source: src/vector.cpp@ 8468cb

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 8468cb was fee69b, checked in by Frederik Heber <heber@…>, 15 years ago

Fixed Tesselation::IsInnerPoint()

Signed-off-by: Frederik Heber <heber@tabletINS.(none)>

  • Property mode set to 100644
File size: 38.6 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7
8#include "defs.hpp"
9#include "helpers.hpp"
10#include "info.hpp"
11#include "gslmatrix.hpp"
12#include "leastsquaremin.hpp"
13#include "log.hpp"
14#include "memoryallocator.hpp"
15#include "vector.hpp"
16#include "verbose.hpp"
17
18#include <gsl/gsl_linalg.h>
19#include <gsl/gsl_matrix.h>
20#include <gsl/gsl_permutation.h>
21#include <gsl/gsl_vector.h>
22
23/************************************ Functions for class vector ************************************/
24
25/** Constructor of class vector.
26 */
27Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
28
29/** Constructor of class vector.
30 */
31Vector::Vector(const double x1, const double x2, const double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
32
33/** Desctructor of class vector.
34 */
35Vector::~Vector() {};
36
37/** Calculates square of distance between this and another vector.
38 * \param *y array to second vector
39 * \return \f$| x - y |^2\f$
40 */
41double Vector::DistanceSquared(const Vector * const y) const
42{
43 double res = 0.;
44 for (int i=NDIM;i--;)
45 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
46 return (res);
47};
48
49/** Calculates distance between this and another vector.
50 * \param *y array to second vector
51 * \return \f$| x - y |\f$
52 */
53double Vector::Distance(const Vector * const y) const
54{
55 double res = 0.;
56 for (int i=NDIM;i--;)
57 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
58 return (sqrt(res));
59};
60
61/** Calculates distance between this and another vector in a periodic cell.
62 * \param *y array to second vector
63 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
64 * \return \f$| x - y |\f$
65 */
66double Vector::PeriodicDistance(const Vector * const y, const double * const cell_size) const
67{
68 double res = Distance(y), tmp, matrix[NDIM*NDIM];
69 Vector Shiftedy, TranslationVector;
70 int N[NDIM];
71 matrix[0] = cell_size[0];
72 matrix[1] = cell_size[1];
73 matrix[2] = cell_size[3];
74 matrix[3] = cell_size[1];
75 matrix[4] = cell_size[2];
76 matrix[5] = cell_size[4];
77 matrix[6] = cell_size[3];
78 matrix[7] = cell_size[4];
79 matrix[8] = cell_size[5];
80 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
81 for (N[0]=-1;N[0]<=1;N[0]++)
82 for (N[1]=-1;N[1]<=1;N[1]++)
83 for (N[2]=-1;N[2]<=1;N[2]++) {
84 // create the translation vector
85 TranslationVector.Zero();
86 for (int i=NDIM;i--;)
87 TranslationVector.x[i] = (double)N[i];
88 TranslationVector.MatrixMultiplication(matrix);
89 // add onto the original vector to compare with
90 Shiftedy.CopyVector(y);
91 Shiftedy.AddVector(&TranslationVector);
92 // get distance and compare with minimum so far
93 tmp = Distance(&Shiftedy);
94 if (tmp < res) res = tmp;
95 }
96 return (res);
97};
98
99/** Calculates distance between this and another vector in a periodic cell.
100 * \param *y array to second vector
101 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
102 * \return \f$| x - y |^2\f$
103 */
104double Vector::PeriodicDistanceSquared(const Vector * const y, const double * const cell_size) const
105{
106 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
107 Vector Shiftedy, TranslationVector;
108 int N[NDIM];
109 matrix[0] = cell_size[0];
110 matrix[1] = cell_size[1];
111 matrix[2] = cell_size[3];
112 matrix[3] = cell_size[1];
113 matrix[4] = cell_size[2];
114 matrix[5] = cell_size[4];
115 matrix[6] = cell_size[3];
116 matrix[7] = cell_size[4];
117 matrix[8] = cell_size[5];
118 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
119 for (N[0]=-1;N[0]<=1;N[0]++)
120 for (N[1]=-1;N[1]<=1;N[1]++)
121 for (N[2]=-1;N[2]<=1;N[2]++) {
122 // create the translation vector
123 TranslationVector.Zero();
124 for (int i=NDIM;i--;)
125 TranslationVector.x[i] = (double)N[i];
126 TranslationVector.MatrixMultiplication(matrix);
127 // add onto the original vector to compare with
128 Shiftedy.CopyVector(y);
129 Shiftedy.AddVector(&TranslationVector);
130 // get distance and compare with minimum so far
131 tmp = DistanceSquared(&Shiftedy);
132 if (tmp < res) res = tmp;
133 }
134 return (res);
135};
136
137/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
138 * \param *out ofstream for debugging messages
139 * Tries to translate a vector into each adjacent neighbouring cell.
