source: src/tesselationhelpers.cpp@ 7d059d

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 7d059d was cca9ef, checked in by Frederik Heber <heber@…>, 14 years ago

Renamed Matrix to RealSpaceMatrix.

  • class Matrix only represents 3x3 matrices, whereas we are now going to extend the class MatrixContent to contain arbritrary dimensions.
  • renamed class and file
  • Property mode set to 100644
File size: 40.0 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * TesselationHelpers.cpp
10 *
11 * Created on: Aug 3, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "Helpers/MemDebug.hpp"
21
22#include <fstream>
23
24#include "BoundaryLineSet.hpp"
25#include "BoundaryPointSet.hpp"
26#include "BoundaryPolygonSet.hpp"
27#include "BoundaryTriangleSet.hpp"
28#include "CandidateForTesselation.hpp"
29#include "Helpers/Info.hpp"
30#include "linkedcell.hpp"
31#include "LinearAlgebra/linearsystemofequations.hpp"
32#include "Helpers/Log.hpp"
33#include "tesselation.hpp"
34#include "tesselationhelpers.hpp"
35#include "LinearAlgebra/Vector.hpp"
36#include "LinearAlgebra/Line.hpp"
37#include "LinearAlgebra/vector_ops.hpp"
38#include "Helpers/Verbose.hpp"
39#include "LinearAlgebra/Plane.hpp"
40#include "LinearAlgebra/RealSpaceMatrix.hpp"
41
42void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
43{
44 Info FunctionInfo(__func__);
45 RealSpaceMatrix mat;
46 double m11, m12, m13, m14;
47
48 for(int i=0;i<3;i++) {
49 mat.set(i, 0, a[i]);
50 mat.set(i, 1, b[i]);
51 mat.set(i, 2, c[i]);
52 }
53 m11 = mat.determinant();
54
55 for(int i=0;i<3;i++) {
56 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
57 mat.set(i, 1, b[i]);
58 mat.set(i, 2, c[i]);
59 }
60 m12 = mat.determinant();
61
62 for(int i=0;i<3;i++) {
63 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
64 mat.set(i, 1, a[i]);
65 mat.set(i, 2, c[i]);
66 }
67 m13 = mat.determinant();
68
69 for(int i=0;i<3;i++) {
70 mat.set(i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
71 mat.set(i, 1, a[i]);
72 mat.set(i, 2, b[i]);
73 }
74 m14 = mat.determinant();
75
76 if (fabs(m11) < MYEPSILON)
77 DoeLog(1) && (eLog()<< Verbose(1) << "three points are colinear." << endl);
78
79 center->at(0) = 0.5 * m12/ m11;
80 center->at(1) = -0.5 * m13/ m11;
81 center->at(2) = 0.5 * m14/ m11;
82
83 if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
84 DoeLog(1) && (eLog()<< Verbose(1) << "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS." << endl);
85};
86
87
88
89/**
90 * Function returns center of sphere with RADIUS, which rests on points a, b, c
91 * @param Center this vector will be used for return
92 * @param a vector first point of triangle
93 * @param b vector second point of triangle
94 * @param c vector third point of triangle
95 * @param *Umkreismittelpunkt new center point of circumference
96 * @param Direction vector indicates up/down
97 * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
98 * @param Halfplaneindicator double indicates whether Direction is up or down
99 * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
100 * @param alpha double angle at a
101 * @param beta double, angle at b
102 * @param gamma, double, angle at c
103 * @param Radius, double
104 * @param Umkreisradius double radius of circumscribing circle
105 */
106void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
107 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
108{
109 Info FunctionInfo(__func__);
110 Vector TempNormal, helper;
111 double Restradius;
112 Vector OtherCenter;
113 Center->Zero();
114 helper = sin(2.*alpha) * a;
115 (*Center) += helper;
116 helper = sin(2.*beta) * b;
117 (*Center) += helper;
118 helper = sin(2.*gamma) * c;
119 (*Center) += helper;
120 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
121 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
122 (*NewUmkreismittelpunkt) = (*Center);
123 DoLog(1) && (Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n");
124 // Here we calculated center of circumscribing circle, using barycentric coordinates
125 DoLog(1) && (Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n");
126
127 TempNormal = a - b;
128 helper = a - c;
129 TempNormal.VectorProduct(helper);
130 if (fabs(HalfplaneIndicator) < MYEPSILON)
131 {
132 if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
