source: src/vector.cpp@ 65de9b

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 65de9b was 2985c8, checked in by Frederik Heber <heber@…>, 16 years ago

BUGFIX: Normalize() would try to normalize a zero vector which ended NaN.

We only normalize if vector is non-zero in magnitude.

  • Property mode set to 100644
File size: 24.5 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "molecules.hpp"
8
9
10/************************************ Functions for class vector ************************************/
11
12/** Constructor of class vector.
13 */
14Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
15
16/** Constructor of class vector.
17 */
18Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
19
20/** Desctructor of class vector.
21 */
22Vector::~Vector() {};
23
24/** Calculates distance between this and another vector.
25 * \param *y array to second vector
26 * \return \f$| x - y |^2\f$
27 */
28double Vector::Distance(const Vector *y) const
29{
30 double res = 0.;
31 for (int i=NDIM;i--;)
32 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
33 return (res);
34};
35
36/** Calculates distance between this and another vector in a periodic cell.
37 * \param *y array to second vector
38 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
39 * \return \f$| x - y |^2\f$
40 */
41double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const
42{
43 double res = Distance(y), tmp, matrix[NDIM*NDIM];
44 Vector Shiftedy, TranslationVector;
45 int N[NDIM];
46 matrix[0] = cell_size[0];
47 matrix[1] = cell_size[1];
48 matrix[2] = cell_size[3];
49 matrix[3] = cell_size[1];
50 matrix[4] = cell_size[2];
51 matrix[5] = cell_size[4];
52 matrix[6] = cell_size[3];
53 matrix[7] = cell_size[4];
54 matrix[8] = cell_size[5];
55 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
56 for (N[0]=-1;N[0]<=1;N[0]++)
57 for (N[1]=-1;N[1]<=1;N[1]++)
58 for (N[2]=-1;N[2]<=1;N[2]++) {
59 // create the translation vector
60 TranslationVector.Zero();
61 for (int i=NDIM;i--;)
62 TranslationVector.x[i] = (double)N[i];
63 TranslationVector.MatrixMultiplication(matrix);
64 // add onto the original vector to compare with
65 Shiftedy.CopyVector(y);
66 Shiftedy.AddVector(&TranslationVector);
67 // get distance and compare with minimum so far
68 tmp = Distance(&Shiftedy);
69 if (tmp < res) res = tmp;
70 }
71 return (res);
72};
73
74/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
75 * \param *out ofstream for debugging messages
76 * Tries to translate a vector into each adjacent neighbouring cell.
77 */
78void Vector::KeepPeriodic(ofstream *out, double *matrix)
79{
80// int N[NDIM];
81// bool flag = false;
82 //vector Shifted, TranslationVector;
83 Vector TestVector;
84// *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
85// *out << Verbose(2) << "Vector is: ";
86// Output(out);
87// *out << endl;
88 TestVector.CopyVector(this);
89 TestVector.InverseMatrixMultiplication(matrix);
90 for(int i=NDIM;i--;) { // correct periodically
91 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
92 TestVector.x[i] += ceil(TestVector.x[i]);
93 } else {
94 TestVector.x[i] -= floor(TestVector.x[i]);
95 }
96 }
97 TestVector.MatrixMultiplication(matrix);
98 CopyVector(&TestVector);
99// *out << Verbose(2) << "New corrected vector is: ";
100// Output(out);
101// *out << endl;
102// *out << Verbose(1) << "End of KeepPeriodic." << endl;
103};
104
105/** Calculates scalar product between this and another vector.
106 * \param *y array to second vector
107 * \return \f$\langle x, y \rangle\f$
108 */
109double Vector::ScalarProduct(const Vector *y) const
110{
111 double res = 0.;
112 for (int i=NDIM;i--;)
113 res += x[i]*y->x[i];
114 return (res);
115};
116
117/** projects this vector onto plane defined by \a *y.
118 * \param *y array to normal vector of plane
119 * \return \f$\langle x, y \rangle\f$
120 */
121void Vector::ProjectOntoPlane(const Vector *y)
122{
123 Vector tmp;
124 tmp.CopyVector(y);
125 tmp.Scale(Projection(y));
126 this->SubtractVector(&tmp);
127};
128
129/** Calculates the projection of a vector onto another \a *y.
