source: src/tesselationhelpers.cpp@ 15b670

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 15b670 was 15b670, checked in by Frederik Heber <heber@…>, 15 years ago

Testfixes for Tesselations/1-3 and bugfixes for molecule::DetermineCenterOfAll()

  • BUGFIX: molecule::DetermineCenterOfAll() - would scale by -1./Num, which is not the right center.
  • TESTFIX: Tesselations/1-3 all suffered ... replaced in regression dir.
    • (Non)ConvexEnvelope.r3d to be disordered, due to IonType2 appear before IonType1 in test.conf
    • (Non)ConvexEnvelope.r3d from test and from regression to differ by 4.4e-16 and 0 (now nodes coordinates are set to 0, if fabs(.) is below MYEPSILON)
    • Tesselations/3: NonConvexEnvelope.dat was disorder (but the exactly same tesselation) due to IonType (did not occur for Tesselations/1-2)
  • Property mode set to 100644
File size: 40.2 KB
Line 
1/*
2 * TesselationHelpers.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include <fstream>
9
10#include "info.hpp"
11#include "linkedcell.hpp"
12#include "log.hpp"
13#include "tesselation.hpp"
14#include "tesselationhelpers.hpp"
15#include "vector.hpp"
16#include "vector_ops.hpp"
17#include "verbose.hpp"
18#include "Plane.hpp"
19
20double DetGet(gsl_matrix * const A, const int inPlace)
21{
22 Info FunctionInfo(__func__);
23 /*
24 inPlace = 1 => A is replaced with the LU decomposed copy.
25 inPlace = 0 => A is retained, and a copy is used for LU.
26 */
27
28 double det;
29 int signum;
30 gsl_permutation *p = gsl_permutation_alloc(A->size1);
31 gsl_matrix *tmpA=0;
32
33 if (inPlace)
34 tmpA = A;
35 else {
36 gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
37 gsl_matrix_memcpy(tmpA , A);
38 }
39
40
41 gsl_linalg_LU_decomp(tmpA , p , &signum);
42 det = gsl_linalg_LU_det(tmpA , signum);
43 gsl_permutation_free(p);
44 if (! inPlace)
45 gsl_matrix_free(tmpA);
46
47 return det;
48};
49
50void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
51{
52 Info FunctionInfo(__func__);
53 gsl_matrix *A = gsl_matrix_calloc(3,3);
54 double m11, m12, m13, m14;
55
56 for(int i=0;i<3;i++) {
57 gsl_matrix_set(A, i, 0, a[i]);
58 gsl_matrix_set(A, i, 1, b[i]);
59 gsl_matrix_set(A, i, 2, c[i]);
60 }
61 m11 = DetGet(A, 1);
62
63 for(int i=0;i<3;i++) {
64 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
65 gsl_matrix_set(A, i, 1, b[i]);
66 gsl_matrix_set(A, i, 2, c[i]);
67 }
68 m12 = DetGet(A, 1);
69
70 for(int i=0;i<3;i++) {
71 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
72 gsl_matrix_set(A, i, 1, a[i]);
73 gsl_matrix_set(A, i, 2, c[i]);
74 }
75 m13 = DetGet(A, 1);
76
77 for(int i=0;i<3;i++) {
78 gsl_matrix_set(A, i, 0, a[i]*a[i] + b[i]*b[i] + c[i]*c[i]);
79 gsl_matrix_set(A, i, 1, a[i]);
80 gsl_matrix_set(A, i, 2, b[i]);
81 }
82 m14 = DetGet(A, 1);
83
84 if (fabs(m11) < MYEPSILON)
85 DoeLog(1) && (eLog()<< Verbose(1) << "three points are colinear." << endl);
86
87 center->at(0) = 0.5 * m12/ m11;
88 center->at(1) = -0.5 * m13/ m11;
89 center->at(2) = 0.5 * m14/ m11;
90
91 if (fabs(a.distance(*center) - RADIUS) > MYEPSILON)
92 DoeLog(1) && (eLog()<< Verbose(1) << "The given center is further way by " << fabs(a.distance(*center) - RADIUS) << " from a than RADIUS." << endl);
93
94 gsl_matrix_free(A);
95};
96
97
98
99/**
100 * Function returns center of sphere with RADIUS, which rests on points a, b, c
101 * @param Center this vector will be used for return
102 * @param a vector first point of triangle
103 * @param b vector second point of triangle
104 * @param c vector third point of triangle
105 * @param *Umkreismittelpunkt new center point of circumference
106 * @param Direction vector indicates up/down
107 * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
108 * @param Halfplaneindicator double indicates whether Direction is up or down