133 {
134 TempNormal *= -1;
135 }
136 }
137 else
138 {
139 if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
140 {
141 TempNormal *= -1;
142 }
143 }
144
145 TempNormal.Normalize();
146 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
147 DoLog(1) && (Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n");
148 TempNormal.Scale(Restradius);
149 DoLog(1) && (Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n");
150 (*Center) += TempNormal;
151 DoLog(1) && (Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n");
152 GetSphere(&OtherCenter, a, b, c, RADIUS);
153 DoLog(1) && (Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n");
154};
155
156
157/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
158 * \param *Center new center on return
159 * \param *a first point
160 * \param *b second point
161 * \param *c third point
162 */
163void GetCenterofCircumcircle(Vector &Center, const Vector &a, const Vector &b, const Vector &c)
164{
165 Info FunctionInfo(__func__);
166 Vector helper;
167 Vector SideA = b - c;
168 Vector SideB = c - a;
169 Vector SideC = a - b;
170
171 helper[0] = SideA.NormSquared()*(SideB.NormSquared()+SideC.NormSquared() - SideA.NormSquared());
172 helper[1] = SideB.NormSquared()*(SideC.NormSquared()+SideA.NormSquared() - SideB.NormSquared());
173 helper[2] = SideC.NormSquared()*(SideA.NormSquared()+SideB.NormSquared() - SideC.NormSquared());
174
175 Center.Zero();
176 Center += helper[0] * a;
177 Center += helper[1] * b;
178 Center += helper[2] * c;
179 if (fabs(helper[0]+helper[1]+helper[2]) > MYEPSILON)
180 Center.Scale(1./(helper[0]+helper[1]+helper[2]));
181 Log() << Verbose(1) << "INFO: Center (2nd algo) is at " << Center << "." << endl;
182};
183
184/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
185 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
186 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
187 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
188 * \param CircleCenter Center of the parameter circle
189 * \param CirclePlaneNormal normal vector to plane of the parameter circle
190 * \param CircleRadius radius of the parameter circle
191 * \param NewSphereCenter new center of a circumcircle
192 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
193 * \param NormalVector normal vector
194 * \param SearchDirection search direction to make angle unique on return.
195 * \param HULLEPSILON machine precision for tesselation points
196 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
197 */
198double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection, const double HULLEPSILON)
199{
200 Info FunctionInfo(__func__);
201 Vector helper;
202 double radius, alpha;
203
204 Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
205 Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
206 helper = RelativeNewSphereCenter;
207 // test whether new center is on the parameter circle's plane
208 if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
209 DoeLog(1) && (eLog()<< Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(CirclePlaneNormal)) << "!" << endl);
210 helper.ProjectOntoPlane(CirclePlaneNormal);
211 }
212 radius = helper.NormSquared();
213 // test whether the new center vector has length of CircleRadius
214 if (fabs(radius - CircleRadius) > HULLEPSILON)
215 DoeLog(1) && (eLog()<< Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl);
216 alpha = helper.Angle(RelativeOldSphereCenter);
217 // make the angle unique by checking the halfplanes/search direction
218 if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
219 alpha = 2.*M_PI - alpha;
220 DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl);
221 radius = helper.distance(RelativeOldSphereCenter);
222 helper.ProjectOntoPlane(NormalVector);
223 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
224 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
225 DoLog(1) && (Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl);
226 return alpha;
227 } else {
228 DoLog(1) && (Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl);
229 return 2.*M_PI;
230 }
231};
232
233struct Intersection {
234 Vector x1;
235 Vector x2;
236 Vector x3;
237 Vector x4;
238};
239
240/** Gets the angle between a point and a reference relative to the provided center.