130 * \param *y array to second vector
131 * \return \f$\langle x, y \rangle\f$
132 */
133double Vector::Projection(const Vector *y) const
134{
135 return (ScalarProduct(y));
136};
137
138/** Calculates norm of this vector.
139 * \return \f$|x|\f$
140 */
141double Vector::Norm() const
142{
143 double res = 0.;
144 for (int i=NDIM;i--;)
145 res += this->x[i]*this->x[i];
146 return (sqrt(res));
147};
148
149/** Normalizes this vector.
150 */
151void Vector::Normalize()
152{
153 double res = 0.;
154 for (int i=NDIM;i--;)
155 res += this->x[i]*this->x[i];
156 if (fabs(res) > MYEPSILON)
157 res = 1./sqrt(res);
158 Scale(&res);
159};
160
161/** Zeros all components of this vector.
162 */
163void Vector::Zero()
164{
165 for (int i=NDIM;i--;)
166 this->x[i] = 0.;
167};
168
169/** Zeros all components of this vector.
170 */
171void Vector::One(double one)
172{
173 for (int i=NDIM;i--;)
174 this->x[i] = one;
175};
176
177/** Initialises all components of this vector.
178 */
179void Vector::Init(double x1, double x2, double x3)
180{
181 x[0] = x1;
182 x[1] = x2;
183 x[2] = x3;
184};
185
186/** Calculates the angle between this and another vector.
187 * \param *y array to second vector
188 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
189 */
190double Vector::Angle(Vector *y) const
191{
192 return acos(this->ScalarProduct(y)/Norm()/y->Norm());
193};
194
195/** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
196 * \param *axis rotation axis
197 * \param alpha rotation angle in radian
198 */
199void Vector::RotateVector(const Vector *axis, const double alpha)
200{
201 Vector a,y;
202 // normalise this vector with respect to axis
203 a.CopyVector(this);
204 a.Scale(Projection(axis));
205 SubtractVector(&a);
206 // construct normal vector
207 y.MakeNormalVector(axis,this);
208 y.Scale(Norm());
209 // scale normal vector by sine and this vector by cosine
210 y.Scale(sin(alpha));
211 Scale(cos(alpha));
212 // add scaled normal vector onto this vector
213 AddVector(&y);
214 // add part in axis direction
215 AddVector(&a);
216};
217
218/** Sums vector \a to this lhs component-wise.
219 * \param a base vector
220 * \param b vector components to add
221 * \return lhs + a
222 */
223Vector& operator+=(Vector& a, const Vector& b)
224{
225 a.AddVector(&b);
226 return a;
227};
228/** factor each component of \a a times a double \a m.
229 * \param a base vector
230 * \param m factor
231 * \return lhs.x[i] * m
232 */
233Vector& operator*=(Vector& a, const double m)
234{
235 a.Scale(m);
236 return a;
237};
238
239/** Sums two vectors \a and \b component-wise.
240 * \param a first vector
241 * \param b second vector
242 * \return a + b
243 */
244Vector& operator+(const Vector& a, const Vector& b)
245{
246 Vector *x = new Vector;
247 x->CopyVector(&a);
248 x->AddVector(&b);
249 return *x;
250};
251
252/** Factors given vector \a a times \a m.
253 * \param a vector
254 * \param m factor
255 * \return a + b
256 */
257Vector& operator*(const Vector& a, const double m)
258{
259 Vector *x = new Vector;
260 x->CopyVector(&a);
261 x->Scale(m);
262 return *x;
263};
264
265/** Prints a 3dim vector.
266 * prints no end of line.
267 * \param *out output stream
268 */
269bool Vector::Output(ofstream *out) const
270{
271 if (out != NULL) {
272 *out << "(";
273 for (int i=0;i<NDIM;i++) {
274 *out << x[i];
275 if (i != 2)
276 *out << ",";
277 }
278 *out << ")";
279 return true;
280 } else
281 return false;
282};
283
284ofstream& operator<<(ofstream& ost,Vector& m)
285{
286 m.Output(&ost);
287 return ost;
288};
289
290/** Scales each atom coordinate by an individual \a factor.
