source: src/tesselationhelpers.cpp@ b9947d

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since b9947d was e138de, checked in by Frederik Heber <heber@…>, 15 years ago

Huge change from ofstream * (const) out --> Log().

  • first shift was done via regular expressions
  • then via error messages from the code
  • note that class atom, class element and class molecule kept in parts their output stream, was they print to file.
  • make check runs fine
  • MISSING: Verbosity is not fixed for everything (i.e. if no endl; is present and next has Verbose(0) ...)

Signed-off-by: Frederik Heber <heber@…>

  • Property mode set to 100644
File size: 36.1 KB
Line 
1/*
2 * TesselationHelpers.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include <fstream>
9
10#include "linkedcell.hpp"
11#include "log.hpp"
12#include "tesselation.hpp"
13#include "tesselationhelpers.hpp"
14#include "vector.hpp"
15#include "verbose.hpp"
16
17double DetGet(gsl_matrix * const A, const int inPlace) {
18 /*
19 inPlace = 1 => A is replaced with the LU decomposed copy.
20 inPlace = 0 => A is retained, and a copy is used for LU.
21 */
22
23 double det;
24 int signum;
25 gsl_permutation *p = gsl_permutation_alloc(A->size1);
26 gsl_matrix *tmpA;
27
28 if (inPlace)
29 tmpA = A;
30 else {
31 gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
32 gsl_matrix_memcpy(tmpA , A);
33 }
34
35
36 gsl_linalg_LU_decomp(tmpA , p , &signum);
37 det = gsl_linalg_LU_det(tmpA , signum);
38 gsl_permutation_free(p);
39 if (! inPlace)
40 gsl_matrix_free(tmpA);
41
42 return det;
43};
44
45void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
46{
47 gsl_matrix *A = gsl_matrix_calloc(3,3);
48 double m11, m12, m13, m14;
49
50 for(int i=0;i<3;i++) {
51 gsl_matrix_set(A, i, 0, a.x[i]);
52 gsl_matrix_set(A, i, 1, b.x[i]);
53 gsl_matrix_set(A, i, 2, c.x[i]);
54 }
55 m11 = DetGet(A, 1);
56
57 for(int i=0;i<3;i++) {
58 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
59 gsl_matrix_set(A, i, 1, b.x[i]);
60 gsl_matrix_set(A, i, 2, c.x[i]);
61 }
62 m12 = DetGet(A, 1);
63
64 for(int i=0;i<3;i++) {
65 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
66 gsl_matrix_set(A, i, 1, a.x[i]);
67 gsl_matrix_set(A, i, 2, c.x[i]);
68 }
69 m13 = DetGet(A, 1);
70
71 for(int i=0;i<3;i++) {
72 gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
73 gsl_matrix_set(A, i, 1, a.x[i]);
74 gsl_matrix_set(A, i, 2, b.x[i]);
75 }
76 m14 = DetGet(A, 1);
77
78 if (fabs(m11) < MYEPSILON)
79 eLog() << Verbose(0) << "ERROR: three points are colinear." << endl;
80
81 center->x[0] = 0.5 * m12/ m11;
82 center->x[1] = -0.5 * m13/ m11;
83 center->x[2] = 0.5 * m14/ m11;
84
85 if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
86 eLog() << Verbose(0) << "ERROR: The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
87
88 gsl_matrix_free(A);
89};
90
91
92
93/**
94 * Function returns center of sphere with RADIUS, which rests on points a, b, c
95 * @param Center this vector will be used for return
96 * @param a vector first point of triangle
97 * @param b vector second point of triangle
98 * @param c vector third point of triangle
99 * @param *Umkreismittelpunkt new center point of circumference
100 * @param Direction vector indicates up/down
101 * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
102 * @param Halfplaneindicator double indicates whether Direction is up or down
103 * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
104 * @param alpha double angle at a
105 * @param beta double, angle at b
106 * @param gamma, double, angle at c
107 * @param Radius, double
108 * @param Umkreisradius double radius of circumscribing circle
109 */
110void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
111 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
112{
113 Vector TempNormal, helper;
114 double Restradius;
115 Vector OtherCenter;
116 Log() << Verbose(3) << "Begin of GetCenterOfSphere.\n";
117 Center->Zero();
118 helper.CopyVector(&a);
119 helper.Scale(sin(2.*alpha));
120 Center->AddVector(&helper);
121 helper.CopyVector(&b);
122 helper.Scale(sin(2.*beta));
123 Center->AddVector(&helper);
124 helper.CopyVector(&c);
125 helper.Scale(sin(2.*gamma));
126 Center->AddVector(&helper);
127 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
128 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
129 NewUmkreismittelpunkt->CopyVector(Center);
130 Log() << Verbose(4) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
131 // Here we calculated center of circumscribing circle, using barycentric coordinates
132 Log() << Verbose(4) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
133
134 TempNormal.CopyVector(&a);
135 TempNormal.SubtractVector(&b);
136 helper.CopyVector(&a);
137 helper.SubtractVector(&c);
