| [6ac7ee] | 1 | /** \file vector.cpp
 | 
|---|
 | 2 |  *
 | 
|---|
 | 3 |  * Function implementations for the class vector.
 | 
|---|
 | 4 |  *
 | 
|---|
 | 5 |  */
 | 
|---|
 | 6 | 
 | 
|---|
| [edb93c] | 7 | 
 | 
|---|
| [54a746] | 8 | #include "vector.hpp"
 | 
|---|
 | 9 | #include "verbose.hpp"
 | 
|---|
| [b34306] | 10 | #include "World.hpp"
 | 
|---|
| [0a4f7f] | 11 | #include "Helpers/Assert.hpp"
 | 
|---|
| [753f02] | 12 | #include "Helpers/fast_functions.hpp"
 | 
|---|
| [6ac7ee] | 13 | 
 | 
|---|
| [1bd79e] | 14 | #include <iostream>
 | 
|---|
 | 15 | 
 | 
|---|
 | 16 | using namespace std;
 | 
|---|
| [6ac7ee] | 17 | 
 | 
|---|
| [97498a] | 18 | 
 | 
|---|
| [6ac7ee] | 19 | /************************************ Functions for class vector ************************************/
 | 
|---|
 | 20 | 
 | 
|---|
 | 21 | /** Constructor of class vector.
 | 
|---|
 | 22 |  */
 | 
|---|
| [753f02] | 23 | Vector::Vector()
 | 
|---|
 | 24 | {
 | 
|---|
 | 25 |   x[0] = x[1] = x[2] = 0.;
 | 
|---|
 | 26 | };
 | 
|---|
| [6ac7ee] | 27 | 
 | 
|---|
| [753f02] | 28 | /**
 | 
|---|
 | 29 |  * Copy constructor
 | 
|---|
| [821907] | 30 |  */
 | 
|---|
| [1bd79e] | 31 | 
 | 
|---|
| [753f02] | 32 | Vector::Vector(const Vector& src)
 | 
|---|
| [821907] | 33 | {
 | 
|---|
| [753f02] | 34 |   x[0] = src[0];
 | 
|---|
 | 35 |   x[1] = src[1];
 | 
|---|
 | 36 |   x[2] = src[2];
 | 
|---|
| [1bd79e] | 37 | }
 | 
|---|
| [821907] | 38 | 
 | 
|---|
 | 39 | /** Constructor of class vector.
 | 
|---|
 | 40 |  */
 | 
|---|
| [753f02] | 41 | Vector::Vector(const double x1, const double x2, const double x3)
 | 
|---|
| [821907] | 42 | {
 | 
|---|
| [753f02] | 43 |   x[0] = x1;
 | 
|---|
 | 44 |   x[1] = x2;
 | 
|---|
 | 45 |   x[2] = x3;
 | 
|---|
| [821907] | 46 | };
 | 
|---|
 | 47 | 
 | 
|---|
| [0a4f7f] | 48 | /**
 | 
|---|
 | 49 |  * Assignment operator
 | 
|---|
| [6ac7ee] | 50 |  */
 | 
|---|
| [0a4f7f] | 51 | Vector& Vector::operator=(const Vector& src){
 | 
|---|
 | 52 |   // check for self assignment
 | 
|---|
 | 53 |   if(&src!=this){
 | 
|---|
| [753f02] | 54 |     x[0] = src[0];
 | 
|---|
 | 55 |     x[1] = src[1];
 | 
|---|
 | 56 |     x[2] = src[2];
 | 
|---|
| [0a4f7f] | 57 |   }
 | 
|---|
 | 58 |   return *this;
 | 
|---|
 | 59 | }
 | 
|---|
| [6ac7ee] | 60 | 
 | 
|---|
 | 61 | /** Desctructor of class vector.
 | 
|---|
 | 62 |  */
 | 
|---|
 | 63 | Vector::~Vector() {};
 | 
|---|
 | 64 | 
 | 
|---|
 | 65 | /** Calculates square of distance between this and another vector.
 | 
|---|
 | 66 |  * \param *y array to second vector
 | 
|---|
 | 67 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 68 |  */
 | 
|---|
| [273382] | 69 | double Vector::DistanceSquared(const Vector &y) const
 | 
|---|
| [6ac7ee] | 70 | {
 | 
|---|
| [042f82] | 71 |   double res = 0.;
 | 
|---|
 | 72 |   for (int i=NDIM;i--;)
 | 
|---|
| [753f02] | 73 |     res += (x[i]-y[i])*(x[i]-y[i]);
 | 
|---|
| [042f82] | 74 |   return (res);
 | 
|---|
| [6ac7ee] | 75 | };
 | 
|---|
 | 76 | 
 | 
|---|
 | 77 | /** Calculates distance between this and another vector.