140 */
141void Vector::KeepPeriodic(const double * const matrix)
142{
143// int N[NDIM];
144// bool flag = false;
145 //vector Shifted, TranslationVector;
146 Vector TestVector;
147// Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
148// Log() << Verbose(2) << "Vector is: ";
149// Output(out);
150// Log() << Verbose(0) << endl;
151 TestVector.CopyVector(this);
152 TestVector.InverseMatrixMultiplication(matrix);
153 for(int i=NDIM;i--;) { // correct periodically
154 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
155 TestVector.x[i] += ceil(TestVector.x[i]);
156 } else {
157 TestVector.x[i] -= floor(TestVector.x[i]);
158 }
159 }
160 TestVector.MatrixMultiplication(matrix);
161 CopyVector(&TestVector);
162// Log() << Verbose(2) << "New corrected vector is: ";
163// Output(out);
164// Log() << Verbose(0) << endl;
165// Log() << Verbose(1) << "End of KeepPeriodic." << endl;
166};
167
168/** Calculates scalar product between this and another vector.
169 * \param *y array to second vector
170 * \return \f$\langle x, y \rangle\f$
171 */
172double Vector::ScalarProduct(const Vector * const y) const
173{
174 double res = 0.;
175 for (int i=NDIM;i--;)
176 res += x[i]*y->x[i];
177 return (res);
178};
179
180
181/** Calculates VectorProduct between this and another vector.
182 * -# returns the Product in place of vector from which it was initiated
183 * -# ATTENTION: Only three dim.
184 * \param *y array to vector with which to calculate crossproduct
185 * \return \f$ x \times y \f&
186 */
187void Vector::VectorProduct(const Vector * const y)
188{
189 Vector tmp;
190 tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
191 tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
192 tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
193 this->CopyVector(&tmp);
194};
195
196
197/** projects this vector onto plane defined by \a *y.
198 * \param *y normal vector of plane
199 * \return \f$\langle x, y \rangle\f$
200 */
201void Vector::ProjectOntoPlane(const Vector * const y)
202{
203 Vector tmp;
204 tmp.CopyVector(y);
205 tmp.Normalize();
206 tmp.Scale(ScalarProduct(&tmp));
207 this->SubtractVector(&tmp);
208};
209
210/** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset.
211 * According to [Bronstein] the vectorial plane equation is:
212 * -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$,
213 * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and
214 * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$,
215 * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where
216 * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize
217 * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization
218 * of the line yields the intersection point on the plane.
219 * \param *out output stream for debugging
220 * \param *PlaneNormal Plane's normal vector
221 * \param *PlaneOffset Plane's offset vector
222 * \param *Origin first vector of line
223 * \param *LineVector second vector of line
224 * \return true - \a this contains intersection point on return, false - line is parallel to plane
225 */
226bool Vector::GetIntersectionWithPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset, const Vector * const Origin, const Vector * const LineVector)
227{
228 Info FunctionInfo(__func__);
229 double factor;
230 Vector Direction, helper;
231
232 // find intersection of a line defined by Offset and Direction with a plane defined by triangle
233 Direction.CopyVector(LineVector);
234 Direction.SubtractVector(Origin);
235 Direction.Normalize();
236 Log() << Verbose(1) << "INFO: Direction is " << Direction << "." << endl;
237 factor = Direction.ScalarProduct(PlaneNormal);
238 if (factor < MYEPSILON) { // Uniqueness: line parallel to plane?
239 eLog() << Verbose(2) << "Line is parallel to plane, no intersection." << endl;
240 return false;
241 }
242 helper.CopyVector(PlaneOffset);
243 helper.SubtractVector(Origin);
244 factor = helper.ScalarProduct(PlaneNormal)/factor;
245 if (factor < MYEPSILON) { // Origin is in-plane
246 Log() << Verbose(1) << "Origin of line is in-plane, simple." << endl;
247 CopyVector(Origin);
248 return true;
249 }
250 //factor = Origin->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal));
251 Direction.Scale(factor);
252 CopyVector(Origin);
253 Log() << Verbose(1) << "INFO: Scaled direction is " << Direction << "." << endl;
254 AddVector(&Direction);
255
256 // test whether resulting vector really is on plane
257 helper.CopyVector(this);
258 helper.SubtractVector(PlaneOffset);
259 if (helper.ScalarProduct(PlaneNormal) < MYEPSILON) {
260 Log() << Verbose(1) << "INFO: Intersection at " << *this << " is good." << endl;
261 return true;
262 } else {
263 eLog() << Verbose(2) << "Intersection point " << *this << " is not on plane." << endl;
264 return false;
265 }
266};
267
268/** Calculates the minimum distance of this vector to the plane.
269 * \param *out output stream for debugging
270 * \param *PlaneNormal normal of plane
271 * \param *PlaneOffset offset of plane
272 * \return distance to plane
273 */
274double Vector::DistanceToPlane(const Vector * const PlaneNormal, const Vector * const PlaneOffset) const
275{
276 Vector temp;
277
278 // first create part that is orthonormal to PlaneNormal with withdraw
279 temp.CopyVector(this);
280 temp.SubtractVector(PlaneOffset);
281 temp.MakeNormalVector(PlaneNormal);
282 temp.Scale(-1.);
283 // then add connecting vector from plane to point
284 temp.AddVector(this);
285 temp.SubtractVector(PlaneOffset);
286 double sign = temp.ScalarProduct(PlaneNormal);
287 if (fabs(sign) > MYEPSILON)
288 sign /= fabs(sign);
289 else
290 sign = 0.;
291
292 return (temp.Norm()*sign);
293};
294
295/** Calculates the intersection of the two lines that are both on the same plane.