241 * We have two shanks point and reference between which the angle is calculated
242 * and by scalar product with OrthogonalVector we decide the interval.
243 * @param point to calculate the angle for
244 * @param reference to which to calculate the angle
245 * @param OrthogonalVector points in direction of [pi,2pi] interval
246 *
247 * @return angle between point and reference
248 */
249double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
250{
251 Info FunctionInfo(__func__);
252 if (reference.IsZero())
253 return M_PI;
254
255 // calculate both angles and correct with in-plane vector
256 if (point.IsZero())
257 return M_PI;
258 double phi = point.Angle(reference);
259 if (OrthogonalVector.ScalarProduct(point) > 0) {
260 phi = 2.*M_PI - phi;
261 }
262
263 DoLog(1) && (Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl);
264
265 return phi;
266}
267
268
269/** Calculates the volume of a general tetraeder.
270 * \param *a first vector
271 * \param *b second vector
272 * \param *c third vector
273 * \param *d fourth vector
274 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
275 */
276double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
277{
278 Info FunctionInfo(__func__);
279 Vector Point, TetraederVector[3];
280 double volume;
281
282 TetraederVector[0] = a;
283 TetraederVector[1] = b;
284 TetraederVector[2] = c;
285 for (int j=0;j<3;j++)
286 TetraederVector[j].SubtractVector(d);
287 Point = TetraederVector[0];
288 Point.VectorProduct(TetraederVector[1]);
289 volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[2]));
290 return volume;
291};
292
293/** Calculates the area of a general triangle.
294 * We use the Heron's formula of area, [Bronstein, S. 138]
295 * \param &A first vector
296 * \param &B second vector
297 * \param &C third vector
298 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
299 */
300double CalculateAreaofGeneralTriangle(const Vector &A, const Vector &B, const Vector &C)
301{
302 Info FunctionInfo(__func__);
303
304 const double sidea = B.distance(C);
305 const double sideb = A.distance(C);
306 const double sidec = A.distance(B);
307 const double s = (sidea+sideb+sidec)/2.;
308
309 const double area = sqrt(s*(s-sidea)*(s-sideb)*(s-sidec));
310 return area;
311};
312
313
314/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
315 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
316 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
317 * \param TPS[3] nodes of the triangle
318 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
319 */
320bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
321{
322 Info FunctionInfo(__func__);
323 bool result = false;
324 int counter = 0;
325
326 // check all three points
327 for (int i=0;i<3;i++)
328 for (int j=i+1; j<3; j++) {
329 if (nodes[i] == NULL) {
330 DoLog(1) && (Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl);
331 result = true;
332 } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
333 LineMap::const_iterator FindLine;
334 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
335 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
336 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
337 // If there is a line with less than two attached triangles, we don't need a new line.
338 if (FindLine->second->triangles.size() < 2) {
339 counter++;
340 break; // increase counter only once per edge
341 }
342 }
343 } else { // no line
344 DoLog(1) && (Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl);
345 result = true;
346 }
347 }
348 if ((!result) && (counter > 1)) {
349 DoLog(1) && (Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl);
350 result = true;
351 }
352 return result;
353};
354
355
356///** Sort function for the candidate list.