 | 
|---|
 | 78 |  * \param *y array to second vector
 | 
|---|
 | 79 |  * \return \f$| x - y |\f$
 | 
|---|
 | 80 |  */
 | 
|---|
| [1513a74] | 81 | double Vector::distance(const Vector &y) const
 | 
|---|
| [6ac7ee] | 82 | {
 | 
|---|
| [273382] | 83 |   return (sqrt(DistanceSquared(y)));
 | 
|---|
| [6ac7ee] | 84 | };
 | 
|---|
 | 85 | 
 | 
|---|
| [1513a74] | 86 | Vector Vector::getClosestPoint(const Vector &point) const{
 | 
|---|
 | 87 |   // the closest point to a single point space is always the single point itself
 | 
|---|
 | 88 |   return *this;
 | 
|---|
 | 89 | }
 | 
|---|
 | 90 | 
 | 
|---|
| [6ac7ee] | 91 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 92 |  * \param *y array to second vector
 | 
|---|
 | 93 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 94 |  * \return \f$| x - y |\f$
 | 
|---|
 | 95 |  */
 | 
|---|
| [273382] | 96 | double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
 | 
|---|
| [6ac7ee] | 97 | {
 | 
|---|
| [1513a74] | 98 |   double res = distance(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
| [753f02] | 99 |     Vector Shiftedy, TranslationVector;
 | 
|---|
 | 100 |     int N[NDIM];
 | 
|---|
 | 101 |     matrix[0] = cell_size[0];
 | 
|---|
 | 102 |     matrix[1] = cell_size[1];
 | 
|---|
 | 103 |     matrix[2] = cell_size[3];
 | 
|---|
 | 104 |     matrix[3] = cell_size[1];
 | 
|---|
 | 105 |     matrix[4] = cell_size[2];
 | 
|---|
 | 106 |     matrix[5] = cell_size[4];
 | 
|---|
 | 107 |     matrix[6] = cell_size[3];
 | 
|---|
 | 108 |     matrix[7] = cell_size[4];
 | 
|---|
 | 109 |     matrix[8] = cell_size[5];
 | 
|---|
 | 110 |     // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 111 |     for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 112 |       for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 113 |         for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 114 |           // create the translation vector
 | 
|---|
 | 115 |           TranslationVector.Zero();
 | 
|---|
 | 116 |           for (int i=NDIM;i--;)
 | 
|---|
 | 117 |             TranslationVector[i] = (double)N[i];
 | 
|---|
 | 118 |           TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 119 |           // add onto the original vector to compare with
 | 
|---|
 | 120 |           Shiftedy = y + TranslationVector;
 | 
|---|
 | 121 |           // get distance and compare with minimum so far
 | 
|---|
| [1513a74] | 122 |           tmp = distance(Shiftedy);
 | 
|---|
| [753f02] | 123 |           if (tmp < res) res = tmp;
 | 
|---|
 | 124 |         }
 | 
|---|
 | 125 |     return (res);
 | 
|---|
| [6ac7ee] | 126 | };
 | 
|---|
 | 127 | 
 | 
|---|
 | 128 | /** Calculates distance between this and another vector in a periodic cell.
 | 
|---|
 | 129 |  * \param *y array to second vector
 | 
|---|
 | 130 |  * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
 | 
|---|
 | 131 |  * \return \f$| x - y |^2\f$
 | 
|---|
 | 132 |  */
 | 
|---|
| [273382] | 133 | double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
 | 
|---|
| [6ac7ee] | 134 | {
 | 
|---|
| [042f82] | 135 |   double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
 | 
|---|
| [753f02] | 136 |     Vector Shiftedy, TranslationVector;
 | 
|---|
 | 137 |     int N[NDIM];
 | 
|---|
 | 138 |     matrix[0] = cell_size[0];
 | 
|---|
 | 139 |     matrix[1] = cell_size[1];
 | 
|---|
 | 140 |     matrix[2] = cell_size[3];
 | 
|---|
 | 141 |     matrix[3] = cell_size[1];
 | 
|---|
 | 142 |     matrix[4] = cell_size[2];
 | 
|---|
 | 143 |     matrix[5] = cell_size[4];
 | 
|---|
 | 144 |     matrix[6] = cell_size[3];
 | 
|---|
 | 145 |     matrix[7] = cell_size[4];
 | 
|---|
 | 146 |     matrix[8] = cell_size[5];
 | 
|---|
 | 147 |     // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
 | 
|---|
 | 148 |     for (N[0]=-1;N[0]<=1;N[0]++)
 | 
|---|
 | 149 |       for (N[1]=-1;N[1]<=1;N[1]++)
 | 
|---|
 | 150 |         for (N[2]=-1;N[2]<=1;N[2]++) {
 | 
|---|
 | 151 |           // create the translation vector
 | 
|---|
 | 152 |           TranslationVector.Zero();
 | 
|---|
 | 153 |           for (int i=NDIM;i--;)
 | 
|---|
 | 154 |             TranslationVector[i] = (double)N[i];
 | 
|---|
 | 155 |           TranslationVector.MatrixMultiplication(matrix);
 | 
|---|
 | 156 |           // add onto the original vector to compare with
 | 
|---|
 | 157 |           Shiftedy = y + TranslationVector;
 | 
|---|
 | 158 |           // get distance and compare with minimum so far
 | 
|---|
 | 159 |           tmp = DistanceSquared(Shiftedy);
 | 
|---|
 | 160 |           if (tmp < res) res = tmp;
 | 
|---|
 | 161 |         }
 | 
|---|
 | 162 |     return (res);
 | 
|---|
| [6ac7ee] | 163 | };
 | 
|---|
 | 164 | 
 | 
|---|
 | 165 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
 | 
|---|
 | 166 |  * \param *out ofstream for debugging messages
 | 
|---|
 | 167 |  * Tries to translate a vector into each adjacent neighbouring cell.
 | 
|---|
 | 168 |  */
 | 
|---|
| [e138de] | 169 | void Vector::KeepPeriodic(const double * const matrix)
 | 
|---|
| [6ac7ee] | 170 | {
 | 
|---|
| [753f02] | 171 |   //  int N[NDIM];
 | 
|---|
 | 172 |   //  bool flag = false;
 | 
|---|
 | 173 |     //vector Shifted, TranslationVector;
 | 
|---|
 | 174 |   //  Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
 | 
|---|
 | 175 |   //  Log() << Verbose(2) << "Vector is: ";
 | 
|---|
 | 176 |   //  Output(out);
 | 
|---|
 | 177 |   //  Log() << Verbose(0) << endl;
 | 
|---|
 | 178 |     InverseMatrixMultiplication(matrix);
 | 
|---|
 | 179 |     for(int i=NDIM;i--;) { // correct periodically
 | 
|---|
 | 180 |       if (at(i) < 0) {  // get every coefficient into the interval [0,1)
 | 
|---|
 | 181 |         at(i) += ceil(at(i));
 | 
|---|
 | 182 |       } else {
 | 
|---|
 | 183 |         at(i) -= floor(at(i));
 | 
|---|
 | 184 |       }
 | 
|---|
| [042f82] | 185 |     }
 | 
|---|
| [753f02] | 186 |     MatrixMultiplication(matrix);
 | 
|---|
 | 187 |   //  Log() << Verbose(2) << "New corrected vector is: ";
 | 
|---|
 | 188 |   //  Output(out);
 | 
|---|
 | 189 |   //  Log() << Verbose(0) << endl;
 | 
|---|
 | 190 |   //  Log() << Verbose(1) << "End of KeepPeriodic." << endl;
 | 
|---|
| [6ac7ee] | 191 | };
 | 
|---|
 | 192 | 
 | 
|---|
 | 193 | /** Calculates scalar product between this and another vector.
