| [6ac7ee] | 1 | /** \file vector.cpp | 
|---|
|  | 2 | * | 
|---|
|  | 3 | * Function implementations for the class vector. | 
|---|
|  | 4 | * | 
|---|
|  | 5 | */ | 
|---|
|  | 6 |  | 
|---|
| [edb93c] | 7 |  | 
|---|
| [6ac7ee] | 8 | #include "molecules.hpp" | 
|---|
|  | 9 |  | 
|---|
|  | 10 |  | 
|---|
|  | 11 | /************************************ Functions for class vector ************************************/ | 
|---|
|  | 12 |  | 
|---|
|  | 13 | /** Constructor of class vector. | 
|---|
|  | 14 | */ | 
|---|
|  | 15 | Vector::Vector() { x[0] = x[1] = x[2] = 0.; }; | 
|---|
|  | 16 |  | 
|---|
|  | 17 | /** Constructor of class vector. | 
|---|
|  | 18 | */ | 
|---|
|  | 19 | Vector::Vector(double x1, double x2, double x3) { x[0] = x1; x[1] = x2; x[2] = x3; }; | 
|---|
|  | 20 |  | 
|---|
|  | 21 | /** Desctructor of class vector. | 
|---|
|  | 22 | */ | 
|---|
|  | 23 | Vector::~Vector() {}; | 
|---|
|  | 24 |  | 
|---|
|  | 25 | /** Calculates square of distance between this and another vector. | 
|---|
|  | 26 | * \param *y array to second vector | 
|---|
|  | 27 | * \return \f$| x - y |^2\f$ | 
|---|
|  | 28 | */ | 
|---|
|  | 29 | double Vector::DistanceSquared(const Vector *y) const | 
|---|
|  | 30 | { | 
|---|
| [042f82] | 31 | double res = 0.; | 
|---|
|  | 32 | for (int i=NDIM;i--;) | 
|---|
|  | 33 | res += (x[i]-y->x[i])*(x[i]-y->x[i]); | 
|---|
|  | 34 | return (res); | 
|---|
| [6ac7ee] | 35 | }; | 
|---|
|  | 36 |  | 
|---|
|  | 37 | /** Calculates distance between this and another vector. | 
|---|
|  | 38 | * \param *y array to second vector | 
|---|
|  | 39 | * \return \f$| x - y |\f$ | 
|---|
|  | 40 | */ | 
|---|
|  | 41 | double Vector::Distance(const Vector *y) const | 
|---|
|  | 42 | { | 
|---|
| [042f82] | 43 | double res = 0.; | 
|---|
|  | 44 | for (int i=NDIM;i--;) | 
|---|
|  | 45 | res += (x[i]-y->x[i])*(x[i]-y->x[i]); | 
|---|
|  | 46 | return (sqrt(res)); | 
|---|
| [6ac7ee] | 47 | }; | 
|---|
|  | 48 |  | 
|---|
|  | 49 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
|  | 50 | * \param *y array to second vector | 
|---|
|  | 51 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
|  | 52 | * \return \f$| x - y |\f$ | 
|---|
|  | 53 | */ | 
|---|
|  | 54 | double Vector::PeriodicDistance(const Vector *y, const double *cell_size) const | 
|---|
|  | 55 | { | 
|---|
| [042f82] | 56 | double res = Distance(y), tmp, matrix[NDIM*NDIM]; | 
|---|
|  | 57 | Vector Shiftedy, TranslationVector; | 
|---|
|  | 58 | int N[NDIM]; | 
|---|
|  | 59 | matrix[0] = cell_size[0]; | 
|---|
|  | 60 | matrix[1] = cell_size[1]; | 
|---|
|  | 61 | matrix[2] = cell_size[3]; | 
|---|
|  | 62 | matrix[3] = cell_size[1]; | 
|---|
|  | 63 | matrix[4] = cell_size[2]; | 
|---|
|  | 64 | matrix[5] = cell_size[4]; | 
|---|
|  | 65 | matrix[6] = cell_size[3]; | 
|---|
|  | 66 | matrix[7] = cell_size[4]; | 
|---|
|  | 67 | matrix[8] = cell_size[5]; | 
|---|
|  | 68 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
|  | 69 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
|  | 70 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
|  | 71 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
|  | 72 | // create the translation vector | 
|---|
|  | 73 | TranslationVector.Zero(); | 
|---|
|  | 74 | for (int i=NDIM;i--;) | 
|---|
|  | 75 | TranslationVector.x[i] = (double)N[i]; | 
|---|
|  | 76 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
|  | 77 | // add onto the original vector to compare with | 
|---|
|  | 78 | Shiftedy.CopyVector(y); | 
|---|
|  | 79 | Shiftedy.AddVector(&TranslationVector); | 
|---|
|  | 80 | // get distance and compare with minimum so far | 
|---|
|  | 81 | tmp = Distance(&Shiftedy); | 
|---|
|  | 82 | if (tmp < res) res = tmp; | 
|---|
|  | 83 | } | 
|---|
|  | 84 | return (res); | 
|---|
| [6ac7ee] | 85 | }; | 
|---|
|  | 86 |  | 
|---|
|  | 87 | /** Calculates distance between this and another vector in a periodic cell. | 
|---|
|  | 88 | * \param *y array to second vector | 
|---|
|  | 89 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell | 
|---|
|  | 90 | * \return \f$| x - y |^2\f$ | 
|---|
|  | 91 | */ | 
|---|
|  | 92 | double Vector::PeriodicDistanceSquared(const Vector *y, const double *cell_size) const | 
|---|
|  | 93 | { | 
|---|
| [042f82] | 94 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM]; | 
|---|
|  | 95 | Vector Shiftedy, TranslationVector; | 
|---|
|  | 96 | int N[NDIM]; | 
|---|
|  | 97 | matrix[0] = cell_size[0]; | 
|---|
|  | 98 | matrix[1] = cell_size[1]; | 
|---|
|  | 99 | matrix[2] = cell_size[3]; | 
|---|
|  | 100 | matrix[3] = cell_size[1]; | 
|---|
|  | 101 | matrix[4] = cell_size[2]; | 
|---|
|  | 102 | matrix[5] = cell_size[4]; | 
|---|
|  | 103 | matrix[6] = cell_size[3]; | 
|---|
|  | 104 | matrix[7] = cell_size[4]; | 
|---|
|  | 105 | matrix[8] = cell_size[5]; | 
|---|
|  | 106 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells | 
|---|
|  | 107 | for (N[0]=-1;N[0]<=1;N[0]++) | 
|---|
|  | 108 | for (N[1]=-1;N[1]<=1;N[1]++) | 
|---|
|  | 109 | for (N[2]=-1;N[2]<=1;N[2]++) { | 
|---|
|  | 110 | // create the translation vector | 
|---|
|  | 111 | TranslationVector.Zero(); | 
|---|
|  | 112 | for (int i=NDIM;i--;) | 
|---|
|  | 113 | TranslationVector.x[i] = (double)N[i]; | 
|---|
|  | 114 | TranslationVector.MatrixMultiplication(matrix); | 
|---|
|  | 115 | // add onto the original vector to compare with | 
|---|
|  | 116 | Shiftedy.CopyVector(y); | 
|---|
|  | 117 | Shiftedy.AddVector(&TranslationVector); | 
|---|
|  | 118 | // get distance and compare with minimum so far | 
|---|
|  | 119 | tmp = DistanceSquared(&Shiftedy); | 
|---|
|  | 120 | if (tmp < res) res = tmp; | 
|---|
|  | 121 | } | 
|---|
|  | 122 | return (res); | 
|---|
| [6ac7ee] | 123 | }; | 
|---|
|  | 124 |  | 
|---|
|  | 125 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix. | 
|---|
|  | 126 | * \param *out ofstream for debugging messages | 
|---|
|  | 127 | * Tries to translate a vector into each adjacent neighbouring cell. | 
|---|
|  | 128 | */ | 
|---|
|  | 129 | void Vector::KeepPeriodic(ofstream *out, double *matrix) | 
|---|
|  | 130 | { | 
|---|
| [042f82] | 131 | //  int N[NDIM]; | 
|---|
|  | 132 | //  bool flag = false; | 
|---|
|  | 133 | //vector Shifted, TranslationVector; | 
|---|
|  | 134 | Vector TestVector; | 
|---|
|  | 135 | //  *out << Verbose(1) << "Begin of KeepPeriodic." << endl; | 
|---|
|  | 136 | //  *out << Verbose(2) << "Vector is: "; | 
|---|
