[b4cf2b] | 1 | /*
|
---|
| 2 | * Project: MoleCuilder
|
---|
| 3 | * Description: creates and alters molecular systems
|
---|
| 4 | * Copyright (C) 2010 University of Bonn. All rights reserved.
|
---|
| 5 | * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
|
---|
| 6 | */
|
---|
| 7 |
|
---|
| 8 | /*
|
---|
| 9 | * SubspaceFactorizerUnittest.cpp
|
---|
| 10 | *
|
---|
| 11 | * Created on: Nov 13, 2010
|
---|
| 12 | * Author: heber
|
---|
| 13 | */
|
---|
| 14 |
|
---|
| 15 | // include config.h
|
---|
| 16 | #ifdef HAVE_CONFIG_H
|
---|
| 17 | #include <config.h>
|
---|
| 18 | #endif
|
---|
| 19 |
|
---|
| 20 | #include <cppunit/CompilerOutputter.h>
|
---|
| 21 | #include <cppunit/extensions/TestFactoryRegistry.h>
|
---|
| 22 | #include <cppunit/ui/text/TestRunner.h>
|
---|
| 23 |
|
---|
| 24 | #include <cmath>
|
---|
| 25 |
|
---|
| 26 | #include <gsl/gsl_vector.h>
|
---|
[742371] | 27 | #include <boost/foreach.hpp>
|
---|
[40be55] | 28 | #include <boost/shared_ptr.hpp>
|
---|
[e828c0] | 29 | #include <boost/timer.hpp>
|
---|
[b4cf2b] | 30 |
|
---|
[40be55] | 31 | #include "Helpers/Assert.hpp"
|
---|
| 32 | #include "Helpers/Log.hpp"
|
---|
| 33 | #include "Helpers/toString.hpp"
|
---|
| 34 | #include "Helpers/Verbose.hpp"
|
---|
[9c5296] | 35 | #include "LinearAlgebra/Eigenspace.hpp"
|
---|
[b4cf2b] | 36 | #include "LinearAlgebra/MatrixContent.hpp"
|
---|
[9c5296] | 37 | #include "LinearAlgebra/Subspace.hpp"
|
---|
| 38 | #include "LinearAlgebra/VectorContent.hpp"
|
---|
[b4cf2b] | 39 |
|
---|
[40be55] | 40 | #include "SubspaceFactorizerUnittest.hpp"
|
---|
| 41 |
|
---|
[b4cf2b] | 42 | #ifdef HAVE_TESTRUNNER
|
---|
| 43 | #include "UnitTestMain.hpp"
|
---|
| 44 | #endif /*HAVE_TESTRUNNER*/
|
---|
| 45 |
|
---|
| 46 | // Registers the fixture into the 'registry'
|
---|
| 47 | CPPUNIT_TEST_SUITE_REGISTRATION( SubspaceFactorizerUnittest );
|
---|
| 48 |
|
---|
| 49 | void SubspaceFactorizerUnittest::setUp(){
|
---|
[f5bca2] | 50 | matrix = new MatrixContent(matrixdimension,matrixdimension);
|
---|
| 51 | matrix->setZero();
|
---|
[e828c0] | 52 | for (size_t i=0; i<matrixdimension ; i++) {
|
---|
| 53 | for (size_t j=0; j<= i; ++j) {
|
---|
| 54 | //const double value = 10. * rand() / (double)RAND_MAX;
|
---|
| 55 | //const double value = i==j ? 2. : 1.;
|
---|
| 56 | if (i==j)
|
---|
| 57 | matrix->set(i,i, 2.);
|
---|
| 58 | else if (j+1 == i) {
|
---|
| 59 | matrix->set(i,j, 1.);
|
---|
| 60 | matrix->set(j,i, 1.);
|
---|
| 61 | } else {
|
---|
| 62 | matrix->set(i,j, 0.);
|
---|
| 63 | matrix->set(j,i, 0.);
|
---|
| 64 | }
|
---|
[b4cf2b] | 65 | }
|
---|
| 66 | }
|
---|
| 67 | }
|
---|
[f5bca2] | 68 |
|
---|
[b4cf2b] | 69 | void SubspaceFactorizerUnittest::tearDown(){
|
---|
[40be55] | 70 | // delete test matrix
|
---|
[f5bca2] | 71 | delete matrix;
|
---|
[b4cf2b] | 72 | }
|
---|
| 73 |
|
---|
| 74 | void SubspaceFactorizerUnittest::BlockTest()
|
---|
| 75 | {
|
---|
[f5bca2] | 76 | MatrixContent *transformation = new MatrixContent(matrixdimension,matrixdimension);
|
---|
| 77 | transformation->setZero();
|
---|
| 78 | for (size_t j=0; j<1; ++j)
|
---|
| 79 | transformation->set(j,j, 1.);
|
---|
| 80 |
|
---|
| 81 | MatrixContent temp((*matrix)&(*transformation));
|
---|
| 82 | std::cout << "Our matrix is " << *matrix << "." << std::endl;
|
---|
[b4cf2b] | 83 |
|
---|
[f5bca2] | 84 | std::cout << "Hadamard product of " << *matrix << " with " << *transformation << " is: " << std::endl;
|
---|
[b4cf2b] | 85 | std::cout << temp << std::endl;
|
---|
| 86 |
|
---|
| 87 | gsl_vector *eigenvalues = temp.transformToEigenbasis();
|
---|
[40be55] | 88 | VectorContent *eigenvaluesView = new VectorViewContent(gsl_vector_subvector(eigenvalues, 0, eigenvalues->size));
|
---|
[b4cf2b] | 89 | std::cout << "The resulting eigenbasis is " << temp
|
---|
[40be55] | 90 | << "\n\t with eigenvalues " << *eigenvaluesView << std::endl;
|
---|
| 91 | delete eigenvaluesView;
|
---|
[b4cf2b] | 92 | gsl_vector_free(eigenvalues);
|
---|
[f5bca2] | 93 | delete (transformation);
|
---|
[b4cf2b] | 94 |
|
---|
[40be55] | 95 |
|
---|
| 96 | CPPUNIT_ASSERT_EQUAL(0,0);
|
---|
| 97 | }
|
---|
| 98 |
|
---|
| 99 | /** For given set of row and column indices, we extract the small block matrix.
|
---|
| 100 | * @param bigmatrix big matrix to extract from
|
---|
[742371] | 101 | * @param Eigenvectors eigenvectors of the subspaces to obtain matrix in
|
---|
| 102 | * @param columnindexset index set to pick out of all indices
|
---|
[40be55] | 103 | * @return small matrix with dimension equal to the number of indices for row and column.