 | 
|---|
 | 194 |  * \param *y array to second vector
 | 
|---|
 | 195 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 196 |  */
 | 
|---|
| [273382] | 197 | double Vector::ScalarProduct(const Vector &y) const
 | 
|---|
| [6ac7ee] | 198 | {
 | 
|---|
| [042f82] | 199 |   double res = 0.;
 | 
|---|
 | 200 |   for (int i=NDIM;i--;)
 | 
|---|
| [753f02] | 201 |     res += x[i]*y[i];
 | 
|---|
| [042f82] | 202 |   return (res);
 | 
|---|
| [6ac7ee] | 203 | };
 | 
|---|
 | 204 | 
 | 
|---|
 | 205 | 
 | 
|---|
 | 206 | /** Calculates VectorProduct between this and another vector.
 | 
|---|
| [042f82] | 207 |  *  -# returns the Product in place of vector from which it was initiated
 | 
|---|
 | 208 |  *  -# ATTENTION: Only three dim.
 | 
|---|
 | 209 |  *  \param *y array to vector with which to calculate crossproduct
 | 
|---|
 | 210 |  *  \return \f$ x \times y \f&
 | 
|---|
| [6ac7ee] | 211 |  */
 | 
|---|
| [273382] | 212 | void Vector::VectorProduct(const Vector &y)
 | 
|---|
| [6ac7ee] | 213 | {
 | 
|---|
| [042f82] | 214 |   Vector tmp;
 | 
|---|
| [753f02] | 215 |   tmp[0] = x[1]* (y[2]) - x[2]* (y[1]);
 | 
|---|
 | 216 |   tmp[1] = x[2]* (y[0]) - x[0]* (y[2]);
 | 
|---|
 | 217 |   tmp[2] = x[0]* (y[1]) - x[1]* (y[0]);
 | 
|---|
 | 218 |   (*this) = tmp;
 | 
|---|
| [6ac7ee] | 219 | };
 | 
|---|
 | 220 | 
 | 
|---|
 | 221 | 
 | 
|---|
 | 222 | /** projects this vector onto plane defined by \a *y.
 | 
|---|
 | 223 |  * \param *y normal vector of plane
 | 
|---|
 | 224 |  * \return \f$\langle x, y \rangle\f$
 | 
|---|
 | 225 |  */
 | 
|---|
| [273382] | 226 | void Vector::ProjectOntoPlane(const Vector &y)
 | 
|---|
| [6ac7ee] | 227 | {
 | 
|---|
| [042f82] | 228 |   Vector tmp;
 | 
|---|
| [753f02] | 229 |   tmp = y;
 | 
|---|
| [042f82] | 230 |   tmp.Normalize();
 | 
|---|
| [753f02] | 231 |   tmp.Scale(ScalarProduct(tmp));
 | 
|---|
 | 232 |   *this -= tmp;
 | 
|---|
| [2319ed] | 233 | };
 | 
|---|
 | 234 | 
 | 
|---|
| [821907] | 235 | /** Calculates the minimum distance vector of this vector to the plane.
 | 
|---|
| [c4d4df] | 236 |  * \param *out output stream for debugging
 | 
|---|
 | 237 |  * \param *PlaneNormal normal of plane
 | 
|---|
 | 238 |  * \param *PlaneOffset offset of plane
 | 
|---|
 | 239 |  * \return distance to plane
 | 
|---|
| [821907] | 240 |  * \return distance vector onto to plane
 | 
|---|
| [c4d4df] | 241 |  */
 | 
|---|
| [8cbb97] | 242 | Vector Vector::GetDistanceVectorToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const
 | 
|---|
| [c4d4df] | 243 | {
 | 
|---|
| [753f02] | 244 |   Vector temp = (*this) - PlaneOffset;
 | 
|---|
 | 245 |   temp.MakeNormalTo(PlaneNormal);
 | 
|---|
| [c4d4df] | 246 |   temp.Scale(-1.);
 | 
|---|
 | 247 |   // then add connecting vector from plane to point
 | 
|---|
| [753f02] | 248 |   temp += (*this)-PlaneOffset;
 | 
|---|
| [99593f] | 249 |   double sign = temp.ScalarProduct(PlaneNormal);
 | 
|---|
| [7ea9e6] | 250 |   if (fabs(sign) > MYEPSILON)
 | 
|---|
 | 251 |     sign /= fabs(sign);
 | 
|---|
 | 252 |   else
 | 
|---|
 | 253 |     sign = 0.;
 | 
|---|
| [c4d4df] | 254 | 
 | 
|---|
| [821907] | 255 |   temp.Normalize();
 | 
|---|
 | 256 |   temp.Scale(sign);
 | 
|---|
 | 257 |   return temp;
 | 
|---|
 | 258 | };
 | 
|---|
 | 259 | 
 | 
|---|
| [8cbb97] | 260 | 
 | 
|---|
| [821907] | 261 | /** Calculates the minimum distance of this vector to the plane.
