) = 0.;
668 // in skp both remaining parts shall become zero but with opposite sign and third is zero
669 at(Components[1]) = -1./GivenVector[Components[1]] / norm;
670 at(Components[0]) = 1./GivenVector[Components[0]] / norm;
671 return true;
672 break;
673 case 1: // one component system
674 // set sole non-zero component to 0, and one of the other zero component pendants to 1
675 at((Components[0]+2)%NDIM) = 0.;
676 at((Components[0]+1)%NDIM) = 1.;
677 at(Components[0]) = 0.;
678 return true;
679 break;
680 default:
681 return false;
682 }
683};
684
685/** Adds vector \a *y componentwise.
686 * \param *y vector
687 */
688void Vector::AddVector(const Vector &y)
689{
690 for(int i=NDIM;i--;)
691 x[i] += y[i];
692}
693
694/** Adds vector \a *y componentwise.
695 * \param *y vector
696 */
697void Vector::SubtractVector(const Vector &y)
698{
699 for(int i=NDIM;i--;)
700 x[i] -= y[i];
701}
702
703/**
704 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
705 * their offset.
706 *
707 * @param offest for the origin of the parallelepiped
708 * @param three vectors forming the matrix that defines the shape of the parallelpiped
709 */
710bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
711{
712 Vector a = (*this)-offset;
713 a.InverseMatrixMultiplication(parallelepiped);
714 bool isInside = true;
715
716 for (int i=NDIM;i--;)
717 isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
718
719 return isInside;
720}
Note: See TracBrowser for help on using the repository browser.