[357fba] | 1 | /*
|
---|
| 2 | * TesselationHelpers.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Aug 3, 2009
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
[f66195] | 8 | #include <fstream>
|
---|
| 9 |
|
---|
[f67b6e] | 10 | #include "info.hpp"
|
---|
[f66195] | 11 | #include "linkedcell.hpp"
|
---|
[e138de] | 12 | #include "log.hpp"
|
---|
[f66195] | 13 | #include "tesselation.hpp"
|
---|
[357fba] | 14 | #include "tesselationhelpers.hpp"
|
---|
[f66195] | 15 | #include "vector.hpp"
|
---|
| 16 | #include "verbose.hpp"
|
---|
[357fba] | 17 |
|
---|
[f67b6e] | 18 | double DetGet(gsl_matrix * const A, const int inPlace)
|
---|
| 19 | {
|
---|
| 20 | Info FunctionInfo(__func__);
|
---|
[357fba] | 21 | /*
|
---|
| 22 | inPlace = 1 => A is replaced with the LU decomposed copy.
|
---|
| 23 | inPlace = 0 => A is retained, and a copy is used for LU.
|
---|
| 24 | */
|
---|
| 25 |
|
---|
| 26 | double det;
|
---|
| 27 | int signum;
|
---|
| 28 | gsl_permutation *p = gsl_permutation_alloc(A->size1);
|
---|
| 29 | gsl_matrix *tmpA;
|
---|
| 30 |
|
---|
| 31 | if (inPlace)
|
---|
| 32 | tmpA = A;
|
---|
| 33 | else {
|
---|
| 34 | gsl_matrix *tmpA = gsl_matrix_alloc(A->size1, A->size2);
|
---|
| 35 | gsl_matrix_memcpy(tmpA , A);
|
---|
| 36 | }
|
---|
| 37 |
|
---|
| 38 |
|
---|
| 39 | gsl_linalg_LU_decomp(tmpA , p , &signum);
|
---|
| 40 | det = gsl_linalg_LU_det(tmpA , signum);
|
---|
| 41 | gsl_permutation_free(p);
|
---|
| 42 | if (! inPlace)
|
---|
| 43 | gsl_matrix_free(tmpA);
|
---|
| 44 |
|
---|
| 45 | return det;
|
---|
| 46 | };
|
---|
| 47 |
|
---|
[c0f6c6] | 48 | void GetSphere(Vector * const center, const Vector &a, const Vector &b, const Vector &c, const double RADIUS)
|
---|
[357fba] | 49 | {
|
---|
[f67b6e] | 50 | Info FunctionInfo(__func__);
|
---|
[357fba] | 51 | gsl_matrix *A = gsl_matrix_calloc(3,3);
|
---|
| 52 | double m11, m12, m13, m14;
|
---|
| 53 |
|
---|
| 54 | for(int i=0;i<3;i++) {
|
---|
| 55 | gsl_matrix_set(A, i, 0, a.x[i]);
|
---|
| 56 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
| 57 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
| 58 | }
|
---|
[f1cccd] | 59 | m11 = DetGet(A, 1);
|
---|
[357fba] | 60 |
|
---|
| 61 | for(int i=0;i<3;i++) {
|
---|
| 62 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
| 63 | gsl_matrix_set(A, i, 1, b.x[i]);
|
---|
| 64 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
| 65 | }
|
---|
[f1cccd] | 66 | m12 = DetGet(A, 1);
|
---|
[357fba] | 67 |
|
---|
| 68 | for(int i=0;i<3;i++) {
|
---|
| 69 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
| 70 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
| 71 | gsl_matrix_set(A, i, 2, c.x[i]);
|
---|
| 72 | }
|
---|
[f1cccd] | 73 | m13 = DetGet(A, 1);
|
---|
[357fba] | 74 |
|
---|
| 75 | for(int i=0;i<3;i++) {
|
---|
| 76 | gsl_matrix_set(A, i, 0, a.x[i]*a.x[i] + b.x[i]*b.x[i] + c.x[i]*c.x[i]);
|
---|
| 77 | gsl_matrix_set(A, i, 1, a.x[i]);
|
---|
| 78 | gsl_matrix_set(A, i, 2, b.x[i]);
|
---|
| 79 | }
|
---|
[f1cccd] | 80 | m14 = DetGet(A, 1);
|
---|
[357fba] | 81 |
|
---|
| 82 | if (fabs(m11) < MYEPSILON)
|
---|
[717e0c] | 83 | eLog() << Verbose(1) << "three points are colinear." << endl;
|
---|
[357fba] | 84 |
|
---|
| 85 | center->x[0] = 0.5 * m12/ m11;
|
---|
| 86 | center->x[1] = -0.5 * m13/ m11;
|
---|
| 87 | center->x[2] = 0.5 * m14/ m11;
|
---|
| 88 |
|
---|
| 89 | if (fabs(a.Distance(center) - RADIUS) > MYEPSILON)
|
---|
[717e0c] | 90 | eLog() << Verbose(1) << "The given center is further way by " << fabs(a.Distance(center) - RADIUS) << " from a than RADIUS." << endl;
|
---|
[357fba] | 91 |
|
---|
| 92 | gsl_matrix_free(A);
|
---|
| 93 | };
|
---|
| 94 |
|
---|
| 95 |
|
---|
| 96 |
|
---|
| 97 | /**
|
---|
| 98 | * Function returns center of sphere with RADIUS, which rests on points a, b, c
|
---|
| 99 | * @param Center this vector will be used for return
|
---|
| 100 | * @param a vector first point of triangle
|
---|
| 101 | * @param b vector second point of triangle
|
---|
| 102 | * @param c vector third point of triangle
|
---|
[c0f6c6] | 103 | * @param *Umkreismittelpunkt new center point of circumference
|
---|
[357fba] | 104 | * @param Direction vector indicates up/down
|
---|
[c0f6c6] | 105 | * @param AlternativeDirection Vector, needed in case the triangles have 90 deg angle
|
---|
[357fba] | 106 | * @param Halfplaneindicator double indicates whether Direction is up or down
|
---|
[c0f6c6] | 107 | * @param AlternativeIndicator double indicates in case of orthogonal triangles which direction of AlternativeDirection is suitable
|
---|
[357fba] | 108 | * @param alpha double angle at a
|
---|
| 109 | * @param beta double, angle at b
|
---|
| 110 | * @param gamma, double, angle at c
|
---|
| 111 | * @param Radius, double
|
---|
| 112 | * @param Umkreisradius double radius of circumscribing circle
|
---|
| 113 | */
|
---|
[c0f6c6] | 114 | void GetCenterOfSphere(Vector* const & Center, const Vector &a, const Vector &b, const Vector &c, Vector * const NewUmkreismittelpunkt, const Vector* const Direction, const Vector* const AlternativeDirection,
|
---|
| 115 | const double HalfplaneIndicator, const double AlternativeIndicator, const double alpha, const double beta, const double gamma, const double RADIUS, const double Umkreisradius)
|
---|
[357fba] | 116 | {
|
---|
[f67b6e] | 117 | Info FunctionInfo(__func__);
|
---|
[357fba] | 118 | Vector TempNormal, helper;
|
---|
| 119 | double Restradius;
|
---|
| 120 | Vector OtherCenter;
|
---|
| 121 | Center->Zero();
|
---|
| 122 | helper.CopyVector(&a);
|
---|
| 123 | helper.Scale(sin(2.*alpha));
|
---|
| 124 | Center->AddVector(&helper);
|
---|
| 125 | helper.CopyVector(&b);
|
---|
| 126 | helper.Scale(sin(2.*beta));
|
---|