296 * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
297 * \param *out output stream for debugging
298 * \param *Line1a first vector of first line
299 * \param *Line1b second vector of first line
300 * \param *Line2a first vector of second line
301 * \param *Line2b second vector of second line
302 * \param *PlaneNormal normal of plane, is supplemental/arbitrary
303 * \return true - \a this will contain the intersection on return, false - lines are parallel
304 */
305bool Vector::GetIntersectionOfTwoLinesOnPlane(const Vector * const Line1a, const Vector * const Line1b, const Vector * const Line2a, const Vector * const Line2b, const Vector *PlaneNormal)
306{
307 Info FunctionInfo(__func__);
308
309 GSLMatrix *M = new GSLMatrix(4,4);
310
311 M->SetAll(1.);
312 for (int i=0;i<3;i++) {
313 M->Set(0, i, Line1a->x[i]);
314 M->Set(1, i, Line1b->x[i]);
315 M->Set(2, i, Line2a->x[i]);
316 M->Set(3, i, Line2b->x[i]);
317 }
318
319 //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
320 //for (int i=0;i<4;i++) {
321 // for (int j=0;j<4;j++)
322 // cout << "\t" << M->Get(i,j);
323 // cout << endl;
324 //}
325 if (fabs(M->Determinant()) > MYEPSILON) {
326 Log() << Verbose(1) << "Determinant of coefficient matrix is NOT zero." << endl;
327 return false;
328 }
329 Log() << Verbose(1) << "INFO: Line1a = " << *Line1a << ", Line1b = " << *Line1b << ", Line2a = " << *Line2a << ", Line2b = " << *Line2b << "." << endl;
330
331
332 // constuct a,b,c
333 Vector a;
334 Vector b;
335 Vector c;
336 Vector d;
337 a.CopyVector(Line1b);
338 a.SubtractVector(Line1a);
339 b.CopyVector(Line2b);
340 b.SubtractVector(Line2a);
341 c.CopyVector(Line2a);
342 c.SubtractVector(Line1a);
343 d.CopyVector(Line2b);
344 d.SubtractVector(Line1b);
345 Log() << Verbose(1) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
346 if ((a.NormSquared() < MYEPSILON) || (b.NormSquared() < MYEPSILON)) {
347 Zero();
348 Log() << Verbose(1) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
349 return false;
350 }
351
352 // check for parallelity
353 Vector parallel;
354 double factor = 0.;
355 double pfactor = 0.;
356 if (fabs(a.ScalarProduct(&b)*a.ScalarProduct(&b)/a.NormSquared()/b.NormSquared() - 1.) < MYEPSILON) {
357 parallel.CopyVector(Line1a);
358 parallel.SubtractVector(Line2a);
359 factor = parallel.ScalarProduct(&a)/a.Norm();
360 if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
361 CopyVector(Line2a);
362 Log() << Verbose(1) << "Lines conincide." << endl;
363 return true;
364 } else {
365 parallel.CopyVector(Line1a);
366 parallel.SubtractVector(Line2b);
367 factor = parallel.ScalarProduct(&a)/a.Norm();
368 if ((factor >= -MYEPSILON) && (factor - 1. < MYEPSILON)) {
369 CopyVector(Line2b);
370 Log() << Verbose(1) << "Lines conincide." << endl;
371 return true;
372 }
373 }
374 Log() << Verbose(1) << "Lines are parallel." << endl;
375 Zero();
376 return false;
377 }
378
379 // obtain s
380 double s;
381 Vector temp1, temp2;
382 temp1.CopyVector(&c);
383 temp1.VectorProduct(&b);
384 temp2.CopyVector(&a);
385 temp2.VectorProduct(&b);
386 Log() << Verbose(1) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
387 if (fabs(temp2.NormSquared()) > MYEPSILON)
388 s = temp1.ScalarProduct(&temp2)/temp2.NormSquared();
389 else
390 s = 0.;
391 Log() << Verbose(1) << "Factor s is " << temp1.ScalarProduct(&temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
392
393 // construct intersection
394 CopyVector(&a);
395 Scale(s);
396 AddVector(Line1a);
397 Log() << Verbose(1) << "Intersection is at " << *this << "." << endl;
398
399 return true;
400};
401
402/** Calculates the projection of a vector onto another \a *y.
403 * \param *y array to second vector
404 */
405void Vector::ProjectIt(const Vector * const y)
406{
407 Vector helper(*y);
408 helper.Scale(-(ScalarProduct(y)));
409 AddVector(&helper);
410};
411
412/** Calculates the projection of a vector onto another \a *y.
413 * \param *y array to second vector
414 * \return Vector
415 */
416Vector Vector::Projection(const Vector * const y) const
417{
418 Vector helper(*y);
419 helper.Scale((ScalarProduct(y)/y->NormSquared()));
420
421 return helper;
422};
423
424/** Calculates norm of this vector.
425 * \return \f$|x|\f$
426 */
427double Vector::Norm() const
428{
429 double res = 0.;
430 for (int i=NDIM;i--;)
431 res += this->x[i]*this->x[i];
432 return (sqrt(res));
433};
434
435/** Calculates squared norm of this vector.