109 * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
110 * @param alpha double angle at a
111 * @param beta double, angle at b
112 * @param gamma, double, angle at c
113 * @param Radius, double
114 * @param Umkreisradius double radius of circumscribing circle
115 */
116void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
117 const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
118{
119 Info FunctionInfo(__func__);
120 Vector TempNormal, helper;
121 double Restradius;
122 Vector OtherCenter;
123 Center->Zero();
124 helper = sin(2.*alpha) * a;
125 (*Center) += helper;
126 helper = sin(2.*beta) * b;
127 (*Center) += helper;
128 helper = sin(2.*gamma) * c;
129 (*Center) += helper;
130 //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
131 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
132 (*NewUmkreismittelpunkt) = (*Center);
133 DoLog(1) && (Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n");
134 // Here we calculated center of circumscribing circle, using barycentric coordinates
135 DoLog(1) && (Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n");
136
137 TempNormal = a - b;
138 helper = a - c;
139 TempNormal.VectorProduct(helper);
140 if (fabs(HalfplaneIndicator) < MYEPSILON)
141 {
142 if ((TempNormal.ScalarProduct(*AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(*AlternativeDirection) >0 && AlternativeIndicator <0))
143 {
144 TempNormal *= -1;
145 }
146 }
147 else
148 {
149 if (((TempNormal.ScalarProduct(*Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(*Direction)>0) && (HalfplaneIndicator<0)))
150 {
151 TempNormal *= -1;
152 }
153 }
154
155 TempNormal.Normalize();
156 Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
157 DoLog(1) && (Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n");
158 TempNormal.Scale(Restradius);
159 DoLog(1) && (Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n");
160 (*Center) += TempNormal;
161 DoLog(1) && (Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n");
162 GetSphere(&OtherCenter, a, b, c, RADIUS);
163 DoLog(1) && (Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n");
164};
165
166
167/** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
168 * \param *Center new center on return
169 * \param *a first point
170 * \param *b second point
171 * \param *c third point
172 */
173void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c)
174{
175 Info FunctionInfo(__func__);
176 Vector helper;
177 double alpha, beta, gamma;
178 Vector SideA = b - c;
179 Vector SideB = c - a;
180 Vector SideC = a - b;
181 alpha = M_PI - SideB.Angle(SideC);
182 beta = M_PI - SideC.Angle(SideA);
183 gamma = M_PI - SideA.Angle(SideB);
184 //Log() << Verbose(1) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
185 if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) {
186 DoeLog(2) && (eLog()<< Verbose(2) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl);
187 }
188
189 Center->Zero();
190 helper = sin(2.*alpha) * a;
191 (*Center) += helper;
192 helper = sin(2.*beta) * b;
193 (*Center) += helper;
194 helper = sin(2.*gamma) * c;
195 (*Center) += helper;
196 Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
197};
198
199/** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
200 * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
201 * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
202 * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
203 * \param CircleCenter Center of the parameter circle
204 * \param CirclePlaneNormal normal vector to plane of the parameter circle
205 * \param CircleRadius radius of the parameter circle
206 * \param NewSphereCenter new center of a circumcircle
207 * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
208 * \param NormalVector normal vector
209 * \param SearchDirection search direction to make angle unique on return.