| 127 | Center->AddVector(&helper);
|
---|
| 128 | helper.CopyVector(&c);
|
---|
| 129 | helper.Scale(sin(2.*gamma));
|
---|
| 130 | Center->AddVector(&helper);
|
---|
| 131 | //*Center = a * sin(2.*alpha) + b * sin(2.*beta) + c * sin(2.*gamma) ;
|
---|
| 132 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
| 133 | NewUmkreismittelpunkt->CopyVector(Center);
|
---|
[f67b6e] | 134 | Log() << Verbose(1) << "Center of new circumference is " << *NewUmkreismittelpunkt << ".\n";
|
---|
[357fba] | 135 | // Here we calculated center of circumscribing circle, using barycentric coordinates
|
---|
[f67b6e] | 136 | Log() << Verbose(1) << "Center of circumference is " << *Center << " in direction " << *Direction << ".\n";
|
---|
[357fba] | 137 |
|
---|
| 138 | TempNormal.CopyVector(&a);
|
---|
| 139 | TempNormal.SubtractVector(&b);
|
---|
| 140 | helper.CopyVector(&a);
|
---|
| 141 | helper.SubtractVector(&c);
|
---|
| 142 | TempNormal.VectorProduct(&helper);
|
---|
| 143 | if (fabs(HalfplaneIndicator) < MYEPSILON)
|
---|
| 144 | {
|
---|
[a5a630] | 145 | if ((TempNormal.ScalarProduct(AlternativeDirection) <0 && AlternativeIndicator >0) || (TempNormal.ScalarProduct(AlternativeDirection) >0 && AlternativeIndicator <0))
|
---|
[357fba] | 146 | {
|
---|
| 147 | TempNormal.Scale(-1);
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 | else
|
---|
| 151 | {
|
---|
[a5a630] | 152 | if (((TempNormal.ScalarProduct(Direction)<0) && (HalfplaneIndicator >0)) || ((TempNormal.ScalarProduct(Direction)>0) && (HalfplaneIndicator<0)))
|
---|
[357fba] | 153 | {
|
---|
| 154 | TempNormal.Scale(-1);
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | TempNormal.Normalize();
|
---|
| 159 | Restradius = sqrt(RADIUS*RADIUS - Umkreisradius*Umkreisradius);
|
---|
[f67b6e] | 160 | Log() << Verbose(1) << "Height of center of circumference to center of sphere is " << Restradius << ".\n";
|
---|
[357fba] | 161 | TempNormal.Scale(Restradius);
|
---|
[f67b6e] | 162 | Log() << Verbose(1) << "Shift vector to sphere of circumference is " << TempNormal << ".\n";
|
---|
[357fba] | 163 |
|
---|
| 164 | Center->AddVector(&TempNormal);
|
---|
[f67b6e] | 165 | Log() << Verbose(1) << "Center of sphere of circumference is " << *Center << ".\n";
|
---|
[f1cccd] | 166 | GetSphere(&OtherCenter, a, b, c, RADIUS);
|
---|
[f67b6e] | 167 | Log() << Verbose(1) << "OtherCenter of sphere of circumference is " << OtherCenter << ".\n";
|
---|
[357fba] | 168 | };
|
---|
| 169 |
|
---|
| 170 |
|
---|
| 171 | /** Constructs the center of the circumcircle defined by three points \a *a, \a *b and \a *c.
|
---|
| 172 | * \param *Center new center on return
|
---|
| 173 | * \param *a first point
|
---|
| 174 | * \param *b second point
|
---|
| 175 | * \param *c third point
|
---|
| 176 | */
|
---|
[c0f6c6] | 177 | void GetCenterofCircumcircle(Vector * const Center, const Vector &a, const Vector &b, const Vector &c)
|
---|
[357fba] | 178 | {
|
---|
[f67b6e] | 179 | Info FunctionInfo(__func__);
|
---|
[357fba] | 180 | Vector helper;
|
---|
| 181 | double alpha, beta, gamma;
|
---|
| 182 | Vector SideA, SideB, SideC;
|
---|
| 183 | SideA.CopyVector(b);
|
---|
[c0f6c6] | 184 | SideA.SubtractVector(&c);
|
---|
[357fba] | 185 | SideB.CopyVector(c);
|
---|
[c0f6c6] | 186 | SideB.SubtractVector(&a);
|
---|
[357fba] | 187 | SideC.CopyVector(a);
|
---|
[c0f6c6] | 188 | SideC.SubtractVector(&b);
|
---|
[357fba] | 189 | alpha = M_PI - SideB.Angle(&SideC);
|
---|
| 190 | beta = M_PI - SideC.Angle(&SideA);
|
---|
| 191 | gamma = M_PI - SideA.Angle(&SideB);
|
---|
[f67b6e] | 192 | //Log() << Verbose(1) << "INFO: alpha = " << alpha/M_PI*180. << ", beta = " << beta/M_PI*180. << ", gamma = " << gamma/M_PI*180. << "." << endl;
|
---|
[e359a8] | 193 | if (fabs(M_PI - alpha - beta - gamma) > HULLEPSILON) {
|
---|
[c5f836] | 194 | eLog() << Verbose(1) << "GetCenterofCircumcircle: Sum of angles " << (alpha+beta+gamma)/M_PI*180. << " > 180 degrees by " << fabs(M_PI - alpha - beta - gamma)/M_PI*180. << "!" << endl;
|
---|
[e359a8] | 195 | }
|
---|
[357fba] | 196 |
|
---|
| 197 | Center->Zero();
|
---|
| 198 | helper.CopyVector(a);
|
---|
| 199 | helper.Scale(sin(2.*alpha));
|
---|
| 200 | Center->AddVector(&helper);
|
---|
| 201 | helper.CopyVector(b);
|
---|
| 202 | helper.Scale(sin(2.*beta));
|
---|
| 203 | Center->AddVector(&helper);
|
---|
| 204 | helper.CopyVector(c);
|
---|
| 205 | helper.Scale(sin(2.*gamma));
|
---|
| 206 | Center->AddVector(&helper);
|
---|
| 207 | Center->Scale(1./(sin(2.*alpha) + sin(2.*beta) + sin(2.*gamma)));
|
---|
| 208 | };
|
---|
| 209 |
|
---|
| 210 | /** Returns the parameter "path length" for a given \a NewSphereCenter relative to \a OldSphereCenter on a circle on the plane \a CirclePlaneNormal with center \a CircleCenter and radius \a CircleRadius.
|
---|
| 211 | * Test whether the \a NewSphereCenter is really on the given plane and in distance \a CircleRadius from \a CircleCenter.
|
---|
| 212 | * It calculates the angle, making it unique on [0,2.*M_PI) by comparing to SearchDirection.
|
---|
| 213 | * Also the new center is invalid if it the same as the old one and does not lie right above (\a NormalVector) the base line (\a CircleCenter).
|
---|
| 214 | * \param CircleCenter Center of the parameter circle
|
---|
| 215 | * \param CirclePlaneNormal normal vector to plane of the parameter circle
|
---|
| 216 | * \param CircleRadius radius of the parameter circle
|
---|
| 217 | * \param NewSphereCenter new center of a circumcircle
|
---|
| 218 | * \param OldSphereCenter old center of a circumcircle, defining the zero "path length" on the parameter circle
|
---|
| 219 | * \param NormalVector normal vector
|
---|
| 220 | * \param SearchDirection search direction to make angle unique on return.