|  | 137 | //  Output(out); | 
|---|
|  | 138 | //  *out << endl; | 
|---|
|  | 139 | TestVector.CopyVector(this); | 
|---|
|  | 140 | TestVector.InverseMatrixMultiplication(matrix); | 
|---|
|  | 141 | for(int i=NDIM;i--;) { // correct periodically | 
|---|
|  | 142 | if (TestVector.x[i] < 0) {  // get every coefficient into the interval [0,1) | 
|---|
|  | 143 | TestVector.x[i] += ceil(TestVector.x[i]); | 
|---|
|  | 144 | } else { | 
|---|
|  | 145 | TestVector.x[i] -= floor(TestVector.x[i]); | 
|---|
|  | 146 | } | 
|---|
|  | 147 | } | 
|---|
|  | 148 | TestVector.MatrixMultiplication(matrix); | 
|---|
|  | 149 | CopyVector(&TestVector); | 
|---|
|  | 150 | //  *out << Verbose(2) << "New corrected vector is: "; | 
|---|
|  | 151 | //  Output(out); | 
|---|
|  | 152 | //  *out << endl; | 
|---|
|  | 153 | //  *out << Verbose(1) << "End of KeepPeriodic." << endl; | 
|---|
| [6ac7ee] | 154 | }; | 
|---|
|  | 155 |  | 
|---|
|  | 156 | /** Calculates scalar product between this and another vector. | 
|---|
|  | 157 | * \param *y array to second vector | 
|---|
|  | 158 | * \return \f$\langle x, y \rangle\f$ | 
|---|
|  | 159 | */ | 
|---|
|  | 160 | double Vector::ScalarProduct(const Vector *y) const | 
|---|
|  | 161 | { | 
|---|
| [042f82] | 162 | double res = 0.; | 
|---|
|  | 163 | for (int i=NDIM;i--;) | 
|---|
|  | 164 | res += x[i]*y->x[i]; | 
|---|
|  | 165 | return (res); | 
|---|
| [6ac7ee] | 166 | }; | 
|---|
|  | 167 |  | 
|---|
|  | 168 |  | 
|---|
|  | 169 | /** Calculates VectorProduct between this and another vector. | 
|---|
| [042f82] | 170 | *  -# returns the Product in place of vector from which it was initiated | 
|---|
|  | 171 | *  -# ATTENTION: Only three dim. | 
|---|
|  | 172 | *  \param *y array to vector with which to calculate crossproduct | 
|---|
|  | 173 | *  \return \f$ x \times y \f& | 
|---|
| [6ac7ee] | 174 | */ | 
|---|
|  | 175 | void Vector::VectorProduct(const Vector *y) | 
|---|
|  | 176 | { | 
|---|
| [042f82] | 177 | Vector tmp; | 
|---|
|  | 178 | tmp.x[0] = x[1]* (y->x[2]) - x[2]* (y->x[1]); | 
|---|
|  | 179 | tmp.x[1] = x[2]* (y->x[0]) - x[0]* (y->x[2]); | 
|---|
|  | 180 | tmp.x[2] = x[0]* (y->x[1]) - x[1]* (y->x[0]); | 
|---|
|  | 181 | this->CopyVector(&tmp); | 
|---|
| [6ac7ee] | 182 |  | 
|---|
|  | 183 | }; | 
|---|
|  | 184 |  | 
|---|
|  | 185 |  | 
|---|
|  | 186 | /** projects this vector onto plane defined by \a *y. | 
|---|
|  | 187 | * \param *y normal vector of plane | 
|---|
|  | 188 | * \return \f$\langle x, y \rangle\f$ | 
|---|
|  | 189 | */ | 
|---|
|  | 190 | void Vector::ProjectOntoPlane(const Vector *y) | 
|---|
|  | 191 | { | 
|---|
| [042f82] | 192 | Vector tmp; | 
|---|
|  | 193 | tmp.CopyVector(y); | 
|---|
|  | 194 | tmp.Normalize(); | 
|---|
|  | 195 | tmp.Scale(ScalarProduct(&tmp)); | 
|---|
|  | 196 | this->SubtractVector(&tmp); | 
|---|
| [6ac7ee] | 197 | }; | 
|---|
|  | 198 |  | 
|---|
| [2319ed] | 199 | /** Calculates the intersection point between a line defined by \a *LineVector and \a *LineVector2 and a plane defined by \a *Normal and \a *PlaneOffset. | 
|---|
|  | 200 | * According to [Bronstein] the vectorial plane equation is: | 
|---|
|  | 201 | *   -# \f$\stackrel{r}{\rightarrow} \cdot \stackrel{N}{\rightarrow} + D = 0\f$, | 
|---|
|  | 202 | * where \f$\stackrel{r}{\rightarrow}\f$ is the vector to be testet, \f$\stackrel{N}{\rightarrow}\f$ is the plane's normal vector and | 
|---|
|  | 203 | * \f$D = - \stackrel{a}{\rightarrow} \stackrel{N}{\rightarrow}\f$, the offset with respect to origin, if \f$\stackrel{a}{\rightarrow}\f$, | 
|---|
|  | 204 | * is an offset vector onto the plane. The line is parametrized by \f$\stackrel{x}{\rightarrow} + k \stackrel{t}{\rightarrow}\f$, where | 
|---|
|  | 205 | * \f$\stackrel{x}{\rightarrow}\f$ is the offset and \f$\stackrel{t}{\rightarrow}\f$ the directional vector (NOTE: No need to normalize | 
|---|
|  | 206 | * the latter). Inserting the parametrized form into the plane equation and solving for \f$k\f$, which we insert then into the parametrization | 
|---|
|  | 207 | * of the line yields the intersection point on the plane. | 
|---|
|  | 208 | * \param *out output stream for debugging | 
|---|
|  | 209 | * \param *PlaneNormal Plane's normal vector | 
|---|
|  | 210 | * \param *PlaneOffset Plane's offset vector | 
|---|
|  | 211 | * \param *LineVector first vector of line | 
|---|
|  | 212 | * \param *LineVector2 second vector of line | 
|---|
|  | 213 | * \return true -  \a this contains intersection point on return, false - line is parallel to plane | 
|---|
|  | 214 | */ | 
|---|
|  | 215 | bool Vector::GetIntersectionWithPlane(ofstream *out, Vector *PlaneNormal, Vector *PlaneOffset, Vector *LineVector, Vector *LineVector2) | 
|---|
|  | 216 | { | 
|---|
|  | 217 | double factor; | 
|---|
|  | 218 | Vector Direction; | 
|---|
|  | 219 |  | 
|---|
|  | 220 | // find intersection of a line defined by Offset and Direction with a  plane defined by triangle | 
|---|
|  | 221 | Direction.CopyVector(LineVector2); | 
|---|
|  | 222 | Direction.SubtractVector(LineVector); | 
|---|
|  | 223 | if (Direction.ScalarProduct(PlaneNormal) < MYEPSILON) | 
|---|
|  | 224 | return false; | 
|---|
|  | 225 | factor = LineVector->ScalarProduct(PlaneNormal)*(-PlaneOffset->ScalarProduct(PlaneNormal))/(Direction.ScalarProduct(PlaneNormal)); | 
|---|
|  | 226 | Direction.Scale(factor); | 
|---|
|  | 227 | CopyVector(LineVector); | 
|---|
|  | 228 | SubtractVector(&Direction); | 
|---|
|  | 229 |  | 
|---|
|  | 230 | // test whether resulting vector really is on plane | 
|---|
|  | 231 | Direction.CopyVector(this); | 
|---|
|  | 232 | Direction.SubtractVector(PlaneOffset); | 
|---|
|  | 233 | if (Direction.ScalarProduct(PlaneNormal) > MYEPSILON) | 
|---|
|  | 234 | return true; | 
|---|
|  | 235 | else | 
|---|
|  | 236 | return false; | 
|---|
|  | 237 | }; | 
|---|
|  | 238 |  | 
|---|
|  | 239 | /** Calculates the intersection of the two lines that are both on the same plane. | 
|---|
|  | 240 | * Note that we do not check whether they are on the same plane. | 
|---|
|  | 241 | * \param *out output stream for debugging | 
|---|
|  | 242 | * \param *Line1a first vector of first line | 
|---|
|  | 243 | * \param *Line1b second vector of first line | 
|---|
|  | 244 | * \param *Line2a first vector of second line | 
|---|
|  | 245 | * \param *Line2b second vector of second line | 
|---|
|  | 246 | * \return true - \a this will contain the intersection on return, false - lines are parallel | 