 | 
|---|
 | 262 |  * \sa Vector::GetDistanceVectorToPlane()
 | 
|---|
 | 263 |  * \param *out output stream for debugging
 | 
|---|
 | 264 |  * \param *PlaneNormal normal of plane
 | 
|---|
 | 265 |  * \param *PlaneOffset offset of plane
 | 
|---|
 | 266 |  * \return distance to plane
 | 
|---|
 | 267 |  */
 | 
|---|
| [d4c9ae] | 268 | double Vector::DistanceToSpace(const Space &space) const
 | 
|---|
| [821907] | 269 | {
 | 
|---|
| [d4c9ae] | 270 |   return space.distance(*this);
 | 
|---|
| [c4d4df] | 271 | };
 | 
|---|
 | 272 | 
 | 
|---|
| [6ac7ee] | 273 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 274 |  * \param *y array to second vector
 | 
|---|
 | 275 |  */
 | 
|---|
| [273382] | 276 | void Vector::ProjectIt(const Vector &y)
 | 
|---|
| [6ac7ee] | 277 | {
 | 
|---|
| [753f02] | 278 |   (*this) += (-ScalarProduct(y))*y;
 | 
|---|
| [ef9df36] | 279 | };
 | 
|---|
 | 280 | 
 | 
|---|
 | 281 | /** Calculates the projection of a vector onto another \a *y.
 | 
|---|
 | 282 |  * \param *y array to second vector
 | 
|---|
 | 283 |  * \return Vector
 | 
|---|
 | 284 |  */
 | 
|---|
| [273382] | 285 | Vector Vector::Projection(const Vector &y) const
 | 
|---|
| [ef9df36] | 286 | {
 | 
|---|
| [753f02] | 287 |   Vector helper = y;
 | 
|---|
 | 288 |   helper.Scale((ScalarProduct(y)/y.NormSquared()));
 | 
|---|
| [ef9df36] | 289 | 
 | 
|---|
 | 290 |   return helper;
 | 
|---|
| [6ac7ee] | 291 | };
 | 
|---|
 | 292 | 
 | 
|---|
 | 293 | /** Calculates norm of this vector.
 | 
|---|
 | 294 |  * \return \f$|x|\f$
 | 
|---|
 | 295 |  */
 | 
|---|
 | 296 | double Vector::Norm() const
 | 
|---|
 | 297 | {
 | 
|---|
| [273382] | 298 |   return (sqrt(NormSquared()));
 | 
|---|
| [6ac7ee] | 299 | };
 | 
|---|
 | 300 | 
 | 
|---|
| [d4d0dd] | 301 | /** Calculates squared norm of this vector.
 | 
|---|
 | 302 |  * \return \f$|x|^2\f$
 | 
|---|
 | 303 |  */
 | 
|---|
 | 304 | double Vector::NormSquared() const
 | 
|---|
 | 305 | {
 | 
|---|
| [273382] | 306 |   return (ScalarProduct(*this));
 | 
|---|
| [d4d0dd] | 307 | };
 | 
|---|
 | 308 | 
 | 
|---|
| [6ac7ee] | 309 | /** Normalizes this vector.
 | 
|---|
 | 310 |  */
 | 
|---|
 | 311 | void Vector::Normalize()
 | 
|---|
 | 312 | {
 | 
|---|
| [1bd79e] | 313 |   double factor = Norm();
 | 
|---|
 | 314 |   (*this) *= 1/factor;
 | 
|---|
| [6ac7ee] | 315 | };
 | 
|---|
 | 316 | 
 | 
|---|
 | 317 | /** Zeros all components of this vector.
 | 
|---|
 | 318 |  */
 | 
|---|
 | 319 | void Vector::Zero()
 | 
|---|
 | 320 | {
 | 
|---|
| [753f02] | 321 |   at(0)=at(1)=at(2)=0;
 | 
|---|
| [6ac7ee] | 322 | };
 | 
|---|
 | 323 | 
 | 
|---|
 | 324 | /** Zeros all components of this vector.
 | 
|---|
 | 325 |  */
 | 
|---|
| [776b64] | 326 | void Vector::One(const double one)
 | 
|---|
| [6ac7ee] | 327 | {
 | 
|---|
| [753f02] | 328 |   at(0)=at(1)=at(2)=one;
 | 
|---|
| [6ac7ee] | 329 | };
 | 
|---|
 | 330 | 
 | 
|---|
| [9c20aa] | 331 | /** Checks whether vector has all components zero.
 | 
|---|
 | 332 |  * @return true - vector is zero, false - vector is not
 | 
|---|
 | 333 |  */
 | 
|---|
| [54a746] | 334 | bool Vector::IsZero() const
 | 
|---|
| [9c20aa] | 335 | {
 | 
|---|
| [54a746] | 336 |   return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
 | 
|---|
 | 337 | };
 | 
|---|
 | 338 | 
 | 
|---|
 | 339 | /** Checks whether vector has length of 1.
 | 
|---|
 | 340 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 341 |  */
 | 
|---|
 | 342 | bool Vector::IsOne() const
 | 
|---|
 | 343 | {
 | 
|---|
 | 344 |   return (fabs(Norm() - 1.) < MYEPSILON);
 | 
|---|
| [9c20aa] | 345 | };
 | 
|---|
 | 346 | 
 | 
|---|
| [ef9df36] | 347 | /** Checks whether vector is normal to \a *normal.
 | 
|---|
 | 348 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 349 |  */
 | 
|---|
| [273382] | 350 | bool Vector::IsNormalTo(const Vector &normal) const
 | 
|---|
| [ef9df36] | 351 | {
 | 
|---|
 | 352 |   if (ScalarProduct(normal) < MYEPSILON)
 | 
|---|
 | 353 |     return true;
 | 
|---|
 | 354 |   else
 | 
|---|
 | 355 |     return false;
 | 
|---|
 | 356 | };
 | 
|---|
 | 357 | 
 | 
|---|
| [b998c3] | 358 | /** Checks whether vector is normal to \a *normal.
 | 
|---|
 | 359 |  * @return true - vector is normalized, false - vector is not
 | 
|---|
 | 360 |  */
 | 
|---|
| [273382] | 361 | bool Vector::IsEqualTo(const Vector &a) const
 | 
|---|
| [b998c3] | 362 | {
 | 
|---|
 | 363 |   bool status = true;
 | 
|---|
 | 364 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| [753f02] | 365 |     if (fabs(x[i] - a[i]) > MYEPSILON)
 | 
|---|
| [b998c3] | 366 |       status = false;
 | 
|---|
 | 367 |   }
 | 
|---|
 | 368 |   return status;
 | 
|---|
 | 369 | };
 | 
|---|
 | 370 | 
 | 
|---|
| [6ac7ee] | 371 | /** Calculates the angle between this and another vector.