|
---|
| 221 | * \return Angle between \a NewSphereCenter and \a OldSphereCenter relative to \a CircleCenter, 2.*M_PI if one test fails
|
---|
| 222 | */
|
---|
[c0f6c6] | 223 | double GetPathLengthonCircumCircle(const Vector &CircleCenter, const Vector &CirclePlaneNormal, const double CircleRadius, const Vector &NewSphereCenter, const Vector &OldSphereCenter, const Vector &NormalVector, const Vector &SearchDirection)
|
---|
[357fba] | 224 | {
|
---|
[f67b6e] | 225 | Info FunctionInfo(__func__);
|
---|
[357fba] | 226 | Vector helper;
|
---|
| 227 | double radius, alpha;
|
---|
[b998c3] | 228 | Vector RelativeOldSphereCenter;
|
---|
| 229 | Vector RelativeNewSphereCenter;
|
---|
[357fba] | 230 |
|
---|
[b998c3] | 231 | RelativeOldSphereCenter.CopyVector(&OldSphereCenter);
|
---|
| 232 | RelativeOldSphereCenter.SubtractVector(&CircleCenter);
|
---|
| 233 | RelativeNewSphereCenter.CopyVector(&NewSphereCenter);
|
---|
| 234 | RelativeNewSphereCenter.SubtractVector(&CircleCenter);
|
---|
| 235 | helper.CopyVector(&RelativeNewSphereCenter);
|
---|
[357fba] | 236 | // test whether new center is on the parameter circle's plane
|
---|
| 237 | if (fabs(helper.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
|
---|
[717e0c] | 238 | eLog() << Verbose(1) << "Something's very wrong here: NewSphereCenter is not on the band's plane as desired by " <<fabs(helper.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
|
---|
[357fba] | 239 | helper.ProjectOntoPlane(&CirclePlaneNormal);
|
---|
| 240 | }
|
---|
[b998c3] | 241 | radius = helper.NormSquared();
|
---|
[357fba] | 242 | // test whether the new center vector has length of CircleRadius
|
---|
| 243 | if (fabs(radius - CircleRadius) > HULLEPSILON)
|
---|
[717e0c] | 244 | eLog() << Verbose(1) << "The projected center of the new sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
|
---|
[b998c3] | 245 | alpha = helper.Angle(&RelativeOldSphereCenter);
|
---|
[357fba] | 246 | // make the angle unique by checking the halfplanes/search direction
|
---|
| 247 | if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON) // acos is not unique on [0, 2.*M_PI), hence extra check to decide between two half intervals
|
---|
| 248 | alpha = 2.*M_PI - alpha;
|
---|
[b998c3] | 249 | Log() << Verbose(1) << "INFO: RelativeNewSphereCenter is " << helper << ", RelativeOldSphereCenter is " << RelativeOldSphereCenter << " and resulting angle is " << alpha << "." << endl;
|
---|
| 250 | radius = helper.Distance(&RelativeOldSphereCenter);
|
---|
[357fba] | 251 | helper.ProjectOntoPlane(&NormalVector);
|
---|
| 252 | // check whether new center is somewhat away or at least right over the current baseline to prevent intersecting triangles
|
---|
| 253 | if ((radius > HULLEPSILON) || (helper.Norm() < HULLEPSILON)) {
|
---|
[b998c3] | 254 | Log() << Verbose(1) << "INFO: Distance between old and new center is " << radius << " and between new center and baseline center is " << helper.Norm() << "." << endl;
|
---|
[357fba] | 255 | return alpha;
|
---|
| 256 | } else {
|
---|
[b998c3] | 257 | Log() << Verbose(1) << "INFO: NewSphereCenter " << RelativeNewSphereCenter << " is too close to RelativeOldSphereCenter" << RelativeOldSphereCenter << "." << endl;
|
---|
[357fba] | 258 | return 2.*M_PI;
|
---|
| 259 | }
|
---|
| 260 | };
|
---|
| 261 |
|
---|
| 262 | struct Intersection {
|
---|
| 263 | Vector x1;
|
---|
| 264 | Vector x2;
|
---|
| 265 | Vector x3;
|
---|
| 266 | Vector x4;
|
---|
| 267 | };
|
---|
| 268 |
|
---|
| 269 | /**
|
---|
| 270 | * Intersection calculation function.
|
---|
| 271 | *
|
---|
| 272 | * @param x to find the result for
|
---|
| 273 | * @param function parameter
|
---|
| 274 | */
|
---|
| 275 | double MinIntersectDistance(const gsl_vector * x, void *params)
|
---|
| 276 | {
|
---|
[f67b6e] | 277 | Info FunctionInfo(__func__);
|
---|
[357fba] | 278 | double retval = 0;
|
---|
| 279 | struct Intersection *I = (struct Intersection *)params;
|
---|
| 280 | Vector intersection;
|
---|
| 281 | Vector SideA,SideB,HeightA, HeightB;
|
---|
| 282 | for (int i=0;i<NDIM;i++)
|
---|
| 283 | intersection.x[i] = gsl_vector_get(x, i);
|
---|
| 284 |
|
---|
| 285 | SideA.CopyVector(&(I->x1));
|
---|
| 286 | SideA.SubtractVector(&I->x2);
|
---|
| 287 | HeightA.CopyVector(&intersection);
|
---|
| 288 | HeightA.SubtractVector(&I->x1);
|
---|
| 289 | HeightA.ProjectOntoPlane(&SideA);
|
---|
| 290 |
|
---|
| 291 | SideB.CopyVector(&I->x3);
|
---|
| 292 | SideB.SubtractVector(&I->x4);
|
---|
| 293 | HeightB.CopyVector(&intersection);
|
---|
| 294 | HeightB.SubtractVector(&I->x3);
|
---|
| 295 | HeightB.ProjectOntoPlane(&SideB);
|
---|
| 296 |
|
---|
| 297 | retval = HeightA.ScalarProduct(&HeightA) + HeightB.ScalarProduct(&HeightB);
|
---|
[f67b6e] | 298 | //Log() << Verbose(1) << "MinIntersectDistance called, result: " << retval << endl;
|
---|
[357fba] | 299 |
|
---|
| 300 | return retval;
|
---|
| 301 | };
|
---|
| 302 |
|
---|
| 303 |
|
---|
| 304 | /**
|
---|
| 305 | * Calculates whether there is an intersection between two lines. The first line
|
---|
| 306 | * always goes through point 1 and point 2 and the second line is given by the
|
---|
| 307 | * connection between point 4 and point 5.
|
---|
| 308 | *
|
---|
| 309 | * @param point 1 of line 1
|
---|
| 310 | * @param point 2 of line 1
|
---|
| 311 | * @param point 1 of line 2
|
---|
| 312 | * @param point 2 of line 2
|
---|
| 313 | *
|
---|
| 314 | * @return true if there is an intersection between the given lines, false otherwise
|
---|
| 315 | */
|
---|
[c0f6c6] | 316 | bool existsIntersection(const Vector &point1, const Vector &point2, const Vector &point3, const Vector &point4)
|
---|
[357fba] | 317 | {
|
---|
[f67b6e] | 318 | Info FunctionInfo(__func__);
|
---|
[357fba] | 319 | bool result;
|
---|
| 320 |
|
---|
| 321 | struct Intersection par;
|
---|
| 322 | par.x1.CopyVector(&point1);
|
---|
| 323 | par.x2.CopyVector(&point2);
|
---|
| 324 | par.x3.CopyVector(&point3);
|
---|
| 325 | par.x4.CopyVector(&point4);
|
---|
| 326 |
|
---|
| 327 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
| 328 | gsl_multimin_fminimizer *s = NULL;
|
---|
| 329 | gsl_vector *ss, *x;
|
---|
[f1cccd] | 330 | gsl_multimin_function minexFunction;
|
---|
[357fba] | 331 |
|
---|
| 332 | size_t iter = 0;
|
---|
| 333 | int status;
|
---|
| 334 | double size;
|
---|
| 335 |
|
---|
| 336 | /* Starting point */
|
---|
| 337 | x = gsl_vector_alloc(NDIM);
|
---|
| 338 | gsl_vector_set(x, 0, point1.x[0]);
|
---|
| 339 | gsl_vector_set(x, 1, point1.x[1]);
|
---|
| 340 | gsl_vector_set(x, 2, point1.x[2]);
|
---|
| 341 |
|
---|
| 342 | /* Set initial step sizes to 1 */
|
---|
| 343 | ss = gsl_vector_alloc(NDIM);
|
---|
| 344 | gsl_vector_set_all(ss, 1.0);
|
---|
| 345 |
|
---|