291 * \param *factor pointer to scaling factor
292 */
293void Vector::Scale(double **factor)
294{
295 for (int i=NDIM;i--;)
296 x[i] *= (*factor)[i];
297};
298
299void Vector::Scale(double *factor)
300{
301 for (int i=NDIM;i--;)
302 x[i] *= *factor;
303};
304
305void Vector::Scale(double factor)
306{
307 for (int i=NDIM;i--;)
308 x[i] *= factor;
309};
310
311/** Translate atom by given vector.
312 * \param trans[] translation vector.
313 */
314void Vector::Translate(const Vector *trans)
315{
316 for (int i=NDIM;i--;)
317 x[i] += trans->x[i];
318};
319
320/** Do a matrix multiplication.
321 * \param *matrix NDIM_NDIM array
322 */
323void Vector::MatrixMultiplication(double *M)
324{
325 Vector C;
326 // do the matrix multiplication
327 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
328 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
329 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
330 // transfer the result into this
331 for (int i=NDIM;i--;)
332 x[i] = C.x[i];
333};
334
335/** Do a matrix multiplication with \a *matrix' inverse.
336 * \param *matrix NDIM_NDIM array
337 */
338void Vector::InverseMatrixMultiplication(double *A)
339{
340 Vector C;
341 double B[NDIM*NDIM];
342 double detA = RDET3(A);
343 double detAReci;
344
345 // calculate the inverse B
346 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
347 detAReci = 1./detA;
348 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
349 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
350 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
351 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
352 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
353 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
354 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
355 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
356 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
357
358 // do the matrix multiplication
359 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
360 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
361 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
362 // transfer the result into this
363 for (int i=NDIM;i--;)
364 x[i] = C.x[i];
365 } else {
366 cerr << "ERROR: inverse of matrix does not exists!" << endl;
367 }
368};
369
370
371/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
372 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
373 * \param *x1 first vector
374 * \param *x2 second vector
375 * \param *x3 third vector
376 * \param *factors three-component vector with the factor for each given vector
377 */
378void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors)
379{
380 for(int i=NDIM;i--;)
381 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
382};
383
384/** Mirrors atom against a given plane.
385 * \param n[] normal vector of mirror plane.
386 */
387void Vector::Mirror(const Vector *n)
388{
389 double projection;
390 projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
391 // withdraw projected vector twice from original one
392 cout << Verbose(1) << "Vector: ";
393 Output((ofstream *)&cout);
394 cout << "\t";
395 for (int i=NDIM;i--;)
396 x[i] -= 2.*projection*n->x[i];
397 cout << "Projected vector: ";
398 Output((ofstream *)&cout);
399 cout << endl;
400};
401
402/** Calculates normal vector for three given vectors (being three points in space).
403 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
404 * \param *y1 first vector
405 * \param *y2 second vector
406 * \param *y3 third vector
407 * \return true - success, vectors are linear independent, false - failure due to linear dependency
408 */
409bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3)
410{
411 Vector x1, x2;
412
413 x1.CopyVector(y1);
414 x1.SubtractVector(y2);
415 x2.CopyVector(y3);
416 x2.SubtractVector(y2);
417 if ((x1.Norm()==0) || (x2.Norm()==0)) {
418 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
419 return false;
420 }
421// cout << Verbose(4) << "relative, first plane coordinates:";
422// x1.Output((ofstream *)&cout);
423// cout << endl;
424// cout << Verbose(4) << "second plane coordinates:";
425// x2.Output((ofstream *)&cout);
426// cout << endl;
427
428 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
429 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
430 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
431 Normalize();
432
433 return true;
434};
435
436
437/** Calculates orthonormal vector to two given vectors.
438 * Makes this vector orthonormal to two given vectors. This is very similar to the other
439 * vector::MakeNormalVector(), only there three points whereas here two difference
440 * vectors are given.