 | 
|---|
 | 372 |  * \param *y array to second vector
 | 
|---|
 | 373 |  * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
 | 
|---|
 | 374 |  */
 | 
|---|
| [273382] | 375 | double Vector::Angle(const Vector &y) const
 | 
|---|
| [6ac7ee] | 376 | {
 | 
|---|
| [753f02] | 377 |   double norm1 = Norm(), norm2 = y.Norm();
 | 
|---|
| [ef9df36] | 378 |   double angle = -1;
 | 
|---|
| [d4d0dd] | 379 |   if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
 | 
|---|
 | 380 |     angle = this->ScalarProduct(y)/norm1/norm2;
 | 
|---|
| [02da9e] | 381 |   // -1-MYEPSILON occured due to numerical imprecision, catch ...
 | 
|---|
| [e138de] | 382 |   //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
 | 
|---|
| [02da9e] | 383 |   if (angle < -1)
 | 
|---|
 | 384 |     angle = -1;
 | 
|---|
 | 385 |   if (angle > 1)
 | 
|---|
 | 386 |     angle = 1;
 | 
|---|
| [042f82] | 387 |   return acos(angle);
 | 
|---|
| [6ac7ee] | 388 | };
 | 
|---|
 | 389 | 
 | 
|---|
| [0a4f7f] | 390 | 
 | 
|---|
 | 391 | double& Vector::operator[](size_t i){
 | 
|---|
| [753f02] | 392 |   ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
 | 
|---|
 | 393 |   return x[i];
 | 
|---|
| [0a4f7f] | 394 | }
 | 
|---|
 | 395 | 
 | 
|---|
 | 396 | const double& Vector::operator[](size_t i) const{
 | 
|---|
| [753f02] | 397 |   ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
 | 
|---|
 | 398 |   return x[i];
 | 
|---|
| [0a4f7f] | 399 | }
 | 
|---|
 | 400 | 
 | 
|---|
 | 401 | double& Vector::at(size_t i){
 | 
|---|
 | 402 |   return (*this)[i];
 | 
|---|
 | 403 | }
 | 
|---|
 | 404 | 
 | 
|---|
 | 405 | const double& Vector::at(size_t i) const{
 | 
|---|
 | 406 |   return (*this)[i];
 | 
|---|
 | 407 | }
 | 
|---|
 | 408 | 
 | 
|---|
 | 409 | double* Vector::get(){
 | 
|---|
| [753f02] | 410 |   return x;
 | 
|---|
| [0a4f7f] | 411 | }
 | 
|---|
| [6ac7ee] | 412 | 
 | 
|---|
| [ef9df36] | 413 | /** Compares vector \a to vector \a b component-wise.
 | 
|---|
 | 414 |  * \param a base vector
 | 
|---|
 | 415 |  * \param b vector components to add
 | 
|---|
 | 416 |  * \return a == b
 | 
|---|
 | 417 |  */
 | 
|---|
| [72e7fa] | 418 | bool Vector::operator==(const Vector& b) const
 | 
|---|
| [ef9df36] | 419 | {
 | 
|---|
| [1bd79e] | 420 |   return IsEqualTo(b);
 | 
|---|
| [ef9df36] | 421 | };
 | 
|---|
 | 422 | 
 | 
|---|
| [fa5a6a] | 423 | bool Vector::operator!=(const Vector& b) const
 | 
|---|
 | 424 | {
 | 
|---|
 | 425 |   return !IsEqualTo(b);
 | 
|---|
 | 426 | }
 | 
|---|
 | 427 | 
 | 
|---|
| [6ac7ee] | 428 | /** Sums vector \a to this lhs component-wise.
 | 
|---|
 | 429 |  * \param a base vector
 | 
|---|
 | 430 |  * \param b vector components to add
 | 
|---|
 | 431 |  * \return lhs + a
 | 
|---|
 | 432 |  */
 | 
|---|
| [72e7fa] | 433 | const Vector& Vector::operator+=(const Vector& b)
 | 
|---|
| [6ac7ee] | 434 | {
 | 
|---|
| [273382] | 435 |   this->AddVector(b);
 | 
|---|
| [72e7fa] | 436 |   return *this;
 | 
|---|
| [6ac7ee] | 437 | };
 | 
|---|
| [54a746] | 438 | 
 | 
|---|
 | 439 | /** Subtracts vector \a from this lhs component-wise.
 | 
|---|
 | 440 |  * \param a base vector
 | 
|---|
 | 441 |  * \param b vector components to add
 | 
|---|
 | 442 |  * \return lhs - a
 | 
|---|
 | 443 |  */
 | 
|---|
| [72e7fa] | 444 | const Vector& Vector::operator-=(const Vector& b)
 | 
|---|
| [54a746] | 445 | {
 | 
|---|
| [273382] | 446 |   this->SubtractVector(b);
 | 
|---|
| [72e7fa] | 447 |   return *this;
 | 
|---|
| [54a746] | 448 | };
 | 
|---|
 | 449 | 
 | 
|---|
| [6ac7ee] | 450 | /** factor each component of \a a times a double \a m.
 | 
|---|
 | 451 |  * \param a base vector
 | 
|---|
 | 452 |  * \param m factor
 | 
|---|
 | 453 |  * \return lhs.x[i] * m
 | 
|---|
 | 454 |  */
 | 
|---|
| [b84d5d] | 455 | const Vector& operator*=(Vector& a, const double m)
 | 
|---|
| [6ac7ee] | 456 | {
 | 
|---|
| [042f82] | 457 |   a.Scale(m);
 | 
|---|
 | 458 |   return a;
 | 
|---|
| [6ac7ee] | 459 | };
 | 
|---|
 | 460 | 
 | 
|---|
| [042f82] | 461 | /** Sums two vectors \a  and \b component-wise.