| 346 | /* Initialize method and iterate */
|
---|
[f1cccd] | 347 | minexFunction.n = NDIM;
|
---|
| 348 | minexFunction.f = &MinIntersectDistance;
|
---|
| 349 | minexFunction.params = (void *)∥
|
---|
[357fba] | 350 |
|
---|
| 351 | s = gsl_multimin_fminimizer_alloc(T, NDIM);
|
---|
[f1cccd] | 352 | gsl_multimin_fminimizer_set(s, &minexFunction, x, ss);
|
---|
[357fba] | 353 |
|
---|
| 354 | do {
|
---|
| 355 | iter++;
|
---|
| 356 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
| 357 |
|
---|
| 358 | if (status) {
|
---|
| 359 | break;
|
---|
| 360 | }
|
---|
| 361 |
|
---|
| 362 | size = gsl_multimin_fminimizer_size(s);
|
---|
| 363 | status = gsl_multimin_test_size(size, 1e-2);
|
---|
| 364 |
|
---|
| 365 | if (status == GSL_SUCCESS) {
|
---|
[f67b6e] | 366 | Log() << Verbose(1) << "converged to minimum" << endl;
|
---|
[357fba] | 367 | }
|
---|
| 368 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
| 369 |
|
---|
| 370 | // check whether intersection is in between or not
|
---|
| 371 | Vector intersection, SideA, SideB, HeightA, HeightB;
|
---|
| 372 | double t1, t2;
|
---|
| 373 | for (int i = 0; i < NDIM; i++) {
|
---|
| 374 | intersection.x[i] = gsl_vector_get(s->x, i);
|
---|
| 375 | }
|
---|
| 376 |
|
---|
| 377 | SideA.CopyVector(&par.x2);
|
---|
| 378 | SideA.SubtractVector(&par.x1);
|
---|
| 379 | HeightA.CopyVector(&intersection);
|
---|
| 380 | HeightA.SubtractVector(&par.x1);
|
---|
| 381 |
|
---|
[658efb] | 382 | t1 = HeightA.ScalarProduct(&SideA)/SideA.ScalarProduct(&SideA);
|
---|
[357fba] | 383 |
|
---|
| 384 | SideB.CopyVector(&par.x4);
|
---|
| 385 | SideB.SubtractVector(&par.x3);
|
---|
| 386 | HeightB.CopyVector(&intersection);
|
---|
| 387 | HeightB.SubtractVector(&par.x3);
|
---|
| 388 |
|
---|
[658efb] | 389 | t2 = HeightB.ScalarProduct(&SideB)/SideB.ScalarProduct(&SideB);
|
---|
[357fba] | 390 |
|
---|
[f67b6e] | 391 | Log() << Verbose(1) << "Intersection " << intersection << " is at "
|
---|
[357fba] | 392 | << t1 << " for (" << point1 << "," << point2 << ") and at "
|
---|
| 393 | << t2 << " for (" << point3 << "," << point4 << "): ";
|
---|
| 394 |
|
---|
| 395 | if (((t1 >= 0) && (t1 <= 1)) && ((t2 >= 0) && (t2 <= 1))) {
|
---|
[f67b6e] | 396 | Log() << Verbose(1) << "true intersection." << endl;
|
---|
[357fba] | 397 | result = true;
|
---|
| 398 | } else {
|
---|
[f67b6e] | 399 | Log() << Verbose(1) << "intersection out of region of interest." << endl;
|
---|
[357fba] | 400 | result = false;
|
---|
| 401 | }
|
---|
| 402 |
|
---|
| 403 | // free minimizer stuff
|
---|
| 404 | gsl_vector_free(x);
|
---|
| 405 | gsl_vector_free(ss);
|
---|
| 406 | gsl_multimin_fminimizer_free(s);
|
---|
| 407 |
|
---|
| 408 | return result;
|
---|
[91e7e4a] | 409 | };
|
---|
| 410 |
|
---|
[57066a] | 411 | /** Gets the angle between a point and a reference relative to the provided center.
|
---|
| 412 | * We have two shanks point and reference between which the angle is calculated
|
---|
| 413 | * and by scalar product with OrthogonalVector we decide the interval.
|
---|
| 414 | * @param point to calculate the angle for
|
---|
| 415 | * @param reference to which to calculate the angle
|
---|
| 416 | * @param OrthogonalVector points in direction of [pi,2pi] interval
|
---|
| 417 | *
|
---|
| 418 | * @return angle between point and reference
|
---|
| 419 | */
|
---|
[c0f6c6] | 420 | double GetAngle(const Vector &point, const Vector &reference, const Vector &OrthogonalVector)
|
---|
[57066a] | 421 | {
|
---|
[f67b6e] | 422 | Info FunctionInfo(__func__);
|
---|
[57066a] | 423 | if (reference.IsZero())
|
---|
| 424 | return M_PI;
|
---|
| 425 |
|
---|
| 426 | // calculate both angles and correct with in-plane vector
|
---|
| 427 | if (point.IsZero())
|
---|
| 428 | return M_PI;
|
---|
| 429 | double phi = point.Angle(&reference);
|
---|
| 430 | if (OrthogonalVector.ScalarProduct(&point) > 0) {
|
---|
| 431 | phi = 2.*M_PI - phi;
|
---|
| 432 | }
|
---|
| 433 |
|
---|
[f67b6e] | 434 | Log() << Verbose(1) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
|
---|
[57066a] | 435 |
|
---|
| 436 | return phi;
|
---|
| 437 | }
|
---|
| 438 |
|
---|
[91e7e4a] | 439 |
|
---|
| 440 | /** Calculates the volume of a general tetraeder.
|
---|
| 441 | * \param *a first vector
|
---|
| 442 | * \param *a first vector
|
---|
| 443 | * \param *a first vector
|
---|
| 444 | * \param *a first vector
|
---|
| 445 | * \return \f$ \frac{1}{6} \cdot ((a-d) \times (a-c) \cdot (a-b)) \f$
|
---|
| 446 | */
|
---|
[c0f6c6] | 447 | double CalculateVolumeofGeneralTetraeder(const Vector &a, const Vector &b, const Vector &c, const Vector &d)
|
---|
[91e7e4a] | 448 | {
|
---|
[f67b6e] | 449 | Info FunctionInfo(__func__);
|
---|
[91e7e4a] | 450 | Vector Point, TetraederVector[3];
|
---|
| 451 | double volume;
|
---|
| 452 |
|
---|
| 453 | TetraederVector[0].CopyVector(a);
|
---|
| 454 | TetraederVector[1].CopyVector(b);
|
---|
| 455 | TetraederVector[2].CopyVector(c);
|
---|
| 456 | for (int j=0;j<3;j++)
|
---|
[c0f6c6] | 457 | TetraederVector[j].SubtractVector(&d);
|
---|
[91e7e4a] | 458 | Point.CopyVector(&TetraederVector[0]);
|
---|
| 459 | Point.VectorProduct(&TetraederVector[1]);
|
---|
| 460 | volume = 1./6. * fabs(Point.ScalarProduct(&TetraederVector[2]));
|
---|
| 461 | return volume;
|
---|
| 462 | };
|
---|
[357fba] | 463 |
|
---|
[57066a] | 464 |
|
---|
| 465 | /** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
|
---|
| 466 | * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
|
---|
| 467 | * make it bigger (i.e. closing one (the baseline) and opening two new ones).
|
---|
| 468 | * \param TPS[3] nodes of the triangle
|
---|
| 469 | * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
|
---|
| 470 | */
|
---|
[c0f6c6] | 471 | bool CheckLineCriteriaForDegeneratedTriangle(const BoundaryPointSet * const nodes[3])
|
---|
[57066a] | 472 | {
|
---|
[f67b6e] | 473 | Info FunctionInfo(__func__);
|
---|
[57066a] | 474 | bool result = false;
|
---|
| 475 | int counter = 0;
|
---|
| 476 |
|
---|
| 477 | // check all three points
|
---|
| 478 | for (int i=0;i<3;i++)
|
---|
| 479 | for (int j=i+1; j<3; j++) {
|
---|
[f1ef60a] | 480 | if (nodes[i] == NULL) {
|
---|
| 481 | Log() << Verbose(1) << "Node nr. " << i << " is not yet present." << endl;
|
---|
| 482 | result = true;
|
---|
| 483 | } else if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
|
---|
[776b64] | 484 | LineMap::const_iterator FindLine;
|
---|
| 485 | pair<LineMap::const_iterator,LineMap::const_iterator> FindPair;
|
---|
[57066a] | 486 | FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
|
---|
| 487 | for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
|
---|
| 488 | // If there is a line with less than two attached triangles, we don't need a new line.