357// */
358//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
359//{
360// Info FunctionInfo(__func__);
361// Vector BaseLineVector, OrthogonalVector, helper;
362// if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
363// DoeLog(1) && (eLog()<< Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl);
364// //return false;
365// exit(1);
366// }
367// // create baseline vector
368// BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
369// BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
370// BaseLineVector.Normalize();
371//
372// // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
373// helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
374// helper.SubtractVector(candidate1->point->node);
375// OrthogonalVector.CopyVector(&helper);
376// helper.VectorProduct(&BaseLineVector);
377// OrthogonalVector.SubtractVector(&helper);
378// OrthogonalVector.Normalize();
379//
380// // calculate both angles and correct with in-plane vector
381// helper.CopyVector(candidate1->point->node);
382// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
383// double phi = BaseLineVector.Angle(&helper);
384// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
385// phi = 2.*M_PI - phi;
386// }
387// helper.CopyVector(candidate2->point->node);
388// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
389// double psi = BaseLineVector.Angle(&helper);
390// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
391// psi = 2.*M_PI - psi;
392// }
393//
394// Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl;
395// Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl;
396//
397// // return comparison
398// return phi < psi;
399//};
400
401/**
402 * Finds the point which is second closest to the provided one.
403 *
404 * @param Point to which to find the second closest other point
405 * @param linked cell structure
406 *
407 * @return point which is second closest to the provided one
408 */
409TesselPoint* FindSecondClosestTesselPoint(const Vector& Point, const LinkedCell* const LC)
410{
411 Info FunctionInfo(__func__);
412 TesselPoint* closestPoint = NULL;
413 TesselPoint* secondClosestPoint = NULL;
414 double distance = 1e16;
415 double secondDistance = 1e16;
416 Vector helper;
417 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
418
419 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
420 for(int i=0;i<NDIM;i++) // store indices of this cell
421 N[i] = LC->n[i];
422 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
423
424 LC->GetNeighbourBounds(Nlower, Nupper);
425 //Log() << Verbose(1) << endl;
426 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
427 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
428 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
429 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
430 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
431 if (List != NULL) {
432 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
433 helper = (Point) - ((*Runner)->getPosition());
434 double currentNorm = helper. Norm();
435 if (currentNorm < distance) {
436 // remember second point
437 secondDistance = distance;
438 secondClosestPoint = closestPoint;
439 // mark down new closest point
440 distance = currentNorm;
441 closestPoint = (*Runner);
442 //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
443 }
444 }
445 } else {
446 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl);
447 }
448 }
449
450 return secondClosestPoint;
451};
452
453/**
454 * Finds the point which is closest to the provided one.
455 *
456 * @param Point to which to find the closest other point
457 * @param SecondPoint the second closest other point on return, NULL if none found
458 * @param linked cell structure
459 *
460 * @return point which is closest to the provided one, NULL if none found
461 */
462TesselPoint* FindClosestTesselPoint(const Vector& Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
463{
464 Info FunctionInfo(__func__);
465 TesselPoint* closestPoint = NULL;
466 SecondPoint = NULL;
467 double distance = 1e16;
468 double secondDistance = 1e16;
469 Vector helper;
470 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
471
472 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
473 for(int i=0;i<NDIM;i++) // store indices of this cell
474 N[i] = LC->n[i];
475 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
476
477 LC->GetNeighbourBounds(Nlower, Nupper);
478 //Log() << Verbose(1) << endl;
479 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
480 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
481 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
482 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
483 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
484 if (List != NULL) {
485 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
486 helper = (Point) - ((*Runner)->getPosition());
487 double currentNorm = helper.NormSquared();
488 if (currentNorm < distance) {
489 secondDistance = distance;
490 SecondPoint = closestPoint;
491 distance = currentNorm;
492 closestPoint = (*Runner);
493 //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
494 } else if (currentNorm < secondDistance) {
495 secondDistance = currentNorm;
496 SecondPoint = (*Runner);
497 //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
498 }
499 }
500 } else {
501 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl);
502 }
503 }
504 // output
505 if (closestPoint != NULL) {
506 DoLog(1) && (Log() << Verbose(1) << "Closest point is " << *closestPoint);
507 if (SecondPoint != NULL)
508 DoLog(0) && (Log() << Verbose(0) << " and second closest is " << *SecondPoint);
509 DoLog(0) && (Log() << Verbose(0) << "." << endl);
510 }
511 return closestPoint;
512};
513
514/** Returns the closest point on \a *Base with respect to \a *OtherBase.