138 TempNormal.VectorProduct(&helper);
139 if (fabs(HalfplaneIndicator) < MYEPSILON)
140 {
141 if ((TempNormal.ScalarProduct(AlternativeDirection) <0 and AlternativeIndicator >0) or (TempNormal.ScalarProduct(AlternativeDirection) >0 and AlternativeIndicator <0))
142 {
143 TempNormal.Scale(-1);
144 }
145 }
146 else
147 {
148 if (TempNormal.ScalarProduct(Direction)<0 && HalfplaneIndicator >0 || TempNormal.ScalarProduct(Direction)>0 && HalfplaneIndicator<0)
149 {
150 TempNormal.Scale(-1);
151 }
152 }
153
154 TempNormal.Normalize();
155 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
156 Log() << Verbose(4) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
157 TempNormal.Scale(Restradius);
158 Log() << Verbose(4) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
159
160 Center->AddVector(&TempNormal);
161 Log() << Verbose(0) << "Center of sphere of circumference is " << *Center << ".\n";
162 GetSphere(&OtherCenter, a, b, c, RADIUS);
163 Log() << Verbose(0) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
164 Log() << Verbose(3) << "End of GetCenterOfSphere.\n";
165};
166
167
168/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
169 * \param *Center new center on return
170 * \param *a first point
171 * \param *b second point
172 * \param *c third point
173 */
174void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c)
175{
176 Vector helper;
177 double alpha, beta, gamma;
178 Vector SideA, SideB, SideC;
179 SideA.CopyVector(b);
180 SideA.SubtractVector(&c);
181 SideB.CopyVector(c);
182 SideB.SubtractVector(&a);
183 SideC.CopyVector(a);
184 SideC.SubtractVector(&b);
185 alpha = M_PI - SideB.Angle(&SideC);
186 beta = M_PI - SideC.Angle(&SideA);
187 gamma = M_PI - SideA.Angle(&SideB);
188 //Log() << Verbose(3) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
189 if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON)
190 eLog() << Verbose(0) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
191
192 Center->Zero();
193 helper.CopyVector(a);
194 helper.Scale(sin(2.*alpha));
195 Center->AddVector(&helper);
196 helper.CopyVector(b);
197 helper.Scale(sin(2.*beta));
198 Center->AddVector(&helper);
199 helper.CopyVector(c);
200 helper.Scale(sin(2.*gamma));
201 Center->AddVector(&helper);
202 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
203};
204
205/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
206 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
207 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
208 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
209 * \param CircleCenter Center of the parameter circle
210 * \param CirclePlaneNormal normal vector to plane of the parameter circle
211 * \param CircleRadius radius of the parameter circle
212 * \param NewSphereCenter new center of a circumcircle
213 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
214 * \param NormalVector normal vector
215 * \param SearchDirection search direction to make angle unique on return.
216 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
217 */
218double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection)
219{
220 Vector helper;
221 double radius, alpha;
222
223 helper.CopyVector(&NewSphereCenter);
224 // test whether new center is on the parameter circle's plane
225 if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
226 eLog() << Verbose(0) << "ERROR: Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
227 helper.ProjectOntoPlane(&CirclePlaneNormal);
228 }
229 radius = helper.ScalarProduct(&helper);
230 // test whether the new center vector has length of CircleRadius
231 if (fabs(radius - CircleRadius) > HULLEPSILON)
232 eLog() << Verbose(1) << "ERROR: The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
233 alpha = helper.Angle(&OldSphereCenter);
234 // make the angle unique by checking the halfplanes/search direction
235 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
236 alpha = 2.*M_PI - alpha;
237 //Log() << Verbose(2) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << OldSphereCenter << " and resulting angle is " << alpha << "." << endl;
238 radius = helper.Distance(&OldSphereCenter);
239 helper.ProjectOntoPlane(&NormalVector);
240 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
241 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
242 //Log() << Verbose(2) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
243 return alpha;
244 } else {
245 //Log() << Verbose(1) << "INFO: NewSphereCenter " << helper << " is too close to OldSphereCenter" << OldSphereCenter << "." << endl;
246 return 2.*M_PI;
247 }
248};
249
250struct Intersection {
251 Vector x1;
252 Vector x2;
253 Vector x3;
254 Vector x4;
255};
256
257/**
258 * Intersection calculation function.