|
---|
| 104 | */
|
---|
| 105 | MatrixContent * getSubspaceMatrix(
|
---|
| 106 | MatrixContent &bigmatrix,
|
---|
[742371] | 107 | VectorArray &Eigenvectors,
|
---|
| 108 | const IndexSet &indexset)
|
---|
[40be55] | 109 | {
|
---|
| 110 | // check whether subsystem is big enough for both index sets
|
---|
[742371] | 111 | ASSERT(indexset.size() <= bigmatrix.getRows(),
|
---|
[40be55] | 112 | "embedSubspaceMatrix() - bigmatrix has less rows "+toString(bigmatrix.getRows())
|
---|
| 113 | +" than needed by index set "
|
---|
[742371] | 114 | +toString(indexset.size())+"!");
|
---|
| 115 | ASSERT(indexset.size() <= bigmatrix.getColumns(),
|
---|
[40be55] | 116 | "embedSubspaceMatrix() - bigmatrix has less columns "+toString(bigmatrix.getColumns())
|
---|
| 117 | +" than needed by index set "
|
---|
[742371] | 118 | +toString(indexset.size())+"!");
|
---|
| 119 |
|
---|
| 120 | // construct small matrix
|
---|
| 121 | MatrixContent *subsystem = new MatrixContent(indexset.size(), indexset.size());
|
---|
[40be55] | 122 | size_t localrow = 0; // local row indices for the subsystem
|
---|
| 123 | size_t localcolumn = 0;
|
---|
[742371] | 124 | BOOST_FOREACH( size_t rowindex, indexset) {
|
---|
[40be55] | 125 | localcolumn = 0;
|
---|
[742371] | 126 | BOOST_FOREACH( size_t columnindex, indexset) {
|
---|
| 127 | ASSERT((rowindex < bigmatrix.getRows()) && (columnindex < bigmatrix.getColumns()),
|
---|
[40be55] | 128 | "current index pair ("
|
---|
[742371] | 129 | +toString(rowindex)+","+toString(columnindex)
|
---|
[40be55] | 130 | +") is out of bounds of bigmatrix ("
|
---|
| 131 | +toString(bigmatrix.getRows())+","+toString(bigmatrix.getColumns())
|
---|
| 132 | +")");
|
---|
[742371] | 133 | subsystem->at(localrow,localcolumn) = (*Eigenvectors[rowindex]) * (bigmatrix * (*Eigenvectors[columnindex]));
|
---|
[40be55] | 134 | localcolumn++;
|
---|
| 135 | }
|
---|
| 136 | localrow++;
|
---|
| 137 | }
|
---|
| 138 | return subsystem;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | /** For a given set of row and columns indices, we embed a small block matrix into a bigger space.
|
---|
| 142 | *
|
---|
[742371] | 143 | * @param eigenvectors current eigenvectors
|
---|
| 144 | * @param rowindexset row index set
|
---|
| 145 | * @param columnindexset column index set
|
---|
| 146 | * @return bigmatrix with eigenvectors contained
|
---|
[40be55] | 147 | */
|
---|
[742371] | 148 | MatrixContent * embedSubspaceMatrix(
|
---|
| 149 | VectorArray &Eigenvectors,
|
---|
[40be55] | 150 | MatrixContent &subsystem,
|
---|
| 151 | const IndexSet &columnindexset)
|
---|
| 152 | {
|
---|
| 153 | // check whether bigmatrix is at least as big as subsystem
|
---|
[742371] | 154 | ASSERT(Eigenvectors.size() > 0,
|
---|
| 155 | "embedSubspaceMatrix() - no Eigenvectors given!");
|
---|
| 156 | ASSERT(subsystem.getRows() <= Eigenvectors[0]->getDimension(),
|
---|
| 157 | "embedSubspaceMatrix() - subsystem has more rows "
|
---|
| 158 | +toString(subsystem.getRows())+" than eigenvectors "
|
---|
| 159 | +toString(Eigenvectors[0]->getDimension())+"!");
|
---|
| 160 | ASSERT(subsystem.getColumns() <= Eigenvectors.size(),
|
---|
| 161 | "embedSubspaceMatrix() - subsystem has more columns "
|
---|
| 162 | +toString(subsystem.getColumns())+" than eigenvectors "
|
---|
| 163 | +toString(Eigenvectors.size())+"!");
|
---|
[40be55] | 164 | // check whether subsystem is big enough for both index sets
|
---|
[742371] | 165 | ASSERT(subsystem.getColumns() == subsystem.getRows(),
|
---|
| 166 | "embedSubspaceMatrix() - subsystem is not square "
|
---|
| 167 | +toString(subsystem.getRows())+" than needed by index set "
|
---|
| 168 | +toString(subsystem.getColumns())+"!");
|
---|
| 169 | ASSERT(columnindexset.size() == subsystem.getColumns(),
|
---|
| 170 | "embedSubspaceMatrix() - subsystem has not the same number of columns "
|
---|
| 171 | +toString(subsystem.getColumns())+" compared to the index set "
|
---|
[40be55] | 172 | +toString(columnindexset.size())+"!");
|
---|
[742371] | 173 |
|
---|
| 174 | // construct intermediate matrix
|
---|
| 175 | MatrixContent *intermediatematrix = new MatrixContent(Eigenvectors[0]->getDimension(), columnindexset.size());
|
---|
[40be55] | 176 | size_t localcolumn = 0;
|
---|
[742371] | 177 | BOOST_FOREACH(size_t columnindex, columnindexset) {
|
---|
| 178 | // create two vectors from each row and copy assign them
|
---|
| 179 | boost::shared_ptr<VectorContent> srceigenvector(Eigenvectors[columnindex]);
|
---|
| 180 | boost::shared_ptr<VectorContent> desteigenvector(intermediatematrix->getColumnVector(localcolumn));
|
---|
| 181 | *desteigenvector = *srceigenvector;
|
---|
| 182 | localcolumn++;
|
---|
| 183 | }
|
---|
| 184 | // matrix product with eigenbasis subsystem matrix
|
---|
| 185 | *intermediatematrix *= subsystem;
|
---|
| 186 |
|
---|
| 187 | // and place at right columns into bigmatrix
|
---|
| 188 | MatrixContent *bigmatrix = new MatrixContent(Eigenvectors[0]->getDimension(), Eigenvectors.size());
|
---|
| 189 | bigmatrix->setZero();
|
---|
| 190 | localcolumn = 0;
|
---|
| 191 | BOOST_FOREACH(size_t columnindex, columnindexset) {
|
---|
| 192 | // create two vectors from each row and copy assign them
|
---|
| 193 | boost::shared_ptr<VectorContent> srceigenvector(intermediatematrix->getColumnVector(localcolumn));
|
---|
| 194 | boost::shared_ptr<VectorContent> desteigenvector(bigmatrix->getColumnVector(columnindex));
|
---|
| 195 | *desteigenvector = *srceigenvector;
|
---|
| 196 | localcolumn++;
|
---|
| 197 | }
|
---|
| 198 |
|
---|
| 199 | return bigmatrix;
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | /** Prints the scalar product of each possible pair that is not orthonormal.
|
---|
| 203 | * We use class logger for printing.
|
---|
| 204 | * @param AllIndices set of all possible indices of the eigenvectors
|
---|
| 205 | * @param CurrentEigenvectors array of eigenvectors
|
---|
| 206 | * @return true - all are orthonormal to each other,
|
---|
| 207 | * false - some are not orthogonal or not normalized.