515 * \param *out output stream for debugging
516 * \param *Base reference line
517 * \param *OtherBase other base line
518 * \return Vector on reference line that has closest distance
519 */
520Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
521{
522 Info FunctionInfo(__func__);
523 // construct the plane of the two baselines (i.e. take both their directional vectors)
524 Vector Baseline = (Base->endpoints[1]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
525 Vector OtherBaseline = (OtherBase->endpoints[1]->node->getPosition()) - (OtherBase->endpoints[0]->node->getPosition());
526 Vector Normal = Baseline;
527 Normal.VectorProduct(OtherBaseline);
528 Normal.Normalize();
529 DoLog(1) && (Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl);
530
531 // project one offset point of OtherBase onto this plane (and add plane offset vector)
532 Vector NewOffset = (OtherBase->endpoints[0]->node->getPosition()) - (Base->endpoints[0]->node->getPosition());
533 NewOffset.ProjectOntoPlane(Normal);
534 NewOffset += (Base->endpoints[0]->node->getPosition());
535 Vector NewDirection = NewOffset + OtherBaseline;
536
537 // calculate the intersection between this projected baseline and Base
538 Vector *Intersection = new Vector;
539 Line line1 = makeLineThrough((Base->endpoints[0]->node->getPosition()),(Base->endpoints[1]->node->getPosition()));
540 Line line2 = makeLineThrough(NewOffset, NewDirection);
541 *Intersection = line1.getIntersection(line2);
542 Normal = (*Intersection) - (Base->endpoints[0]->node->getPosition());
543 DoLog(1) && (Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << "." << endl);
544
545 return Intersection;
546};
547
548/** Returns the distance to the plane defined by \a *triangle
549 * \param *out output stream for debugging
550 * \param *x Vector to calculate distance to
551 * \param *triangle triangle defining plane
552 * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
553 */
554double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
555{
556 Info FunctionInfo(__func__);
557 double distance = 0.;
558 if (x == NULL) {
559 return -1;
560 }
561 distance = x->DistanceToSpace(triangle->getPlane());
562 return distance;
563};
564
565/** Creates the objects in a VRML file.
566 * \param *out output stream for debugging
567 * \param *vrmlfile output stream for tecplot data
568 * \param *Tess Tesselation structure with constructed triangles
569 * \param *mol molecule structure with atom positions
570 */
571void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
572{
573 Info FunctionInfo(__func__);
574 TesselPoint *Walker = NULL;
575 int i;
576 Vector *center = cloud->GetCenter();
577 if (vrmlfile != NULL) {
578 //Log() << Verbose(1) << "Writing Raster3D file ... ";
579 *vrmlfile << "#VRML V2.0 utf8" << endl;
580 *vrmlfile << "#Created by molecuilder" << endl;
581 *vrmlfile << "#All atoms as spheres" << endl;
582 cloud->GoToFirst();
583 while (!cloud->IsEnd()) {
584 Walker = cloud->GetPoint();
585 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
586 for (i=0;i<NDIM;i++)
587 *vrmlfile << Walker->at(i)-center->at(i) << " ";
588 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
589 cloud->GoToNext();
590 }
591
592 *vrmlfile << "# All tesselation triangles" << endl;
593 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
594 *vrmlfile << "1" << endl << " "; // 1 is triangle type
595 for (i=0;i<3;i++) { // print each node
596 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
597 *vrmlfile << TriangleRunner->second->endpoints[i]->node->at(j)-center->at(j) << " ";
598 *vrmlfile << "\t";
599 }
600 *vrmlfile << "1. 0. 0." << endl; // red as colour
601 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
602 }
603 } else {
604 DoeLog(1) && (eLog()<< Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl);
605 }
606 delete(center);
607};
608
609/** Writes additionally the current sphere (i.e. the last triangle to file).