259 *
260 * @param x to find the result for
261 * @param function parameter
262 */
263double MinIntersectDistance(const gsl_vector * x, void *params)
264{
265 double retval = 0;
266 struct Intersection *I = (struct Intersection *)params;
267 Vector intersection;
268 Vector SideA,SideB,HeightA, HeightB;
269 for (int i=0;i<NDIM;i++)
270 intersection.x[i] = gsl_vector_get(x, i);
271
272 SideA.CopyVector(&(I->x1));
273 SideA.SubtractVector(&I->x2);
274 HeightA.CopyVector(&intersection);
275 HeightA.SubtractVector(&I->x1);
276 HeightA.ProjectOntoPlane(&SideA);
277
278 SideB.CopyVector(&I->x3);
279 SideB.SubtractVector(&I->x4);
280 HeightB.CopyVector(&intersection);
281 HeightB.SubtractVector(&I->x3);
282 HeightB.ProjectOntoPlane(&SideB);
283
284 retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
285 //Log() << Verbose(2) << "MinIntersectDistance called, result: " << retval << endl;
286
287 return retval;
288};
289
290
291/**
292 * Calculates whether there is an intersection between two lines. The first line
293 * always goes through point 1 and point 2 and the second line is given by the
294 * connection between point 4 and point 5.
295 *
296 * @param point 1 of line 1
297 * @param point 2 of line 1
298 * @param point 1 of line 2
299 * @param point 2 of line 2
300 *
301 * @return true if there is an intersection between the given lines, false otherwise
302 */
303bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4)
304{
305 bool result;
306
307 struct Intersection par;
308 par.x1.CopyVector(&point1);
309 par.x2.CopyVector(&point2);
310 par.x3.CopyVector(&point3);
311 par.x4.CopyVector(&point4);
312
313 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
314 gsl_multimin_fminimizer *s = NULL;
315 gsl_vector *ss, *x;
316 gsl_multimin_function minexFunction;
317
318 size_t iter = 0;
319 int status;
320 double size;
321
322 /* Starting point */
323 x = gsl_vector_alloc(NDIM);
324 gsl_vector_set(x, 0, point1.x[0]);
325 gsl_vector_set(x, 1, point1.x[1]);
326 gsl_vector_set(x, 2, point1.x[2]);
327
328 /* Set initial step sizes to 1 */
329 ss = gsl_vector_alloc(NDIM);
330 gsl_vector_set_all(ss, 1.0);
331
332 /* Initialize method and iterate */
333 minexFunction.n = NDIM;
334 minexFunction.f = &MinIntersectDistance;
335 minexFunction.params = (void *)&par;
336
337 s = gsl_multimin_fminimizer_alloc(T, NDIM);
338 gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
339
340 do {
341 iter++;
342 status = gsl_multimin_fminimizer_iterate(s);
343
344 if (status) {
345 break;
346 }
347
348 size = gsl_multimin_fminimizer_size(s);
349 status = gsl_multimin_test_size(size, 1e-2);
350
351 if (status == GSL_SUCCESS) {
352 Log() << Verbose(2) << "converged to minimum" << endl;
353 }
354 } while (status == GSL_CONTINUE && iter < 100);
355
356 // check whether intersection is in between or not
357 Vector intersection, SideA, SideB, HeightA, HeightB;
358 double t1, t2;
359 for (int i = 0; i < NDIM; i++) {
360 intersection.x[i] = gsl_vector_get(s->x, i);
361 }
362
363 SideA.CopyVector(&par.x2);
364 SideA.SubtractVector(&par.x1);
365 HeightA.CopyVector(&intersection);
366 HeightA.SubtractVector(&par.x1);
367
368 t1 = HeightA.ScalarProduct(&SideA)/SideA.ScalarProduct(&SideA);
369
370 SideB.CopyVector(&par.x4);
371 SideB.SubtractVector(&par.x3);
372 HeightB.CopyVector(&intersection);
373 HeightB.SubtractVector(&par.x3);
374
375 t2 = HeightB.ScalarProduct(&SideB)/SideB.ScalarProduct(&SideB);
376
377 Log() << Verbose(2) << "Intersection " << intersection << " is at "
378 << t1 << " for (" << point1 << "," << point2 << ") and at "
379 << t2 << " for (" << point3 << "," << point4 << "): ";
380
381 if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
382 Log() << Verbose(0) << "true intersection." << endl;
383 result = true;
384 } else {
385 Log() << Verbose(0) << "intersection out of region of interest." << endl;
386 result = false;
387 }
388
389 // free minimizer stuff
390 gsl_vector_free(x);
391 gsl_vector_free(ss);
392 gsl_multimin_fminimizer_free(s);
393
394 return result;
395};
396
397/** Gets the angle between a point and a reference relative to the provided center.