|
---|
| 208 | */
|
---|
| 209 | bool checkOrthogonality(const IndexSet &AllIndices, const VectorArray &CurrentEigenvectors)
|
---|
| 210 | {
|
---|
| 211 | size_t nonnormalized = 0;
|
---|
| 212 | size_t nonorthogonal = 0;
|
---|
| 213 | // check orthogonality
|
---|
| 214 | BOOST_FOREACH( size_t firstindex, AllIndices) {
|
---|
| 215 | BOOST_FOREACH( size_t secondindex, AllIndices) {
|
---|
| 216 | const double scp = (*CurrentEigenvectors[firstindex])*(*CurrentEigenvectors[secondindex]);
|
---|
| 217 | if (firstindex == secondindex) {
|
---|
| 218 | if (fabs(scp - 1.) > MYEPSILON) {
|
---|
| 219 | nonnormalized++;
|
---|
[e828c0] | 220 | Log() << Verbose(2) << "Vector " << firstindex << " is not normalized, off by "
|
---|
[742371] | 221 | << fabs(1.-(*CurrentEigenvectors[firstindex])*(*CurrentEigenvectors[secondindex])) << std::endl;
|
---|
| 222 | }
|
---|
| 223 | } else {
|
---|
| 224 | if (fabs(scp) > MYEPSILON) {
|
---|
| 225 | nonorthogonal++;
|
---|
[e828c0] | 226 | Log() << Verbose(2) << "Scalar product between " << firstindex << " and " << secondindex
|
---|
[742371] | 227 | << " is " << (*CurrentEigenvectors[firstindex])*(*CurrentEigenvectors[secondindex]) << std::endl;
|
---|
| 228 | }
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
| 231 | }
|
---|
| 232 |
|
---|
| 233 | if ((nonnormalized == 0) && (nonorthogonal == 0)) {
|
---|
[e828c0] | 234 | DoLog(1) && (DoLog(1) && (Log() << Verbose(1) << "All vectors are orthonormal to each other." << std::endl));
|
---|
[742371] | 235 | return true;
|
---|
| 236 | }
|
---|
| 237 | if ((nonnormalized == 0) && (nonorthogonal != 0))
|
---|
[e828c0] | 238 | DoLog(1) && (DoLog(1) && (Log() << Verbose(1) << "All vectors are normalized." << std::endl));
|
---|
[742371] | 239 | if ((nonnormalized != 0) && (nonorthogonal == 0))
|
---|
[e828c0] | 240 | DoLog(1) && (DoLog(1) && (Log() << Verbose(1) << "All vectors are orthogonal to each other." << std::endl));
|
---|
[742371] | 241 | return false;
|
---|
| 242 | }
|
---|
| 243 |
|
---|
| 244 | /** Calculate the sum of the scalar product of each possible pair.
|
---|
| 245 | * @param AllIndices set of all possible indices of the eigenvectors
|
---|
| 246 | * @param CurrentEigenvectors array of eigenvectors
|
---|
| 247 | * @return sum of scalar products between all possible pairs
|
---|
| 248 | */
|
---|
| 249 | double calculateOrthogonalityThreshold(const IndexSet &AllIndices, const VectorArray &CurrentEigenvectors)
|
---|
| 250 | {
|
---|
| 251 | double threshold = 0.;
|
---|
| 252 | // check orthogonality
|
---|
| 253 | BOOST_FOREACH( size_t firstindex, AllIndices) {
|
---|
| 254 | BOOST_FOREACH( size_t secondindex, AllIndices) {
|
---|
| 255 | const double scp = (*CurrentEigenvectors[firstindex])*(*CurrentEigenvectors[secondindex]);
|
---|
| 256 | if (firstindex == secondindex) {
|
---|
| 257 | threshold += fabs(scp - 1.);
|
---|
| 258 | } else {
|
---|
| 259 | threshold += fabs(scp);
|
---|
| 260 | }
|
---|
[40be55] | 261 | }
|
---|
| 262 | }
|
---|
[742371] | 263 | return threshold;
|
---|
[40be55] | 264 | }
|
---|
| 265 |
|
---|
[742371] | 266 | /** Operator for output to std::ostream operator of an IndexSet.
|
---|
[40be55] | 267 | * @param ost output stream
|
---|
| 268 | * @param indexset index set to output
|
---|
| 269 | * @return ost output stream
|
---|
| 270 | */
|
---|
| 271 | std::ostream & operator<<(std::ostream &ost, const IndexSet &indexset)
|
---|
| 272 | {
|
---|
| 273 | ost << "{ ";
|
---|
| 274 | for (IndexSet::const_iterator iter = indexset.begin();
|
---|
| 275 | iter != indexset.end();
|
---|
| 276 | ++iter)
|
---|
| 277 | ost << *iter << " ";
|
---|
| 278 | ost << "}";
|
---|
| 279 | return ost;
|
---|
| 280 | }
|
---|
| 281 |
|
---|
[742371] | 282 | /** Assign eigenvectors of subspace to full eigenvectors.
|
---|
| 283 | * We use parallelity as relation measure.
|
---|
| 284 | * @param eigenvalue eigenvalue to assign along with
|
---|
| 285 | * @param CurrentEigenvector eigenvector to assign, is taken over within
|
---|
| 286 | * boost::shared_ptr
|
---|
| 287 | * @param CurrentEigenvectors full eigenvectors
|
---|
| 288 | * @param CorrespondenceList list to make sure that each subspace eigenvector
|
---|
| 289 | * is assigned to a unique full eigenvector
|
---|
| 290 | * @param ParallelEigenvectorList list of "similar" subspace eigenvectors per
|
---|
| 291 | * full eigenvector, allocated
|
---|
| 292 | */
|
---|
| 293 | void AssignSubspaceEigenvectors(
|
---|
| 294 | double eigenvalue,
|
---|
| 295 | VectorContent *CurrentEigenvector,
|
---|
| 296 | VectorArray &CurrentEigenvectors,
|
---|
| 297 | IndexSet &CorrespondenceList,
|
---|
| 298 | VectorValueList *&ParallelEigenvectorList)
|
---|
| 299 | {
|
---|
[e828c0] | 300 | DoLog(1) && (DoLog(1) && (Log() << Verbose(1) << "Current Eigenvector is " << *CurrentEigenvector << std::endl));
|
---|
[742371] | 301 |
|
---|
| 302 | // (for now settle with the one we are most parallel to)
|
---|
[f5bca2] | 303 | size_t mostparallel_index = SubspaceFactorizerUnittest::matrixdimension;
|
---|
[742371] | 304 | double mostparallel_scalarproduct = 0.;
|
---|
| 305 | BOOST_FOREACH( size_t indexiter, CorrespondenceList) {
|
---|
[e828c0] | 306 | DoLog(2) && (DoLog(2) && (Log() << Verbose(2) << "Comparing to old " << indexiter << "th eigenvector " << *(CurrentEigenvectors[indexiter]) << std::endl));
|
---|
[742371] | 307 | const double scalarproduct = (*(CurrentEigenvectors[indexiter])) * (*CurrentEigenvector);
|
---|
[e828c0] | 308 | DoLog(2) && (DoLog(2) && (Log() << Verbose(2) << "SKP is " << scalarproduct << std::endl));
|
---|
[742371] | 309 | if (fabs(scalarproduct) > mostparallel_scalarproduct) {
|
---|
| 310 | mostparallel_scalarproduct = fabs(scalarproduct);
|
---|
| 311 | mostparallel_index = indexiter;
|
---|
| 312 | }
|
---|
| 313 | }
|
---|
[f5bca2] | 314 | if (mostparallel_index != SubspaceFactorizerUnittest::matrixdimension) {
|
---|
[742371] | 315 | // put into std::list for later use
|
---|
| 316 | // invert if pointing in negative direction
|
---|
| 317 | if ((*(CurrentEigenvectors[mostparallel_index])) * (*CurrentEigenvector) < 0) {
|
---|
| 318 | *CurrentEigenvector *= -1.;
|
---|
[e828c0] | 319 | DoLog(1) && (Log() << Verbose(1) << "Pushing (inverted) " << *CurrentEigenvector << " into parallel list [" << mostparallel_index << "]" << std::endl);
|
---|
[742371] | 320 | } else {
|
---|