610 * \param *out output stream for debugging
611 * \param *rasterfile output stream for tecplot data
612 * \param *Tess Tesselation structure with constructed triangles
613 * \param *mol molecule structure with atom positions
614 */
615void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
616{
617 Info FunctionInfo(__func__);
618 Vector helper;
619
620 if (Tess->LastTriangle != NULL) {
621 // include the current position of the virtual sphere in the temporary raster3d file
622 Vector *center = cloud->GetCenter();
623 // make the circumsphere's center absolute again
624 Vector helper = (1./3.) * ((Tess->LastTriangle->endpoints[0]->node->getPosition()) +
625 (Tess->LastTriangle->endpoints[1]->node->getPosition()) +
626 (Tess->LastTriangle->endpoints[2]->node->getPosition()));
627 helper -= (*center);
628 // and add to file plus translucency object
629 *rasterfile << "# current virtual sphere\n";
630 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
631 *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
632 *rasterfile << "9\n terminating special property\n";
633 delete(center);
634 }
635};
636
637/** Creates the objects in a raster3d file (renderable with a header.r3d).
638 * \param *out output stream for debugging
639 * \param *rasterfile output stream for tecplot data
640 * \param *Tess Tesselation structure with constructed triangles
641 * \param *mol molecule structure with atom positions
642 */
643void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
644{
645 Info FunctionInfo(__func__);
646 TesselPoint *Walker = NULL;
647 int i;
648 Vector *center = cloud->GetCenter();
649 if (rasterfile != NULL) {
650 //Log() << Verbose(1) << "Writing Raster3D file ... ";
651 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
652 *rasterfile << "@header.r3d" << endl;
653 *rasterfile << "# All atoms as spheres" << endl;
654 cloud->GoToFirst();
655 while (!cloud->IsEnd()) {
656 Walker = cloud->GetPoint();
657 *rasterfile << "2" << endl << " "; // 2 is sphere type
658 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
659 const double tmp = Walker->at(j)-center->at(j);
660 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
661 }
662 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
663 cloud->GoToNext();
664 }
665
666 *rasterfile << "# All tesselation triangles" << endl;
667 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
668 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
669 *rasterfile << "1" << endl << " "; // 1 is triangle type
670 for (i=0;i<3;i++) { // print each node
671 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
672 const double tmp = TriangleRunner->second->endpoints[i]->node->at(j)-center->at(j);
673 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
674 }
675 *rasterfile << "\t";
676 }
677 *rasterfile << "1. 0. 0." << endl; // red as colour
678 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
679 }
680 *rasterfile << "9\n# terminating special property\n";
681 } else {
682 DoeLog(1) && (eLog()<< Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl);
683 }
684 IncludeSphereinRaster3D(rasterfile, Tess, cloud);
685 delete(center);
686};
687
688/** This function creates the tecplot file, displaying the tesselation of the hull.