398 * We have two shanks point and reference between which the angle is calculated
399 * and by scalar product with OrthogonalVector we decide the interval.
400 * @param point to calculate the angle for
401 * @param reference to which to calculate the angle
402 * @param OrthogonalVector points in direction of [pi,2pi] interval
403 *
404 * @return angle between point and reference
405 */
406double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
407{
408 if (reference.IsZero())
409 return M_PI;
410
411 // calculate both angles and correct with in-plane vector
412 if (point.IsZero())
413 return M_PI;
414 double phi = point.Angle(&reference);
415 if (OrthogonalVector.ScalarProduct(&point) > 0) {
416 phi = 2.*M_PI - phi;
417 }
418
419 Log() << Verbose(4) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
420
421 return phi;
422}
423
424
425/** Calculates the volume of a general tetraeder.
426 * \param *a first vector
427 * \param *a first vector
428 * \param *a first vector
429 * \param *a first vector
430 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
431 */
432double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
433{
434 Vector Point, TetraederVector[3];
435 double volume;
436
437 TetraederVector[0].CopyVector(a);
438 TetraederVector[1].CopyVector(b);
439 TetraederVector[2].CopyVector(c);
440 for (int j=0;j<3;j++)
441 TetraederVector[j].SubtractVector(&d);
442 Point.CopyVector(&TetraederVector[0]);
443 Point.VectorProduct(&TetraederVector[1]);
444 volume = 1./6. * fabs(Point.ScalarProduct(&TetraederVector[2]));
445 return volume;
446};
447
448
449/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
450 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
451 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
452 * \param TPS[3] nodes of the triangle
453 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
454 */
455bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
456{
457 bool result = false;
458 int counter = 0;
459
460 // check all three points
461 for (int i=0;i<3;i++)
462 for (int j=i+1; j<3; j++) {
463 if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
464 LineMap::const_iterator FindLine;
465 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
466 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
467 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
468 // If there is a line with less than two attached triangles, we don't need a new line.
469 if (FindLine->second->triangles.size() < 2) {
470 counter++;
471 break; // increase counter only once per edge
472 }
473 }
474 } else { // no line
475 Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
476 result = true;
477 }
478 }
479 if ((!result) && (counter > 1)) {
480 Log() << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
481 result = true;
482 }
483 return result;
484};
485
486
487/** Sort function for the candidate list.
488 */
489bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
490{
491 Vector BaseLineVector, OrthogonalVector, helper;
492 if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
493 Log() << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
494 //return false;
495 exit(1);
496 }
497 // create baseline vector
498 BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
499 BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
500 BaseLineVector.Normalize();
501
502 // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
503 helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
504 helper.SubtractVector(candidate1->point->node);
505 OrthogonalVector.CopyVector(&helper);
506 helper.VectorProduct(&BaseLineVector);
507 OrthogonalVector.SubtractVector(&helper);
508 OrthogonalVector.Normalize();
509
510 // calculate both angles and correct with in-plane vector
511 helper.CopyVector(candidate1->point->node);
512 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
513 double phi = BaseLineVector.Angle(&helper);
514 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
515 phi = 2.*M_PI - phi;
516 }
517 helper.CopyVector(candidate2->point->node);
518 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
519 double psi = BaseLineVector.Angle(&helper);
520 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
521 psi = 2.*M_PI - psi;
522 }
523
524 Log() << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
525 Log() << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
526
527 // return comparison
528 return phi < psi;
529};
530
531/**
532 * Finds the point which is second closest to the provided one.