 | 
|---|
| [6ac7ee] | 462 |  * \param a first vector
 | 
|---|
 | 463 |  * \param b second vector
 | 
|---|
 | 464 |  * \return a + b
 | 
|---|
 | 465 |  */
 | 
|---|
| [72e7fa] | 466 | Vector const Vector::operator+(const Vector& b) const
 | 
|---|
| [6ac7ee] | 467 | {
 | 
|---|
| [72e7fa] | 468 |   Vector x = *this;
 | 
|---|
| [273382] | 469 |   x.AddVector(b);
 | 
|---|
| [b84d5d] | 470 |   return x;
 | 
|---|
| [6ac7ee] | 471 | };
 | 
|---|
 | 472 | 
 | 
|---|
| [54a746] | 473 | /** Subtracts vector \a from \b component-wise.
 | 
|---|
 | 474 |  * \param a first vector
 | 
|---|
 | 475 |  * \param b second vector
 | 
|---|
 | 476 |  * \return a - b
 | 
|---|
 | 477 |  */
 | 
|---|
| [72e7fa] | 478 | Vector const Vector::operator-(const Vector& b) const
 | 
|---|
| [54a746] | 479 | {
 | 
|---|
| [72e7fa] | 480 |   Vector x = *this;
 | 
|---|
| [273382] | 481 |   x.SubtractVector(b);
 | 
|---|
| [b84d5d] | 482 |   return x;
 | 
|---|
| [54a746] | 483 | };
 | 
|---|
 | 484 | 
 | 
|---|
| [6ac7ee] | 485 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 486 |  * \param a vector
 | 
|---|
 | 487 |  * \param m factor
 | 
|---|
| [54a746] | 488 |  * \return m * a
 | 
|---|
| [6ac7ee] | 489 |  */
 | 
|---|
| [b84d5d] | 490 | Vector const operator*(const Vector& a, const double m)
 | 
|---|
| [6ac7ee] | 491 | {
 | 
|---|
| [b84d5d] | 492 |   Vector x(a);
 | 
|---|
 | 493 |   x.Scale(m);
 | 
|---|
 | 494 |   return x;
 | 
|---|
| [6ac7ee] | 495 | };
 | 
|---|
 | 496 | 
 | 
|---|
| [54a746] | 497 | /** Factors given vector \a a times \a m.
 | 
|---|
 | 498 |  * \param m factor
 | 
|---|
 | 499 |  * \param a vector
 | 
|---|
 | 500 |  * \return m * a
 | 
|---|
 | 501 |  */
 | 
|---|
| [b84d5d] | 502 | Vector const operator*(const double m, const Vector& a )
 | 
|---|
| [54a746] | 503 | {
 | 
|---|
| [b84d5d] | 504 |   Vector x(a);
 | 
|---|
 | 505 |   x.Scale(m);
 | 
|---|
 | 506 |   return x;
 | 
|---|
| [54a746] | 507 | };
 | 
|---|
 | 508 | 
 | 
|---|
| [9c20aa] | 509 | ostream& operator<<(ostream& ost, const Vector& m)
 | 
|---|
| [6ac7ee] | 510 | {
 | 
|---|
| [042f82] | 511 |   ost << "(";
 | 
|---|
 | 512 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| [0a4f7f] | 513 |     ost << m[i];
 | 
|---|
| [042f82] | 514 |     if (i != 2)
 | 
|---|
 | 515 |       ost << ",";
 | 
|---|
 | 516 |   }
 | 
|---|
 | 517 |   ost << ")";
 | 
|---|
 | 518 |   return ost;
 | 
|---|
| [6ac7ee] | 519 | };
 | 
|---|
 | 520 | 
 | 
|---|
 | 521 | 
 | 
|---|
| [1bd79e] | 522 | void Vector::ScaleAll(const double *factor)
 | 
|---|
| [6ac7ee] | 523 | {
 | 
|---|
| [042f82] | 524 |   for (int i=NDIM;i--;)
 | 
|---|
| [753f02] | 525 |     x[i] *= factor[i];
 | 
|---|
| [6ac7ee] | 526 | };
 | 
|---|
 | 527 | 
 | 
|---|
 | 528 | 
 | 
|---|
| [1bd79e] | 529 | 
 | 
|---|
| [776b64] | 530 | void Vector::Scale(const double factor)
 | 
|---|
| [6ac7ee] | 531 | {
 | 
|---|
| [042f82] | 532 |   for (int i=NDIM;i--;)
 | 
|---|
 | 533 |     x[i] *= factor;
 | 
|---|
| [6ac7ee] | 534 | };
 | 
|---|
 | 535 | 
 | 
|---|
| [d09ff7] | 536 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
 | 
|---|
 | 537 |  * \param *M matrix of box
 | 
|---|
 | 538 |  * \param *Minv inverse matrix
 | 
|---|
 | 539 |  */
 | 
|---|
| [776b64] | 540 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
 | 
|---|
| [d09ff7] | 541 | {
 | 
|---|
 | 542 |   MatrixMultiplication(Minv);
 | 
|---|
 | 543 |   // truncate to [0,1] for each axis
 | 
|---|
 | 544 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| [eddea2] | 545 |     //x[i] += 0.5;  // set to center of box
 | 
|---|
| [d09ff7] | 546 |     while (x[i] >= 1.)
 | 
|---|
 | 547 |       x[i] -= 1.;
 | 
|---|
 | 548 |     while (x[i] < 0.)
 | 
|---|
 | 549 |       x[i] += 1.;
 | 
|---|
 | 550 |   }
 | 
|---|
 | 551 |   MatrixMultiplication(M);
 | 
|---|
 | 552 | };
 | 
|---|
 | 553 | 
 | 
|---|
| [6ac7ee] | 554 | /** Do a matrix multiplication.