441 * \param *x1 first vector
442 * \param *x2 second vector
443 * \return true - success, vectors are linear independent, false - failure due to linear dependency
444 */
445bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2)
446{
447 Vector x1,x2;
448 x1.CopyVector(y1);
449 x2.CopyVector(y2);
450 Zero();
451 if ((x1.Norm()==0) || (x2.Norm()==0)) {
452 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
453 return false;
454 }
455// cout << Verbose(4) << "relative, first plane coordinates:";
456// x1.Output((ofstream *)&cout);
457// cout << endl;
458// cout << Verbose(4) << "second plane coordinates:";
459// x2.Output((ofstream *)&cout);
460// cout << endl;
461
462 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
463 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
464 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
465 Normalize();
466
467 return true;
468};
469
470/** Calculates orthonormal vector to one given vectors.
471 * Just subtracts the projection onto the given vector from this vector.
472 * \param *x1 vector
473 * \return true - success, false - vector is zero
474 */
475bool Vector::MakeNormalVector(const Vector *y1)
476{
477 bool result = false;
478 Vector x1;
479 x1.CopyVector(y1);
480 x1.Scale(x1.Projection(this));
481 SubtractVector(&x1);
482 for (int i=NDIM;i--;)
483 result = result || (fabs(x[i]) > MYEPSILON);
484
485 return result;
486};
487
488/** Creates this vector as one of the possible orthonormal ones to the given one.
489 * Just scan how many components of given *vector are unequal to zero and
490 * try to get the skp of both to be zero accordingly.
491 * \param *vector given vector
492 * \return true - success, false - failure (null vector given)
493 */
494bool Vector::GetOneNormalVector(const Vector *GivenVector)
495{
496 int Components[NDIM]; // contains indices of non-zero components
497 int Last = 0; // count the number of non-zero entries in vector
498 int j; // loop variables
499 double norm;
500
501 cout << Verbose(4);
502 GivenVector->Output((ofstream *)&cout);
503 cout << endl;
504 for (j=NDIM;j--;)
505 Components[j] = -1;
506 // find two components != 0
507 for (j=0;j<NDIM;j++)
508 if (fabs(GivenVector->x[j]) > MYEPSILON)
509 Components[Last++] = j;
510 cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
511
512 switch(Last) {
513 case 3: // threecomponent system
514 case 2: // two component system
515 norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
516 x[Components[2]] = 0.;
517 // in skp both remaining parts shall become zero but with opposite sign and third is zero
518 x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
519 x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
520 return true;
521 break;
522 case 1: // one component system
523 // set sole non-zero component to 0, and one of the other zero component pendants to 1
524 x[(Components[0]+2)%NDIM] = 0.;
525 x[(Components[0]+1)%NDIM] = 1.;
526 x[Components[0]] = 0.;
527 return true;
528 break;
529 default:
530 return false;
531 }
532};
533
534/** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
535 * \param *A first plane vector
536 * \param *B second plane vector
537 * \param *C third plane vector
538 * \return scaling parameter for this vector
539 */
540double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C)
541{
542// cout << Verbose(3) << "For comparison: ";
543// cout << "A " << A->Projection(this) << "\t";
544// cout << "B " << B->Projection(this) << "\t";
545// cout << "C " << C->Projection(this) << "\t";
546// cout << endl;
547 return A->Projection(this);
548};
549
550/** Creates a new vector as the one with least square distance to a given set of \a vectors.