533 *
534 * @param Point to which to find the second closest other point
535 * @param linked cell structure
536 *
537 * @return point which is second closest to the provided one
538 */
539TesselPoint* FindSecondClosestPoint(const Vector* Point, const LinkedCell* const LC)
540{
541 TesselPoint* closestPoint = NULL;
542 TesselPoint* secondClosestPoint = NULL;
543 double distance = 1e16;
544 double secondDistance = 1e16;
545 Vector helper;
546 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
547
548 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
549 for(int i=0;i<NDIM;i++) // store indices of this cell
550 N[i] = LC->n[i];
551 Log() << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
552
553 LC->GetNeighbourBounds(Nlower, Nupper);
554 //Log() << Verbose(0) << endl;
555 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
556 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
557 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
558 const LinkedNodes *List = LC->GetCurrentCell();
559 //Log() << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
560 if (List != NULL) {
561 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
562 helper.CopyVector(Point);
563 helper.SubtractVector((*Runner)->node);
564 double currentNorm = helper. Norm();
565 if (currentNorm < distance) {
566 // remember second point
567 secondDistance = distance;
568 secondClosestPoint = closestPoint;
569 // mark down new closest point
570 distance = currentNorm;
571 closestPoint = (*Runner);
572 //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
573 }
574 }
575 } else {
576 eLog() << Verbose(0) << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
577 << LC->n[2] << " is invalid!" << endl;
578 }
579 }
580
581 return secondClosestPoint;
582};
583
584/**
585 * Finds the point which is closest to the provided one.
586 *
587 * @param Point to which to find the closest other point
588 * @param SecondPoint the second closest other point on return, NULL if none found
589 * @param linked cell structure
590 *
591 * @return point which is closest to the provided one, NULL if none found
592 */
593TesselPoint* FindClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
594{
595 TesselPoint* closestPoint = NULL;
596 SecondPoint = NULL;
597 double distance = 1e16;
598 double secondDistance = 1e16;
599 Vector helper;
600 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
601
602 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
603 for(int i=0;i<NDIM;i++) // store indices of this cell
604 N[i] = LC->n[i];
605 Log() << Verbose(3) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
606
607 LC->GetNeighbourBounds(Nlower, Nupper);
608 //Log() << Verbose(0) << endl;
609 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
610 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
611 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
612 const LinkedNodes *List = LC->GetCurrentCell();
613 //Log() << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
614 if (List != NULL) {
615 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
616 helper.CopyVector(Point);
617 helper.SubtractVector((*Runner)->node);
618 double currentNorm = helper. Norm();
619 if (currentNorm < distance) {
620 secondDistance = distance;
621 SecondPoint = closestPoint;
622 distance = currentNorm;
623 closestPoint = (*Runner);
624 //Log() << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
625 } else if (currentNorm < secondDistance) {
626 secondDistance = currentNorm;
627 SecondPoint = (*Runner);
628 //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
629 }
630 }
631 } else {
632 eLog() << Verbose(0) << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
633 << LC->n[2] << " is invalid!" << endl;
634 }
635 }
636 // output
637 if (closestPoint != NULL) {
638 Log() << Verbose(2) << "Closest point is " << *closestPoint;
639 if (SecondPoint != NULL)
640 Log() << Verbose(0) << " and second closest is " << *SecondPoint;
641 Log() << Verbose(0) << "." << endl;
642 }
643 return closestPoint;
644};
645
646/** Returns the closest point on \a *Base with respect to \a *OtherBase.