210 * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
211 */
212double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection)
213{
214 Info FunctionInfo(__func__);
215 Vector helper;
216 double radius, alpha;
217
218 Vector RelativeOldSphereCenter = OldSphereCenter - CircleCenter;
219 Vector RelativeNewSphereCenter = NewSphereCenter - CircleCenter;
220 helper = RelativeNewSphereCenter;
221 // test whether new center is on the parameter circle's plane
222 if (fabs(helper.ScalarProduct(CirclePlaneNormal)) > HULLEPSILON) {
223 DoeLog(1) && (eLog()<< Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(CirclePlaneNormal)) << "!" << endl);
224 helper.ProjectOntoPlane(CirclePlaneNormal);
225 }
226 radius = helper.NormSquared();
227 // test whether the new center vector has length of CircleRadius
228 if (fabs(radius - CircleRadius) > HULLEPSILON)
229 DoeLog(1) && (eLog()<< Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl);
230 alpha = helper.Angle(RelativeOldSphereCenter);
231 // make the angle unique by checking the halfplanes/search direction
232 if (helper.ScalarProduct(SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
233 alpha = 2.*M_PI - alpha;
234 DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl);
235 radius = helper.distance(RelativeOldSphereCenter);
236 helper.ProjectOntoPlane(NormalVector);
237 // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
238 if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
239 DoLog(1) && (Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl);
240 return alpha;
241 } else {
242 DoLog(1) && (Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl);
243 return 2.*M_PI;
244 }
245};
246
247struct Intersection {
248 Vector x1;
249 Vector x2;
250 Vector x3;
251 Vector x4;
252};
253
254/**
255 * Intersection calculation function.
256 *
257 * @param x to find the result for
258 * @param function parameter
259 */
260double MinIntersectDistance(const gsl_vector * x, void *params)
261{
262 Info FunctionInfo(__func__);
263 double retval = 0;
264 struct Intersection *I = (struct Intersection *)params;
265 Vector intersection;
266 for (int i=0;i<NDIM;i++)
267 intersection[i] = gsl_vector_get(x, i);
268
269 Vector SideA = I->x1 -I->x2 ;
270 Vector HeightA = intersection - I->x1;
271 HeightA.ProjectOntoPlane(SideA);
272
273 Vector SideB = I->x3 - I->x4;
274 Vector HeightB = intersection - I->x3;
275 HeightB.ProjectOntoPlane(SideB);
276
277 retval = HeightA.ScalarProduct(HeightA) + HeightB.ScalarProduct(HeightB);
278 //Log() << Verbose(1) << "MinIntersectDistance called, result: " << retval << endl;
279
280 return retval;
281};
282
283
284/**
285 * Calculates whether there is an intersection between two lines. The first line
286 * always goes through point 1 and point 2 and the second line is given by the
287 * connection between point 4 and point 5.
288 *
289 * @param point 1 of line 1
290 * @param point 2 of line 1
291 * @param point 1 of line 2
292 * @param point 2 of line 2
293 *
294 * @return true if there is an intersection between the given lines, false otherwise
295 */
296bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4)
297{
298 Info FunctionInfo(__func__);
299 bool result;
300
301 struct Intersection par;
302 par.x1 = point1;
303 par.x2 = point2;
304 par.x3 = point3;
305 par.x4 = point4;
306
307 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
308 gsl_multimin_fminimizer *s = NULL;
309 gsl_vector *ss, *x;
310 gsl_multimin_function minexFunction;
311
312 size_t iter = 0;
313 int status;
314 double size;
315
316 /* Starting point */
317 x = gsl_vector_alloc(NDIM);
318 gsl_vector_set(x, 0, point1[0]);
319 gsl_vector_set(x, 1, point1[1]);
320 gsl_vector_set(x, 2, point1[2]);
321
322 /* Set initial step sizes to 1 */
323 ss = gsl_vector_alloc(NDIM);
324 gsl_vector_set_all(ss, 1.0);
325
326 /* Initialize method and iterate */
327 minexFunction.n = NDIM;
328 minexFunction.f = &MinIntersectDistance;
329 minexFunction.params = (void *)&par;
330
331 s = gsl_multimin_fminimizer_alloc(T, NDIM);
332 gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
333
334 do {
335 iter++;
336 status = gsl_multimin_fminimizer_iterate(s);
337
338 if (status) {
339 break;
340 }
341
342 size = gsl_multimin_fminimizer_size(s);
343 status = gsl_multimin_test_size(size, 1e-2);
344
345 if (status == GSL_SUCCESS) {
346 DoLog(1) && (Log() << Verbose(1) << "converged to minimum" << endl);
347 }
348 } while (status == GSL_CONTINUE && iter < 100);
349
350 // check whether intersection is in between or not
351 Vector intersection;
352 double t1, t2;
353 for (int i = 0; i < NDIM; i++) {
354 intersection[i] = gsl_vector_get(s->x, i);
355 }
356
357 Vector SideA = par.x2 - par.x1;
358 Vector HeightA = intersection - par.x1;
359
360 t1 = HeightA.ScalarProduct(SideA)/SideA.ScalarProduct(SideA);
361
362 Vector SideB = par.x4 - par.x3;
363 Vector HeightB = intersection - par.x3;
364
365 t2 = HeightB.ScalarProduct(SideB)/SideB.ScalarProduct(SideB);
366
367 Log() << Verbose(1) << "Intersection " << intersection << " is at "
368 << t1 << " for (" << point1 << "," << point2 << ") and at "
369 << t2 << " for (" << point3 << "," << point4 << "): ";
370
371 if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
372 DoLog(1) && (Log() << Verbose(1) << "true intersection." << endl);
373 result = true;
374 } else {
375 DoLog(1) && (Log() << Verbose(1) << "intersection out of region of interest." << endl);
376 result = false;
377 }
378
379 // free minimizer stuff
380 gsl_vector_free(x);
381 gsl_vector_free(ss);
382 gsl_multimin_fminimizer_free(s);
383
384 return result;
385};
386
387/** Gets the angle between a point and a reference relative to the provided center.