|---|
|  | 247 | */ | 
|---|
|  | 248 | bool Vector::GetIntersectionOfTwoLinesOnPlane(ofstream *out, Vector *Line1a, Vector *Line1b, Vector *Line2a, Vector *Line2b) | 
|---|
|  | 249 | { | 
|---|
|  | 250 | double k1,a1,h1,b1,k2,a2,h2,b2; | 
|---|
|  | 251 | // equation for line 1 | 
|---|
|  | 252 | if (fabs(Line1a->x[0] - Line2a->x[0]) < MYEPSILON) { | 
|---|
|  | 253 | k1 = 0; | 
|---|
|  | 254 | h1 = 0; | 
|---|
|  | 255 | } else { | 
|---|
|  | 256 | k1 = (Line1a->x[1] - Line2a->x[1])/(Line1a->x[0] - Line2a->x[0]); | 
|---|
|  | 257 | h1 = (Line1a->x[2] - Line2a->x[2])/(Line1a->x[0] - Line2a->x[0]); | 
|---|
|  | 258 | } | 
|---|
|  | 259 | a1 = 0.5*((Line1a->x[1] + Line2a->x[1]) - k1*(Line1a->x[0] + Line2a->x[0])); | 
|---|
|  | 260 | b1 = 0.5*((Line1a->x[2] + Line2a->x[2]) - h1*(Line1a->x[0] + Line2a->x[0])); | 
|---|
|  | 261 |  | 
|---|
|  | 262 | // equation for line 2 | 
|---|
|  | 263 | if (fabs(Line2a->x[0] - Line2a->x[0]) < MYEPSILON) { | 
|---|
|  | 264 | k1 = 0; | 
|---|
|  | 265 | h1 = 0; | 
|---|
|  | 266 | } else { | 
|---|
|  | 267 | k1 = (Line2a->x[1] - Line2a->x[1])/(Line2a->x[0] - Line2a->x[0]); | 
|---|
|  | 268 | h1 = (Line2a->x[2] - Line2a->x[2])/(Line2a->x[0] - Line2a->x[0]); | 
|---|
|  | 269 | } | 
|---|
|  | 270 | a1 = 0.5*((Line2a->x[1] + Line2a->x[1]) - k1*(Line2a->x[0] + Line2a->x[0])); | 
|---|
|  | 271 | b1 = 0.5*((Line2a->x[2] + Line2a->x[2]) - h1*(Line2a->x[0] + Line2a->x[0])); | 
|---|
|  | 272 |  | 
|---|
|  | 273 | // calculate cross point | 
|---|
|  | 274 | if (fabs((a1-a2)*(h1-h2) - (b1-b2)*(k1-k2)) < MYEPSILON) { | 
|---|
|  | 275 | x[0] = (a2-a1)/(k1-k2); | 
|---|
|  | 276 | x[1] = (k1*a2-k2*a1)/(k1-k2); | 
|---|
|  | 277 | x[2] = (h1*b2-h2*b1)/(h1-h2); | 
|---|
|  | 278 | *out << Verbose(4) << "Lines do intersect at " << this << "." << endl; | 
|---|
|  | 279 | return true; | 
|---|
|  | 280 | } else { | 
|---|
|  | 281 | *out << Verbose(4) << "Lines do not intersect." << endl; | 
|---|
|  | 282 | return false; | 
|---|
|  | 283 | } | 
|---|
|  | 284 | }; | 
|---|
|  | 285 |  | 
|---|
| [6ac7ee] | 286 | /** Calculates the projection of a vector onto another \a *y. | 
|---|
|  | 287 | * \param *y array to second vector | 
|---|
|  | 288 | * \return \f$\langle x, y \rangle\f$ | 
|---|
|  | 289 | */ | 
|---|
|  | 290 | double Vector::Projection(const Vector *y) const | 
|---|
|  | 291 | { | 
|---|
| [042f82] | 292 | return (ScalarProduct(y)); | 
|---|
| [6ac7ee] | 293 | }; | 
|---|
|  | 294 |  | 
|---|
|  | 295 | /** Calculates norm of this vector. | 
|---|
|  | 296 | * \return \f$|x|\f$ | 
|---|
|  | 297 | */ | 
|---|
|  | 298 | double Vector::Norm() const | 
|---|
|  | 299 | { | 
|---|
| [042f82] | 300 | double res = 0.; | 
|---|
|  | 301 | for (int i=NDIM;i--;) | 
|---|
|  | 302 | res += this->x[i]*this->x[i]; | 
|---|
|  | 303 | return (sqrt(res)); | 
|---|
| [6ac7ee] | 304 | }; | 
|---|
|  | 305 |  | 
|---|
| [d4d0dd] | 306 | /** Calculates squared norm of this vector. | 
|---|
|  | 307 | * \return \f$|x|^2\f$ | 
|---|
|  | 308 | */ | 
|---|
|  | 309 | double Vector::NormSquared() const | 
|---|
|  | 310 | { | 
|---|
|  | 311 | return (ScalarProduct(this)); | 
|---|
|  | 312 | }; | 
|---|
|  | 313 |  | 
|---|
| [6ac7ee] | 314 | /** Normalizes this vector. | 
|---|
|  | 315 | */ | 
|---|
|  | 316 | void Vector::Normalize() | 
|---|
|  | 317 | { | 
|---|
| [042f82] | 318 | double res = 0.; | 
|---|
|  | 319 | for (int i=NDIM;i--;) | 
|---|
|  | 320 | res += this->x[i]*this->x[i]; | 
|---|
|  | 321 | if (fabs(res) > MYEPSILON) | 
|---|
|  | 322 | res = 1./sqrt(res); | 
|---|
|  | 323 | Scale(&res); | 
|---|
| [6ac7ee] | 324 | }; | 
|---|
|  | 325 |  | 
|---|
|  | 326 | /** Zeros all components of this vector. | 
|---|
|  | 327 | */ | 
|---|
|  | 328 | void Vector::Zero() | 
|---|
|  | 329 | { | 
|---|
| [042f82] | 330 | for (int i=NDIM;i--;) | 
|---|
|  | 331 | this->x[i] = 0.; | 
|---|
| [6ac7ee] | 332 | }; | 
|---|
|  | 333 |  | 
|---|
|  | 334 | /** Zeros all components of this vector. | 
|---|
|  | 335 | */ | 
|---|
|  | 336 | void Vector::One(double one) | 
|---|
|  | 337 | { | 
|---|
| [042f82] | 338 | for (int i=NDIM;i--;) | 
|---|
|  | 339 | this->x[i] = one; | 
|---|
| [6ac7ee] | 340 | }; | 
|---|
|  | 341 |  | 
|---|
|  | 342 | /** Initialises all components of this vector. | 
|---|
|  | 343 | */ | 
|---|
|  | 344 | void Vector::Init(double x1, double x2, double x3) | 
|---|
|  | 345 | { | 
|---|
| [042f82] | 346 | x[0] = x1; | 
|---|
|  | 347 | x[1] = x2; | 
|---|
|  | 348 | x[2] = x3; | 
|---|
| [6ac7ee] | 349 | }; | 
|---|
|  | 350 |  | 
|---|
| [9c20aa] | 351 | /** Checks whether vector has all components zero. | 
|---|
|  | 352 | * @return true - vector is zero, false - vector is not | 
|---|
|  | 353 | */ | 
|---|
|  | 354 | bool Vector::IsNull() | 
|---|
|  | 355 | { | 
|---|
|  | 356 | return (fabs(x[0]+x[1]+x[2]) < MYEPSILON); | 
|---|
|  | 357 | }; | 
|---|
|  | 358 |  | 
|---|
| [6ac7ee] | 359 | /** Calculates the angle between this and another vector. | 
|---|
|  | 360 | * \param *y array to second vector | 
|---|
|  | 361 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$ | 
|---|
|  | 362 | */ | 
|---|
|  | 363 | double Vector::Angle(const Vector *y) const | 
|---|
|  | 364 | { | 
|---|
| [d4d0dd] | 365 | double norm1 = Norm(), norm2 = y->Norm(); | 
|---|
|  | 366 | double angle = 1; | 
|---|
|  | 367 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON)) | 
|---|
|  | 368 | angle = this->ScalarProduct(y)/norm1/norm2; | 
|---|
| [02da9e] | 369 | // -1-MYEPSILON occured due to numerical imprecision, catch ... | 
|---|
|  | 370 | //cout << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl; | 
|---|
|  | 371 | if (angle < -1) | 
|---|
|  | 372 | angle = -1; | 
|---|
|  | 373 | if (angle > 1) | 
|---|
|  | 374 | angle = 1; | 
|---|
| [042f82] | 375 | return acos(angle); | 
|---|
| [6ac7ee] | 376 | }; | 
|---|
|  | 377 |  | 
|---|
|  | 378 | /** Rotates the vector around the axis given by \a *axis by an angle of \a alpha. | 
|---|
|  | 379 | * \param *axis rotation axis | 
|---|
|  | 380 | * \param alpha rotation angle in radian | 
|---|
|  | 381 | */ | 
|---|
|  | 382 | void Vector::RotateVector(const Vector *axis, const double alpha) | 
|---|
|  | 383 | { | 
|---|
| [042f82] | 384 | Vector a,y; | 
|---|
|  | 385 | // normalise this vector with respect to axis | 
|---|
|  | 386 | a.CopyVector(this); | 
|---|
|  | 387 | a.Scale(Projection(axis)); | 
|---|