[e828c0] | 321 | DoLog(1) && (Log() << Verbose(1) << "Pushing " << *CurrentEigenvector << " into parallel list [" << mostparallel_index << "]" << std::endl);
|
---|
[742371] | 322 | }
|
---|
| 323 | ParallelEigenvectorList[mostparallel_index].push_back(make_pair(boost::shared_ptr<VectorContent>(CurrentEigenvector), eigenvalue));
|
---|
| 324 | CorrespondenceList.erase(mostparallel_index);
|
---|
| 325 | }
|
---|
| 326 | }
|
---|
| 327 |
|
---|
[40be55] | 328 | void SubspaceFactorizerUnittest::EigenvectorTest()
|
---|
| 329 | {
|
---|
| 330 | VectorArray CurrentEigenvectors;
|
---|
[742371] | 331 | ValueArray CurrentEigenvalues;
|
---|
[f5bca2] | 332 | VectorValueList *ParallelEigenvectorList = new VectorValueList[matrixdimension];
|
---|
[40be55] | 333 | IndexSet AllIndices;
|
---|
| 334 |
|
---|
| 335 | // create the total index set
|
---|
[f5bca2] | 336 | for (size_t i=0;i<matrixdimension;++i)
|
---|
[40be55] | 337 | AllIndices.insert(i);
|
---|
| 338 |
|
---|
| 339 | // create all consecutive index subsets for dim 1 to 3
|
---|
| 340 | IndexMap Dimension_to_Indexset;
|
---|
| 341 | for (size_t dim = 0; dim<3;++dim) {
|
---|
[f5bca2] | 342 | for (size_t i=0;i<matrixdimension;++i) {
|
---|
[40be55] | 343 | IndexSet *indexset = new IndexSet;
|
---|
[f5bca2] | 344 | for (size_t j=0;j<dim+1;++j) {
|
---|
| 345 | const int value = (i+j) % matrixdimension;
|
---|
| 346 | //std::cout << "Putting " << value << " into " << i << "th map " << dim << std::endl;
|
---|
| 347 | CPPUNIT_ASSERT_MESSAGE("index "+toString(value)+" already present in "+toString(dim)+"-dim "+toString(i)+"th indexset.", indexset->count(value) == 0);
|
---|
| 348 | indexset->insert(value);
|
---|
[40be55] | 349 | }
|
---|
| 350 | Dimension_to_Indexset.insert( make_pair(dim, boost::shared_ptr<IndexSet>(indexset)) );
|
---|
| 351 | // no need to free indexset, is stored in shared_ptr and
|
---|
| 352 | // will get released when Dimension_to_Indexset is destroyed
|
---|
| 353 | }
|
---|
| 354 | }
|
---|
| 355 |
|
---|
[f5bca2] | 356 | // set to first guess, i.e. the unit vectors of R^matrixdimension
|
---|
[742371] | 357 | BOOST_FOREACH( size_t index, AllIndices) {
|
---|
[f5bca2] | 358 | boost::shared_ptr<VectorContent> EV(new VectorContent(matrixdimension));
|
---|
[40be55] | 359 | EV->setZero();
|
---|
[742371] | 360 | EV->at(index) = 1.;
|
---|
[40be55] | 361 | CurrentEigenvectors.push_back(EV);
|
---|
[742371] | 362 | CurrentEigenvalues.push_back(0.);
|
---|
[40be55] | 363 | }
|
---|
| 364 |
|
---|
[742371] | 365 | size_t run=1; // counting iterations
|
---|
| 366 | double threshold = 1.; // containing threshold value
|
---|
[286af5f] | 367 | while ((threshold > 1e-10) && (run < 10)) {
|
---|
[742371] | 368 | // for every dimension
|
---|
[286af5f] | 369 | for (size_t dim = 0; dim<subspacelimit;++dim) {
|
---|
[742371] | 370 | // for every index set of this dimension
|
---|
[e828c0] | 371 | DoLog(0) && (Log() << Verbose(0) << std::endl << std::endl);
|
---|
| 372 | DoLog(0) && (Log() << Verbose(0) << "Current dimension is " << dim << std::endl);
|
---|
[742371] | 373 | std::pair<IndexMap::const_iterator,IndexMap::const_iterator> Bounds = Dimension_to_Indexset.equal_range(dim);
|
---|
| 374 | for (IndexMap::const_iterator IndexsetIter = Bounds.first;
|
---|
| 375 | IndexsetIter != Bounds.second;
|
---|
| 376 | ++IndexsetIter) {
|
---|
| 377 | // show the index set
|
---|
[e828c0] | 378 | DoLog(0) && (Log() << Verbose(0) << std::endl);
|
---|
| 379 | DoLog(1) && (Log() << Verbose(1) << "Current index set is " << *(IndexsetIter->second) << std::endl);
|
---|
[742371] | 380 |
|
---|
| 381 | // create transformation matrices from these
|
---|
[f5bca2] | 382 | MatrixContent *subsystem = getSubspaceMatrix(*matrix, CurrentEigenvectors, *(IndexsetIter->second));
|
---|
[e828c0] | 383 | DoLog(2) && (Log() << Verbose(2) << "Subsystem matrix is " << *subsystem << std::endl);
|
---|
[742371] | 384 |
|
---|
| 385 | // solve _small_ systems for eigenvalues
|
---|
| 386 | VectorContent *Eigenvalues = new VectorContent(subsystem->transformToEigenbasis());
|
---|
[e828c0] | 387 | DoLog(2) && (Log() << Verbose(2) << "Eigenvector matrix is " << *subsystem << std::endl);
|
---|
| 388 | DoLog(2) && (Log() << Verbose(2) << "Eigenvalues are " << *Eigenvalues << std::endl);
|
---|
[742371] | 389 |
|
---|
[f5bca2] | 390 | // blow up eigenvectors to matrixdimensiondim column vector again
|
---|
[742371] | 391 | MatrixContent *Eigenvectors = embedSubspaceMatrix(CurrentEigenvectors, *subsystem, *(IndexsetIter->second));
|
---|
[e828c0] | 392 | DoLog(1) && (Log() << Verbose(1) << matrixdimension << "x" << matrixdimension << " Eigenvector matrix is " << *Eigenvectors << std::endl);
|
---|
[742371] | 393 |
|
---|
| 394 | // we don't need the subsystem anymore
|
---|
| 395 | delete subsystem;
|
---|
| 396 |
|
---|
| 397 | // go through all eigenvectors in this subspace
|
---|
| 398 | IndexSet CorrespondenceList((*IndexsetIter->second)); // assure one-to-one and onto assignment
|
---|
| 399 | size_t localindex = 0;
|
---|
| 400 | BOOST_FOREACH( size_t iter, (*IndexsetIter->second)) {
|
---|
| 401 | // recognize eigenvectors parallel to existing ones
|
---|
| 402 | AssignSubspaceEigenvectors(
|
---|
| 403 | Eigenvalues->at(localindex),
|
---|
| 404 | new VectorContent(Eigenvectors->getColumnVector(iter)),
|
---|
| 405 | CurrentEigenvectors,
|
---|
| 406 | CorrespondenceList,
|
---|
| 407 | ParallelEigenvectorList);
|
---|
| 408 | localindex++;
|
---|
[40be55] | 409 | }
|
---|
[742371] | 410 |
|
---|
| 411 | // free eigenvectors
|
---|
| 412 | delete Eigenvectors;
|
---|
| 413 | delete Eigenvalues;
|
---|
[40be55] | 414 | }
|
---|
| 415 | }
|
---|
| 416 |
|
---|
[742371] | 417 | // print list of similar eigenvectors
|
---|
| 418 | BOOST_FOREACH( size_t index, AllIndices) {
|
---|
[e828c0] | 419 | DoLog(2) && (Log() << Verbose(2) << "Similar to " << index << "th current eigenvector " << *(CurrentEigenvectors[index]) << " are:" << std::endl);
|
---|
[742371] | 420 | BOOST_FOREACH( VectorValueList::value_type &iter, ParallelEigenvectorList[index] ) {
|
---|
[e828c0] | 421 | DoLog(2) && (Log() << Verbose(2) << *(iter.first) << std::endl);
|
---|
[742371] | 422 | }
|
---|
[e828c0] | 423 | DoLog(2) && (Log() << Verbose(2) << std::endl);
|
---|
[40be55] | 424 | }
|
---|
| 425 |
|
---|
[742371] | 426 | // create new CurrentEigenvectors from averaging parallel ones.