436 * \return \f$|x|^2\f$
437 */
438double Vector::NormSquared() const
439{
440 return (ScalarProduct(this));
441};
442
443/** Normalizes this vector.
444 */
445void Vector::Normalize()
446{
447 double res = 0.;
448 for (int i=NDIM;i--;)
449 res += this->x[i]*this->x[i];
450 if (fabs(res) > MYEPSILON)
451 res = 1./sqrt(res);
452 Scale(&res);
453};
454
455/** Zeros all components of this vector.
456 */
457void Vector::Zero()
458{
459 for (int i=NDIM;i--;)
460 this->x[i] = 0.;
461};
462
463/** Zeros all components of this vector.
464 */
465void Vector::One(const double one)
466{
467 for (int i=NDIM;i--;)
468 this->x[i] = one;
469};
470
471/** Initialises all components of this vector.
472 */
473void Vector::Init(const double x1, const double x2, const double x3)
474{
475 x[0] = x1;
476 x[1] = x2;
477 x[2] = x3;
478};
479
480/** Checks whether vector has all components zero.
481 * @return true - vector is zero, false - vector is not
482 */
483bool Vector::IsZero() const
484{
485 return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
486};
487
488/** Checks whether vector has length of 1.
489 * @return true - vector is normalized, false - vector is not
490 */
491bool Vector::IsOne() const
492{
493 return (fabs(Norm() - 1.) < MYEPSILON);
494};
495
496/** Checks whether vector is normal to \a *normal.
497 * @return true - vector is normalized, false - vector is not
498 */
499bool Vector::IsNormalTo(const Vector * const normal) const
500{
501 if (ScalarProduct(normal) < MYEPSILON)
502 return true;
503 else
504 return false;
505};
506
507/** Checks whether vector is normal to \a *normal.
508 * @return true - vector is normalized, false - vector is not
509 */
510bool Vector::IsEqualTo(const Vector * const a) const
511{
512 bool status = true;
513 for (int i=0;i<NDIM;i++) {
514 if (fabs(x[i] - a->x[i]) > MYEPSILON)
515 status = false;
516 }
517 return status;
518};
519
520/** Calculates the angle between this and another vector.
521 * \param *y array to second vector
522 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
523 */
524double Vector::Angle(const Vector * const y) const
525{
526 double norm1 = Norm(), norm2 = y->Norm();
527 double angle = -1;
528 if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
529 angle = this->ScalarProduct(y)/norm1/norm2;
530 // -1-MYEPSILON occured due to numerical imprecision, catch ...
531 //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
532 if (angle < -1)
533 angle = -1;
534 if (angle > 1)
535 angle = 1;
536 return acos(angle);
537};
538
539/** Rotates the vector relative to the origin around the axis given by \a *axis by an angle of \a alpha.
540 * \param *axis rotation axis
541 * \param alpha rotation angle in radian
542 */
543void Vector::RotateVector(const Vector * const axis, const double alpha)
544{
545 Vector a,y;
546 // normalise this vector with respect to axis
547 a.CopyVector(this);
548 a.ProjectOntoPlane(axis);
549 // construct normal vector
550 bool rotatable = y.MakeNormalVector(axis,&a);
551 // The normal vector cannot be created if there is linar dependency.
552 // Then the vector to rotate is on the axis and any rotation leads to the vector itself.
553 if (!rotatable) {
554 return;
555 }
556 y.Scale(Norm());
557 // scale normal vector by sine and this vector by cosine
558 y.Scale(sin(alpha));
559 a.Scale(cos(alpha));
560 CopyVector(Projection(axis));
561 // add scaled normal vector onto this vector
562 AddVector(&y);
563 // add part in axis direction
564 AddVector(&a);
565};
566
567/** Compares vector \a to vector \a b component-wise.
568 * \param a base vector
569 * \param b vector components to add
570 * \return a == b
571 */
572bool operator==(const Vector& a, const Vector& b)
573{
574 bool status = true;
575 for (int i=0;i<NDIM;i++)
576 status = status && (fabs(a.x[i] - b.x[i]) < MYEPSILON);
577 return status;
578};
579
580/** Sums vector \a to this lhs component-wise.
581 * \param a base vector
582 * \param b vector components to add
583 * \return lhs + a
584 */
585Vector& operator+=(Vector& a, const Vector& b)
586{
587 a.AddVector(&b);
588 return a;
589};
590
591/** Subtracts vector \a from this lhs component-wise.
592 * \param a base vector
593 * \param b vector components to add
594 * \return lhs - a
595 */
596Vector& operator-=(Vector& a, const Vector& b)
597{
598 a.SubtractVector(&b);
599 return a;
600};
601
602/** factor each component of \a a times a double \a m.
603 * \param a base vector
604 * \param m factor
605 * \return lhs.x[i] * m
606 */
607Vector& operator*=(Vector& a, const double m)
608{
609 a.Scale(m);
610 return a;
611};
612
613/** Sums two vectors \a and \b component-wise.
614 * \param a first vector
615 * \param b second vector
616 * \return a + b
617 */
618Vector& operator+(const Vector& a, const Vector& b)
619{
620 Vector *x = new Vector;
621 x->CopyVector(&a);
622 x->AddVector(&b);
623 return *x;
624};
625
626/** Subtracts vector \a from \b component-wise.