689 * \param *out output stream for debugging
690 * \param *tecplot output stream for tecplot data
691 * \param N arbitrary number to differentiate various zones in the tecplot format
692 */
693void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
694{
695 Info FunctionInfo(__func__);
696 if ((tecplot != NULL) && (TesselStruct != NULL)) {
697 // write header
698 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
699 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
700 *tecplot << "ZONE T=\"";
701 if (N < 0) {
702 *tecplot << cloud->GetName();
703 } else {
704 *tecplot << N << "-";
705 if (TesselStruct->LastTriangle != NULL) {
706 for (int i=0;i<3;i++)
707 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
708 } else {
709 *tecplot << "none";
710 }
711 }
712 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
713 const int MaxId=cloud->GetMaxId();
714 int *LookupList = new int[MaxId];
715 for (int i=0; i< MaxId ; i++){
716 LookupList[i] = -1;
717 }
718
719 // print atom coordinates
720 int Counter = 1;
721 TesselPoint *Walker = NULL;
722 for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) {
723 Walker = target->second->node;
724 LookupList[Walker->nr] = Counter++;
725 for (int i=0;i<NDIM;i++) {
726 const double tmp = Walker->at(i);
727 *tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
728 }
729 *tecplot << target->second->value << endl;
730 }
731 *tecplot << endl;
732 // print connectivity
733 DoLog(1) && (Log() << Verbose(1) << "The following triangles were created:" << endl);
734 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
735 DoLog(1) && (Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName() << endl);
736 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
737 }
738 delete[] (LookupList);
739 }
740};
741
742/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
743 * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
744 * \param *out output stream for debugging
745 * \param *TesselStruct pointer to Tesselation structure
746 */
747void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
748{
749 Info FunctionInfo(__func__);
750 class BoundaryPointSet *point = NULL;
751 class BoundaryLineSet *line = NULL;
752 class BoundaryTriangleSet *triangle = NULL;
753 double ConcavityPerLine = 0.;
754 double ConcavityPerTriangle = 0.;
755 double area = 0.;
756 double totalarea = 0.;
757
758 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
759 point = PointRunner->second;
760 DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl);
761
762 // calculate mean concavity over all connected line
763 ConcavityPerLine = 0.;
764 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
765 line = LineRunner->second;
766 //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
767 ConcavityPerLine -= line->CalculateConvexity();
768 }
769 ConcavityPerLine /= point->lines.size();
770
771 // weigh with total area of the surrounding triangles
772 totalarea = 0.;
773 TriangleSet *triangles = TesselStruct->GetAllTriangles(PointRunner->second);
774 for (TriangleSet::iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
775 totalarea += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
776 }
777 ConcavityPerLine *= totalarea;
778
779 // calculate mean concavity over all attached triangles
780 ConcavityPerTriangle = 0.;
781 for (TriangleSet::const_iterator TriangleRunner = triangles->begin(); TriangleRunner != triangles->end(); ++TriangleRunner) {
782 line = (*TriangleRunner)->GetThirdLine(PointRunner->second);
783 triangle = line->GetOtherTriangle(*TriangleRunner);
784 area = CalculateAreaofGeneralTriangle(triangle->endpoints[0]->node->getPosition() , triangle->endpoints[1]->node->getPosition() , triangle->endpoints[2]->node->getPosition());
785 area += CalculateAreaofGeneralTriangle((*TriangleRunner)->endpoints[0]->node->getPosition() , (*TriangleRunner)->endpoints[1]->node->getPosition() , (*TriangleRunner)->endpoints[2]->node->getPosition());
786 area *= -line->CalculateConvexity();
787 if (area > 0)
788 ConcavityPerTriangle += area;
789// else
790// ConcavityPerTriangle -= area;
791 }
792 ConcavityPerTriangle /= triangles->size()/totalarea;
793 delete(triangles);
794
795 // add up
796 point->value = ConcavityPerLine + ConcavityPerTriangle;
797 }
798};
799
800
801
802/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
803 * Sets BoundaryPointSet::value equal to the nearest distance to convex envelope.
