source: src/vector.cpp@ 09af1b

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 09af1b was 6ac7ee, checked in by Frederik Heber <heber@…>, 16 years ago

Merge branch 'ConcaveHull' of ../espack2 into ConcaveHull

Conflicts:

molecuilder/src/boundary.cpp
molecuilder/src/boundary.hpp
molecuilder/src/builder.cpp
molecuilder/src/linkedcell.cpp
molecuilder/src/linkedcell.hpp
molecuilder/src/vector.cpp
molecuilder/src/vector.hpp
util/src/NanoCreator.c

Basically, this resulted from a lot of conversions two from spaces to one tab, which is my standard indentation. The mess was caused by eclipse auto-indenting. And in espack2:ConcaveHull was the new stuff, so all from ConcaveHull was replaced in case of doubt.
Additionally, vector had ofstream << operator instead ostream << ...

  • Property mode set to 100755
File size: 25.0 KB
Line 
1/** \file vector.cpp
2 *
3 * Function implementations for the class vector.
4 *
5 */
6
7#include "molecules.hpp"
8
9
10/************************************ Functions for class vector ************************************/
11
12/** Constructor of class vector.
13 */
14Vector::Vector() { x[0] = x[1] = x[2] = 0.; };
15
16/** Constructor of class vector.
17 */
18Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; };
19
20/** Desctructor of class vector.
21 */
22Vector::~Vector() {};
23
24/** Calculates square of distance between this and another vector.
25 * \param *y array to second vector
26 * \return \f$| x - y |^2\f$
27 */
28double Vector::DistanceSquared(const Vector *y) const
29{
30 double res = 0.;
31 for (int i=NDIM;i--;)
32 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
33 return (res);
34};
35
36/** Calculates distance between this and another vector.
37 * \param *y array to second vector
38 * \return \f$| x - y |\f$
39 */
40double Vector::Distance(const Vector *y) const
41{
42 double res = 0.;
43 for (int i=NDIM;i--;)
44 res += (x[i]-y->x[i])*(x[i]-y->x[i]);
45 return (sqrt(res));
46};
47
48/** Calculates distance between this and another vector in a periodic cell.
49 * \param *y array to second vector
50 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
51 * \return \f$| x - y |\f$
52 */
53double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const
54{
55 double res = Distance(y), tmp, matrix[NDIM*NDIM];
56 Vector Shiftedy, TranslationVector;
57 int N[NDIM];
58 matrix[0] = cell_size[0];
59 matrix[1] = cell_size[1];
60 matrix[2] = cell_size[3];
61 matrix[3] = cell_size[1];
62 matrix[4] = cell_size[2];
63 matrix[5] = cell_size[4];
64 matrix[6] = cell_size[3];
65 matrix[7] = cell_size[4];
66 matrix[8] = cell_size[5];
67 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
68 for (N[0]=-1;N[0]<=1;N[0]++)
69 for (N[1]=-1;N[1]<=1;N[1]++)
70 for (N[2]=-1;N[2]<=1;N[2]++) {
71 // create the translation vector
72 TranslationVector.Zero();
73 for (int i=NDIM;i--;)
74 TranslationVector.x[i] = (double)N[i];
75 TranslationVector.MatrixMultiplication(matrix);
76 // add onto the original vector to compare with
77 Shiftedy.CopyVector(y);
78 Shiftedy.AddVector(&TranslationVector);
79 // get distance and compare with minimum so far
80 tmp = Distance(&Shiftedy);
81 if (tmp < res) res = tmp;
82 }
83 return (res);
84};
85
86/** Calculates distance between this and another vector in a periodic cell.