388 * We have two shanks point and reference between which the angle is calculated
389 * and by scalar product with OrthogonalVector we decide the interval.
390 * @param point to calculate the angle for
391 * @param reference to which to calculate the angle
392 * @param OrthogonalVector points in direction of [pi,2pi] interval
393 *
394 * @return angle between point and reference
395 */
396double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
397{
398 Info FunctionInfo(__func__);
399 if (reference.IsZero())
400 return M_PI;
401
402 // calculate both angles and correct with in-plane vector
403 if (point.IsZero())
404 return M_PI;
405 double phi = point.Angle(reference);
406 if (OrthogonalVector.ScalarProduct(point) > 0) {
407 phi = 2.*M_PI - phi;
408 }
409
410 DoLog(1) && (Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl);
411
412 return phi;
413}
414
415
416/** Calculates the volume of a general tetraeder.
417 * \param *a first vector
418 * \param *a first vector
419 * \param *a first vector
420 * \param *a first vector
421 * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
422 */
423double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
424{
425 Info FunctionInfo(__func__);
426 Vector Point, TetraederVector[3];
427 double volume;
428
429 TetraederVector[0] = a;
430 TetraederVector[1] = b;
431 TetraederVector[2] = c;
432 for (int j=0;j<3;j++)
433 TetraederVector[j].SubtractVector(d);
434 Point = TetraederVector[0];
435 Point.VectorProduct(TetraederVector[1]);
436 volume = 1./6. * fabs(Point.ScalarProduct(TetraederVector[2]));
437 return volume;
438};
439
440
441/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
442 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
443 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
444 * \param TPS[3] nodes of the triangle
445 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
446 */
447bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
448{
449 Info FunctionInfo(__func__);
450 bool result = false;
451 int counter = 0;
452
453 // check all three points
454 for (int i=0;i<3;i++)
455 for (int j=i+1; j<3; j++) {
456 if (nodes[i] == NULL) {
457 DoLog(1) && (Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl);
458 result = true;
459 } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
460 LineMap::const_iterator FindLine;
461 pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
462 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
463 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
464 // If there is a line with less than two attached triangles, we don't need a new line.
465 if (FindLine->second->triangles.size() < 2) {
466 counter++;
467 break; // increase counter only once per edge
468 }
469 }
470 } else { // no line
471 DoLog(1) && (Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl);
472 result = true;
473 }
474 }
475 if ((!result) && (counter > 1)) {
476 DoLog(1) && (Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl);
477 result = true;
478 }
479 return result;
480};
481
482
483///** Sort function for the candidate list.