|  | 388 | SubtractVector(&a); | 
|---|
|  | 389 | // construct normal vector | 
|---|
|  | 390 | y.MakeNormalVector(axis,this); | 
|---|
|  | 391 | y.Scale(Norm()); | 
|---|
|  | 392 | // scale normal vector by sine and this vector by cosine | 
|---|
|  | 393 | y.Scale(sin(alpha)); | 
|---|
|  | 394 | Scale(cos(alpha)); | 
|---|
|  | 395 | // add scaled normal vector onto this vector | 
|---|
|  | 396 | AddVector(&y); | 
|---|
|  | 397 | // add part in axis direction | 
|---|
|  | 398 | AddVector(&a); | 
|---|
| [6ac7ee] | 399 | }; | 
|---|
|  | 400 |  | 
|---|
|  | 401 | /** Sums vector \a to this lhs component-wise. | 
|---|
|  | 402 | * \param a base vector | 
|---|
|  | 403 | * \param b vector components to add | 
|---|
|  | 404 | * \return lhs + a | 
|---|
|  | 405 | */ | 
|---|
|  | 406 | Vector& operator+=(Vector& a, const Vector& b) | 
|---|
|  | 407 | { | 
|---|
| [042f82] | 408 | a.AddVector(&b); | 
|---|
|  | 409 | return a; | 
|---|
| [6ac7ee] | 410 | }; | 
|---|
|  | 411 | /** factor each component of \a a times a double \a m. | 
|---|
|  | 412 | * \param a base vector | 
|---|
|  | 413 | * \param m factor | 
|---|
|  | 414 | * \return lhs.x[i] * m | 
|---|
|  | 415 | */ | 
|---|
|  | 416 | Vector& operator*=(Vector& a, const double m) | 
|---|
|  | 417 | { | 
|---|
| [042f82] | 418 | a.Scale(m); | 
|---|
|  | 419 | return a; | 
|---|
| [6ac7ee] | 420 | }; | 
|---|
|  | 421 |  | 
|---|
| [042f82] | 422 | /** Sums two vectors \a  and \b component-wise. | 
|---|
| [6ac7ee] | 423 | * \param a first vector | 
|---|
|  | 424 | * \param b second vector | 
|---|
|  | 425 | * \return a + b | 
|---|
|  | 426 | */ | 
|---|
|  | 427 | Vector& operator+(const Vector& a, const Vector& b) | 
|---|
|  | 428 | { | 
|---|
| [042f82] | 429 | Vector *x = new Vector; | 
|---|
|  | 430 | x->CopyVector(&a); | 
|---|
|  | 431 | x->AddVector(&b); | 
|---|
|  | 432 | return *x; | 
|---|
| [6ac7ee] | 433 | }; | 
|---|
|  | 434 |  | 
|---|
|  | 435 | /** Factors given vector \a a times \a m. | 
|---|
|  | 436 | * \param a vector | 
|---|
|  | 437 | * \param m factor | 
|---|
|  | 438 | * \return a + b | 
|---|
|  | 439 | */ | 
|---|
|  | 440 | Vector& operator*(const Vector& a, const double m) | 
|---|
|  | 441 | { | 
|---|
| [042f82] | 442 | Vector *x = new Vector; | 
|---|
|  | 443 | x->CopyVector(&a); | 
|---|
|  | 444 | x->Scale(m); | 
|---|
|  | 445 | return *x; | 
|---|
| [6ac7ee] | 446 | }; | 
|---|
|  | 447 |  | 
|---|
|  | 448 | /** Prints a 3dim vector. | 
|---|
|  | 449 | * prints no end of line. | 
|---|
|  | 450 | * \param *out output stream | 
|---|
|  | 451 | */ | 
|---|
|  | 452 | bool Vector::Output(ofstream *out) const | 
|---|
|  | 453 | { | 
|---|
| [042f82] | 454 | if (out != NULL) { | 
|---|
|  | 455 | *out << "("; | 
|---|
|  | 456 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 457 | *out << x[i]; | 
|---|
|  | 458 | if (i != 2) | 
|---|
|  | 459 | *out << ","; | 
|---|
|  | 460 | } | 
|---|
|  | 461 | *out << ")"; | 
|---|
|  | 462 | return true; | 
|---|
|  | 463 | } else | 
|---|
|  | 464 | return false; | 
|---|
| [6ac7ee] | 465 | }; | 
|---|
|  | 466 |  | 
|---|
| [9c20aa] | 467 | ostream& operator<<(ostream& ost, const Vector& m) | 
|---|
| [6ac7ee] | 468 | { | 
|---|
| [042f82] | 469 | ost << "("; | 
|---|
|  | 470 | for (int i=0;i<NDIM;i++) { | 
|---|
|  | 471 | ost << m.x[i]; | 
|---|
|  | 472 | if (i != 2) | 
|---|
|  | 473 | ost << ","; | 
|---|
|  | 474 | } | 
|---|
|  | 475 | ost << ")"; | 
|---|
|  | 476 | return ost; | 
|---|
| [6ac7ee] | 477 | }; | 
|---|
|  | 478 |  | 
|---|
|  | 479 | /** Scales each atom coordinate by an individual \a factor. | 
|---|
|  | 480 | * \param *factor pointer to scaling factor | 
|---|
|  | 481 | */ | 
|---|
|  | 482 | void Vector::Scale(double **factor) | 
|---|
|  | 483 | { | 
|---|
| [042f82] | 484 | for (int i=NDIM;i--;) | 
|---|
|  | 485 | x[i] *= (*factor)[i]; | 
|---|
| [6ac7ee] | 486 | }; | 
|---|
|  | 487 |  | 
|---|
|  | 488 | void Vector::Scale(double *factor) | 
|---|
|  | 489 | { | 
|---|
| [042f82] | 490 | for (int i=NDIM;i--;) | 
|---|
|  | 491 | x[i] *= *factor; | 
|---|
| [6ac7ee] | 492 | }; | 
|---|
|  | 493 |  | 
|---|
|  | 494 | void Vector::Scale(double factor) | 
|---|
|  | 495 | { | 
|---|
| [042f82] | 496 | for (int i=NDIM;i--;) | 
|---|
|  | 497 | x[i] *= factor; | 
|---|
| [6ac7ee] | 498 | }; | 
|---|
|  | 499 |  | 
|---|
|  | 500 | /** Translate atom by given vector. | 
|---|
|  | 501 | * \param trans[] translation vector. | 
|---|
|  | 502 | */ | 
|---|
|  | 503 | void Vector::Translate(const Vector *trans) | 
|---|
|  | 504 | { | 
|---|
| [042f82] | 505 | for (int i=NDIM;i--;) | 
|---|
|  | 506 | x[i] += trans->x[i]; | 
|---|
| [6ac7ee] | 507 | }; | 
|---|
|  | 508 |  | 
|---|
|  | 509 | /** Do a matrix multiplication. | 
|---|
|  | 510 | * \param *matrix NDIM_NDIM array | 
|---|
|  | 511 | */ | 
|---|
|  | 512 | void Vector::MatrixMultiplication(double *M) | 
|---|
|  | 513 | { | 
|---|
| [042f82] | 514 | Vector C; | 
|---|
|  | 515 | // do the matrix multiplication | 
|---|
|  | 516 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2]; | 
|---|
|  | 517 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2]; | 
|---|
|  | 518 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2]; | 
|---|
|  | 519 | // transfer the result into this | 
|---|
|  | 520 | for (int i=NDIM;i--;) | 
|---|
|  | 521 | x[i] = C.x[i]; | 
|---|
| [6ac7ee] | 522 | }; | 
|---|
|  | 523 |  | 
|---|
| [21c017] | 524 | /** Calculate the inverse of a 3x3 matrix. | 
|---|
|  | 525 | * \param *matrix NDIM_NDIM array | 
|---|
|  | 526 | */ | 
|---|
|  | 527 | double * Vector::InverseMatrix(double *A) | 
|---|
|  | 528 | { | 
|---|
|  | 529 | double *B = (double *) Malloc(sizeof(double)*NDIM*NDIM, "Vector::InverseMatrix: *B"); | 
|---|
|  | 530 | double detA = RDET3(A); | 
|---|
|  | 531 | double detAReci; | 
|---|
|  | 532 |  | 
|---|
|  | 533 | for (int i=0;i<NDIM*NDIM;++i) | 
|---|
|  | 534 | B[i] = 0.; | 
|---|
|  | 535 | // calculate the inverse B | 
|---|
|  | 536 | if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular | 
|---|
|  | 537 | detAReci = 1./detA; | 
|---|
|  | 538 | B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11 | 
|---|
|  | 539 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12 | 
|---|
|  | 540 | B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13 | 
|---|
|  | 541 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21 | 
|---|
|  | 542 | B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22 | 