87 * \param *y array to second vector
88 * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
89 * \return \f$| x - y |^2\f$
90 */
91double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const
92{
93 double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
94 Vector Shiftedy, TranslationVector;
95 int N[NDIM];
96 matrix[0] = cell_size[0];
97 matrix[1] = cell_size[1];
98 matrix[2] = cell_size[3];
99 matrix[3] = cell_size[1];
100 matrix[4] = cell_size[2];
101 matrix[5] = cell_size[4];
102 matrix[6] = cell_size[3];
103 matrix[7] = cell_size[4];
104 matrix[8] = cell_size[5];
105 // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
106 for (N[0]=-1;N[0]<=1;N[0]++)
107 for (N[1]=-1;N[1]<=1;N[1]++)
108 for (N[2]=-1;N[2]<=1;N[2]++) {
109 // create the translation vector
110 TranslationVector.Zero();
111 for (int i=NDIM;i--;)
112 TranslationVector.x[i] = (double)N[i];
113 TranslationVector.MatrixMultiplication(matrix);
114 // add onto the original vector to compare with
115 Shiftedy.CopyVector(y);
116 Shiftedy.AddVector(&TranslationVector);
117 // get distance and compare with minimum so far
118 tmp = DistanceSquared(&Shiftedy);
119 if (tmp < res) res = tmp;
120 }
121 return (res);
122};
123
124/** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
125 * \param *out ofstream for debugging messages
126 * Tries to translate a vector into each adjacent neighbouring cell.
127 */
128void Vector::KeepPeriodic(ofstream *out, double *matrix)
129{
130// int N[NDIM];
131// bool flag = false;
132 //vector Shifted, TranslationVector;
133 Vector TestVector;
134// *out << Verbose(1) << "Begin of KeepPeriodic." << endl;
135// *out << Verbose(2) << "Vector is: ";
136// Output(out);
137// *out << endl;
138 TestVector.CopyVector(this);
139 TestVector.InverseMatrixMultiplication(matrix);
140 for(int i=NDIM;i--;) { // correct periodically
141 if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
142 TestVector.x[i] += ceil(TestVector.x[i]);
143 } else {
144 TestVector.x[i] -= floor(TestVector.x[i]);
145 }
146 }
147 TestVector.MatrixMultiplication(matrix);
148 CopyVector(&TestVector);
149// *out << Verbose(2) << "New corrected vector is: ";
150// Output(out);
151// *out << endl;
152// *out << Verbose(1) << "End of KeepPeriodic." << endl;
153};
154
155/** Calculates scalar product between this and another vector.
156 * \param *y array to second vector
157 * \return \f$\langle x, y \rangle\f$
158 */
159double Vector::ScalarProduct(const Vector *y) const
160{
161 double res = 0.;
162 for (int i=NDIM;i--;)
163 res += x[i]*y->x[i];
164 return (res);
165};
166
167
168/** Calculates VectorProduct between this and another vector.
169 * -# returns the Product in place of vector from which it was initiated
170 * -# ATTENTION: Only three dim.
171 * \param *y array to vector with which to calculate crossproduct
172 * \return \f$ x \times y \f&
173 */
174void Vector::VectorProduct(const Vector *y)
175{
176 Vector tmp;
177 tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]);
178 tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]);
179 tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]);
180 this->CopyVector(&tmp);
181
182};
183
184
185/** projects this vector onto plane defined by \a *y.
186 * \param *y normal vector of plane
187 * \return \f$\langle x, y \rangle\f$
188 */
189void Vector::ProjectOntoPlane(const Vector *y)
190{
191 Vector tmp;
192 tmp.CopyVector(y);
193 tmp.Normalize();
194 tmp.Scale(ScalarProduct(&tmp));
195 this->SubtractVector(&tmp);
196};
197
198/** Calculates the projection of a vector onto another \a *y.
199 * \param *y array to second vector
200 * \return \f$\langle x, y \rangle\f$
201 */
202double Vector::Projection(const Vector *y) const
203{
204 return (ScalarProduct(y));
205};
206
207/** Calculates norm of this vector.
208 * \return \f$|x|\f$
209 */
210double Vector::Norm() const
211{
212 double res = 0.;
213 for (int i=NDIM;i--;)
214 res += this->x[i]*this->x[i];
215 return (sqrt(res));
216};
217
218/** Normalizes this vector.
219 */
220void Vector::Normalize()
221{
222 double res = 0.;
223 for (int i=NDIM;i--;)
224 res += this->x[i]*this->x[i];
225 if (fabs(res) > MYEPSILON)
226 res = 1./sqrt(res);
227 Scale(&res);
228};
229
230/** Zeros all components of this vector.