484// */
485//bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
486//{
487// Info FunctionInfo(__func__);
488// Vector BaseLineVector, OrthogonalVector, helper;
489// if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
490// DoeLog(1) && (eLog()<< Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl);
491// //return false;
492// exit(1);
493// }
494// // create baseline vector
495// BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
496// BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
497// BaseLineVector.Normalize();
498//
499// // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
500// helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
501// helper.SubtractVector(candidate1->point->node);
502// OrthogonalVector.CopyVector(&helper);
503// helper.VectorProduct(&BaseLineVector);
504// OrthogonalVector.SubtractVector(&helper);
505// OrthogonalVector.Normalize();
506//
507// // calculate both angles and correct with in-plane vector
508// helper.CopyVector(candidate1->point->node);
509// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
510// double phi = BaseLineVector.Angle(&helper);
511// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
512// phi = 2.*M_PI - phi;
513// }
514// helper.CopyVector(candidate2->point->node);
515// helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
516// double psi = BaseLineVector.Angle(&helper);
517// if (OrthogonalVector.ScalarProduct(&helper) > 0) {
518// psi = 2.*M_PI - psi;
519// }
520//
521// Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl;
522// Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl;
523//
524// // return comparison
525// return phi < psi;
526//};
527
528/**
529 * Finds the point which is second closest to the provided one.
530 *
531 * @param Point to which to find the second closest other point
532 * @param linked cell structure
533 *
534 * @return point which is second closest to the provided one
535 */
536TesselPoint* FindSecondClosestTesselPoint(const Vector* Point, const LinkedCell* const LC)
537{
538 Info FunctionInfo(__func__);
539 TesselPoint* closestPoint = NULL;
540 TesselPoint* secondClosestPoint = NULL;
541 double distance = 1e16;
542 double secondDistance = 1e16;
543 Vector helper;
544 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
545
546 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
547 for(int i=0;i<NDIM;i++) // store indices of this cell
548 N[i] = LC->n[i];
549 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
550
551 LC->GetNeighbourBounds(Nlower, Nupper);
552 //Log() << Verbose(1) << endl;
553 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
554 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
555 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
556 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
557 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
558 if (List != NULL) {
559 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
560 helper = (*Point) - (*(*Runner)->node);
561 double currentNorm = helper. Norm();
562 if (currentNorm < distance) {
563 // remember second point
564 secondDistance = distance;
565 secondClosestPoint = closestPoint;
566 // mark down new closest point
567 distance = currentNorm;
568 closestPoint = (*Runner);
569 //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
570 }
571 }
572 } else {
573 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
574 << LC->n[2] << " is invalid!" << endl;
575 }
576 }
577
578 return secondClosestPoint;
579};
580
581/**
582 * Finds the point which is closest to the provided one.
583 *
584 * @param Point to which to find the closest other point
585 * @param SecondPoint the second closest other point on return, NULL if none found
586 * @param linked cell structure
587 *
588 * @return point which is closest to the provided one, NULL if none found
589 */
590TesselPoint* FindClosestTesselPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
591{
592 Info FunctionInfo(__func__);
593 TesselPoint* closestPoint = NULL;
594 SecondPoint = NULL;
595 double distance = 1e16;
596 double secondDistance = 1e16;
597 Vector helper;
598 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
599
600 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
601 for(int i=0;i<NDIM;i++) // store indices of this cell
602 N[i] = LC->n[i];
603 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
604
605 LC->GetNeighbourBounds(Nlower, Nupper);
606 //Log() << Verbose(1) << endl;
607 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
608 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
609 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
610 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
611 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
612 if (List != NULL) {
613 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
614 helper = (*Point) - (*(*Runner)->node);
615 double currentNorm = helper.NormSquared();
616 if (currentNorm < distance) {
617 secondDistance = distance;
618 SecondPoint = closestPoint;
619 distance = currentNorm;
620 closestPoint = (*Runner);
621 //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
622 } else if (currentNorm < secondDistance) {
623 secondDistance = currentNorm;
624 SecondPoint = (*Runner);
625 //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
626 }
627 }
628 } else {
629 eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
630 << LC->n[2] << " is invalid!" << endl;
631 }
632 }
633 // output
634 if (closestPoint != NULL) {
635 DoLog(1) && (Log() << Verbose(1) << "Closest point is " << *closestPoint);
636 if (SecondPoint != NULL)
637 DoLog(0) && (Log() << Verbose(0) << " and second closest is " << *SecondPoint);
638 DoLog(0) && (Log() << Verbose(0) << "." << endl);
639 }
640 return closestPoint;
641};
642
643/** Returns the closest point on \a *Base with respect to \a *OtherBase.