|---|
|  | 543 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23 | 
|---|
|  | 544 | B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31 | 
|---|
|  | 545 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32 | 
|---|
|  | 546 | B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33 | 
|---|
|  | 547 | } | 
|---|
|  | 548 | return B; | 
|---|
|  | 549 | }; | 
|---|
|  | 550 |  | 
|---|
| [2319ed] | 551 | /** Do a matrix multiplication with the \a *A' inverse. | 
|---|
| [6ac7ee] | 552 | * \param *matrix NDIM_NDIM array | 
|---|
|  | 553 | */ | 
|---|
|  | 554 | void Vector::InverseMatrixMultiplication(double *A) | 
|---|
|  | 555 | { | 
|---|
| [042f82] | 556 | Vector C; | 
|---|
|  | 557 | double B[NDIM*NDIM]; | 
|---|
|  | 558 | double detA = RDET3(A); | 
|---|
|  | 559 | double detAReci; | 
|---|
|  | 560 |  | 
|---|
|  | 561 | // calculate the inverse B | 
|---|
|  | 562 | if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular | 
|---|
|  | 563 | detAReci = 1./detA; | 
|---|
|  | 564 | B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11 | 
|---|
|  | 565 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12 | 
|---|
|  | 566 | B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13 | 
|---|
|  | 567 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21 | 
|---|
|  | 568 | B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22 | 
|---|
|  | 569 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23 | 
|---|
|  | 570 | B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31 | 
|---|
|  | 571 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32 | 
|---|
|  | 572 | B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33 | 
|---|
|  | 573 |  | 
|---|
|  | 574 | // do the matrix multiplication | 
|---|
|  | 575 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2]; | 
|---|
|  | 576 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2]; | 
|---|
|  | 577 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2]; | 
|---|
|  | 578 | // transfer the result into this | 
|---|
|  | 579 | for (int i=NDIM;i--;) | 
|---|
|  | 580 | x[i] = C.x[i]; | 
|---|
|  | 581 | } else { | 
|---|
| [a20e6a] | 582 | cerr << "ERROR: inverse of matrix does not exists: det A = " << detA << "." << endl; | 
|---|
| [042f82] | 583 | } | 
|---|
| [6ac7ee] | 584 | }; | 
|---|
|  | 585 |  | 
|---|
|  | 586 |  | 
|---|
|  | 587 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three. | 
|---|
|  | 588 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2] | 
|---|
|  | 589 | * \param *x1 first vector | 
|---|
|  | 590 | * \param *x2 second vector | 
|---|
|  | 591 | * \param *x3 third vector | 
|---|
|  | 592 | * \param *factors three-component vector with the factor for each given vector | 
|---|
|  | 593 | */ | 
|---|
|  | 594 | void Vector::LinearCombinationOfVectors(const Vector *x1, const Vector *x2, const Vector *x3, double *factors) | 
|---|
|  | 595 | { | 
|---|
| [042f82] | 596 | for(int i=NDIM;i--;) | 
|---|
|  | 597 | x[i] = factors[0]*x1->x[i] + factors[1]*x2->x[i] + factors[2]*x3->x[i]; | 
|---|
| [6ac7ee] | 598 | }; | 
|---|
|  | 599 |  | 
|---|
|  | 600 | /** Mirrors atom against a given plane. | 
|---|
|  | 601 | * \param n[] normal vector of mirror plane. | 
|---|
|  | 602 | */ | 
|---|
|  | 603 | void Vector::Mirror(const Vector *n) | 
|---|
|  | 604 | { | 
|---|
| [042f82] | 605 | double projection; | 
|---|
|  | 606 | projection = ScalarProduct(n)/n->ScalarProduct(n);    // remove constancy from n (keep as logical one) | 
|---|
|  | 607 | // withdraw projected vector twice from original one | 
|---|
|  | 608 | cout << Verbose(1) << "Vector: "; | 
|---|
|  | 609 | Output((ofstream *)&cout); | 
|---|
|  | 610 | cout << "\t"; | 
|---|
|  | 611 | for (int i=NDIM;i--;) | 
|---|
|  | 612 | x[i] -= 2.*projection*n->x[i]; | 
|---|
|  | 613 | cout << "Projected vector: "; | 
|---|
|  | 614 | Output((ofstream *)&cout); | 
|---|
|  | 615 | cout << endl; | 
|---|
| [6ac7ee] | 616 | }; | 
|---|
|  | 617 |  | 
|---|
|  | 618 | /** Calculates normal vector for three given vectors (being three points in space). | 
|---|
|  | 619 | * Makes this vector orthonormal to the three given points, making up a place in 3d space. | 
|---|
|  | 620 | * \param *y1 first vector | 
|---|
|  | 621 | * \param *y2 second vector | 
|---|
|  | 622 | * \param *y3 third vector | 
|---|
|  | 623 | * \return true - success, vectors are linear independent, false - failure due to linear dependency | 
|---|
|  | 624 | */ | 
|---|
|  | 625 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2, const Vector *y3) | 
|---|
|  | 626 | { | 
|---|
| [042f82] | 627 | Vector x1, x2; | 
|---|
| [6ac7ee] | 628 |  | 
|---|
| [042f82] | 629 | x1.CopyVector(y1); | 
|---|
|  | 630 | x1.SubtractVector(y2); | 
|---|
|  | 631 | x2.CopyVector(y3); | 
|---|
|  | 632 | x2.SubtractVector(y2); | 
|---|
|  | 633 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) { | 
|---|
|  | 634 | cout << Verbose(4) << "Given vectors are linear dependent." << endl; | 
|---|
|  | 635 | return false; | 
|---|
|  | 636 | } | 
|---|
|  | 637 | //  cout << Verbose(4) << "relative, first plane coordinates:"; | 
|---|
|  | 638 | //  x1.Output((ofstream *)&cout); | 
|---|
|  | 639 | //  cout << endl; | 
|---|
|  | 640 | //  cout << Verbose(4) << "second plane coordinates:"; | 
|---|
|  | 641 | //  x2.Output((ofstream *)&cout); | 
|---|
|  | 642 | //  cout << endl; | 
|---|
| [6ac7ee] | 643 |  | 
|---|
| [042f82] | 644 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]); | 
|---|
|  | 645 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]); | 
|---|
|  | 646 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]); | 
|---|
|  | 647 | Normalize(); | 
|---|
| [6ac7ee] | 648 |  | 
|---|
| [042f82] | 649 | return true; | 
|---|
| [6ac7ee] | 650 | }; | 
|---|
|  | 651 |  | 
|---|
|  | 652 |  | 
|---|
|  | 653 | /** Calculates orthonormal vector to two given vectors. | 
|---|
|  | 654 | * Makes this vector orthonormal to two given vectors. This is very similar to the other | 
|---|
|  | 655 | * vector::MakeNormalVector(), only there three points whereas here two difference | 
|---|
|  | 656 | * vectors are given. | 
|---|
|  | 657 | * \param *x1 first vector | 
|---|
|  | 658 | * \param *x2 second vector | 
|---|
|  | 659 | * \return true - success, vectors are linear independent, false - failure due to linear dependency | 
|---|
|  | 660 | */ | 
|---|