231 */
232void Vector::Zero()
233{
234 for (int i=NDIM;i--;)
235 this->x[i] = 0.;
236};
237
238/** Zeros all components of this vector.
239 */
240void Vector::One(double one)
241{
242 for (int i=NDIM;i--;)
243 this->x[i] = one;
244};
245
246/** Initialises all components of this vector.
247 */
248void Vector::Init(double x1, double x2, double x3)
249{
250 x[0] = x1;
251 x[1] = x2;
252 x[2] = x3;
253};
254
255/** Calculates the angle between this and another vector.
256 * \param *y array to second vector
257 * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
258 */
259double Vector::Angle(const Vector *y) const
260{
261 return acos(this->ScalarProduct(y)/Norm()/y->Norm());
262};
263
264/** Rotates the vector around the axis given by \a *axis by an angle of \a alpha.
265 * \param *axis rotation axis
266 * \param alpha rotation angle in radian
267 */
268void Vector::RotateVector(const Vector *axis, const double alpha)
269{
270 Vector a,y;
271 // normalise this vector with respect to axis
272 a.CopyVector(this);
273 a.Scale(Projection(axis));
274 SubtractVector(&a);
275 // construct normal vector
276 y.MakeNormalVector(axis,this);
277 y.Scale(Norm());
278 // scale normal vector by sine and this vector by cosine
279 y.Scale(sin(alpha));
280 Scale(cos(alpha));
281 // add scaled normal vector onto this vector
282 AddVector(&y);
283 // add part in axis direction
284 AddVector(&a);
285};
286
287/** Sums vector \a to this lhs component-wise.
288 * \param a base vector
289 * \param b vector components to add
290 * \return lhs + a
291 */
292Vector& operator+=(Vector& a, const Vector& b)
293{
294 a.AddVector(&b);
295 return a;
296};
297/** factor each component of \a a times a double \a m.
298 * \param a base vector
299 * \param m factor
300 * \return lhs.x[i] * m
301 */
302Vector& operator*=(Vector& a, const double m)
303{
304 a.Scale(m);
305 return a;
306};
307
308/** Sums two vectors \a and \b component-wise.
309 * \param a first vector
310 * \param b second vector
311 * \return a + b
312 */
313Vector& operator+(const Vector& a, const Vector& b)
314{
315 Vector *x = new Vector;
316 x->CopyVector(&a);
317 x->AddVector(&b);
318 return *x;
319};
320
321/** Factors given vector \a a times \a m.
322 * \param a vector
323 * \param m factor
324 * \return a + b
325 */
326Vector& operator*(const Vector& a, const double m)
327{
328 Vector *x = new Vector;
329 x->CopyVector(&a);
330 x->Scale(m);
331 return *x;
332};
333
334/** Prints a 3dim vector.
335 * prints no end of line.
336 * \param *out output stream
337 */
338bool Vector::Output(ofstream *out) const
339{
340 if (out != NULL) {
341 *out << "(";
342 for (int i=0;i<NDIM;i++) {
343 *out << x[i];
344 if (i != 2)
345 *out << ",";
346 }
347 *out << ")";
348 return true;
349 } else
350 return false;
351};
352
353ostream& operator<<(ostream& ost,Vector& m)
354{
355 ost << "(";
356 for (int i=0;i<NDIM;i++) {
357 ost << m.x[i];
358 if (i != 2)
359 ost << ",";
360 }
361 ost << ")";
362 return ost;
363};
364
365/** Scales each atom coordinate by an individual \a factor.
366 * \param *factor pointer to scaling factor
367 */
368void Vector::Scale(double **factor)
369{
370 for (int i=NDIM;i--;)
371 x[i] *= (*factor)[i];
372};
373
374void Vector::Scale(double *factor)
375{
376 for (int i=NDIM;i--;)
377 x[i] *= *factor;
378};
379
380void Vector::Scale(double factor)
381{
382 for (int i=NDIM;i--;)
383 x[i] *= factor;
384};
385
386/** Translate atom by given vector.
387 * \param trans[] translation vector.
388 */
389void Vector::Translate(const Vector *trans)
390{
391 for (int i=NDIM;i--;)
392 x[i] += trans->x[i];
393};
394
395/** Do a matrix multiplication.