644 * \param *out output stream for debugging
645 * \param *Base reference line
646 * \param *OtherBase other base line
647 * \return Vector on reference line that has closest distance
648 */
649Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
650{
651 Info FunctionInfo(__func__);
652 // construct the plane of the two baselines (i.e. take both their directional vectors)
653 Vector Baseline = (*Base->endpoints[1]->node->node) - (*Base->endpoints[0]->node->node);
654 Vector OtherBaseline = (*OtherBase->endpoints[1]->node->node) - (*OtherBase->endpoints[0]->node->node);
655 Vector Normal = Baseline;
656 Normal.VectorProduct(OtherBaseline);
657 Normal.Normalize();
658 DoLog(1) && (Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl);
659
660 // project one offset point of OtherBase onto this plane (and add plane offset vector)
661 Vector NewOffset = (*OtherBase->endpoints[0]->node->node) - (*Base->endpoints[0]->node->node);
662 NewOffset.ProjectOntoPlane(Normal);
663 NewOffset += (*Base->endpoints[0]->node->node);
664 Vector NewDirection = NewOffset + OtherBaseline;
665
666 // calculate the intersection between this projected baseline and Base
667 Vector *Intersection = new Vector;
668 *Intersection = GetIntersectionOfTwoLinesOnPlane(*(Base->endpoints[0]->node->node),
669 *(Base->endpoints[1]->node->node),
670 NewOffset, NewDirection);
671 Normal = (*Intersection) - (*Base->endpoints[0]->node->node);
672 DoLog(1) && (Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(Baseline)/Baseline.NormSquared()) << "." << endl);
673
674 return Intersection;
675};
676
677/** Returns the distance to the plane defined by \a *triangle
678 * \param *out output stream for debugging
679 * \param *x Vector to calculate distance to
680 * \param *triangle triangle defining plane
681 * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
682 */
683double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
684{
685 Info FunctionInfo(__func__);
686 double distance = 0.;
687 if (x == NULL) {
688 return -1;
689 }
690 distance = x->DistanceToSpace(triangle->getPlane());
691 return distance;
692};
693
694/** Creates the objects in a VRML file.
695 * \param *out output stream for debugging
696 * \param *vrmlfile output stream for tecplot data
697 * \param *Tess Tesselation structure with constructed triangles
698 * \param *mol molecule structure with atom positions
699 */
700void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
701{
702 Info FunctionInfo(__func__);
703 TesselPoint *Walker = NULL;
704 int i;
705 Vector *center = cloud->GetCenter();
706 if (vrmlfile != NULL) {
707 //Log() << Verbose(1) << "Writing Raster3D file ... ";
708 *vrmlfile << "#VRML V2.0 utf8" << endl;
709 *vrmlfile << "#Created by molecuilder" << endl;
710 *vrmlfile << "#All atoms as spheres" << endl;
711 cloud->GoToFirst();
712 while (!cloud->IsEnd()) {
713 Walker = cloud->GetPoint();
714 *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
715 for (i=0;i<NDIM;i++)
716 *vrmlfile << Walker->node->at(i)-center->at(i) << " ";
717 *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
718 cloud->GoToNext();
719 }
720
721 *vrmlfile << "# All tesselation triangles" << endl;
722 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
723 *vrmlfile << "1" << endl << " "; // 1 is triangle type
724 for (i=0;i<3;i++) { // print each node
725 for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
726 *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->at(j)-center->at(j) << " ";
727 *vrmlfile << "\t";
728 }
729 *vrmlfile << "1. 0. 0." << endl; // red as colour
730 *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
731 }
732 } else {
733 DoeLog(1) && (eLog()<< Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl);
734 }
735 delete(center);
736};
737
738/** Writes additionally the current sphere (i.e. the last triangle to file).