|
---|
| 489 | if (FindLine->second->triangles.size() < 2) {
|
---|
| 490 | counter++;
|
---|
| 491 | break; // increase counter only once per edge
|
---|
| 492 | }
|
---|
| 493 | }
|
---|
| 494 | } else { // no line
|
---|
[e138de] | 495 | Log() << Verbose(1) << "The line between " << *nodes[i] << " and " << *nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
|
---|
[57066a] | 496 | result = true;
|
---|
| 497 | }
|
---|
| 498 | }
|
---|
| 499 | if ((!result) && (counter > 1)) {
|
---|
[f67b6e] | 500 | Log() << Verbose(1) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
|
---|
[57066a] | 501 | result = true;
|
---|
| 502 | }
|
---|
| 503 | return result;
|
---|
| 504 | };
|
---|
| 505 |
|
---|
| 506 |
|
---|
[f67b6e] | 507 | ///** Sort function for the candidate list.
|
---|
| 508 | // */
|
---|
| 509 | //bool SortCandidates(const CandidateForTesselation* candidate1, const CandidateForTesselation* candidate2)
|
---|
| 510 | //{
|
---|
| 511 | // Info FunctionInfo(__func__);
|
---|
| 512 | // Vector BaseLineVector, OrthogonalVector, helper;
|
---|
| 513 | // if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
|
---|
| 514 | // eLog() << Verbose(1) << "sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
|
---|
| 515 | // //return false;
|
---|
| 516 | // exit(1);
|
---|
| 517 | // }
|
---|
| 518 | // // create baseline vector
|
---|
| 519 | // BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
|
---|
| 520 | // BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 521 | // BaseLineVector.Normalize();
|
---|
| 522 | //
|
---|
| 523 | // // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
|
---|
| 524 | // helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 525 | // helper.SubtractVector(candidate1->point->node);
|
---|
| 526 | // OrthogonalVector.CopyVector(&helper);
|
---|
| 527 | // helper.VectorProduct(&BaseLineVector);
|
---|
| 528 | // OrthogonalVector.SubtractVector(&helper);
|
---|
| 529 | // OrthogonalVector.Normalize();
|
---|
| 530 | //
|
---|
| 531 | // // calculate both angles and correct with in-plane vector
|
---|
| 532 | // helper.CopyVector(candidate1->point->node);
|
---|
| 533 | // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 534 | // double phi = BaseLineVector.Angle(&helper);
|
---|
| 535 | // if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
| 536 | // phi = 2.*M_PI - phi;
|
---|
| 537 | // }
|
---|
| 538 | // helper.CopyVector(candidate2->point->node);
|
---|
| 539 | // helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
|
---|
| 540 | // double psi = BaseLineVector.Angle(&helper);
|
---|
| 541 | // if (OrthogonalVector.ScalarProduct(&helper) > 0) {
|
---|
| 542 | // psi = 2.*M_PI - psi;
|
---|
| 543 | // }
|
---|
| 544 | //
|
---|
| 545 | // Log() << Verbose(1) << *candidate1->point << " has angle " << phi << endl;
|
---|
| 546 | // Log() << Verbose(1) << *candidate2->point << " has angle " << psi << endl;
|
---|
| 547 | //
|
---|
| 548 | // // return comparison
|
---|
| 549 | // return phi < psi;
|
---|
| 550 | //};
|
---|
[57066a] | 551 |
|
---|
| 552 | /**
|
---|
| 553 | * Finds the point which is second closest to the provided one.
|
---|
| 554 | *
|
---|
| 555 | * @param Point to which to find the second closest other point
|
---|
| 556 | * @param linked cell structure
|
---|
| 557 | *
|
---|
| 558 | * @return point which is second closest to the provided one
|
---|
| 559 | */
|
---|
[71b20e] | 560 | TesselPoint* FindSecondClosestTesselPoint(const Vector* Point, const LinkedCell* const LC)
|
---|
[57066a] | 561 | {
|
---|
[f67b6e] | 562 | Info FunctionInfo(__func__);
|
---|
[57066a] | 563 | TesselPoint* closestPoint = NULL;
|
---|
| 564 | TesselPoint* secondClosestPoint = NULL;
|
---|
| 565 | double distance = 1e16;
|
---|
| 566 | double secondDistance = 1e16;
|
---|
| 567 | Vector helper;
|
---|
| 568 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
| 569 |
|
---|
| 570 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
| 571 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
| 572 | N[i] = LC->n[i];
|
---|
[f67b6e] | 573 | Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
|
---|
[57066a] | 574 |
|
---|
| 575 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
[f67b6e] | 576 | //Log() << Verbose(1) << endl;
|
---|
[57066a] | 577 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 578 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 579 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[776b64] | 580 | const LinkedNodes *List = LC->GetCurrentCell();
|
---|
[f67b6e] | 581 | //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
|
---|
[57066a] | 582 | if (List != NULL) {
|
---|
[776b64] | 583 | for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[57066a] | 584 | helper.CopyVector(Point);
|
---|
| 585 | helper.SubtractVector((*Runner)->node);
|
---|
| 586 | double currentNorm = helper. Norm();
|
---|
| 587 | if (currentNorm < distance) {
|
---|
| 588 | // remember second point
|
---|
| 589 | secondDistance = distance;
|
---|
| 590 | secondClosestPoint = closestPoint;
|
---|
| 591 | // mark down new closest point
|
---|
| 592 | distance = currentNorm;
|
---|
| 593 | closestPoint = (*Runner);
|
---|
[e138de] | 594 | //Log() << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *secondClosestPoint << "." << endl;
|
---|
[57066a] | 595 | }
|
---|
| 596 | }
|
---|
| 597 | } else {
|
---|
[717e0c] | 598 | eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
|
---|
[57066a] | 599 | << LC->n[2] << " is invalid!" << endl;
|
---|
| 600 | }
|
---|
| 601 | }
|
---|
| 602 |
|
---|
| 603 | return secondClosestPoint;
|
---|
| 604 | };
|
---|
| 605 |
|
---|
| 606 | /**
|
---|
| 607 | * Finds the point which is closest to the provided one.