396 * \param *matrix NDIM_NDIM array
397 */
398void Vector::MatrixMultiplication(double *M)
399{
400 Vector C;
401 // do the matrix multiplication
402 C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
403 C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
404 C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
405 // transfer the result into this
406 for (int i=NDIM;i--;)
407 x[i] = C.x[i];
408};
409
410/** Do a matrix multiplication with \a *matrix' inverse.
411 * \param *matrix NDIM_NDIM array
412 */
413void Vector::InverseMatrixMultiplication(double *A)
414{
415 Vector C;
416 double B[NDIM*NDIM];
417 double detA = RDET3(A);
418 double detAReci;
419
420 // calculate the inverse B
421 if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
422 detAReci = 1./detA;
423 B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
424 B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
425 B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
426 B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
427 B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
428 B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
429 B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
430 B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
431 B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
432
433 // do the matrix multiplication
434 C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
435 C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
436 C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
437 // transfer the result into this
438 for (int i=NDIM;i--;)
439 x[i] = C.x[i];
440 } else {
441 cerr << "ERROR: inverse of matrix does not exists!" << endl;
442 }
443};
444
445
446/** Creates this vector as the b y *factors' components scaled linear combination of the given three.
447 * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
448 * \param *x1 first vector
449 * \param *x2 second vector
450 * \param *x3 third vector
451 * \param *factors three-component vector with the factor for each given vector
452 */
453void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors)
454{
455 for(int i=NDIM;i--;)
456 x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i];
457};
458
459/** Mirrors atom against a given plane.
460 * \param n[] normal vector of mirror plane.
461 */
462void Vector::Mirror(const Vector *n)
463{
464 double projection;
465 projection = ScalarProduct(n)/n->ScalarProduct(n); // remove constancy from n (keep as logical one)
466 // withdraw projected vector twice from original one
467 cout << Verbose(1) << "Vector: ";
468 Output((ofstream *)&cout);
469 cout << "\t";
470 for (int i=NDIM;i--;)
471 x[i] -= 2.*projection*n->x[i];
472 cout << "Projected vector: ";
473 Output((ofstream *)&cout);
474 cout << endl;
475};
476
477/** Calculates normal vector for three given vectors (being three points in space).
478 * Makes this vector orthonormal to the three given points, making up a place in 3d space.
479 * \param *y1 first vector
480 * \param *y2 second vector
481 * \param *y3 third vector
482 * \return true - success, vectors are linear independent, false - failure due to linear dependency
483 */
484bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3)
485{
486 Vector x1, x2;
487
488 x1.CopyVector(y1);
489 x1.SubtractVector(y2);
490 x2.CopyVector(y3);
491 x2.SubtractVector(y2);
492 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
493 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
494 return false;
495 }
496// cout << Verbose(4) << "relative, first plane coordinates:";
497// x1.Output((ofstream *)&cout);
498// cout << endl;
499// cout << Verbose(4) << "second plane coordinates:";
500// x2.Output((ofstream *)&cout);
501// cout << endl;
502
503 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
504 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
505 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
506 Normalize();
507
508 return true;
509};
510
511
512/** Calculates orthonormal vector to two given vectors.
513 * Makes this vector orthonormal to two given vectors. This is very similar to the other
514 * vector::MakeNormalVector(), only there three points whereas here two difference
515 * vectors are given.
516 * \param *x1 first vector
517 * \param *x2 second vector
518 * \return true - success, vectors are linear independent, false - failure due to linear dependency
519 */
520bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2)
521{
522 Vector x1,x2;
523 x1.CopyVector(y1);
524 x2.CopyVector(y2);
525 Zero();
526 if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) {
527 cout << Verbose(4) << "Given vectors are linear dependent." << endl;
528 return false;
529 }
530// cout << Verbose(4) << "relative, first plane coordinates:";
531// x1.Output((ofstream *)&cout);
532// cout << endl;
533// cout << Verbose(4) << "second plane coordinates:";
534// x2.Output((ofstream *)&cout);
535// cout << endl;
536
537 this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]);
538 this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]);
539 this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]);
540 Normalize();
541
542 return true;
543};
544
545/** Calculates orthonormal vector to one given vectors.