627 * \param a first vector
628 * \param b second vector
629 * \return a - b
630 */
631Vector& operator-(const Vector& a, const Vector& b)
632{
633 Vector *x = new Vector;
634 x->CopyVector(&a);
635 x->SubtractVector(&b);
636 return *x;
637};
638
639/** Factors given vector \a a times \a m.
640 * \param a vector
641 * \param m factor
642 * \return m * a
643 */
644Vector& operator*(const Vector& a, const double m)
645{
646 Vector *x = new Vector;
647 x->CopyVector(&a);
648 x->Scale(m);
649 return *x;
650};
651
652/** Factors given vector \a a times \a m.
653 * \param m factor
654 * \param a vector
655 * \return m * a
656 */
657Vector& operator*(const double m, const Vector& a )
658{
659 Vector *x = new Vector;
660 x->CopyVector(&a);
661 x->Scale(m);
662 return *x;
663};
664
665/** Prints a 3dim vector.
666 * prints no end of line.
667 */
668void Vector::Output() const
669{
670 Log() << Verbose(0) << "(";
671 for (int i=0;i<NDIM;i++) {
672 Log() << Verbose(0) << x[i];
673 if (i != 2)
674 Log() << Verbose(0) << ",";
675 }
676 Log() << Verbose(0) << ")";
677};
678
679ostream& operator<<(ostream& ost, const Vector& m)
680{
681 ost << "(";
682 for (int i=0;i<NDIM;i++) {
683 ost << m.x[i];
684 if (i != 2)
685 ost << ",";
686 }
687 ost << ")";
688 return ost;
689};
690
691/** Scales each atom coordinate by an individual \a factor.
692 * \param *factor pointer to scaling factor
693 */
694void Vector::Scale(const double ** const factor)
695{
696 for (int i=NDIM;i--;)
697 x[i] *= (*factor)[i];
698};
699
700void Vector::Scale(const double * const factor)
701{
702 for (int i=NDIM;i--;)
703 x[i] *= *factor;
704};
705
706void Vector::Scale(const double factor)
707{
708 for (int i=NDIM;i--;)
709 x[i] *= factor;
710};
711
712/** Translate atom by given vector.
713 * \param trans[] translation vector.
714 */
715void Vector::Translate(const Vector * const trans)
716{
717 for (int i=NDIM;i--;)
718 x[i] += trans->x[i];
719};
720
721/** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
722 * \param *M matrix of box
723 * \param *Minv inverse matrix
724 */
725void Vector::WrapPeriodically(const double * const M, const double * const Minv)
726{
727 MatrixMultiplication(Minv);
728 // truncate to [0,1] for each axis
729 for (int i=0;i<NDIM;i++) {
730 x[i] += 0.5; // set to center of box
731 while (x[i] >= 1.)
732 x[i] -= 1.;
733 while (x[i] < 0.)
734 x[i] += 1.;
735 }
736 MatrixMultiplication(M);
737};
738
739/** Do a matrix multiplication.
740 * \param *matrix NDIM_NDIM array
741 */
742void Vector::MatrixMultiplication(const double * const M)
743{
744 Vector C;
745 // do the matrix multiplication
746 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
747 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
748 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
749 // transfer the result into this
750 for (int i=NDIM;i--;)
751 x[i] = C.x[i];
752};
753
754/** Do a matrix multiplication with the \a *A' inverse.
755 * \param *matrix NDIM_NDIM array
756 */
757void Vector::InverseMatrixMultiplication(const double * const A)
758{
759 Vector C;
760 double B[NDIM*NDIM];
761 double detA = RDET3(A);
762 double detAReci;
763
764 // calculate the inverse B
765 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
766 detAReci = 1./detA;
767 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
768 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
769 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
770 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
771 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
772 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
773 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
774 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
775 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
776
777 // do the matrix multiplication
778 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
779 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
780 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
781 // transfer the result into this
782 for (int i=NDIM;i--;)
783 x[i] = C.x[i];
784 } else {
785 eLog() << Verbose(1) << "inverse of matrix does not exists: det A = " << detA << "." << endl;
786 }
787};
788
789
790/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
791 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
792 * \param *x1 first vector
793 * \param *x2 second vector
794 * \param *x3 third vector
795 * \param *factors three-component vector with the factor for each given vector
796 */
797void Vector::LinearCombinationOfVectors(const Vector * const x1, const Vector * const x2, const Vector * const x3, const double * const factors)
798{
799 for(int i=NDIM;i--;)
800 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
801};
802
803/** Mirrors atom against a given plane.
804 * \param n[] normal vector of mirror plane.
805 */
806void Vector::Mirror(const Vector * const n)
807{
808 double projection;
809 projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
810 // withdraw projected vector twice from original one
811 Log() << Verbose(1) << "Vector: ";
812 Output();
813 Log() << Verbose(0) << "\t";
814 for (int i=NDIM;i--;)
815 x[i] -= 2.*projection*n->x[i];
816 Log() << Verbose(0) << "Projected vector: ";
817 Output();
818 Log() << Verbose(0) << endl;
819};
820
821/** Calculates normal vector for three given vectors (being three points in space).