 | 
|---|
 | 555 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 556 |  */
 | 
|---|
| [776b64] | 557 | void Vector::MatrixMultiplication(const double * const M)
 | 
|---|
| [6ac7ee] | 558 | {
 | 
|---|
| [042f82] | 559 |   // do the matrix multiplication
 | 
|---|
| [753f02] | 560 |   at(0) = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
 | 
|---|
 | 561 |   at(1) = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
 | 
|---|
 | 562 |   at(2) = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
 | 
|---|
| [6ac7ee] | 563 | };
 | 
|---|
 | 564 | 
 | 
|---|
| [2319ed] | 565 | /** Do a matrix multiplication with the \a *A' inverse.
 | 
|---|
| [6ac7ee] | 566 |  * \param *matrix NDIM_NDIM array
 | 
|---|
 | 567 |  */
 | 
|---|
| [0a4f7f] | 568 | bool Vector::InverseMatrixMultiplication(const double * const A)
 | 
|---|
| [6ac7ee] | 569 | {
 | 
|---|
| [042f82] | 570 |   double B[NDIM*NDIM];
 | 
|---|
 | 571 |   double detA = RDET3(A);
 | 
|---|
 | 572 |   double detAReci;
 | 
|---|
 | 573 | 
 | 
|---|
 | 574 |   // calculate the inverse B
 | 
|---|
 | 575 |   if (fabs(detA) > MYEPSILON) {;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
 | 576 |     detAReci = 1./detA;
 | 
|---|
 | 577 |     B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);    // A_11
 | 
|---|
 | 578 |     B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);    // A_12
 | 
|---|
 | 579 |     B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);    // A_13
 | 
|---|
 | 580 |     B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);    // A_21
 | 
|---|
 | 581 |     B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);    // A_22
 | 
|---|
 | 582 |     B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);    // A_23
 | 
|---|
 | 583 |     B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);    // A_31
 | 
|---|
 | 584 |     B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);    // A_32
 | 
|---|
 | 585 |     B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);    // A_33
 | 
|---|
 | 586 | 
 | 
|---|
 | 587 |     // do the matrix multiplication
 | 
|---|
| [753f02] | 588 |     at(0) = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
 | 
|---|
 | 589 |     at(1) = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
 | 
|---|
 | 590 |     at(2) = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
 | 
|---|
 | 591 | 
 | 
|---|
 | 592 |     return true;
 | 
|---|
| [042f82] | 593 |   } else {
 | 
|---|
| [753f02] | 594 |     return false;
 | 
|---|
| [042f82] | 595 |   }
 | 
|---|
| [6ac7ee] | 596 | };
 | 
|---|
 | 597 | 
 | 
|---|
 | 598 | 
 | 
|---|
 | 599 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
 | 
|---|
 | 600 |  * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
 | 
|---|
 | 601 |  * \param *x1 first vector
 | 
|---|
 | 602 |  * \param *x2 second vector
 | 
|---|
 | 603 |  * \param *x3 third vector
 | 
|---|
 | 604 |  * \param *factors three-component vector with the factor for each given vector
 | 
|---|
 | 605 |  */
 | 
|---|
| [273382] | 606 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
 | 
|---|
| [6ac7ee] | 607 | {
 | 
|---|
| [273382] | 608 |   (*this) = (factors[0]*x1) +
 | 
|---|
 | 609 |             (factors[1]*x2) +
 | 
|---|
 | 610 |             (factors[2]*x3);
 | 
|---|
| [6ac7ee] | 611 | };
 | 
|---|
 | 612 | 
 | 
|---|
 | 613 | /** Mirrors atom against a given plane.
 | 
|---|
 | 614 |  * \param n[] normal vector of mirror plane.
 | 
|---|
 | 615 |  */
 | 
|---|
| [273382] | 616 | void Vector::Mirror(const Vector &n)
 | 
|---|
| [6ac7ee] | 617 | {
 | 
|---|
| [042f82] | 618 |   double projection;
 | 
|---|
| [753f02] | 619 |   projection = ScalarProduct(n)/n.NormSquared();    // remove constancy from n (keep as logical one)
 | 
|---|
| [042f82] | 620 |   // withdraw projected vector twice from original one
 | 
|---|
 | 621 |   for (int i=NDIM;i--;)
 | 
|---|
| [8cbb97] | 622 |     at(i) -= 2.*projection*n[i];
 | 
|---|
| [6ac7ee] | 623 | };
 | 
|---|
 | 624 | 
 | 
|---|
 | 625 | /** Calculates orthonormal vector to one given vectors.
 | 
|---|
 | 626 |  * Just subtracts the projection onto the given vector from this vector.
 | 
|---|
| [ef9df36] | 627 |  * The removed part of the vector is Vector::Projection()
 | 
|---|
| [6ac7ee] | 628 |  * \param *x1 vector
 | 
|---|
 | 629 |  * \return true - success, false - vector is zero
 | 
|---|
 | 630 |  */
 | 
|---|
| [0a4f7f] | 631 | bool Vector::MakeNormalTo(const Vector &y1)
 | 
|---|
| [6ac7ee] | 632 | {
 | 
|---|
| [042f82] | 633 |   bool result = false;
 | 
|---|
| [753f02] | 634 |   double factor = y1.ScalarProduct(*this)/y1.NormSquared();
 | 
|---|
| [042f82] | 635 |   Vector x1;
 | 
|---|
| [753f02] | 636 |   x1 = factor * y1;
 | 
|---|
 | 637 |   SubtractVector(x1);
 | 
|---|
| [042f82] | 638 |   for (int i=NDIM;i--;)
 | 
|---|
 | 639 |     result = result || (fabs(x[i]) > MYEPSILON);
 | 
|---|
| [6ac7ee] | 640 | 
 | 
|---|
| [042f82] | 641 |   return result;
 | 
|---|
| [6ac7ee] | 642 | };
 | 
|---|
 | 643 | 
 | 
|---|
 | 644 | /** Creates this vector as one of the possible orthonormal ones to the given one.
 | 
|---|
 | 645 |  * Just scan how many components of given *vector are unequal to zero and
 | 
|---|
 | 646 |  * try to get the skp of both to be zero accordingly.