647 * \param *out output stream for debugging
648 * \param *Base reference line
649 * \param *OtherBase other base line
650 * \return Vector on reference line that has closest distance
651 */
652Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
653{
654 // construct the plane of the two baselines (i.e. take both their directional vectors)
655 Vector Normal;
656 Vector Baseline, OtherBaseline;
657 Baseline.CopyVector(Base->endpoints[1]->node->node);
658 Baseline.SubtractVector(Base->endpoints[0]->node->node);
659 OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
660 OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
661 Normal.CopyVector(&Baseline);
662 Normal.VectorProduct(&OtherBaseline);
663 Normal.Normalize();
664 Log() << Verbose(4) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
665
666 // project one offset point of OtherBase onto this plane (and add plane offset vector)
667 Vector NewOffset;
668 NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
669 NewOffset.SubtractVector(Base->endpoints[0]->node->node);
670 NewOffset.ProjectOntoPlane(&Normal);
671 NewOffset.AddVector(Base->endpoints[0]->node->node);
672 Vector NewDirection;
673 NewDirection.CopyVector(&NewOffset);
674 NewDirection.AddVector(&OtherBaseline);
675
676 // calculate the intersection between this projected baseline and Base
677 Vector *Intersection = new Vector;
678 Intersection->GetIntersectionOfTwoLinesOnPlane(Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
679 Normal.CopyVector(Intersection);
680 Normal.SubtractVector(Base->endpoints[0]->node->node);
681 Log() << Verbose(3) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
682
683 return Intersection;
684};
685
686/** Returns the distance to the plane defined by \a *triangle
687 * \param *out output stream for debugging
688 * \param *x Vector to calculate distance to
689 * \param *triangle triangle defining plane
690 * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
691 */
692double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
693{
694 double distance = 0.;
695 if (x == NULL) {
696 return -1;
697 }
698 distance = x->DistanceToPlane(&triangle->NormalVector, triangle->endpoints[0]->node->node);
699 return distance;
700};
701
702/** Creates the objects in a VRML file.
703 * \param *out output stream for debugging
704 * \param *vrmlfile output stream for tecplot data
705 * \param *Tess Tesselation structure with constructed triangles
706 * \param *mol molecule structure with atom positions
707 */
708void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
709{
710 TesselPoint *Walker = NULL;
711 int i;
712 Vector *center = cloud->GetCenter();
713 if (vrmlfile != NULL) {
714 //Log() << Verbose(1) << "Writing Raster3D file ... ";
715 *vrmlfile << "#VRML V2.0 utf8" << endl;
716 *vrmlfile << "#Created by molecuilder" << endl;
717 *vrmlfile << "#All atoms as spheres" << endl;
718 cloud->GoToFirst();
719 while (!cloud->IsEnd()) {
720 Walker = cloud->GetPoint();
721 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
722 for (i=0;i<NDIM;i++)
723 *vrmlfile << Walker->node->x[i]-center->x[i] << " ";
724 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
725 cloud->GoToNext();
726 }
727
728 *vrmlfile << "# All tesselation triangles" << endl;
729 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
730 *vrmlfile << "1" << endl << " "; // 1 is triangle type
731 for (i=0;i<3;i++) { // print each node
732 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
733 *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
734 *vrmlfile << "\t";
735 }
736 *vrmlfile << "1. 0. 0." << endl; // red as colour
737 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
738 }
739 } else {
740 eLog() << Verbose(0) << "ERROR: Given vrmlfile is " << vrmlfile << "." << endl;
741 }
742 delete(center);
743};
744
745/** Writes additionally the current sphere (i.e. the last triangle to file).
746 * \param *out output stream for debugging
747 * \param *rasterfile output stream for tecplot data
748 * \param *Tess Tesselation structure with constructed triangles
749 * \param *mol molecule structure with atom positions
750 */
751void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
752{
753 Vector helper;
754 // include the current position of the virtual sphere in the temporary raster3d file
755 Vector *center = cloud->GetCenter();
756 // make the circumsphere's center absolute again
757 helper.CopyVector(Tess->LastTriangle->endpoints[0]->node->node);
758 helper.AddVector(Tess->LastTriangle->endpoints[1]->node->node);
759 helper.AddVector(Tess->LastTriangle->endpoints[2]->node->node);
760 helper.Scale(1./3.);
761 helper.SubtractVector(center);
762 // and add to file plus translucency object
763 *rasterfile << "# current virtual sphere\n";
764 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
765 *rasterfile << "2\n " << helper.x[0] << " " << helper.x[1] << " " << helper.x[2] << "\t" << 5. << "\t1 0 0\n";
766 *rasterfile << "9\n terminating special property\n";
767 delete(center);
768};
769
770/** Creates the objects in a raster3d file (renderable with a header.r3d).