551 * \param *vectors set of vectors
552 * \param num number of vectors
553 * \return true if success, false if failed due to linear dependency
554 */
555bool Vector::LSQdistance(Vector **vectors, int num)
556{
557 int j;
558
559 for (j=0;j<num;j++) {
560 cout << Verbose(1) << j << "th atom's vector: ";
561 (vectors[j])->Output((ofstream *)&cout);
562 cout << endl;
563 }
564
565 int np = 3;
566 struct LSQ_params par;
567
568 const gsl_multimin_fminimizer_type *T =
569 gsl_multimin_fminimizer_nmsimplex;
570 gsl_multimin_fminimizer *s = NULL;
571 gsl_vector *ss, *y;
572 gsl_multimin_function minex_func;
573
574 size_t iter = 0, i;
575 int status;
576 double size;
577
578 /* Initial vertex size vector */
579 ss = gsl_vector_alloc (np);
580 y = gsl_vector_alloc (np);
581
582 /* Set all step sizes to 1 */
583 gsl_vector_set_all (ss, 1.0);
584
585 /* Starting point */
586 par.vectors = vectors;
587 par.num = num;
588
589 for (i=NDIM;i--;)
590 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
591
592 /* Initialize method and iterate */
593 minex_func.f = &LSQ;
594 minex_func.n = np;
595 minex_func.params = (void *)&par;
596
597 s = gsl_multimin_fminimizer_alloc (T, np);
598 gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
599
600 do
601 {
602 iter++;
603 status = gsl_multimin_fminimizer_iterate(s);
604
605 if (status)
606 break;
607
608 size = gsl_multimin_fminimizer_size (s);
609 status = gsl_multimin_test_size (size, 1e-2);
610
611 if (status == GSL_SUCCESS)
612 {
613 printf ("converged to minimum at\n");
614 }
615
616 printf ("%5d ", (int)iter);
617 for (i = 0; i < (size_t)np; i++)
618 {
619 printf ("%10.3e ", gsl_vector_get (s->x, i));
620 }
621 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
622 }
623 while (status == GSL_CONTINUE && iter < 100);
624
625 for (i=(size_t)np;i--;)
626 this->x[i] = gsl_vector_get(s->x, i);
627 gsl_vector_free(y);
628 gsl_vector_free(ss);
629 gsl_multimin_fminimizer_free (s);
630
631 return true;
632};
633
634/** Adds vector \a *y componentwise.
635 * \param *y vector
636 */
637void Vector::AddVector(const Vector *y)
638{
639 for (int i=NDIM;i--;)
640 this->x[i] += y->x[i];
641}
642
643/** Adds vector \a *y componentwise.
644 * \param *y vector
645 */
646void Vector::SubtractVector(const Vector *y)
647{
648 for (int i=NDIM;i--;)
649 this->x[i] -= y->x[i];
650}
651
652/** Copy vector \a *y componentwise.
653 * \param *y vector
654 */
655void Vector::CopyVector(const Vector *y)
656{
657 for (int i=NDIM;i--;)
658 this->x[i] = y->x[i];
659}
660
661
662/** Asks for position, checks for boundary.
663 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
664 * \param check whether bounds shall be checked (true) or not (false)
665 */
666void Vector::AskPosition(double *cell_size, bool check)
667{
668 char coords[3] = {'x','y','z'};
669 int j = -1;
670 for (int i=0;i<3;i++) {
671 j += i+1;
672 do {
673 cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
674 cin >> x[i];
675 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
676 }
677};
678
679/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
680 * This is linear system of equations to be solved, however of the three given (skp of this vector\
681 * with either of the three hast to be zero) only two are linear independent. The third equation
682 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
683 * where very often it has to be checked whether a certain value is zero or not and thus forked into
684 * another case.
685 * \param *x1 first vector
686 * \param *x2 second vector
687 * \param *y third vector
688 * \param alpha first angle
689 * \param beta second angle
690 * \param c norm of final vector
691 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
692 * \bug this is not yet working properly
693 */
694bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c)
695{
696 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
697 double ang; // angle on testing
698 double sign[3];
699 int i,j,k;
700 A = cos(alpha) * x1->Norm() * c;
701 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
702 B2 = cos(beta) * x2->Norm() * c;
703 C = c * c;
704 cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
705 int flag = 0;
706 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