|
---|
| 427 | BOOST_FOREACH(size_t index, AllIndices) {
|
---|
| 428 | CurrentEigenvectors[index]->setZero();
|
---|
| 429 | CurrentEigenvalues[index] = 0.;
|
---|
| 430 | BOOST_FOREACH( VectorValueList::value_type &iter, ParallelEigenvectorList[index] ) {
|
---|
| 431 | *CurrentEigenvectors[index] += (*iter.first) * (iter.second);
|
---|
| 432 | CurrentEigenvalues[index] += (iter.second);
|
---|
| 433 | }
|
---|
| 434 | *CurrentEigenvectors[index] *= 1./CurrentEigenvalues[index];
|
---|
| 435 | CurrentEigenvalues[index] /= (double)ParallelEigenvectorList[index].size();
|
---|
| 436 | ParallelEigenvectorList[index].clear();
|
---|
[40be55] | 437 | }
|
---|
| 438 |
|
---|
[742371] | 439 | // check orthonormality
|
---|
| 440 | threshold = calculateOrthogonalityThreshold(AllIndices, CurrentEigenvectors);
|
---|
| 441 | bool dontOrthonormalization = checkOrthogonality(AllIndices, CurrentEigenvectors);
|
---|
| 442 |
|
---|
| 443 | // orthonormalize
|
---|
| 444 | if (!dontOrthonormalization) {
|
---|
[e828c0] | 445 | DoLog(0) && (Log() << Verbose(0) << "Orthonormalizing ... " << std::endl);
|
---|
[742371] | 446 | for (IndexSet::const_iterator firstindex = AllIndices.begin();
|
---|
| 447 | firstindex != AllIndices.end();
|
---|
| 448 | ++firstindex) {
|
---|
| 449 | for (IndexSet::const_iterator secondindex = firstindex;
|
---|
| 450 | secondindex != AllIndices.end();
|
---|
| 451 | ++secondindex) {
|
---|
| 452 | if (*firstindex == *secondindex) {
|
---|
| 453 | (*CurrentEigenvectors[*secondindex]) *= 1./(*CurrentEigenvectors[*secondindex]).Norm();
|
---|
| 454 | } else {
|
---|
| 455 | (*CurrentEigenvectors[*secondindex]) -=
|
---|
| 456 | ((*CurrentEigenvectors[*firstindex])*(*CurrentEigenvectors[*secondindex]))
|
---|
| 457 | *(*CurrentEigenvectors[*firstindex]);
|
---|
| 458 | }
|
---|
| 459 | }
|
---|
| 460 | }
|
---|
| 461 | }
|
---|
| 462 |
|
---|
[f5bca2] | 463 | // // check orthonormality again
|
---|
| 464 | // checkOrthogonality(AllIndices, CurrentEigenvectors);
|
---|
[742371] | 465 |
|
---|
| 466 | // show new ones
|
---|
[e828c0] | 467 | DoLog(0) && (Log() << Verbose(0) << "Resulting new eigenvectors and -values, run " << run << " are:" << std::endl);
|
---|
[742371] | 468 | BOOST_FOREACH( size_t index, AllIndices) {
|
---|
[e828c0] | 469 | DoLog(0) && (Log() << Verbose(0) << *CurrentEigenvectors[index] << " with " << CurrentEigenvalues[index] << std::endl);
|
---|
[742371] | 470 | }
|
---|
| 471 | run++;
|
---|
[40be55] | 472 | }
|
---|
| 473 |
|
---|
| 474 | delete[] ParallelEigenvectorList;
|
---|
| 475 |
|
---|
[b4cf2b] | 476 | CPPUNIT_ASSERT_EQUAL(0,0);
|
---|
| 477 | }
|
---|
| 478 |
|
---|
[e828c0] | 479 |
|
---|
| 480 | /** Iterative function to generate all power sets of indices of size \a maxelements.