546 * Just subtracts the projection onto the given vector from this vector.
547 * \param *x1 vector
548 * \return true - success, false - vector is zero
549 */
550bool Vector::MakeNormalVector(const Vector *y1)
551{
552 bool result = false;
553 Vector x1;
554 x1.CopyVector(y1);
555 x1.Scale(x1.Projection(this));
556 SubtractVector(&x1);
557 for (int i=NDIM;i--;)
558 result = result || (fabs(x[i]) > MYEPSILON);
559
560 return result;
561};
562
563/** Creates this vector as one of the possible orthonormal ones to the given one.
564 * Just scan how many components of given *vector are unequal to zero and
565 * try to get the skp of both to be zero accordingly.
566 * \param *vector given vector
567 * \return true - success, false - failure (null vector given)
568 */
569bool Vector::GetOneNormalVector(const Vector *GivenVector)
570{
571 int Components[NDIM]; // contains indices of non-zero components
572 int Last = 0; // count the number of non-zero entries in vector
573 int j; // loop variables
574 double norm;
575
576 cout << Verbose(4);
577 GivenVector->Output((ofstream *)&cout);
578 cout << endl;
579 for (j=NDIM;j--;)
580 Components[j] = -1;
581 // find two components != 0
582 for (j=0;j<NDIM;j++)
583 if (fabs(GivenVector->x[j]) > MYEPSILON)
584 Components[Last++] = j;
585 cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl;
586
587 switch(Last) {
588 case 3: // threecomponent system
589 case 2: // two component system
590 norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]]));
591 x[Components[2]] = 0.;
592 // in skp both remaining parts shall become zero but with opposite sign and third is zero
593 x[Components[1]] = -1./GivenVector->x[Components[1]] / norm;
594 x[Components[0]] = 1./GivenVector->x[Components[0]] / norm;
595 return true;
596 break;
597 case 1: // one component system
598 // set sole non-zero component to 0, and one of the other zero component pendants to 1
599 x[(Components[0]+2)%NDIM] = 0.;
600 x[(Components[0]+1)%NDIM] = 1.;
601 x[Components[0]] = 0.;
602 return true;
603 break;
604 default:
605 return false;
606 }
607};
608
609/** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C.
610 * \param *A first plane vector
611 * \param *B second plane vector
612 * \param *C third plane vector
613 * \return scaling parameter for this vector
614 */
615double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C)
616{
617// cout << Verbose(3) << "For comparison: ";
618// cout << "A " << A->Projection(this) << "\t";
619// cout << "B " << B->Projection(this) << "\t";
620// cout << "C " << C->Projection(this) << "\t";
621// cout << endl;
622 return A->Projection(this);
623};
624
625/** Creates a new vector as the one with least square distance to a given set of \a vectors.
626 * \param *vectors set of vectors
627 * \param num number of vectors
628 * \return true if success, false if failed due to linear dependency
629 */
630bool Vector::LSQdistance(Vector **vectors, int num)
631{
632 int j;
633
634 for (j=0;j<num;j++) {
635 cout << Verbose(1) << j << "th atom's vector: ";
636 (vectors[j])->Output((ofstream *)&cout);
637 cout << endl;
638 }
639
640 int np = 3;
641 struct LSQ_params par;
642
643 const gsl_multimin_fminimizer_type *T =
644 gsl_multimin_fminimizer_nmsimplex;
645 gsl_multimin_fminimizer *s = NULL;
646 gsl_vector *ss, *y;
647 gsl_multimin_function minex_func;
648
649 size_t iter = 0, i;
650 int status;
651 double size;
652
653 /* Initial vertex size vector */
654 ss = gsl_vector_alloc (np);
655 y = gsl_vector_alloc (np);
656
657 /* Set all step sizes to 1 */
658 gsl_vector_set_all (ss, 1.0);
659
660 /* Starting point */
661 par.vectors = vectors;
662 par.num = num;
663
664 for (i=NDIM;i--;)
665 gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.);
666
667 /* Initialize method and iterate */
668 minex_func.f = &LSQ;
669 minex_func.n = np;
670 minex_func.params = (void *)&par;
671
672 s = gsl_multimin_fminimizer_alloc (T, np);
673 gsl_multimin_fminimizer_set (s, &minex_func, y, ss);
674
675 do
676 {
677 iter++;
678 status = gsl_multimin_fminimizer_iterate(s);
679
680 if (status)
681 break;
682
683 size = gsl_multimin_fminimizer_size (s);
684 status = gsl_multimin_test_size (size, 1e-2);
685
686 if (status == GSL_SUCCESS)
687 {
688 printf ("converged to minimum at\n");
689 }
690
691 printf ("%5d ", (int)iter);
692 for (i = 0; i < (size_t)np; i++)
693 {
694 printf ("%10.3e ", gsl_vector_get (s->x, i));
695 }
696 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
697 }
698 while (status == GSL_CONTINUE && iter < 100);
699
700 for (i=(size_t)np;i--;)
701 this->x[i] = gsl_vector_get(s->x, i);
702 gsl_vector_free(y);
703 gsl_vector_free(ss);
704 gsl_multimin_fminimizer_free (s);
705
706 return true;
707};
708
709/** Adds vector \a *y componentwise.