|  | 661 | bool Vector::MakeNormalVector(const Vector *y1, const Vector *y2) | 
|---|
|  | 662 | { | 
|---|
| [042f82] | 663 | Vector x1,x2; | 
|---|
|  | 664 | x1.CopyVector(y1); | 
|---|
|  | 665 | x2.CopyVector(y2); | 
|---|
|  | 666 | Zero(); | 
|---|
|  | 667 | if ((fabs(x1.Norm()) < MYEPSILON) || (fabs(x2.Norm()) < MYEPSILON) || (fabs(x1.Angle(&x2)) < MYEPSILON)) { | 
|---|
|  | 668 | cout << Verbose(4) << "Given vectors are linear dependent." << endl; | 
|---|
|  | 669 | return false; | 
|---|
|  | 670 | } | 
|---|
|  | 671 | //  cout << Verbose(4) << "relative, first plane coordinates:"; | 
|---|
|  | 672 | //  x1.Output((ofstream *)&cout); | 
|---|
|  | 673 | //  cout << endl; | 
|---|
|  | 674 | //  cout << Verbose(4) << "second plane coordinates:"; | 
|---|
|  | 675 | //  x2.Output((ofstream *)&cout); | 
|---|
|  | 676 | //  cout << endl; | 
|---|
|  | 677 |  | 
|---|
|  | 678 | this->x[0] = (x1.x[1]*x2.x[2] - x1.x[2]*x2.x[1]); | 
|---|
|  | 679 | this->x[1] = (x1.x[2]*x2.x[0] - x1.x[0]*x2.x[2]); | 
|---|
|  | 680 | this->x[2] = (x1.x[0]*x2.x[1] - x1.x[1]*x2.x[0]); | 
|---|
|  | 681 | Normalize(); | 
|---|
|  | 682 |  | 
|---|
|  | 683 | return true; | 
|---|
| [6ac7ee] | 684 | }; | 
|---|
|  | 685 |  | 
|---|
|  | 686 | /** Calculates orthonormal vector to one given vectors. | 
|---|
|  | 687 | * Just subtracts the projection onto the given vector from this vector. | 
|---|
|  | 688 | * \param *x1 vector | 
|---|
|  | 689 | * \return true - success, false - vector is zero | 
|---|
|  | 690 | */ | 
|---|
|  | 691 | bool Vector::MakeNormalVector(const Vector *y1) | 
|---|
|  | 692 | { | 
|---|
| [042f82] | 693 | bool result = false; | 
|---|
|  | 694 | Vector x1; | 
|---|
|  | 695 | x1.CopyVector(y1); | 
|---|
|  | 696 | x1.Scale(x1.Projection(this)); | 
|---|
|  | 697 | SubtractVector(&x1); | 
|---|
|  | 698 | for (int i=NDIM;i--;) | 
|---|
|  | 699 | result = result || (fabs(x[i]) > MYEPSILON); | 
|---|
| [6ac7ee] | 700 |  | 
|---|
| [042f82] | 701 | return result; | 
|---|
| [6ac7ee] | 702 | }; | 
|---|
|  | 703 |  | 
|---|
|  | 704 | /** Creates this vector as one of the possible orthonormal ones to the given one. | 
|---|
|  | 705 | * Just scan how many components of given *vector are unequal to zero and | 
|---|
|  | 706 | * try to get the skp of both to be zero accordingly. | 
|---|
|  | 707 | * \param *vector given vector | 
|---|
|  | 708 | * \return true - success, false - failure (null vector given) | 
|---|
|  | 709 | */ | 
|---|
|  | 710 | bool Vector::GetOneNormalVector(const Vector *GivenVector) | 
|---|
|  | 711 | { | 
|---|
| [042f82] | 712 | int Components[NDIM]; // contains indices of non-zero components | 
|---|
|  | 713 | int Last = 0;   // count the number of non-zero entries in vector | 
|---|
|  | 714 | int j;  // loop variables | 
|---|
|  | 715 | double norm; | 
|---|
|  | 716 |  | 
|---|
|  | 717 | cout << Verbose(4); | 
|---|
|  | 718 | GivenVector->Output((ofstream *)&cout); | 
|---|
|  | 719 | cout << endl; | 
|---|
|  | 720 | for (j=NDIM;j--;) | 
|---|
|  | 721 | Components[j] = -1; | 
|---|
|  | 722 | // find two components != 0 | 
|---|
|  | 723 | for (j=0;j<NDIM;j++) | 
|---|
|  | 724 | if (fabs(GivenVector->x[j]) > MYEPSILON) | 
|---|
|  | 725 | Components[Last++] = j; | 
|---|
|  | 726 | cout << Verbose(4) << Last << " Components != 0: (" << Components[0] << "," << Components[1] << "," << Components[2] << ")" << endl; | 
|---|
|  | 727 |  | 
|---|
|  | 728 | switch(Last) { | 
|---|
|  | 729 | case 3:  // threecomponent system | 
|---|
|  | 730 | case 2:  // two component system | 
|---|
|  | 731 | norm = sqrt(1./(GivenVector->x[Components[1]]*GivenVector->x[Components[1]]) + 1./(GivenVector->x[Components[0]]*GivenVector->x[Components[0]])); | 
|---|
|  | 732 | x[Components[2]] = 0.; | 
|---|
|  | 733 | // in skp both remaining parts shall become zero but with opposite sign and third is zero | 
|---|
|  | 734 | x[Components[1]] = -1./GivenVector->x[Components[1]] / norm; | 
|---|
|  | 735 | x[Components[0]] = 1./GivenVector->x[Components[0]] / norm; | 
|---|
|  | 736 | return true; | 
|---|
|  | 737 | break; | 
|---|
|  | 738 | case 1: // one component system | 
|---|
|  | 739 | // set sole non-zero component to 0, and one of the other zero component pendants to 1 | 
|---|
|  | 740 | x[(Components[0]+2)%NDIM] = 0.; | 
|---|
|  | 741 | x[(Components[0]+1)%NDIM] = 1.; | 
|---|
|  | 742 | x[Components[0]] = 0.; | 
|---|
|  | 743 | return true; | 
|---|
|  | 744 | break; | 
|---|
|  | 745 | default: | 
|---|
|  | 746 | return false; | 
|---|
|  | 747 | } | 
|---|
| [6ac7ee] | 748 | }; | 
|---|
|  | 749 |  | 
|---|
|  | 750 | /** Determines paramter needed to multiply this vector to obtain intersection point with plane defined by \a *A, \a *B and \a *C. | 
|---|
|  | 751 | * \param *A first plane vector | 
|---|
|  | 752 | * \param *B second plane vector | 
|---|
|  | 753 | * \param *C third plane vector | 
|---|
|  | 754 | * \return scaling parameter for this vector | 
|---|
|  | 755 | */ | 
|---|
|  | 756 | double Vector::CutsPlaneAt(Vector *A, Vector *B, Vector *C) | 
|---|
|  | 757 | { | 
|---|
| [042f82] | 758 | //  cout << Verbose(3) << "For comparison: "; | 
|---|
|  | 759 | //  cout << "A " << A->Projection(this) << "\t"; | 
|---|
|  | 760 | //  cout << "B " << B->Projection(this) << "\t"; | 
|---|
|  | 761 | //  cout << "C " << C->Projection(this) << "\t"; | 
|---|
|  | 762 | //  cout << endl; | 
|---|
|  | 763 | return A->Projection(this); | 
|---|
| [6ac7ee] | 764 | }; | 
|---|
|  | 765 |  | 
|---|
|  | 766 | /** Creates a new vector as the one with least square distance to a given set of \a vectors. | 
|---|
|  | 767 | * \param *vectors set of vectors | 
|---|
|  | 768 | * \param num number of vectors | 
|---|
|  | 769 | * \return true if success, false if failed due to linear dependency | 
|---|
|  | 770 | */ | 
|---|
|  | 771 | bool Vector::LSQdistance(Vector **vectors, int num) | 
|---|
|  | 772 | { | 
|---|
| [042f82] | 773 | int j; | 
|---|
| [6ac7ee] | 774 |  | 
|---|
| [042f82] | 775 | for (j=0;j<num;j++) { | 
|---|
|  | 776 | cout << Verbose(1) << j << "th atom's vector: "; | 
|---|
|  | 777 | (vectors[j])->Output((ofstream *)&cout); | 
|---|
|  | 778 | cout << endl; | 
|---|
|  | 779 | } | 
|---|
| [6ac7ee] | 780 |  | 
|---|
| [042f82] | 781 | int np = 3; | 
|---|
|  | 782 | struct LSQ_params par; | 
|---|
| [6ac7ee] | 783 |  | 
|---|
| [042f82] | 784 | const gsl_multimin_fminimizer_type *T = | 
|---|
|  | 785 | gsl_multimin_fminimizer_nmsimplex; | 