 | 
|---|
 | 647 |  * \param *vector given vector
 | 
|---|
 | 648 |  * \return true - success, false - failure (null vector given)
 | 
|---|
 | 649 |  */
 | 
|---|
| [273382] | 650 | bool Vector::GetOneNormalVector(const Vector &GivenVector)
 | 
|---|
| [6ac7ee] | 651 | {
 | 
|---|
| [042f82] | 652 |   int Components[NDIM]; // contains indices of non-zero components
 | 
|---|
 | 653 |   int Last = 0;   // count the number of non-zero entries in vector
 | 
|---|
 | 654 |   int j;  // loop variables
 | 
|---|
 | 655 |   double norm;
 | 
|---|
 | 656 | 
 | 
|---|
 | 657 |   for (j=NDIM;j--;)
 | 
|---|
 | 658 |     Components[j] = -1;
 | 
|---|
| [1829c4] | 659 | 
 | 
|---|
 | 660 |   // in two component-systems we need to find the one position that is zero
 | 
|---|
 | 661 |   int zeroPos = -1;
 | 
|---|
| [042f82] | 662 |   // find two components != 0
 | 
|---|
| [1829c4] | 663 |   for (j=0;j<NDIM;j++){
 | 
|---|
| [753f02] | 664 |     if (fabs(GivenVector[j]) > MYEPSILON)
 | 
|---|
| [042f82] | 665 |       Components[Last++] = j;
 | 
|---|
| [1829c4] | 666 |     else
 | 
|---|
 | 667 |       // this our zero Position
 | 
|---|
 | 668 |       zeroPos = j;
 | 
|---|
 | 669 |   }
 | 
|---|
| [042f82] | 670 | 
 | 
|---|
 | 671 |   switch(Last) {
 | 
|---|
 | 672 |     case 3:  // threecomponent system
 | 
|---|
| [1829c4] | 673 |       // the position of the zero is arbitrary in three component systems
 | 
|---|
 | 674 |       zeroPos = Components[2];
 | 
|---|
| [042f82] | 675 |     case 2:  // two component system
 | 
|---|
| [753f02] | 676 |       norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
 | 
|---|
| [1829c4] | 677 |       at(zeroPos) = 0.;
 | 
|---|
| [042f82] | 678 |       // in skp both remaining parts shall become zero but with opposite sign and third is zero
 | 
|---|
| [1829c4] | 679 |       at(Components[1]) = -1./GivenVector[Components[1]] / norm;
 | 
|---|
 | 680 |       at(Components[0]) = 1./GivenVector[Components[0]] / norm;
 | 
|---|
| [042f82] | 681 |       return true;
 | 
|---|
 | 682 |       break;
 | 
|---|
 | 683 |     case 1: // one component system
 | 
|---|
 | 684 |       // set sole non-zero component to 0, and one of the other zero component pendants to 1
 | 
|---|
| [1829c4] | 685 |       at((Components[0]+2)%NDIM) = 0.;
 | 
|---|
 | 686 |       at((Components[0]+1)%NDIM) = 1.;
 | 
|---|
 | 687 |       at(Components[0]) = 0.;
 | 
|---|
| [042f82] | 688 |       return true;
 | 
|---|
 | 689 |       break;
 | 
|---|
 | 690 |     default:
 | 
|---|
 | 691 |       return false;
 | 
|---|
 | 692 |   }
 | 
|---|
| [6ac7ee] | 693 | };
 | 
|---|
 | 694 | 
 | 
|---|
 | 695 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 696 |  * \param *y vector
 | 
|---|
 | 697 |  */
 | 
|---|
| [273382] | 698 | void Vector::AddVector(const Vector &y)
 | 
|---|
| [6ac7ee] | 699 | {
 | 
|---|
| [753f02] | 700 |   for(int i=NDIM;i--;)
 | 
|---|
 | 701 |     x[i] += y[i];
 | 
|---|
| [6ac7ee] | 702 | }
 | 
|---|
 | 703 | 
 | 
|---|
 | 704 | /** Adds vector \a *y componentwise.
 | 
|---|
 | 705 |  * \param *y vector
 | 
|---|
 | 706 |  */
 | 
|---|
| [273382] | 707 | void Vector::SubtractVector(const Vector &y)
 | 
|---|
| [6ac7ee] | 708 | {
 | 
|---|
| [753f02] | 709 |   for(int i=NDIM;i--;)
 | 
|---|
 | 710 |     x[i] -= y[i];
 | 
|---|
| [ef9df36] | 711 | }
 | 
|---|
 | 712 | 
 | 
|---|
| [89c8b2] | 713 | /**
 | 
|---|
 | 714 |  * Checks whether this vector is within the parallelepiped defined by the given three vectors and
 | 
|---|
 | 715 |  * their offset.
 | 
|---|
 | 716 |  *
 | 
|---|
 | 717 |  * @param offest for the origin of the parallelepiped
 | 
|---|
 | 718 |  * @param three vectors forming the matrix that defines the shape of the parallelpiped
 | 
|---|
 | 719 |  */
 | 
|---|
| [776b64] | 720 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
 | 
|---|
| [89c8b2] | 721 | {
 | 
|---|
| [753f02] | 722 |   Vector a = (*this)-offset;
 | 
|---|
| [89c8b2] | 723 |   a.InverseMatrixMultiplication(parallelepiped);
 | 
|---|
 | 724 |   bool isInside = true;
 | 
|---|
 | 725 | 
 | 
|---|
 | 726 |   for (int i=NDIM;i--;)
 | 
|---|
| [753f02] | 727 |     isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
 | 
|---|
| [89c8b2] | 728 | 
 | 
|---|
 | 729 |   return isInside;
 | 
|---|
 | 730 | }
 | 
|---|
| [005e18] | 731 | 
 | 
|---|
 | 732 | 
 | 
|---|
 | 733 | // some comonly used vectors
 | 
|---|
 | 734 | const Vector zeroVec(0,0,0);
 | 
|---|
 | 735 | const Vector e1(1,0,0);
 | 
|---|
 | 736 | const Vector e2(0,1,0);
 | 
|---|
 | 737 | const Vector e3(0,0,1);
 | 
|---|