710 * \param *y vector
711 */
712void Vector::AddVector(const Vector *y)
713{
714 for (int i=NDIM;i--;)
715 this->x[i] += y->x[i];
716}
717
718/** Adds vector \a *y componentwise.
719 * \param *y vector
720 */
721void Vector::SubtractVector(const Vector *y)
722{
723 for (int i=NDIM;i--;)
724 this->x[i] -= y->x[i];
725}
726
727/** Copy vector \a *y componentwise.
728 * \param *y vector
729 */
730void Vector::CopyVector(const Vector *y)
731{
732 for (int i=NDIM;i--;)
733 this->x[i] = y->x[i];
734}
735
736
737/** Asks for position, checks for boundary.
738 * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size
739 * \param check whether bounds shall be checked (true) or not (false)
740 */
741void Vector::AskPosition(double *cell_size, bool check)
742{
743 char coords[3] = {'x','y','z'};
744 int j = -1;
745 for (int i=0;i<3;i++) {
746 j += i+1;
747 do {
748 cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: ";
749 cin >> x[i];
750 } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check));
751 }
752};
753
754/** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
755 * This is linear system of equations to be solved, however of the three given (skp of this vector\
756 * with either of the three hast to be zero) only two are linear independent. The third equation
757 * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
758 * where very often it has to be checked whether a certain value is zero or not and thus forked into
759 * another case.
760 * \param *x1 first vector
761 * \param *x2 second vector
762 * \param *y third vector
763 * \param alpha first angle
764 * \param beta second angle
765 * \param c norm of final vector
766 * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
767 * \bug this is not yet working properly
768 */
769bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c)
770{
771 double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
772 double ang; // angle on testing
773 double sign[3];
774 int i,j,k;
775 A = cos(alpha) * x1->Norm() * c;
776 B1 = cos(beta + M_PI/2.) * y->Norm() * c;
777 B2 = cos(beta) * x2->Norm() * c;
778 C = c * c;
779 cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
780 int flag = 0;
781 if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
782 if (fabs(x1->x[1]) > MYEPSILON) {
783 flag = 1;
784 } else if (fabs(x1->x[2]) > MYEPSILON) {
785 flag = 2;
786 } else {
787 return false;
788 }
789 }
790 switch (flag) {
791 default:
792 case 0:
793 break;
794 case 2:
795 flip(&x1->x[0],&x1->x[1]);
796 flip(&x2->x[0],&x2->x[1]);
797 flip(&y->x[0],&y->x[1]);
798 //flip(&x[0],&x[1]);
799 flip(&x1->x[1],&x1->x[2]);
800 flip(&x2->x[1],&x2->x[2]);
801 flip(&y->x[1],&y->x[2]);
802 //flip(&x[1],&x[2]);
803 case 1:
804 flip(&x1->x[0],&x1->x[1]);
805 flip(&x2->x[0],&x2->x[1]);
806 flip(&y->x[0],&y->x[1]);
807 //flip(&x[0],&x[1]);
808 flip(&x1->x[1],&x1->x[2]);
809 flip(&x2->x[1],&x2->x[2]);
810 flip(&y->x[1],&y->x[2]);
811 //flip(&x[1],&x[2]);
812 break;
813 }
814 // now comes the case system
815 D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
816 D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
817 D3 = y->x[0]/x1->x[0]*A-B1;
818 cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
819 if (fabs(D1) < MYEPSILON) {