|
---|
| 481 | *
|
---|
| 482 | * @param SetofSets Container for all sets
|
---|
| 483 | * @param CurrentSet pointer to current set in this container
|
---|
| 484 | * @param Indices Source set of indices
|
---|
| 485 | * @param maxelements number of elements of each set in final SetofSets
|
---|
| 486 | * @return true - generation continued, false - current set already had
|
---|
| 487 | * \a maxelements elements
|
---|
| 488 | */
|
---|
| 489 | bool generatePowerSet(
|
---|
| 490 | SetofIndexSets &SetofSets,
|
---|
| 491 | SetofIndexSets::iterator &CurrentSet,
|
---|
| 492 | IndexSet &Indices,
|
---|
| 493 | const size_t maxelements)
|
---|
| 494 | {
|
---|
| 495 | if (CurrentSet->size() < maxelements) {
|
---|
| 496 | // allocate the needed sets
|
---|
| 497 | const size_t size = Indices.size() - CurrentSet->size();
|
---|
| 498 | std::vector<std::set<size_t> > SetExpanded;
|
---|
| 499 | SetExpanded.reserve(size);
|
---|
| 500 |
|
---|
| 501 | // copy the current set into each
|
---|
| 502 | for (size_t i=0;i<size;++i)
|
---|
| 503 | SetExpanded.push_back(*CurrentSet);
|
---|
| 504 |
|
---|
| 505 | // expand each set by one index
|
---|
| 506 | size_t localindex=0;
|
---|
| 507 | BOOST_FOREACH(size_t iter, Indices) {
|
---|
| 508 | if (CurrentSet->count(iter) == 0) {
|
---|
| 509 | SetExpanded[localindex].insert(iter);
|
---|
| 510 | ++localindex;
|
---|
| 511 | }
|
---|
| 512 | }
|
---|
| 513 |
|
---|
| 514 | // insert set at position of CurrentSet
|
---|
| 515 | for (size_t i=0;i<size;++i) {
|
---|
| 516 | //DoLog(1) && (Log() << Verbose(1) << "Inserting set #" << i << ": " << SetExpanded[i] << std::endl);
|
---|
| 517 | SetofSets.insert(CurrentSet, SetExpanded[i]);
|
---|
| 518 | }
|
---|
| 519 | SetExpanded.clear();
|
---|
| 520 |
|
---|
| 521 | // and remove the current set
|
---|
| 522 | //SetofSets.erase(CurrentSet);
|
---|
| 523 | //CurrentSet = SetofSets.begin();
|
---|
| 524 |
|
---|
| 525 | // set iterator to a valid position again
|
---|
| 526 | ++CurrentSet;
|
---|
| 527 | return true;
|
---|
| 528 | } else {
|
---|
| 529 | return false;
|
---|
| 530 | }
|
---|
| 531 | }
|
---|
| 532 |
|
---|
| 533 | void SubspaceFactorizerUnittest::generatePowerSetTest()
|
---|
| 534 | {
|
---|
| 535 | IndexSet AllIndices;
|
---|
| 536 | for (size_t i=0;i<4;++i)
|
---|
| 537 | AllIndices.insert(i);
|
---|
| 538 |
|
---|
| 539 | SetofIndexSets SetofSets;
|
---|
| 540 | // note that starting off empty set is unstable
|
---|
| 541 | IndexSet singleset;
|
---|
| 542 | BOOST_FOREACH(size_t iter, AllIndices) {
|
---|
| 543 | singleset.insert(iter);
|
---|
| 544 | SetofSets.insert(singleset);
|
---|
| 545 | singleset.clear();
|
---|
| 546 | }
|
---|
| 547 | SetofIndexSets::iterator CurrentSet = SetofSets.begin();
|
---|
| 548 | while (CurrentSet != SetofSets.end()) {
|
---|
| 549 | //DoLog(0) && (Log() << Verbose(0) << "Current set is " << *CurrentSet << std::endl);
|
---|
| 550 | if (!generatePowerSet(SetofSets, CurrentSet, AllIndices, 2)) {
|
---|
| 551 | // go to next set
|
---|
| 552 | ++CurrentSet;
|
---|
| 553 | }
|
---|
| 554 | }
|
---|
| 555 |
|
---|
| 556 | SetofIndexSets ComparisonSet;
|
---|
| 557 | // now follows a very stupid construction
|
---|
| 558 | // because we can't use const arrays of some type meaningfully ...
|
---|
| 559 | { IndexSet tempSet; tempSet.insert(0); ComparisonSet.insert(tempSet); }
|
---|
| 560 | { IndexSet tempSet; tempSet.insert(1); ComparisonSet.insert(tempSet); }
|
---|
| 561 | { IndexSet tempSet; tempSet.insert(2); ComparisonSet.insert(tempSet); }
|
---|
| 562 | { IndexSet tempSet; tempSet.insert(3); ComparisonSet.insert(tempSet); }
|
---|
| 563 |
|
---|
| 564 | { IndexSet tempSet; tempSet.insert(0); tempSet.insert(1); ComparisonSet.insert(tempSet); }
|
---|
| 565 | { IndexSet tempSet; tempSet.insert(0); tempSet.insert(2); ComparisonSet.insert(tempSet); }
|
---|
| 566 | { IndexSet tempSet; tempSet.insert(0); tempSet.insert(3); ComparisonSet.insert(tempSet); }
|
---|
| 567 |
|
---|
| 568 | { IndexSet tempSet; tempSet.insert(1); tempSet.insert(2); ComparisonSet.insert(tempSet); }
|
---|
| 569 | { IndexSet tempSet; tempSet.insert(1); tempSet.insert(3); ComparisonSet.insert(tempSet); }
|
---|
| 570 |
|
---|
| 571 | { IndexSet tempSet; tempSet.insert(2); tempSet.insert(3); ComparisonSet.insert(tempSet); }
|
---|
| 572 |
|
---|
| 573 | CPPUNIT_ASSERT_EQUAL(SetofSets, ComparisonSet);
|
---|
| 574 | }
|
---|
| 575 |
|
---|
| 576 | bool cmd(double a, double b)
|
---|
| 577 | {
|
---|
| 578 | return a > b;
|
---|
| 579 | }
|
---|
| 580 |
|
---|
[9c5296] | 581 | void SubspaceFactorizerUnittest::SubspaceTest()
|
---|
| 582 | {
|
---|
[a06042] | 583 | Eigenspace::eigenvectorset CurrentEigenvectors;
|
---|
| 584 | Eigenspace::eigenvalueset CurrentEigenvalues;
|
---|
| 585 |
|
---|
[e828c0] | 586 | setVerbosity(0);
|
---|
| 587 |
|
---|
| 588 | boost::timer Time_generatingfullspace;
|
---|
| 589 | DoLog(0) && (Log() << Verbose(0) << std::endl << std::endl);
|
---|
[9c5296] | 590 | // create the total index set
|
---|
| 591 | IndexSet AllIndices;
|
---|
| 592 | for (size_t i=0;i<matrixdimension;++i)
|
---|
| 593 | AllIndices.insert(i);
|
---|
| 594 | Eigenspace FullSpace(AllIndices, *matrix);
|
---|
[e828c0] | 595 | DoLog(1) && (Log() << Verbose(1) << "Generated full space: " << FullSpace << std::endl);
|
---|
| 596 | DoLog(0) && (Log() << Verbose(0) << "Full space generation took " << Time_generatingfullspace.elapsed() << " seconds." << std::endl);
|
---|
[a06042] | 597 |
|
---|
| 598 | // generate first set of eigenvectors
|
---|
| 599 | // set to first guess, i.e. the unit vectors of R^matrixdimension
|
---|
| 600 | BOOST_FOREACH( size_t index, AllIndices) {
|
---|
| 601 | boost::shared_ptr<VectorContent> EV(new VectorContent(matrixdimension));
|
---|
| 602 | EV->setZero();
|
---|
| 603 | EV->at(index) = 1.;
|
---|
| 604 | CurrentEigenvectors.push_back(EV);
|
---|
| 605 | CurrentEigenvalues.push_back(0.);