822 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
823 * \param *y1 first vector
824 * \param *y2 second vector
825 * \param *y3 third vector
826 * \return true - success, vectors are linear independent, false - failure due to linear dependency
827 */
828bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2, const Vector * const y3)
829{
830 Vector x1, x2;
831
832 x1.CopyVector(y1);
833 x1.SubtractVector(y2);
834 x2.CopyVector(y3);
835 x2.SubtractVector(y2);
836 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
837 eLog() << Verbose(2) << "Given vectors are linear dependent." << endl;
838 return false;
839 }
840// Log() << Verbose(4) << "relative, first plane coordinates:";
841// x1.Output((ofstream *)&cout);
842// Log() << Verbose(0) << endl;
843// Log() << Verbose(4) << "second plane coordinates:";
844// x2.Output((ofstream *)&cout);
845// Log() << Verbose(0) << endl;
846
847 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
848 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
849 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
850 Normalize();
851
852 return true;
853};
854
855
856/** Calculates orthonormal vector to two given vectors.
857 * Makes this vector orthonormal to two given vectors. This is very similar to the other
858 * vector::MakeNormalVector(), only there three points whereas here two difference
859 * vectors are given.
860 * \param *x1 first vector
861 * \param *x2 second vector
862 * \return true - success, vectors are linear independent, false - failure due to linear dependency
863 */
864bool Vector::MakeNormalVector(const Vector * const y1, const Vector * const y2)
865{
866 Vector x1,x2;
867 x1.CopyVector(y1);
868 x2.CopyVector(y2);
869 Zero();
870 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
871 eLog() << Verbose(2) << "Given vectors are linear dependent." << endl;
872 return false;
873 }
874// Log() << Verbose(4) << "relative, first plane coordinates:";
875// x1.Output((ofstream *)&cout);
876// Log() << Verbose(0) << endl;
877// Log() << Verbose(4) << "second plane coordinates:";
878// x2.Output((ofstream *)&cout);
879// Log() << Verbose(0) << endl;
880
881 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
882 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
883 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
884 Normalize();
885
886 return true;
887};
888
889/** Calculates orthonormal vector to one given vectors.
890 * Just subtracts the projection onto the given vector from this vector.
891 * The removed part of the vector is Vector::Projection()
892 * \param *x1 vector
893 * \return true - success, false - vector is zero
894 */
895bool Vector::MakeNormalVector(const Vector * const y1)
896{
897 bool result = false;
898 double factor = y1->ScalarProduct(this)/y1->NormSquared();
899 Vector x1;
900 x1.CopyVector(y1);
901 x1.Scale(factor);
902 SubtractVector(&x1);
903 for (int i=NDIM;i--;)
904 result = result || (fabs(x[i]) > MYEPSILON);
905
906 return result;
907};
908
909/** Creates this vector as one of the possible orthonormal ones to the given one.
910 * Just scan how many components of given *vector are unequal to zero and
911 * try to get the skp of both to be zero accordingly.
912 * \param *vector given vector
913 * \return true - success, false - failure (null vector given)
914 */
915bool Vector::GetOneNormalVector(const Vector * const GivenVector)
916{
917 int Components[NDIM]; // contains indices of non-zero components
918 int Last = 0; // count the number of non-zero entries in vector
919 int j; // loop variables
920 double norm;
921
922 Log() << Verbose(4);
923 GivenVector->Output();
924 Log() << Verbose(0) << endl;
925 for (j=NDIM;j--;)
926 Components[j] = -1;
927 // find two components != 0
928 for (j=0;j<NDIM;j++)
929 if (fabs(GivenVector->x[j]) > MYEPSILON)
930 Components[Last++] = j;
931 Log() << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
932
933 switch(Last) {
934 case 3: // threecomponent system
935 case 2: // two component system
936 norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
937 x[Components[2]] = 0.;
938 // in skp both remaining parts shall become zero but with opposite sign and third is zero
939 x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
940 x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
941 return true;
942 break;
943 case 1: // one component system
944 // set sole non-zero component to 0, and one of the other zero component pendants to 1
945 x[(Components[0]+2)%NDIM] = 0.;
946 x[(Components[0]+1)%NDIM] = 1.;
947 x[Components[0]] = 0.;
948 return true;
949 break;
950 default:
951 return false;
952 }
953};
954
955/** Determines parameter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
956 * \param *A first plane vector
957 * \param *B second plane vector
958 * \param *C third plane vector
959 * \return scaling parameter for this vector
960 */
961double Vector::CutsPlaneAt(const Vector * const A, const Vector * const B, const Vector * const C) const
962{
963// Log() << Verbose(3) << "For comparison: ";
964// Log() << Verbose(0) << "A " << A->Projection(this) << "\t";
965// Log() << Verbose(0) << "B " << B->Projection(this) << "\t";
966// Log() << Verbose(0) << "C " << C->Projection(this) << "\t";
967// Log() << Verbose(0) << endl;
968 return A->ScalarProduct(this);
969};
970
971/** Creates a new vector as the one with least square distance to a given set of \a vectors.