820 cout << Verbose(2) << "D1 == 0!\n";
821 if (fabs(D2) > MYEPSILON) {
822 cout << Verbose(3) << "D2 != 0!\n";
823 x[2] = -D3/D2;
824 E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
825 E2 = -x1->x[1]/x1->x[0];
826 cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
827 F1 = E1*E1 + 1.;
828 F2 = -E1*E2;
829 F3 = E1*E1 + D3*D3/(D2*D2) - C;
830 cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
831 if (fabs(F1) < MYEPSILON) {
832 cout << Verbose(4) << "F1 == 0!\n";
833 cout << Verbose(4) << "Gleichungssystem linear\n";
834 x[1] = F3/(2.*F2);
835 } else {
836 p = F2/F1;
837 q = p*p - F3/F1;
838 cout << Verbose(4) << "p " << p << "\tq " << q << endl;
839 if (q < 0) {
840 cout << Verbose(4) << "q < 0" << endl;
841 return false;
842 }
843 x[1] = p + sqrt(q);
844 }
845 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
846 } else {
847 cout << Verbose(2) << "Gleichungssystem unterbestimmt\n";
848 return false;
849 }
850 } else {
851 E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
852 E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
853 cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
854 F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
855 F2 = -(E1*E2 + D2*D3/(D1*D1));
856 F3 = E1*E1 + D3*D3/(D1*D1) - C;
857 cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
858 if (fabs(F1) < MYEPSILON) {
859 cout << Verbose(3) << "F1 == 0!\n";
860 cout << Verbose(3) << "Gleichungssystem linear\n";
861 x[2] = F3/(2.*F2);
862 } else {
863 p = F2/F1;
864 q = p*p - F3/F1;
865 cout << Verbose(3) << "p " << p << "\tq " << q << endl;
866 if (q < 0) {
867 cout << Verbose(3) << "q < 0" << endl;
868 return false;
869 }
870 x[2] = p + sqrt(q);
871 }
872 x[1] = (-D2 * x[2] - D3)/D1;
873 x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
874 }
875 switch (flag) { // back-flipping
876 default:
877 case 0:
878 break;
879 case 2:
880 flip(&x1->x[0],&x1->x[1]);
881 flip(&x2->x[0],&x2->x[1]);
882 flip(&y->x[0],&y->x[1]);
883 flip(&x[0],&x[1]);
884 flip(&x1->x[1],&x1->x[2]);
885 flip(&x2->x[1],&x2->x[2]);
886 flip(&y->x[1],&y->x[2]);
887 flip(&x[1],&x[2]);
888 case 1:
889 flip(&x1->x[0],&x1->x[1]);
890 flip(&x2->x[0],&x2->x[1]);
891 flip(&y->x[0],&y->x[1]);
892 //flip(&x[0],&x[1]);
893 flip(&x1->x[1],&x1->x[2]);
894 flip(&x2->x[1],&x2->x[2]);
895 flip(&y->x[1],&y->x[2]);
896 flip(&x[1],&x[2]);
897 break;
898 }
899 // one z component is only determined by its radius (without sign)
900 // thus check eight possible sign flips and determine by checking angle with second vector
901 for (i=0;i<8;i++) {
902 // set sign vector accordingly
903 for (j=2;j>=0;j--) {
904 k = (i & pot(2,j)) << j;
905 cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
906 sign[j] = (k == 0) ? 1. : -1.;
907 }
908 cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
909 // apply sign matrix
910 for (j=NDIM;j--;)
911 x[j] *= sign[j];
912 // calculate angle and check
913 ang = x2->Angle (this);
914 cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
915 if (fabs(ang - cos(beta)) < MYEPSILON) {
916 break;
917 }
918 // unapply sign matrix (is its own inverse)
919 for (j=NDIM;j--;)
920 x[j] *= sign[j];
921 }
922 return true;
923};
Note: See TracBrowser for help on using the repository browser.