707 if (fabs(x1->x[1]) > MYEPSILON) {
708 flag = 1;
709 } else if (fabs(x1->x[2]) > MYEPSILON) {
710 flag = 2;
711 } else {
712 return false;
713 }
714 }
715 switch (flag) {
716 default:
717 case 0:
718 break;
719 case 2:
720 flip(&x1->x[0],&x1->x[1]);
721 flip(&x2->x[0],&x2->x[1]);
722 flip(&y->x[0],&y->x[1]);
723 //flip(&x[0],&x[1]);
724 flip(&x1->x[1],&x1->x[2]);
725 flip(&x2->x[1],&x2->x[2]);
726 flip(&y->x[1],&y->x[2]);
727 //flip(&x[1],&x[2]);
728 case 1:
729 flip(&x1->x[0],&x1->x[1]);
730 flip(&x2->x[0],&x2->x[1]);
731 flip(&y->x[0],&y->x[1]);
732 //flip(&x[0],&x[1]);
733 flip(&x1->x[1],&x1->x[2]);
734 flip(&x2->x[1],&x2->x[2]);
735 flip(&y->x[1],&y->x[2]);
736 //flip(&x[1],&x[2]);
737 break;
738 }
739 // now comes the case system
740 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
741 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
742 D3 = y->x[0]/x1->x[0]*A-B1;
743 cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
744 if (fabs(D1) < MYEPSILON) {
745 cout << Verbose(2) << "D1 == 0!\n";
746 if (fabs(D2) > MYEPSILON) {
747 cout << Verbose(3) << "D2 != 0!\n";
748 x[2] = -D3/D2;
749 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
750 E2 = -x1->x[1]/x1->x[0];
751 cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
752 F1 = E1*E1 + 1.;
753 F2 = -E1*E2;
754 F3 = E1*E1 + D3*D3/(D2*D2) - C;
755 cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
756 if (fabs(F1) < MYEPSILON) {
757 cout << Verbose(4) << "F1 == 0!\n";
758 cout << Verbose(4) << "Gleichungssystem linear\n";
759 x[1] = F3/(2.*F2);
760 } else {
761 p = F2/F1;
762 q = p*p - F3/F1;
763 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
764 if (q < 0) {
765 cout << Verbose(4) << "q < 0" << endl;
766 return false;
767 }
768 x[1] = p + sqrt(q);
769 }
770 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
771 } else {
772 cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
773 return false;
774 }
775 } else {
776 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
777 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
778 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
779 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
780 F2 = -(E1*E2 + D2*D3/(D1*D1));
781 F3 = E1*E1 + D3*D3/(D1*D1) - C;
782 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
783 if (fabs(F1) < MYEPSILON) {
784 cout << Verbose(3) << "F1 == 0!\n";
785 cout << Verbose(3) << "Gleichungssystem linear\n";
786 x[2] = F3/(2.*F2);
787 } else {
788 p = F2/F1;
789 q = p*p - F3/F1;
790 cout << Verbose(3) << "p " << p << "\tq " << q << endl;
791 if (q < 0) {
792 cout << Verbose(3) << "q < 0" << endl;
793 return false;
794 }
795 x[2] = p + sqrt(q);
796 }
797 x[1] = (-D2 * x[2] - D3)/D1;
798 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
799 }
800 switch (flag) { // back-flipping
801 default:
802 case 0:
803 break;
804 case 2:
805 flip(&x1->x[0],&x1->x[1]);
806 flip(&x2->x[0],&x2->x[1]);
807 flip(&y->x[0],&y->x[1]);
808 flip(&x[0],&x[1]);
809 flip(&x1->x[1],&x1->x[2]);
810 flip(&x2->x[1],&x2->x[2]);
811 flip(&y->x[1],&y->x[2]);
812 flip(&x[1],&x[2]);
813 case 1:
814 flip(&x1->x[0],&x1->x[1]);
815 flip(&x2->x[0],&x2->x[1]);
816 flip(&y->x[0],&y->x[1]);
817 //flip(&x[0],&x[1]);
818 flip(&x1->x[1],&x1->x[2]);
819 flip(&x2->x[1],&x2->x[2]);
820 flip(&y->x[1],&y->x[2]);
821 flip(&x[1],&x[2]);
822 break;
823 }
824 // one z component is only determined by its radius (without sign)
825 // thus check eight possible sign flips and determine by checking angle with second vector
826 for (i=0;i<8;i++) {
827 // set sign vector accordingly
828 for (j=2;j>=0;j--) {
829 k = (i & pot(2,j)) << j;
830 cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
831 sign[j] = (k == 0) ? 1. : -1.;
832 }
833 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
834 // apply sign matrix
835 for (j=NDIM;j--;)
836 x[j] *= sign[j];
837 // calculate angle and check
838 ang = x2->Angle (this);
839 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
840 if (fabs(ang - cos(beta)) < MYEPSILON) {
841 break;
842 }
843 // unapply sign matrix (is its own inverse)
844 for (j=NDIM;j--;)
845 x[j] *= sign[j];
846 }
847 return true;
848};
Note: See TracBrowser for help on using the repository browser.