972 * \param *vectors set of vectors
973 * \param num number of vectors
974 * \return true if success, false if failed due to linear dependency
975 */
976bool Vector::LSQdistance(const Vector **vectors, int num)
977{
978 int j;
979
980 for (j=0;j<num;j++) {
981 Log() << Verbose(1) << j << "th atom's vector: ";
982 (vectors[j])->Output();
983 Log() << Verbose(0) << endl;
984 }
985
986 int np = 3;
987 struct LSQ_params par;
988
989 const gsl_multimin_fminimizer_type *T =
990 gsl_multimin_fminimizer_nmsimplex;
991 gsl_multimin_fminimizer *s = NULL;
992 gsl_vector *ss, *y;
993 gsl_multimin_function minex_func;
994
995 size_t iter = 0, i;
996 int status;
997 double size;
998
999 /* Initial vertex size vector */
1000 ss = gsl_vector_alloc (np);
1001 y = gsl_vector_alloc (np);
1002
1003 /* Set all step sizes to 1 */
1004 gsl_vector_set_all (ss, 1.0);
1005
1006 /* Starting point */
1007 par.vectors = vectors;
1008 par.num = num;
1009
1010 for (i=NDIM;i--;)
1011 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
1012
1013 /* Initialize method and iterate */
1014 minex_func.f = &LSQ;
1015 minex_func.n = np;
1016 minex_func.params = (void *)&par;
1017
1018 s = gsl_multimin_fminimizer_alloc (T, np);
1019 gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
1020
1021 do
1022 {
1023 iter++;
1024 status = gsl_multimin_fminimizer_iterate(s);
1025
1026 if (status)
1027 break;
1028
1029 size = gsl_multimin_fminimizer_size (s);
1030 status = gsl_multimin_test_size (size, 1e-2);
1031
1032 if (status == GSL_SUCCESS)
1033 {
1034 printf ("converged to minimum at\n");
1035 }
1036
1037 printf ("%5d ", (int)iter);
1038 for (i = 0; i < (size_t)np; i++)
1039 {
1040 printf ("%10.3e ", gsl_vector_get (s->x, i));
1041 }
1042 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1043 }
1044 while (status == GSL_CONTINUE && iter < 100);
1045
1046 for (i=(size_t)np;i--;)
1047 this->x[i] = gsl_vector_get(s->x, i);
1048 gsl_vector_free(y);
1049 gsl_vector_free(ss);
1050 gsl_multimin_fminimizer_free (s);
1051
1052 return true;
1053};
1054
1055/** Adds vector \a *y componentwise.
1056 * \param *y vector
1057 */
1058void Vector::AddVector(const Vector * const y)
1059{
1060 for (int i=NDIM;i--;)
1061 this->x[i] += y->x[i];
1062}
1063
1064/** Adds vector \a *y componentwise.
1065 * \param *y vector
1066 */
1067void Vector::SubtractVector(const Vector * const y)
1068{
1069 for (int i=NDIM;i--;)
1070 this->x[i] -= y->x[i];
1071}
1072
1073/** Copy vector \a *y componentwise.
1074 * \param *y vector
1075 */
1076void Vector::CopyVector(const Vector * const y)
1077{
1078 for (int i=NDIM;i--;)
1079 this->x[i] = y->x[i];
1080}
1081
1082/** Copy vector \a y componentwise.
1083 * \param y vector
1084 */
1085void Vector::CopyVector(const Vector &y)
1086{
1087 for (int i=NDIM;i--;)
1088 this->x[i] = y.x[i];
1089}
1090
1091
1092/** Asks for position, checks for boundary.
1093 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
1094 * \param check whether bounds shall be checked (true) or not (false)
1095 */
1096void Vector::AskPosition(const double * const cell_size, const bool check)
1097{
1098 char coords[3] = {'x','y','z'};
1099 int j = -1;
1100 for (int i=0;i<3;i++) {
1101 j += i+1;
1102 do {
1103 Log() << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
1104 cin >> x[i];
1105 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
1106 }
1107};
1108
1109/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
1110 * This is linear system of equations to be solved, however of the three given (skp of this vector\
1111 * with either of the three hast to be zero) only two are linear independent. The third equation
1112 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
1113 * where very often it has to be checked whether a certain value is zero or not and thus forked into
1114 * another case.