|
---|
| 606 | }
|
---|
[9c5296] | 607 |
|
---|
[e828c0] | 608 | boost::timer Time_generatingsubsets;
|
---|
| 609 | DoLog(0) && (Log() << Verbose(0) << "Generating sub sets ..." << std::endl);
|
---|
| 610 | SetofIndexSets SetofSets;
|
---|
| 611 | // note that starting off empty set is unstable
|
---|
| 612 | IndexSet singleset;
|
---|
| 613 | BOOST_FOREACH(size_t iter, AllIndices) {
|
---|
| 614 | singleset.insert(iter);
|
---|
| 615 | SetofSets.insert(singleset);
|
---|
| 616 | singleset.clear();
|
---|
| 617 | }
|
---|
| 618 | SetofIndexSets::iterator CurrentSet = SetofSets.begin();
|
---|
| 619 | while (CurrentSet != SetofSets.end()) {
|
---|
| 620 | //DoLog(2) && (Log() << Verbose(2) << "Current set is " << *CurrentSet << std::endl);
|
---|
| 621 | if (!generatePowerSet(SetofSets, CurrentSet, AllIndices, subspacelimit)) {
|
---|
| 622 | // go to next set
|
---|
| 623 | ++CurrentSet;
|
---|
| 624 | }
|
---|
| 625 | }
|
---|
| 626 | DoLog(0) && (Log() << Verbose(0) << "Sub set generation took " << Time_generatingsubsets.elapsed() << " seconds." << std::endl);
|
---|
| 627 |
|
---|
| 628 | // create a subspace to each set and and to respective level
|
---|
| 629 | boost::timer Time_generatingsubspaces;
|
---|
| 630 | DoLog(0) && (Log() << Verbose(0) << "Generating sub spaces ..." << std::endl);
|
---|
[9c5296] | 631 | SubspaceMap Dimension_to_Indexset;
|
---|
[e828c0] | 632 | BOOST_FOREACH(std::set<size_t> iter, SetofSets) {
|
---|
| 633 | boost::shared_ptr<Subspace> subspace(new Subspace(iter, FullSpace));
|
---|
| 634 | DoLog(1) && (Log() << Verbose(1) << "Current subspace is " << *subspace << std::endl);
|
---|
| 635 | Dimension_to_Indexset.insert( make_pair(iter.size(), boost::shared_ptr<Subspace>(subspace)) );
|
---|
| 636 | }
|
---|
| 637 |
|
---|
| 638 | for (size_t dim = 1; dim<=subspacelimit;++dim) {
|
---|
| 639 | BOOST_FOREACH( SubspaceMap::value_type subspace, Dimension_to_Indexset.equal_range(dim)) {
|
---|
| 640 | if (dim != 0) { // from level 1 and onward
|
---|
[9c5296] | 641 | BOOST_FOREACH( SubspaceMap::value_type entry, Dimension_to_Indexset.equal_range(dim-1)) {
|
---|
[e828c0] | 642 | if (subspace.second->contains(*entry.second)) {
|
---|
| 643 | // if contained then add ...
|
---|
| 644 | subspace.second->addSubset(entry.second);
|
---|
| 645 | // ... and also its containees as they are all automatically contained as well
|
---|
| 646 | BOOST_FOREACH(boost::shared_ptr<Subspace> iter, entry.second->SubIndices) {
|
---|
| 647 | subspace.second->addSubset(iter);
|
---|
| 648 | }
|
---|
[9c5296] | 649 | }
|
---|
| 650 | }
|
---|
| 651 | }
|
---|
[e828c0] | 652 | }
|
---|
[9c5296] | 653 | }
|
---|
[e828c0] | 654 | DoLog(0) && (Log() << Verbose(0) << "Sub space generation took " << Time_generatingsubspaces.elapsed() << " seconds." << std::endl);
|
---|
| 655 |
|
---|
| 656 | // create a file handle for the eigenvalues
|
---|
| 657 | std::ofstream outputvalues("eigenvalues.dat", std::ios_base::trunc);
|
---|
| 658 | ASSERT(outputvalues.good(),
|
---|
| 659 | "SubspaceFactorizerUnittest::EigenvectorTest() - failed to open eigenvalue file!");
|
---|
| 660 | outputvalues << "# iteration ";
|
---|
| 661 | BOOST_FOREACH(size_t iter, AllIndices) {
|
---|
| 662 | outputvalues << "\teigenvalue" << iter;
|
---|
| 663 | }
|
---|
| 664 | outputvalues << std::endl;
|
---|
[9c5296] | 665 |
|
---|
[e828c0] | 666 | DoLog(0) && (Log() << Verbose(0) << "Solving ..." << std::endl);
|
---|
| 667 | boost::timer Time_solving;
|
---|
[286af5f] | 668 | size_t run=1; // counting iterations
|
---|
| 669 | double threshold = 1.; // containing threshold value
|
---|
[e828c0] | 670 | while ((threshold > MYEPSILON) && (run < 20)) {
|
---|
[286af5f] | 671 | // for every dimension
|
---|
[e828c0] | 672 | for (size_t dim = 1; dim <= subspacelimit;++dim) {
|
---|
[286af5f] | 673 | // for every index set of this dimension
|
---|
[e828c0] | 674 | DoLog(1) && (Log() << Verbose(1) << std::endl << std::endl);
|
---|
| 675 | DoLog(1) && (Log() << Verbose(1) << "Current dimension is " << dim << std::endl);
|
---|
[286af5f] | 676 | std::pair<SubspaceMap::const_iterator,SubspaceMap::const_iterator> Bounds = Dimension_to_Indexset.equal_range(dim);
|
---|
| 677 | for (SubspaceMap::const_iterator IndexsetIter = Bounds.first;
|
---|
| 678 | IndexsetIter != Bounds.second;
|
---|
| 679 | ++IndexsetIter) {
|
---|
| 680 | Subspace& subspace = *(IndexsetIter->second);
|
---|
| 681 | // show the index set
|
---|
[e828c0] | 682 | DoLog(2) && (Log() << Verbose(2) << std::endl);
|
---|
| 683 | DoLog(2) && (Log() << Verbose(2) << "Current subspace is " << subspace << std::endl);
|
---|
[286af5f] | 684 |
|
---|
| 685 | // solve
|
---|
| 686 | subspace.calculateEigenSubspace();
|
---|
| 687 |
|
---|
| 688 | // note that assignment to global eigenvectors all remains within subspace
|
---|
| 689 | }
|
---|
| 690 | }
|
---|
| 691 |
|
---|
| 692 | // print list of similar eigenvectors
|
---|
[e828c0] | 693 | DoLog(2) && (Log() << Verbose(2) << std::endl);
|
---|
[286af5f] | 694 | BOOST_FOREACH( size_t index, AllIndices) {
|
---|
[e828c0] | 695 | DoLog(2) && (Log() << Verbose(2) << "Similar to " << index << "th current eigenvector " << *(CurrentEigenvectors[index]) << " are:" << std::endl);
|
---|
[286af5f] | 696 | BOOST_FOREACH( SubspaceMap::value_type iter, Dimension_to_Indexset) {
|
---|
| 697 | const VectorContent & CurrentEV = (iter.second)->getEigenvectorParallelToFullOne(index);
|
---|
| 698 | if (!CurrentEV.IsZero())
|
---|
[e828c0] | 699 | Log() << Verbose(2)
|
---|
| 700 | << "dim" << iter.first
|
---|
| 701 | << ", subspace{" << (iter.second)->getIndices()
|
---|
| 702 | << "}: "<<CurrentEV << std::endl;
|
---|
[286af5f] | 703 | }
|
---|
[e828c0] | 704 | DoLog(2) && (Log() << Verbose(2) << std::endl);
|
---|
[286af5f] | 705 | }
|
---|
| 706 |
|
---|
| 707 | // create new CurrentEigenvectors from averaging parallel ones.