|
---|
| 608 | *
|
---|
| 609 | * @param Point to which to find the closest other point
|
---|
| 610 | * @param SecondPoint the second closest other point on return, NULL if none found
|
---|
| 611 | * @param linked cell structure
|
---|
| 612 | *
|
---|
| 613 | * @return point which is closest to the provided one, NULL if none found
|
---|
| 614 | */
|
---|
[71b20e] | 615 | TesselPoint* FindClosestTesselPoint(const Vector* Point, TesselPoint *&SecondPoint, const LinkedCell* const LC)
|
---|
[57066a] | 616 | {
|
---|
[f67b6e] | 617 | Info FunctionInfo(__func__);
|
---|
[57066a] | 618 | TesselPoint* closestPoint = NULL;
|
---|
| 619 | SecondPoint = NULL;
|
---|
| 620 | double distance = 1e16;
|
---|
| 621 | double secondDistance = 1e16;
|
---|
| 622 | Vector helper;
|
---|
| 623 | int N[NDIM], Nlower[NDIM], Nupper[NDIM];
|
---|
| 624 |
|
---|
| 625 | LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
|
---|
| 626 | for(int i=0;i<NDIM;i++) // store indices of this cell
|
---|
| 627 | N[i] = LC->n[i];
|
---|
[f67b6e] | 628 | Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
|
---|
[57066a] | 629 |
|
---|
| 630 | LC->GetNeighbourBounds(Nlower, Nupper);
|
---|
[f67b6e] | 631 | //Log() << Verbose(1) << endl;
|
---|
[57066a] | 632 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 633 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 634 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[776b64] | 635 | const LinkedNodes *List = LC->GetCurrentCell();
|
---|
[f67b6e] | 636 | //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
|
---|
[57066a] | 637 | if (List != NULL) {
|
---|
[776b64] | 638 | for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[57066a] | 639 | helper.CopyVector(Point);
|
---|
| 640 | helper.SubtractVector((*Runner)->node);
|
---|
[71b20e] | 641 | double currentNorm = helper.NormSquared();
|
---|
[57066a] | 642 | if (currentNorm < distance) {
|
---|
| 643 | secondDistance = distance;
|
---|
| 644 | SecondPoint = closestPoint;
|
---|
| 645 | distance = currentNorm;
|
---|
| 646 | closestPoint = (*Runner);
|
---|
[f67b6e] | 647 | //Log() << Verbose(1) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
|
---|
[57066a] | 648 | } else if (currentNorm < secondDistance) {
|
---|
| 649 | secondDistance = currentNorm;
|
---|
| 650 | SecondPoint = (*Runner);
|
---|
[f67b6e] | 651 | //Log() << Verbose(1) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
|
---|
[57066a] | 652 | }
|
---|
| 653 | }
|
---|
| 654 | } else {
|
---|
[717e0c] | 655 | eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << ","
|
---|
[57066a] | 656 | << LC->n[2] << " is invalid!" << endl;
|
---|
| 657 | }
|
---|
| 658 | }
|
---|
[a2028e] | 659 | // output
|
---|
| 660 | if (closestPoint != NULL) {
|
---|
[f67b6e] | 661 | Log() << Verbose(1) << "Closest point is " << *closestPoint;
|
---|
[a2028e] | 662 | if (SecondPoint != NULL)
|
---|
[e138de] | 663 | Log() << Verbose(0) << " and second closest is " << *SecondPoint;
|
---|
| 664 | Log() << Verbose(0) << "." << endl;
|
---|
[a2028e] | 665 | }
|
---|
[57066a] | 666 | return closestPoint;
|
---|
| 667 | };
|
---|
| 668 |
|
---|
| 669 | /** Returns the closest point on \a *Base with respect to \a *OtherBase.
|
---|
| 670 | * \param *out output stream for debugging
|
---|
| 671 | * \param *Base reference line
|
---|
| 672 | * \param *OtherBase other base line
|
---|
| 673 | * \return Vector on reference line that has closest distance
|
---|
| 674 | */
|
---|
[e138de] | 675 | Vector * GetClosestPointBetweenLine(const BoundaryLineSet * const Base, const BoundaryLineSet * const OtherBase)
|
---|
[57066a] | 676 | {
|
---|
[f67b6e] | 677 | Info FunctionInfo(__func__);
|
---|
[57066a] | 678 | // construct the plane of the two baselines (i.e. take both their directional vectors)
|
---|
| 679 | Vector Normal;
|
---|
| 680 | Vector Baseline, OtherBaseline;
|
---|
| 681 | Baseline.CopyVector(Base->endpoints[1]->node->node);
|
---|
| 682 | Baseline.SubtractVector(Base->endpoints[0]->node->node);
|
---|
| 683 | OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
|
---|
| 684 | OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
|
---|
| 685 | Normal.CopyVector(&Baseline);
|
---|
| 686 | Normal.VectorProduct(&OtherBaseline);
|
---|
| 687 | Normal.Normalize();
|
---|
[f67b6e] | 688 | Log() << Verbose(1) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
|
---|
[57066a] | 689 |
|
---|
| 690 | // project one offset point of OtherBase onto this plane (and add plane offset vector)
|
---|
| 691 | Vector NewOffset;
|
---|
| 692 | NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
|
---|
| 693 | NewOffset.SubtractVector(Base->endpoints[0]->node->node);
|
---|
| 694 | NewOffset.ProjectOntoPlane(&Normal);
|
---|
| 695 | NewOffset.AddVector(Base->endpoints[0]->node->node);
|
---|
| 696 | Vector NewDirection;
|
---|
| 697 | NewDirection.CopyVector(&NewOffset);
|
---|
| 698 | NewDirection.AddVector(&OtherBaseline);
|
---|
| 699 |
|
---|
| 700 | // calculate the intersection between this projected baseline and Base
|
---|
| 701 | Vector *Intersection = new Vector;
|
---|
[e138de] | 702 | Intersection->GetIntersectionOfTwoLinesOnPlane(Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
|
---|
[57066a] | 703 | Normal.CopyVector(Intersection);
|
---|
| 704 | Normal.SubtractVector(Base->endpoints[0]->node->node);
|
---|
[f67b6e] | 705 | Log() << Verbose(1) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
|
---|
[57066a] | 706 |
|
---|
| 707 | return Intersection;
|
---|
| 708 | };
|
---|
| 709 |
|
---|
[c4d4df] | 710 | /** Returns the distance to the plane defined by \a *triangle
|
---|
| 711 | * \param *out output stream for debugging
|
---|
| 712 | * \param *x Vector to calculate distance to
|
---|
| 713 | * \param *triangle triangle defining plane
|
---|
| 714 | * \return distance between \a *x and plane defined by \a *triangle, -1 - if something went wrong
|
---|
| 715 | */
|
---|
[e138de] | 716 | double DistanceToTrianglePlane(const Vector *x, const BoundaryTriangleSet * const triangle)
|
---|
[c4d4df] | 717 | {
|
---|
[f67b6e] | 718 | Info FunctionInfo(__func__);
|
---|
[c4d4df] | 719 | double distance = 0.;
|
---|
| 720 | if (x == NULL) {
|
---|
| 721 | return -1;
|
---|
| 722 | }
|
---|
[e138de] | 723 | distance = x->DistanceToPlane(&triangle->NormalVector, triangle->endpoints[0]->node->node);
|
---|
[c4d4df] | 724 | return distance;
|
---|
| 725 | };
|
---|
[57066a] | 726 |
|
---|
| 727 | /** Creates the objects in a VRML file.
|
---|
| 728 | * \param *out output stream for debugging
|
---|
| 729 | * \param *vrmlfile output stream for tecplot data
|
---|
| 730 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 731 | * \param *mol molecule structure with atom positions
|
---|
| 732 | */
|
---|
[e138de] | 733 | void WriteVrmlFile(ofstream * const vrmlfile, const Tesselation * const Tess, const PointCloud * const cloud)
|
---|
[57066a] | 734 | {
|
---|
[f67b6e] | 735 | Info FunctionInfo(__func__);
|
---|
[57066a] | 736 | TesselPoint *Walker = NULL;
|
---|
| 737 | int i;
|
---|
[e138de] | 738 | Vector *center = cloud->GetCenter();
|
---|
[57066a] | 739 | if (vrmlfile != NULL) {
|
---|
[e138de] | 740 | //Log() << Verbose(1) << "Writing Raster3D file ... ";
|
---|
[57066a] | 741 | *vrmlfile << "#VRML V2.0 utf8" << endl;
|
---|
| 742 | *vrmlfile << "#Created by molecuilder" << endl;
|
---|
| 743 | *vrmlfile << "#All atoms as spheres" << endl;
|
---|
| 744 | cloud->GoToFirst();
|
---|
| 745 | while (!cloud->IsEnd()) {
|
---|
| 746 | Walker = cloud->GetPoint();
|
---|
| 747 | *vrmlfile << "Sphere {" << endl << " "; // 2 is sphere type
|
---|
| 748 | for (i=0;i<NDIM;i++)
|
---|
| 749 | *vrmlfile << Walker->node->x[i]-center->x[i] << " ";
|
---|
| 750 | *vrmlfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
| 751 | cloud->GoToNext();
|
---|
| 752 | }
|
---|
| 753 |
|
---|
| 754 | *vrmlfile << "# All tesselation triangles" << endl;
|
---|
[776b64] | 755 | for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
[57066a] | 756 | *vrmlfile << "1" << endl << " "; // 1 is triangle type
|
---|
| 757 | for (i=0;i<3;i++) { // print each node
|
---|
| 758 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
| 759 | *vrmlfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
|
---|
| 760 | *vrmlfile << "\t";
|
---|
| 761 | }
|
---|
| 762 | *vrmlfile << "1. 0. 0." << endl; // red as colour
|
---|
| 763 | *vrmlfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
| 764 | }
|
---|
| 765 | } else {
|
---|
[717e0c] | 766 | eLog() << Verbose(1) << "Given vrmlfile is " << vrmlfile << "." << endl;
|
---|
[57066a] | 767 | }
|
---|
| 768 | delete(center);
|
---|
| 769 | };
|
---|
| 770 |
|
---|
| 771 | /** Writes additionally the current sphere (i.e. the last triangle to file).