1115 * \param *x1 first vector
1116 * \param *x2 second vector
1117 * \param *y third vector
1118 * \param alpha first angle
1119 * \param beta second angle
1120 * \param c norm of final vector
1121 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
1122 * \bug this is not yet working properly
1123 */
1124bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
1125{
1126 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
1127 double ang; // angle on testing
1128 double sign[3];
1129 int i,j,k;
1130 A = cos(alpha) * x1->Norm() * c;
1131 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
1132 B2 = cos(beta) * x2->Norm() * c;
1133 C = c * c;
1134 Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
1135 int flag = 0;
1136 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
1137 if (fabs(x1->x[1]) > MYEPSILON) {
1138 flag = 1;
1139 } else if (fabs(x1->x[2]) > MYEPSILON) {
1140 flag = 2;
1141 } else {
1142 return false;
1143 }
1144 }
1145 switch (flag) {
1146 default:
1147 case 0:
1148 break;
1149 case 2:
1150 flip(x1->x[0],x1->x[1]);
1151 flip(x2->x[0],x2->x[1]);
1152 flip(y->x[0],y->x[1]);
1153 //flip(x[0],x[1]);
1154 flip(x1->x[1],x1->x[2]);
1155 flip(x2->x[1],x2->x[2]);
1156 flip(y->x[1],y->x[2]);
1157 //flip(x[1],x[2]);
1158 case 1:
1159 flip(x1->x[0],x1->x[1]);
1160 flip(x2->x[0],x2->x[1]);
1161 flip(y->x[0],y->x[1]);
1162 //flip(x[0],x[1]);
1163 flip(x1->x[1],x1->x[2]);
1164 flip(x2->x[1],x2->x[2]);
1165 flip(y->x[1],y->x[2]);
1166 //flip(x[1],x[2]);
1167 break;
1168 }
1169 // now comes the case system
1170 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
1171 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
1172 D3 = y->x[0]/x1->x[0]*A-B1;
1173 Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
1174 if (fabs(D1) < MYEPSILON) {
1175 Log() << Verbose(2) << "D1 == 0!\n";
1176 if (fabs(D2) > MYEPSILON) {
1177 Log() << Verbose(3) << "D2 != 0!\n";
1178 x[2] = -D3/D2;
1179 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
1180 E2 = -x1->x[1]/x1->x[0];
1181 Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
1182 F1 = E1*E1 + 1.;
1183 F2 = -E1*E2;
1184 F3 = E1*E1 + D3*D3/(D2*D2) - C;
1185 Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
1186 if (fabs(F1) < MYEPSILON) {
1187 Log() << Verbose(4) << "F1 == 0!\n";
1188 Log() << Verbose(4) << "Gleichungssystem linear\n";
1189 x[1] = F3/(2.*F2);
1190 } else {
1191 p = F2/F1;
1192 q = p*p - F3/F1;
1193 Log() << Verbose(4) << "p " << p << "\tq " << q << endl;
1194 if (q < 0) {
1195 Log() << Verbose(4) << "q < 0" << endl;
1196 return false;
1197 }
1198 x[1] = p + sqrt(q);
1199 }
1200 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1201 } else {
1202 Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n";
1203 return false;
1204 }
1205 } else {
1206 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
1207 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
1208 Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
1209 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
1210 F2 = -(E1*E2 + D2*D3/(D1*D1));
1211 F3 = E1*E1 + D3*D3/(D1*D1) - C;
1212 Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
1213 if (fabs(F1) < MYEPSILON) {
1214 Log() << Verbose(3) << "F1 == 0!\n";
1215 Log() << Verbose(3) << "Gleichungssystem linear\n";
1216 x[2] = F3/(2.*F2);
1217 } else {
1218 p = F2/F1;
1219 q = p*p - F3/F1;
1220 Log() << Verbose(3) << "p " << p << "\tq " << q << endl;
1221 if (q < 0) {
1222 Log() << Verbose(3) << "q < 0" << endl;
1223 return false;
1224 }
1225 x[2] = p + sqrt(q);
1226 }
1227 x[1] = (-D2 * x[2] - D3)/D1;
1228 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
1229 }
1230 switch (flag) { // back-flipping
1231 default:
1232 case 0:
1233 break;
1234 case 2:
1235 flip(x1->x[0],x1->x[1]);
1236 flip(x2->x[0],x2->x[1]);
1237 flip(y->x[0],y->x[1]);
1238 flip(x[0],x[1]);
1239 flip(x1->x[1],x1->x[2]);
1240 flip(x2->x[1],x2->x[2]);
1241 flip(y->x[1],y->x[2]);
1242 flip(x[1],x[2]);
1243 case 1:
1244 flip(x1->x[0],x1->x[1]);
1245 flip(x2->x[0],x2->x[1]);
1246 flip(y->x[0],y->x[1]);
1247 //flip(x[0],x[1]);
1248 flip(x1->x[1],x1->x[2]);
1249 flip(x2->x[1],x2->x[2]);
1250 flip(y->x[1],y->x[2]);
1251 flip(x[1],x[2]);
1252 break;
1253 }
1254 // one z component is only determined by its radius (without sign)
1255 // thus check eight possible sign flips and determine by checking angle with second vector
1256 for (i=0;i<8;i++) {
1257 // set sign vector accordingly
1258 for (j=2;j>=0;j--) {
1259 k = (i & pot(2,j)) << j;
1260 Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
1261 sign[j] = (k == 0) ? 1. : -1.;
1262 }
1263 Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
1264 // apply sign matrix
1265 for (j=NDIM;j--;)
1266 x[j] *= sign[j];
1267 // calculate angle and check
1268 ang = x2->Angle (this);
1269 Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
1270 if (fabs(ang - cos(beta)) < MYEPSILON) {
1271 break;
1272 }
1273 // unapply sign matrix (is its own inverse)
1274 for (j=NDIM;j--;)
1275 x[j] *= sign[j];
1276 }
1277 return true;
1278};
1279
1280/**
1281 * Checks whether this vector is within the parallelepiped defined by the given three vectors and
1282 * their offset.
1283 *
1284 * @param offest for the origin of the parallelepiped
1285 * @param three vectors forming the matrix that defines the shape of the parallelpiped
1286 */
1287bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
1288{
1289 Vector a;
1290 a.CopyVector(this);
1291 a.SubtractVector(&offset);
1292 a.InverseMatrixMultiplication(parallelepiped);
1293 bool isInside = true;
1294
1295 for (int i=NDIM;i--;)
1296 isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
1297
1298 return isInside;
1299}
Note: See TracBrowser for help on using the repository browser.