739 * \param *out output stream for debugging
740 * \param *rasterfile output stream for tecplot data
741 * \param *Tess Tesselation structure with constructed triangles
742 * \param *mol molecule structure with atom positions
743 */
744void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
745{
746 Info FunctionInfo(__func__);
747 Vector helper;
748
749 if (Tess->LastTriangle != NULL) {
750 // include the current position of the virtual sphere in the temporary raster3d file
751 Vector *center = cloud->GetCenter();
752 // make the circumsphere's center absolute again
753 Vector helper = (1./3.) * ((*Tess->LastTriangle->endpoints[0]->node->node) +
754 (*Tess->LastTriangle->endpoints[1]->node->node) +
755 (*Tess->LastTriangle->endpoints[2]->node->node));
756 helper -= (*center);
757 // and add to file plus translucency object
758 *rasterfile << "# current virtual sphere\n";
759 *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
760 *rasterfile << "2\n " << helper[0] << " " << helper[1] << " " << helper[2] << "\t" << 5. << "\t1 0 0\n";
761 *rasterfile << "9\n terminating special property\n";
762 delete(center);
763 }
764};
765
766/** Creates the objects in a raster3d file (renderable with a header.r3d).
767 * \param *out output stream for debugging
768 * \param *rasterfile output stream for tecplot data
769 * \param *Tess Tesselation structure with constructed triangles
770 * \param *mol molecule structure with atom positions
771 */
772void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
773{
774 Info FunctionInfo(__func__);
775 TesselPoint *Walker = NULL;
776 int i;
777 Vector *center = cloud->GetCenter();
778 if (rasterfile != NULL) {
779 //Log() << Verbose(1) << "Writing Raster3D file ... ";
780 *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
781 *rasterfile << "@header.r3d" << endl;
782 *rasterfile << "# All atoms as spheres" << endl;
783 cloud->GoToFirst();
784 while (!cloud->IsEnd()) {
785 Walker = cloud->GetPoint();
786 *rasterfile << "2" << endl << " "; // 2 is sphere type
787 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
788 const double tmp = Walker->node->at(j)-center->at(j);
789 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
790 }
791 *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
792 cloud->GoToNext();
793 }
794
795 *rasterfile << "# All tesselation triangles" << endl;
796 *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
797 for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
798 *rasterfile << "1" << endl << " "; // 1 is triangle type
799 for (i=0;i<3;i++) { // print each node
800 for (int j=0;j<NDIM;j++) { // and for each node all NDIM coordinates
801 const double tmp = TriangleRunner->second->endpoints[i]->node->node->at(j)-center->at(j);
802 *rasterfile << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
803 }
804 *rasterfile << "\t";
805 }
806 *rasterfile << "1. 0. 0." << endl; // red as colour
807 //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
808 }
809 *rasterfile << "9\n# terminating special property\n";
810 } else {
811 DoeLog(1) && (eLog()<< Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl);
812 }
813 IncludeSphereinRaster3D(rasterfile, Tess, cloud);
814 delete(center);
815};
816
817/** This function creates the tecplot file, displaying the tesselation of the hull.
818 * \param *out output stream for debugging
819 * \param *tecplot output stream for tecplot data
820 * \param N arbitrary number to differentiate various zones in the tecplot format
821 */
822void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
823{
824 Info FunctionInfo(__func__);
825 if ((tecplot != NULL) && (TesselStruct != NULL)) {
826 // write header
827 *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
828 *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
829 *tecplot << "ZONE T=\"";
830 if (N < 0) {
831 *tecplot << cloud->GetName();
832 } else {
833 *tecplot << N << "-";
834 if (TesselStruct->LastTriangle != NULL) {
835 for (int i=0;i<3;i++)
836 *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->getName();
837 } else {
838 *tecplot << "none";
839 }
840 }
841 *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
842 const int MaxId=cloud->GetMaxId();
843 int *LookupList = new int[MaxId];
844 for (int i=0; i< MaxId ; i++){
845 LookupList[i] = -1;
846 }
847
848 // print atom coordinates
849 int Counter = 1;
850 TesselPoint *Walker = NULL;
851 for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); ++target) {
852 Walker = target->second->node;
853 LookupList[Walker->nr] = Counter++;
854 for (int i=0;i<NDIM;i++) {
855 const double tmp = Walker->node->at(i);
856 *tecplot << ((fabs(tmp) < MYEPSILON) ? 0 : tmp) << " ";
857 }
858 *tecplot << target->second->value << endl;
859 }
860 *tecplot << endl;
861 // print connectivity
862 DoLog(1) && (Log() << Verbose(1) << "The following triangles were created:" << endl);
863 for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