|
---|
| 772 | * \param *out output stream for debugging
|
---|
| 773 | * \param *rasterfile output stream for tecplot data
|
---|
| 774 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 775 | * \param *mol molecule structure with atom positions
|
---|
| 776 | */
|
---|
[e138de] | 777 | void IncludeSphereinRaster3D(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
|
---|
[57066a] | 778 | {
|
---|
[f67b6e] | 779 | Info FunctionInfo(__func__);
|
---|
[57066a] | 780 | Vector helper;
|
---|
[6a7f78c] | 781 |
|
---|
| 782 | if (Tess->LastTriangle != NULL) {
|
---|
| 783 | // include the current position of the virtual sphere in the temporary raster3d file
|
---|
| 784 | Vector *center = cloud->GetCenter();
|
---|
| 785 | // make the circumsphere's center absolute again
|
---|
| 786 | helper.CopyVector(Tess->LastTriangle->endpoints[0]->node->node);
|
---|
| 787 | helper.AddVector(Tess->LastTriangle->endpoints[1]->node->node);
|
---|
| 788 | helper.AddVector(Tess->LastTriangle->endpoints[2]->node->node);
|
---|
| 789 | helper.Scale(1./3.);
|
---|
| 790 | helper.SubtractVector(center);
|
---|
| 791 | // and add to file plus translucency object
|
---|
| 792 | *rasterfile << "# current virtual sphere\n";
|
---|
| 793 | *rasterfile << "8\n 25.0 0.6 -1.0 -1.0 -1.0 0.2 0 0 0 0\n";
|
---|
| 794 | *rasterfile << "2\n " << helper.x[0] << " " << helper.x[1] << " " << helper.x[2] << "\t" << 5. << "\t1 0 0\n";
|
---|
| 795 | *rasterfile << "9\n terminating special property\n";
|
---|
| 796 | delete(center);
|
---|
| 797 | }
|
---|
[57066a] | 798 | };
|
---|
| 799 |
|
---|
| 800 | /** Creates the objects in a raster3d file (renderable with a header.r3d).
|
---|
| 801 | * \param *out output stream for debugging
|
---|
| 802 | * \param *rasterfile output stream for tecplot data
|
---|
| 803 | * \param *Tess Tesselation structure with constructed triangles
|
---|
| 804 | * \param *mol molecule structure with atom positions
|
---|
| 805 | */
|
---|
[e138de] | 806 | void WriteRaster3dFile(ofstream * const rasterfile, const Tesselation * const Tess, const PointCloud * const cloud)
|
---|
[57066a] | 807 | {
|
---|
[f67b6e] | 808 | Info FunctionInfo(__func__);
|
---|
[57066a] | 809 | TesselPoint *Walker = NULL;
|
---|
| 810 | int i;
|
---|
[fc9992] | 811 | Vector *center = cloud->GetCenter();
|
---|
[57066a] | 812 | if (rasterfile != NULL) {
|
---|
[e138de] | 813 | //Log() << Verbose(1) << "Writing Raster3D file ... ";
|
---|
[57066a] | 814 | *rasterfile << "# Raster3D object description, created by MoleCuilder" << endl;
|
---|
| 815 | *rasterfile << "@header.r3d" << endl;
|
---|
| 816 | *rasterfile << "# All atoms as spheres" << endl;
|
---|
| 817 | cloud->GoToFirst();
|
---|
| 818 | while (!cloud->IsEnd()) {
|
---|
| 819 | Walker = cloud->GetPoint();
|
---|
| 820 | *rasterfile << "2" << endl << " "; // 2 is sphere type
|
---|
| 821 | for (i=0;i<NDIM;i++)
|
---|
| 822 | *rasterfile << Walker->node->x[i]-center->x[i] << " ";
|
---|
| 823 | *rasterfile << "\t0.1\t1. 1. 1." << endl; // radius 0.05 and white as colour
|
---|
| 824 | cloud->GoToNext();
|
---|
| 825 | }
|
---|
| 826 |
|
---|
| 827 | *rasterfile << "# All tesselation triangles" << endl;
|
---|
| 828 | *rasterfile << "8\n 25. -1. 1. 1. 1. 0.0 0 0 0 2\n SOLID 1.0 0.0 0.0\n BACKFACE 0.3 0.3 1.0 0 0\n";
|
---|
[776b64] | 829 | for (TriangleMap::const_iterator TriangleRunner = Tess->TrianglesOnBoundary.begin(); TriangleRunner != Tess->TrianglesOnBoundary.end(); TriangleRunner++) {
|
---|
[57066a] | 830 | *rasterfile << "1" << endl << " "; // 1 is triangle type
|
---|
| 831 | for (i=0;i<3;i++) { // print each node
|
---|
| 832 | for (int j=0;j<NDIM;j++) // and for each node all NDIM coordinates
|
---|
| 833 | *rasterfile << TriangleRunner->second->endpoints[i]->node->node->x[j]-center->x[j] << " ";
|
---|
| 834 | *rasterfile << "\t";
|
---|
| 835 | }
|
---|
| 836 | *rasterfile << "1. 0. 0." << endl; // red as colour
|
---|
| 837 | //*rasterfile << "18" << endl << " 0.5 0.5 0.5" << endl; // 18 is transparency type for previous object
|
---|
| 838 | }
|
---|
| 839 | *rasterfile << "9\n# terminating special property\n";
|
---|
| 840 | } else {
|
---|
[717e0c] | 841 | eLog() << Verbose(1) << "Given rasterfile is " << rasterfile << "." << endl;
|
---|
[57066a] | 842 | }
|
---|
[e138de] | 843 | IncludeSphereinRaster3D(rasterfile, Tess, cloud);
|
---|
[57066a] | 844 | delete(center);
|
---|
| 845 | };
|
---|
| 846 |
|
---|
| 847 | /** This function creates the tecplot file, displaying the tesselation of the hull.