771 * \param *out output stream for debugging
772 * \param *rasterfile output stream for tecplot data
773 * \param *Tess Tesselation structure with constructed triangles
774 * \param *mol molecule structure with atom positions
775 */
776void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
777{
778 TesselPoint *Walker = NULL;
779 int i;
780 Vector *center = cloud->GetCenter();
781 if (rasterfile != NULL) {
782 //Log() << Verbose(1) << "Writing Raster3D file ... ";
783 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
784 *rasterfile << "@header.r3d" << endl;
785 *rasterfile << "# All atoms as spheres" << endl;
786 cloud->GoToFirst();
787 while (!cloud->IsEnd()) {
788 Walker = cloud->GetPoint();
789 *rasterfile << "2" << endl << " "; // 2 is sphere type
790 for (i=0;i<NDIM;i++)
791 *rasterfile << Walker->node->x[i]-center->x[i] << " ";
792 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
793 cloud->GoToNext();
794 }
795
796 *rasterfile << "# All tesselation triangles" << endl;
797 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
798 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
799 *rasterfile << "1" << endl << " "; // 1 is triangle type
800 for (i=0;i<3;i++) { // print each node
801 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
802 *rasterfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
803 *rasterfile << "\t";
804 }
805 *rasterfile << "1. 0. 0." << endl; // red as colour
806 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
807 }
808 *rasterfile << "9\n# terminating special property\n";
809 } else {
810 eLog() << Verbose(0) << "ERROR: Given rasterfile is " << rasterfile << "." << endl;
811 }
812 IncludeSphereinRaster3D(rasterfile, Tess, cloud);
813 delete(center);
814};
815
816/** This function creates the tecplot file, displaying the tesselation of the hull.
817 * \param *out output stream for debugging
818 * \param *tecplot output stream for tecplot data
819 * \param N arbitrary number to differentiate various zones in the tecplot format
820 */
821void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
822{
823 if ((tecplot != NULL) && (TesselStruct != NULL)) {
824 // write header
825 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
826 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
827 *tecplot << "ZONE T=\"" << N << "-";
828 for (int i=0;i<3;i++)
829 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->Name;
830 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
831 int i=0;
832 for (cloud->GoToFirst(); !cloud->IsEnd(); cloud->GoToNext(), i++);
833 int *LookupList = new int[i];
834 for (cloud->GoToFirst(), i=0; !cloud->IsEnd(); cloud->GoToNext(), i++)
835 LookupList[i] = -1;
836
837 // print atom coordinates
838 Log() << Verbose(2) << "The following triangles were created:";
839 int Counter = 1;
840 TesselPoint *Walker = NULL;
841 for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
842 Walker = target->second->node;
843 LookupList[Walker->nr] = Counter++;
844 *tecplot << Walker->node->x[0] << " " << Walker->node->x[1] << " " << Walker->node->x[2] << " " << target->second->value << endl;
845 }
846 *tecplot << endl;
847 // print connectivity
848 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
849 Log() << Verbose(0) << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name;
850 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
851 }
852 delete[] (LookupList);
853 Log() << Verbose(0) << endl;
854 }
855};
856
857/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
858 * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
859 * \param *out output stream for debugging
860 * \param *TesselStruct pointer to Tesselation structure
861 */
862void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
863{
864 class BoundaryPointSet *point = NULL;
865 class BoundaryLineSet *line = NULL;
866
867 //Log() << Verbose(2) << "Begin of CalculateConcavityPerBoundaryPoint" << endl;
868 // calculate remaining concavity
869 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
870 point = PointRunner->second;
871 Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl;
872 point->value = 0;
873 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
874 line = LineRunner->second;
875 //Log() << Verbose(2) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
876 if (!line->CheckConvexityCriterion())
877 point->value += 1;
878 }
879 }
880 //Log() << Verbose(2) << "End of CalculateConcavityPerBoundaryPoint" << endl;
881};
882
883
884/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
885 * \param *out output stream for debugging
886 * \param *TesselStruct
887 * \return true - all have exactly two triangles, false - some not, list is printed to screen
888 */
889bool CheckListOfBaselines(const Tesselation * const TesselStruct)
890{
891 LineMap::const_iterator testline;
892 bool result = false;
893 int counter = 0;
894
895 Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl;
896 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
897 if (testline->second->triangles.size() != 2) {
898 Log() << Verbose(1) << *testline->second << "\t" << testline->second->triangles.size() << endl;
899 counter++;
900 }
901 }
902 if (counter == 0) {
903 Log() << Verbose(1) << "None." << endl;
904 result = true;
905 }
906 return result;
907}
908
Note: See TracBrowser for help on using the repository browser.