|
---|
| 708 | BOOST_FOREACH(size_t index, AllIndices) {
|
---|
| 709 | CurrentEigenvectors[index]->setZero();
|
---|
| 710 | CurrentEigenvalues[index] = 0.;
|
---|
| 711 | size_t count = 0;
|
---|
| 712 | BOOST_FOREACH( SubspaceMap::value_type iter, Dimension_to_Indexset) {
|
---|
| 713 | const VectorContent CurrentEV = (iter.second)->getEigenvectorParallelToFullOne(index);
|
---|
[e828c0] | 714 | *CurrentEigenvectors[index] += CurrentEV; // * (iter.second)->getEigenvalueOfEigenvectorParallelToFullOne(index);
|
---|
[286af5f] | 715 | CurrentEigenvalues[index] += (iter.second)->getEigenvalueOfEigenvectorParallelToFullOne(index);
|
---|
| 716 | if (!CurrentEV.IsZero())
|
---|
| 717 | count++;
|
---|
| 718 | }
|
---|
| 719 | *CurrentEigenvectors[index] *= 1./CurrentEigenvalues[index];
|
---|
[e828c0] | 720 | //CurrentEigenvalues[index] /= (double)count;
|
---|
[286af5f] | 721 | }
|
---|
| 722 |
|
---|
| 723 | // check orthonormality
|
---|
| 724 | threshold = calculateOrthogonalityThreshold(AllIndices, CurrentEigenvectors);
|
---|
| 725 | bool dontOrthonormalization = checkOrthogonality(AllIndices, CurrentEigenvectors);
|
---|
| 726 |
|
---|
| 727 | // orthonormalize
|
---|
| 728 | if (!dontOrthonormalization) {
|
---|
[e828c0] | 729 | DoLog(1) && (Log() << Verbose(1) << "Orthonormalizing ... " << std::endl);
|
---|
[286af5f] | 730 | for (IndexSet::const_iterator firstindex = AllIndices.begin();
|
---|
| 731 | firstindex != AllIndices.end();
|
---|
| 732 | ++firstindex) {
|
---|
| 733 | for (IndexSet::const_iterator secondindex = firstindex;
|
---|
| 734 | secondindex != AllIndices.end();
|
---|
| 735 | ++secondindex) {
|
---|
| 736 | if (*firstindex == *secondindex) {
|
---|
| 737 | (*CurrentEigenvectors[*secondindex]) *= 1./(*CurrentEigenvectors[*secondindex]).Norm();
|
---|
| 738 | } else {
|
---|
| 739 | (*CurrentEigenvectors[*secondindex]) -=
|
---|
| 740 | ((*CurrentEigenvectors[*firstindex])*(*CurrentEigenvectors[*secondindex]))
|
---|
| 741 | *(*CurrentEigenvectors[*firstindex]);
|
---|
| 742 | }
|
---|
| 743 | }
|
---|
| 744 | }
|
---|
| 745 | }
|
---|
| 746 |
|
---|
| 747 | // // check orthonormality again
|
---|
| 748 | // checkOrthogonality(AllIndices, CurrentEigenvectors);
|
---|
| 749 |
|
---|
| 750 | // put obtained eigenvectors into full space
|
---|
| 751 | FullSpace.setEigenpairs(CurrentEigenvectors, CurrentEigenvalues);
|
---|
| 752 |
|
---|
| 753 | // show new ones
|
---|
[e828c0] | 754 | DoLog(1) && (Log() << Verbose(1) << "Resulting new eigenvectors and -values, run " << run << " are:" << std::endl);
|
---|
| 755 | outputvalues << run;
|
---|
[286af5f] | 756 | BOOST_FOREACH( size_t index, AllIndices) {
|
---|
[e828c0] | 757 | DoLog(1) && (Log() << Verbose(1) << *CurrentEigenvectors[index] << " with " << CurrentEigenvalues[index] << std::endl);
|
---|
| 758 | outputvalues << "\t" << CurrentEigenvalues[index];
|
---|
[286af5f] | 759 | }
|
---|
[e828c0] | 760 | outputvalues << std::endl;
|
---|
| 761 |
|
---|
| 762 | // and next iteration
|
---|
| 763 | DoLog(0) && (Log() << Verbose(0) << "\titeration #" << run << std::endl);
|
---|
[286af5f] | 764 | run++;
|
---|
| 765 | }
|
---|
[e828c0] | 766 | DoLog(0) && (Log() << Verbose(0) << "Solving took " << Time_solving.elapsed() << " seconds." << std::endl);
|
---|
| 767 | // show final ones
|
---|
| 768 | DoLog(0) && (Log() << Verbose(0) << "Resulting new eigenvectors and -values, run " << run << " are:" << std::endl);
|
---|
| 769 | outputvalues << run;
|
---|
| 770 | BOOST_FOREACH( size_t index, AllIndices) {
|
---|
| 771 | DoLog(0) && (Log() << Verbose(0) << *CurrentEigenvectors[index] << " with " << CurrentEigenvalues[index] << std::endl);
|
---|
| 772 | outputvalues << "\t" << CurrentEigenvalues[index];
|
---|
| 773 | }
|
---|
| 774 | outputvalues << std::endl;
|
---|
| 775 | outputvalues.close();
|
---|
| 776 |
|
---|
| 777 | setVerbosity(2);
|
---|
| 778 |
|
---|
| 779 | DoLog(0) && (Log() << Verbose(0) << "Solving full space ..." << std::endl);
|
---|
| 780 | boost::timer Time_comparison;
|
---|
| 781 | MatrixContent tempFullspaceMatrix = FullSpace.getEigenspaceMatrix();
|
---|
| 782 | gsl_vector *eigenvalues = tempFullspaceMatrix.transformToEigenbasis();
|
---|
| 783 | tempFullspaceMatrix.sortEigenbasis(eigenvalues);
|
---|
| 784 | DoLog(0) && (Log() << Verbose(0) << "full space solution took " << Time_comparison.elapsed() << " seconds." << std::endl);
|
---|
| 785 |
|
---|
| 786 | // compare all
|
---|
| 787 | sort(CurrentEigenvalues.begin(),CurrentEigenvalues.end()); //, cmd);
|
---|
| 788 | for (size_t i=0;i<eigenvalues->size; ++i) {
|
---|
| 789 | CPPUNIT_ASSERT_MESSAGE(toString(i)+"ths eigenvalue differs:"
|
---|
| 790 | +toString(CurrentEigenvalues[i])+" != "+toString(gsl_vector_get(eigenvalues,i)),
|
---|
| 791 | fabs((CurrentEigenvalues[i] - gsl_vector_get(eigenvalues,i))/CurrentEigenvalues[i]) < 1e-3);
|
---|
| 792 | }
|
---|
[286af5f] | 793 |
|
---|
[9c5296] | 794 | CPPUNIT_ASSERT_EQUAL(0,0);
|
---|
| 795 | }
|
---|