804 * \param *out output stream for debugging
805 * \param *TesselStruct pointer to Tesselation structure
806 * \param *Convex pointer to convex Tesselation structure as reference
807 */
808void CalculateConstrictionPerBoundaryPoint(const Tesselation * const TesselStruct, const Tesselation * const Convex)
809{
810 Info FunctionInfo(__func__);
811 double distance = 0.;
812
813 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
814 DoeLog(1) && (eLog() << Verbose(1) << "INFO: Current point is " << * PointRunner->second << "." << endl);
815
816 distance = 0.;
817 for (TriangleMap::const_iterator TriangleRunner = Convex->TrianglesOnBoundary.begin(); TriangleRunner != Convex->TrianglesOnBoundary.end(); TriangleRunner++) {
818 const double CurrentDistance = Convex->GetDistanceSquaredToTriangle(PointRunner->second->node->getPosition() , TriangleRunner->second);
819 if (CurrentDistance < distance)
820 distance = CurrentDistance;
821 }
822
823 PointRunner->second->value = distance;
824 }
825};
826
827/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
828 * \param *out output stream for debugging
829 * \param *TesselStruct
830 * \return true - all have exactly two triangles, false - some not, list is printed to screen
831 */
832bool CheckListOfBaselines(const Tesselation * const TesselStruct)
833{
834 Info FunctionInfo(__func__);
835 LineMap::const_iterator testline;
836 bool result = false;
837 int counter = 0;
838
839 DoLog(1) && (Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl);
840 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
841 if (testline->second->triangles.size() != 2) {
842 DoLog(2) && (Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl);
843 counter++;
844 }
845 }
846 if (counter == 0) {
847 DoLog(1) && (Log() << Verbose(1) << "None." << endl);
848 result = true;
849 }
850 return result;
851}
852
853/** Counts the number of triangle pairs that contain the given polygon.
854 * \param *P polygon with endpoints to look for
855 * \param *T set of triangles to create pairs from containing \a *P
856 */
857int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
858{
859 Info FunctionInfo(__func__);
860 // check number of endpoints in *P
861 if (P->endpoints.size() != 4) {
862 DoeLog(1) && (eLog()<< Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl);
863 return 0;
864 }
865
866 // check number of triangles in *T
867 if (T->size() < 2) {
868 DoeLog(1) && (eLog()<< Verbose(1) << "Not enough triangles to have pairs!" << endl);
869 return 0;
870 }
871
872 DoLog(0) && (Log() << Verbose(0) << "Polygon is " << *P << endl);
873 // create each pair, get the endpoints and check whether *P is contained.
874 int counter = 0;
875 PointSet Trianglenodes;
876 class BoundaryPolygonSet PairTrianglenodes;
877 for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
878 for (int i=0;i<3;i++)
879 Trianglenodes.insert((*Walker)->endpoints[i]);
880
881 for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
882 if (Walker != PairWalker) { // skip first
883 PairTrianglenodes.endpoints = Trianglenodes;
884 for (int i=0;i<3;i++)
885 PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
886 const int size = PairTrianglenodes.endpoints.size();
887 if (size == 4) {
888 DoLog(0) && (Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl);
889 // now check
890 if (PairTrianglenodes.ContainsPresentTupel(P)) {
891 counter++;
892 DoLog(0) && (Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl);
893 } else {
894 DoLog(0) && (Log() << Verbose(0) << " REJECT: No match with " << *P << endl);
895 }
896 } else {
897 DoLog(0) && (Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl);
898 }
899 }
900 }
901 Trianglenodes.clear();
902 }
903 return counter;
904};
905
906/** Checks whether two give polygons have two or more points in common.
907 * \param *P1 first polygon
908 * \param *P2 second polygon
909 * \return true - are connected, false = are note
910 */
911bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
912{
913 Info FunctionInfo(__func__);
914 int counter = 0;
915 for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
916 if (P2->ContainsBoundaryPoint((*Runner))) {
917 counter++;
918 DoLog(1) && (Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl);
919 return true;
920 }
921 }
922 return false;
923};
924
925/** Combines second into the first and deletes the second.
926 * \param *P1 first polygon, contains all nodes on return
927 * \param *&P2 second polygon, is deleted.
928 */
929void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
930{
931 Info FunctionInfo(__func__);
932 pair <PointSet::iterator, bool> Tester;
933 for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
934 Tester = P1->endpoints.insert((*Runner));
935 if (Tester.second)
936 DoLog(0) && (Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl);
937 }
938 P2->endpoints.clear();
939 delete(P2);
940};
941
Note: See TracBrowser for help on using the repository browser.