|---|
|  | 786 | gsl_multimin_fminimizer *s = NULL; | 
|---|
|  | 787 | gsl_vector *ss, *y; | 
|---|
|  | 788 | gsl_multimin_function minex_func; | 
|---|
| [6ac7ee] | 789 |  | 
|---|
| [042f82] | 790 | size_t iter = 0, i; | 
|---|
|  | 791 | int status; | 
|---|
|  | 792 | double size; | 
|---|
| [6ac7ee] | 793 |  | 
|---|
| [042f82] | 794 | /* Initial vertex size vector */ | 
|---|
|  | 795 | ss = gsl_vector_alloc (np); | 
|---|
|  | 796 | y = gsl_vector_alloc (np); | 
|---|
| [6ac7ee] | 797 |  | 
|---|
| [042f82] | 798 | /* Set all step sizes to 1 */ | 
|---|
|  | 799 | gsl_vector_set_all (ss, 1.0); | 
|---|
| [6ac7ee] | 800 |  | 
|---|
| [042f82] | 801 | /* Starting point */ | 
|---|
|  | 802 | par.vectors = vectors; | 
|---|
|  | 803 | par.num = num; | 
|---|
| [6ac7ee] | 804 |  | 
|---|
| [042f82] | 805 | for (i=NDIM;i--;) | 
|---|
|  | 806 | gsl_vector_set(y, i, (vectors[0]->x[i] - vectors[1]->x[i])/2.); | 
|---|
| [6ac7ee] | 807 |  | 
|---|
| [042f82] | 808 | /* Initialize method and iterate */ | 
|---|
|  | 809 | minex_func.f = &LSQ; | 
|---|
|  | 810 | minex_func.n = np; | 
|---|
|  | 811 | minex_func.params = (void *)∥ | 
|---|
| [6ac7ee] | 812 |  | 
|---|
| [042f82] | 813 | s = gsl_multimin_fminimizer_alloc (T, np); | 
|---|
|  | 814 | gsl_multimin_fminimizer_set (s, &minex_func, y, ss); | 
|---|
| [6ac7ee] | 815 |  | 
|---|
| [042f82] | 816 | do | 
|---|
|  | 817 | { | 
|---|
|  | 818 | iter++; | 
|---|
|  | 819 | status = gsl_multimin_fminimizer_iterate(s); | 
|---|
| [6ac7ee] | 820 |  | 
|---|
| [042f82] | 821 | if (status) | 
|---|
|  | 822 | break; | 
|---|
| [6ac7ee] | 823 |  | 
|---|
| [042f82] | 824 | size = gsl_multimin_fminimizer_size (s); | 
|---|
|  | 825 | status = gsl_multimin_test_size (size, 1e-2); | 
|---|
| [6ac7ee] | 826 |  | 
|---|
| [042f82] | 827 | if (status == GSL_SUCCESS) | 
|---|
|  | 828 | { | 
|---|
|  | 829 | printf ("converged to minimum at\n"); | 
|---|
|  | 830 | } | 
|---|
| [6ac7ee] | 831 |  | 
|---|
| [042f82] | 832 | printf ("%5d ", (int)iter); | 
|---|
|  | 833 | for (i = 0; i < (size_t)np; i++) | 
|---|
|  | 834 | { | 
|---|
|  | 835 | printf ("%10.3e ", gsl_vector_get (s->x, i)); | 
|---|
|  | 836 | } | 
|---|
|  | 837 | printf ("f() = %7.3f size = %.3f\n", s->fval, size); | 
|---|
|  | 838 | } | 
|---|
|  | 839 | while (status == GSL_CONTINUE && iter < 100); | 
|---|
| [6ac7ee] | 840 |  | 
|---|
| [042f82] | 841 | for (i=(size_t)np;i--;) | 
|---|
|  | 842 | this->x[i] = gsl_vector_get(s->x, i); | 
|---|
|  | 843 | gsl_vector_free(y); | 
|---|
|  | 844 | gsl_vector_free(ss); | 
|---|
|  | 845 | gsl_multimin_fminimizer_free (s); | 
|---|
| [6ac7ee] | 846 |  | 
|---|
| [042f82] | 847 | return true; | 
|---|
| [6ac7ee] | 848 | }; | 
|---|
|  | 849 |  | 
|---|
|  | 850 | /** Adds vector \a *y componentwise. | 
|---|
|  | 851 | * \param *y vector | 
|---|
|  | 852 | */ | 
|---|
|  | 853 | void Vector::AddVector(const Vector *y) | 
|---|
|  | 854 | { | 
|---|
| [042f82] | 855 | for (int i=NDIM;i--;) | 
|---|
|  | 856 | this->x[i] += y->x[i]; | 
|---|
| [6ac7ee] | 857 | } | 
|---|
|  | 858 |  | 
|---|
|  | 859 | /** Adds vector \a *y componentwise. | 
|---|
|  | 860 | * \param *y vector | 
|---|
|  | 861 | */ | 
|---|
|  | 862 | void Vector::SubtractVector(const Vector *y) | 
|---|
|  | 863 | { | 
|---|
| [042f82] | 864 | for (int i=NDIM;i--;) | 
|---|
|  | 865 | this->x[i] -= y->x[i]; | 
|---|
| [6ac7ee] | 866 | } | 
|---|
|  | 867 |  | 
|---|
|  | 868 | /** Copy vector \a *y componentwise. | 
|---|
|  | 869 | * \param *y vector | 
|---|
|  | 870 | */ | 
|---|
|  | 871 | void Vector::CopyVector(const Vector *y) | 
|---|
|  | 872 | { | 
|---|
| [042f82] | 873 | for (int i=NDIM;i--;) | 
|---|
|  | 874 | this->x[i] = y->x[i]; | 
|---|
| [6ac7ee] | 875 | } | 
|---|
|  | 876 |  | 
|---|
|  | 877 |  | 
|---|
|  | 878 | /** Asks for position, checks for boundary. | 
|---|
|  | 879 | * \param cell_size unitary size of cubic cell, coordinates must be within 0...cell_size | 
|---|
|  | 880 | * \param check whether bounds shall be checked (true) or not (false) | 
|---|
|  | 881 | */ | 
|---|
|  | 882 | void Vector::AskPosition(double *cell_size, bool check) | 
|---|
|  | 883 | { | 
|---|
| [042f82] | 884 | char coords[3] = {'x','y','z'}; | 
|---|
|  | 885 | int j = -1; | 
|---|
|  | 886 | for (int i=0;i<3;i++) { | 
|---|
|  | 887 | j += i+1; | 
|---|
|  | 888 | do { | 
|---|
|  | 889 | cout << Verbose(0) << coords[i] << "[0.." << cell_size[j] << "]: "; | 
|---|
|  | 890 | cin >> x[i]; | 
|---|
|  | 891 | } while (((x[i] < 0) || (x[i] >= cell_size[j])) && (check)); | 
|---|
|  | 892 | } | 
|---|
| [6ac7ee] | 893 | }; | 
|---|
|  | 894 |  | 
|---|
|  | 895 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement. | 
|---|
|  | 896 | * This is linear system of equations to be solved, however of the three given (skp of this vector\ | 
|---|
|  | 897 | * with either of the three hast to be zero) only two are linear independent. The third equation | 
|---|
|  | 898 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution | 
|---|
|  | 899 | * where very often it has to be checked whether a certain value is zero or not and thus forked into | 
|---|
|  | 900 | * another case. | 
|---|
|  | 901 | * \param *x1 first vector | 
|---|
|  | 902 | * \param *x2 second vector | 
|---|
|  | 903 | * \param *y third vector | 
|---|
|  | 904 | * \param alpha first angle | 
|---|
|  | 905 | * \param beta second angle | 
|---|
|  | 906 | * \param c norm of final vector | 
|---|
|  | 907 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c. | 
|---|
|  | 908 | * \bug this is not yet working properly | 
|---|
|  | 909 | */ | 
|---|
|  | 910 | bool Vector::SolveSystem(Vector *x1, Vector *x2, Vector *y, double alpha, double beta, double c) | 
|---|
|  | 911 | { | 
|---|
| [042f82] | 912 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C; | 
|---|
|  | 913 | double ang; // angle on testing | 
|---|
|  | 914 | double sign[3]; | 
|---|
|  | 915 | int i,j,k; | 
|---|
|  | 916 | A = cos(alpha) * x1->Norm() * c; | 
|---|
|  | 917 | B1 = cos(beta + M_PI/2.) * y->Norm() * c; | 
|---|
|  | 918 | B2 = cos(beta) * x2->Norm() * c; | 
|---|
|  | 919 | C = c * c; | 
|---|
|  | 920 | cout << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl; | 
|---|
|  | 921 | int flag = 0; | 
|---|
|  | 922 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping | 
|---|
|  | 923 | if (fabs(x1->x[1]) > MYEPSILON) { | 
|---|
|  | 924 | flag = 1; | 
|---|