864 DoLog(1) && (Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->getName() << "<->" << runner->second->endpoints[1]->node->getName() << "<->" << runner->second->endpoints[2]->node->getName() << endl);
865 *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
866 }
867 delete[] (LookupList);
868 }
869};
870
871/** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
872 * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
873 * \param *out output stream for debugging
874 * \param *TesselStruct pointer to Tesselation structure
875 */
876void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
877{
878 Info FunctionInfo(__func__);
879 class BoundaryPointSet *point = NULL;
880 class BoundaryLineSet *line = NULL;
881
882 // calculate remaining concavity
883 for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
884 point = PointRunner->second;
885 DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl);
886 point->value = 0;
887 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
888 line = LineRunner->second;
889 //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
890 if (!line->CheckConvexityCriterion())
891 point->value += 1;
892 }
893 }
894};
895
896
897/** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
898 * \param *out output stream for debugging
899 * \param *TesselStruct
900 * \return true - all have exactly two triangles, false - some not, list is printed to screen
901 */
902bool CheckListOfBaselines(const Tesselation * const TesselStruct)
903{
904 Info FunctionInfo(__func__);
905 LineMap::const_iterator testline;
906 bool result = false;
907 int counter = 0;
908
909 DoLog(1) && (Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl);
910 for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
911 if (testline->second->triangles.size() != 2) {
912 DoLog(2) && (Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl);
913 counter++;
914 }
915 }
916 if (counter == 0) {
917 DoLog(1) && (Log() << Verbose(1) << "None." << endl);
918 result = true;
919 }
920 return result;
921}
922
923/** Counts the number of triangle pairs that contain the given polygon.
924 * \param *P polygon with endpoints to look for
925 * \param *T set of triangles to create pairs from containing \a *P
926 */
927int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
928{
929 Info FunctionInfo(__func__);
930 // check number of endpoints in *P
931 if (P->endpoints.size() != 4) {
932 DoeLog(1) && (eLog()<< Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl);
933 return 0;
934 }
935
936 // check number of triangles in *T
937 if (T->size() < 2) {
938 DoeLog(1) && (eLog()<< Verbose(1) << "Not enough triangles to have pairs!" << endl);
939 return 0;
940 }
941
942 DoLog(0) && (Log() << Verbose(0) << "Polygon is " << *P << endl);
943 // create each pair, get the endpoints and check whether *P is contained.
944 int counter = 0;
945 PointSet Trianglenodes;
946 class BoundaryPolygonSet PairTrianglenodes;
947 for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
948 for (int i=0;i<3;i++)
949 Trianglenodes.insert((*Walker)->endpoints[i]);
950
951 for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
952 if (Walker != PairWalker) { // skip first
953 PairTrianglenodes.endpoints = Trianglenodes;
954 for (int i=0;i<3;i++)
955 PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
956 const int size = PairTrianglenodes.endpoints.size();
957 if (size == 4) {
958 DoLog(0) && (Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl);
959 // now check
960 if (PairTrianglenodes.ContainsPresentTupel(P)) {
961 counter++;
962 DoLog(0) && (Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl);
963 } else {
964 DoLog(0) && (Log() << Verbose(0) << " REJECT: No match with " << *P << endl);
965 }
966 } else {
967 DoLog(0) && (Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl);
968 }
969 }
970 }
971 Trianglenodes.clear();
972 }
973 return counter;
974};
975
976/** Checks whether two give polygons have two or more points in common.
977 * \param *P1 first polygon
978 * \param *P2 second polygon
979 * \return true - are connected, false = are note
980 */
981bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
982{
983 Info FunctionInfo(__func__);
984 int counter = 0;
985 for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
986 if (P2->ContainsBoundaryPoint((*Runner))) {
987 counter++;
988 DoLog(1) && (Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl);
989 return true;
990 }
991 }
992 return false;
993};
994
995/** Combines second into the first and deletes the second.
996 * \param *P1 first polygon, contains all nodes on return
997 * \param *&P2 second polygon, is deleted.
998 */
999void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
1000{
1001 Info FunctionInfo(__func__);
1002 pair <PointSet::iterator, bool> Tester;
1003 for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
1004 Tester = P1->endpoints.insert((*Runner));
1005 if (Tester.second)
1006 DoLog(0) && (Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl);
1007 }
1008 P2->endpoints.clear();
1009 delete(P2);
1010};
1011
Note: See TracBrowser for help on using the repository browser.