|  | 925 | } else if (fabs(x1->x[2]) > MYEPSILON) { | 
|---|
|  | 926 | flag = 2; | 
|---|
|  | 927 | } else { | 
|---|
|  | 928 | return false; | 
|---|
|  | 929 | } | 
|---|
|  | 930 | } | 
|---|
|  | 931 | switch (flag) { | 
|---|
|  | 932 | default: | 
|---|
|  | 933 | case 0: | 
|---|
|  | 934 | break; | 
|---|
|  | 935 | case 2: | 
|---|
|  | 936 | flip(&x1->x[0],&x1->x[1]); | 
|---|
|  | 937 | flip(&x2->x[0],&x2->x[1]); | 
|---|
|  | 938 | flip(&y->x[0],&y->x[1]); | 
|---|
|  | 939 | //flip(&x[0],&x[1]); | 
|---|
|  | 940 | flip(&x1->x[1],&x1->x[2]); | 
|---|
|  | 941 | flip(&x2->x[1],&x2->x[2]); | 
|---|
|  | 942 | flip(&y->x[1],&y->x[2]); | 
|---|
|  | 943 | //flip(&x[1],&x[2]); | 
|---|
|  | 944 | case 1: | 
|---|
|  | 945 | flip(&x1->x[0],&x1->x[1]); | 
|---|
|  | 946 | flip(&x2->x[0],&x2->x[1]); | 
|---|
|  | 947 | flip(&y->x[0],&y->x[1]); | 
|---|
|  | 948 | //flip(&x[0],&x[1]); | 
|---|
|  | 949 | flip(&x1->x[1],&x1->x[2]); | 
|---|
|  | 950 | flip(&x2->x[1],&x2->x[2]); | 
|---|
|  | 951 | flip(&y->x[1],&y->x[2]); | 
|---|
|  | 952 | //flip(&x[1],&x[2]); | 
|---|
|  | 953 | break; | 
|---|
|  | 954 | } | 
|---|
|  | 955 | // now comes the case system | 
|---|
|  | 956 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1]; | 
|---|
|  | 957 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2]; | 
|---|
|  | 958 | D3 = y->x[0]/x1->x[0]*A-B1; | 
|---|
|  | 959 | cout << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n"; | 
|---|
|  | 960 | if (fabs(D1) < MYEPSILON) { | 
|---|
|  | 961 | cout << Verbose(2) << "D1 == 0!\n"; | 
|---|
|  | 962 | if (fabs(D2) > MYEPSILON) { | 
|---|
|  | 963 | cout << Verbose(3) << "D2 != 0!\n"; | 
|---|
|  | 964 | x[2] = -D3/D2; | 
|---|
|  | 965 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2; | 
|---|
|  | 966 | E2 = -x1->x[1]/x1->x[0]; | 
|---|
|  | 967 | cout << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n"; | 
|---|
|  | 968 | F1 = E1*E1 + 1.; | 
|---|
|  | 969 | F2 = -E1*E2; | 
|---|
|  | 970 | F3 = E1*E1 + D3*D3/(D2*D2) - C; | 
|---|
|  | 971 | cout << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n"; | 
|---|
|  | 972 | if (fabs(F1) < MYEPSILON) { | 
|---|
|  | 973 | cout << Verbose(4) << "F1 == 0!\n"; | 
|---|
|  | 974 | cout << Verbose(4) << "Gleichungssystem linear\n"; | 
|---|
|  | 975 | x[1] = F3/(2.*F2); | 
|---|
|  | 976 | } else { | 
|---|
|  | 977 | p = F2/F1; | 
|---|
|  | 978 | q = p*p - F3/F1; | 
|---|
|  | 979 | cout << Verbose(4) << "p " << p << "\tq " << q << endl; | 
|---|
|  | 980 | if (q < 0) { | 
|---|
|  | 981 | cout << Verbose(4) << "q < 0" << endl; | 
|---|
|  | 982 | return false; | 
|---|
|  | 983 | } | 
|---|
|  | 984 | x[1] = p + sqrt(q); | 
|---|
|  | 985 | } | 
|---|
|  | 986 | x[0] =  A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2]; | 
|---|
|  | 987 | } else { | 
|---|
|  | 988 | cout << Verbose(2) << "Gleichungssystem unterbestimmt\n"; | 
|---|
|  | 989 | return false; | 
|---|
|  | 990 | } | 
|---|
|  | 991 | } else { | 
|---|
|  | 992 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1; | 
|---|
|  | 993 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2]; | 
|---|
|  | 994 | cout << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n"; | 
|---|
|  | 995 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.; | 
|---|
|  | 996 | F2 = -(E1*E2 + D2*D3/(D1*D1)); | 
|---|
|  | 997 | F3 = E1*E1 + D3*D3/(D1*D1) - C; | 
|---|
|  | 998 | cout << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n"; | 
|---|
|  | 999 | if (fabs(F1) < MYEPSILON) { | 
|---|
|  | 1000 | cout << Verbose(3) << "F1 == 0!\n"; | 
|---|
|  | 1001 | cout << Verbose(3) << "Gleichungssystem linear\n"; | 
|---|
|  | 1002 | x[2] = F3/(2.*F2); | 
|---|
|  | 1003 | } else { | 
|---|
|  | 1004 | p = F2/F1; | 
|---|
|  | 1005 | q = p*p - F3/F1; | 
|---|
|  | 1006 | cout << Verbose(3) << "p " << p << "\tq " << q << endl; | 
|---|
|  | 1007 | if (q < 0) { | 
|---|
|  | 1008 | cout << Verbose(3) << "q < 0" << endl; | 
|---|
|  | 1009 | return false; | 
|---|
|  | 1010 | } | 
|---|
|  | 1011 | x[2] = p + sqrt(q); | 
|---|
|  | 1012 | } | 
|---|
|  | 1013 | x[1] = (-D2 * x[2] - D3)/D1; | 
|---|
|  | 1014 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2]; | 
|---|
|  | 1015 | } | 
|---|
|  | 1016 | switch (flag) { // back-flipping | 
|---|
|  | 1017 | default: | 
|---|
|  | 1018 | case 0: | 
|---|
|  | 1019 | break; | 
|---|
|  | 1020 | case 2: | 
|---|
|  | 1021 | flip(&x1->x[0],&x1->x[1]); | 
|---|
|  | 1022 | flip(&x2->x[0],&x2->x[1]); | 
|---|
|  | 1023 | flip(&y->x[0],&y->x[1]); | 
|---|
|  | 1024 | flip(&x[0],&x[1]); | 
|---|
|  | 1025 | flip(&x1->x[1],&x1->x[2]); | 
|---|
|  | 1026 | flip(&x2->x[1],&x2->x[2]); | 
|---|
|  | 1027 | flip(&y->x[1],&y->x[2]); | 
|---|
|  | 1028 | flip(&x[1],&x[2]); | 
|---|
|  | 1029 | case 1: | 
|---|
|  | 1030 | flip(&x1->x[0],&x1->x[1]); | 
|---|
|  | 1031 | flip(&x2->x[0],&x2->x[1]); | 
|---|
|  | 1032 | flip(&y->x[0],&y->x[1]); | 
|---|
|  | 1033 | //flip(&x[0],&x[1]); | 
|---|
|  | 1034 | flip(&x1->x[1],&x1->x[2]); | 
|---|
|  | 1035 | flip(&x2->x[1],&x2->x[2]); | 
|---|
|  | 1036 | flip(&y->x[1],&y->x[2]); | 
|---|
|  | 1037 | flip(&x[1],&x[2]); | 
|---|
|  | 1038 | break; | 
|---|
|  | 1039 | } | 
|---|
|  | 1040 | // one z component is only determined by its radius (without sign) | 
|---|
|  | 1041 | // thus check eight possible sign flips and determine by checking angle with second vector | 
|---|
|  | 1042 | for (i=0;i<8;i++) { | 
|---|
|  | 1043 | // set sign vector accordingly | 
|---|
|  | 1044 | for (j=2;j>=0;j--) { | 
|---|
|  | 1045 | k = (i & pot(2,j)) << j; | 
|---|
|  | 1046 | cout << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl; | 
|---|
|  | 1047 | sign[j] = (k == 0) ? 1. : -1.; | 
|---|
|  | 1048 | } | 
|---|
|  | 1049 | cout << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n"; | 
|---|
|  | 1050 | // apply sign matrix | 
|---|
|  | 1051 | for (j=NDIM;j--;) | 
|---|
|  | 1052 | x[j] *= sign[j]; | 
|---|
|  | 1053 | // calculate angle and check | 
|---|
|  | 1054 | ang = x2->Angle (this); | 
|---|
|  | 1055 | cout << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t"; | 
|---|
|  | 1056 | if (fabs(ang - cos(beta)) < MYEPSILON) { | 
|---|
|  | 1057 | break; | 
|---|
|  | 1058 | } | 
|---|
|  | 1059 | // unapply sign matrix (is its own inverse) | 
|---|
|  | 1060 | for (j=NDIM;j--;) | 
|---|
|  | 1061 | x[j] *= sign[j]; | 
|---|
|  | 1062 | } | 
|---|
|  | 1063 | return true; | 
|---|
| [6ac7ee] | 1064 | }; | 
|---|