|
---|
| 848 | * \param *out output stream for debugging
|
---|
| 849 | * \param *tecplot output stream for tecplot data
|
---|
| 850 | * \param N arbitrary number to differentiate various zones in the tecplot format
|
---|
| 851 | */
|
---|
[e138de] | 852 | void WriteTecplotFile(ofstream * const tecplot, const Tesselation * const TesselStruct, const PointCloud * const cloud, const int N)
|
---|
[57066a] | 853 | {
|
---|
[f67b6e] | 854 | Info FunctionInfo(__func__);
|
---|
[57066a] | 855 | if ((tecplot != NULL) && (TesselStruct != NULL)) {
|
---|
| 856 | // write header
|
---|
| 857 | *tecplot << "TITLE = \"3D CONVEX SHELL\"" << endl;
|
---|
| 858 | *tecplot << "VARIABLES = \"X\" \"Y\" \"Z\" \"U\"" << endl;
|
---|
[6a7f78c] | 859 | *tecplot << "ZONE T=\"";
|
---|
| 860 | if (N < 0) {
|
---|
| 861 | *tecplot << cloud->GetName();
|
---|
| 862 | } else {
|
---|
| 863 | *tecplot << N << "-";
|
---|
| 864 | for (int i=0;i<3;i++)
|
---|
| 865 | *tecplot << (i==0 ? "" : "_") << TesselStruct->LastTriangle->endpoints[i]->node->Name;
|
---|
| 866 | }
|
---|
[57066a] | 867 | *tecplot << "\", N=" << TesselStruct->PointsOnBoundary.size() << ", E=" << TesselStruct->TrianglesOnBoundary.size() << ", DATAPACKING=POINT, ZONETYPE=FETRIANGLE" << endl;
|
---|
[71b20e] | 868 | int i=cloud->GetMaxId();
|
---|
[57066a] | 869 | int *LookupList = new int[i];
|
---|
| 870 | for (cloud->GoToFirst(), i=0; !cloud->IsEnd(); cloud->GoToNext(), i++)
|
---|
| 871 | LookupList[i] = -1;
|
---|
| 872 |
|
---|
| 873 | // print atom coordinates
|
---|
| 874 | int Counter = 1;
|
---|
| 875 | TesselPoint *Walker = NULL;
|
---|
[776b64] | 876 | for (PointMap::const_iterator target = TesselStruct->PointsOnBoundary.begin(); target != TesselStruct->PointsOnBoundary.end(); target++) {
|
---|
[57066a] | 877 | Walker = target->second->node;
|
---|
| 878 | LookupList[Walker->nr] = Counter++;
|
---|
| 879 | *tecplot << Walker->node->x[0] << " " << Walker->node->x[1] << " " << Walker->node->x[2] << " " << target->second->value << endl;
|
---|
| 880 | }
|
---|
| 881 | *tecplot << endl;
|
---|
| 882 | // print connectivity
|
---|
[f67b6e] | 883 | Log() << Verbose(1) << "The following triangles were created:" << endl;
|
---|
[776b64] | 884 | for (TriangleMap::const_iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++) {
|
---|
[f67b6e] | 885 | Log() << Verbose(1) << " " << runner->second->endpoints[0]->node->Name << "<->" << runner->second->endpoints[1]->node->Name << "<->" << runner->second->endpoints[2]->node->Name << endl;
|
---|
[57066a] | 886 | *tecplot << LookupList[runner->second->endpoints[0]->node->nr] << " " << LookupList[runner->second->endpoints[1]->node->nr] << " " << LookupList[runner->second->endpoints[2]->node->nr] << endl;
|
---|
| 887 | }
|
---|
| 888 | delete[] (LookupList);
|
---|
| 889 | }
|
---|
| 890 | };
|
---|
[7dea7c] | 891 |
|
---|
| 892 | /** Calculates the concavity for each of the BoundaryPointSet's in a Tesselation.
|
---|
| 893 | * Sets BoundaryPointSet::value equal to the number of connected lines that are not convex.
|
---|
| 894 | * \param *out output stream for debugging
|
---|
| 895 | * \param *TesselStruct pointer to Tesselation structure
|
---|
| 896 | */
|
---|
[e138de] | 897 | void CalculateConcavityPerBoundaryPoint(const Tesselation * const TesselStruct)
|
---|
[7dea7c] | 898 | {
|
---|
[f67b6e] | 899 | Info FunctionInfo(__func__);
|
---|
[7dea7c] | 900 | class BoundaryPointSet *point = NULL;
|
---|
| 901 | class BoundaryLineSet *line = NULL;
|
---|
| 902 |
|
---|
| 903 | // calculate remaining concavity
|
---|
[776b64] | 904 | for (PointMap::const_iterator PointRunner = TesselStruct->PointsOnBoundary.begin(); PointRunner != TesselStruct->PointsOnBoundary.end(); PointRunner++) {
|
---|
[7dea7c] | 905 | point = PointRunner->second;
|
---|
[e138de] | 906 | Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl;
|
---|
[7dea7c] | 907 | point->value = 0;
|
---|
| 908 | for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
|
---|
| 909 | line = LineRunner->second;
|
---|
[f67b6e] | 910 | //Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl;
|
---|
[e138de] | 911 | if (!line->CheckConvexityCriterion())
|
---|
[7dea7c] | 912 | point->value += 1;
|
---|
| 913 | }
|
---|
| 914 | }
|
---|
| 915 | };
|
---|
| 916 |
|
---|
| 917 |
|
---|
| 918 | /** Checks whether each BoundaryLineSet in the Tesselation has two triangles.
|
---|
| 919 | * \param *out output stream for debugging
|
---|
| 920 | * \param *TesselStruct
|
---|
| 921 | * \return true - all have exactly two triangles, false - some not, list is printed to screen
|
---|
| 922 | */
|
---|
[e138de] | 923 | bool CheckListOfBaselines(const Tesselation * const TesselStruct)
|
---|
[7dea7c] | 924 | {
|
---|
[f67b6e] | 925 | Info FunctionInfo(__func__);
|
---|
[776b64] | 926 | LineMap::const_iterator testline;
|
---|
[7dea7c] | 927 | bool result = false;
|
---|
| 928 | int counter = 0;
|
---|
| 929 |
|
---|
[e138de] | 930 | Log() << Verbose(1) << "Check: List of Baselines with not two connected triangles:" << endl;
|
---|
[7dea7c] | 931 | for (testline = TesselStruct->LinesOnBoundary.begin(); testline != TesselStruct->LinesOnBoundary.end(); testline++) {
|
---|
| 932 | if (testline->second->triangles.size() != 2) {
|
---|
[f67b6e] | 933 | Log() << Verbose(2) << *testline->second << "\t" << testline->second->triangles.size() << endl;
|
---|
[7dea7c] | 934 | counter++;
|
---|
| 935 | }
|
---|
| 936 | }
|
---|
| 937 | if (counter == 0) {
|
---|
[e138de] | 938 | Log() << Verbose(1) << "None." << endl;
|
---|
[7dea7c] | 939 | result = true;
|
---|
| 940 | }
|
---|
| 941 | return result;
|
---|
| 942 | }
|
---|
| 943 |
|
---|
[262bae] | 944 | /** Counts the number of triangle pairs that contain the given polygon.
|
---|
| 945 | * \param *P polygon with endpoints to look for
|
---|
| 946 | * \param *T set of triangles to create pairs from containing \a *P
|
---|
| 947 | */
|
---|
| 948 | int CountTrianglePairContainingPolygon(const BoundaryPolygonSet * const P, const TriangleSet * const T)
|
---|
| 949 | {
|
---|
| 950 | Info FunctionInfo(__func__);
|
---|
| 951 | // check number of endpoints in *P
|
---|
| 952 | if (P->endpoints.size() != 4) {
|
---|
| 953 | eLog() << Verbose(1) << "CountTrianglePairContainingPolygon works only on polygons with 4 nodes!" << endl;
|
---|
| 954 | return 0;
|
---|
| 955 | }
|
---|
| 956 |
|
---|
| 957 | // check number of triangles in *T
|
---|
| 958 | if (T->size() < 2) {
|
---|
| 959 | eLog() << Verbose(1) << "Not enough triangles to have pairs!" << endl;
|
---|
| 960 | return 0;
|
---|
| 961 | }
|
---|
| 962 |
|
---|
[856098] | 963 | Log() << Verbose(0) << "Polygon is " << *P << endl;
|
---|
[262bae] | 964 | // create each pair, get the endpoints and check whether *P is contained.
|
---|
| 965 | int counter = 0;
|
---|
| 966 | PointSet Trianglenodes;
|
---|
| 967 | class BoundaryPolygonSet PairTrianglenodes;
|
---|
| 968 | for(TriangleSet::iterator Walker = T->begin(); Walker != T->end(); Walker++) {
|
---|
| 969 | for (int i=0;i<3;i++)
|
---|
| 970 | Trianglenodes.insert((*Walker)->endpoints[i]);
|
---|
| 971 |
|
---|
| 972 | for(TriangleSet::iterator PairWalker = Walker; PairWalker != T->end(); PairWalker++) {
|
---|
| 973 | if (Walker != PairWalker) { // skip first
|
---|
| 974 | PairTrianglenodes.endpoints = Trianglenodes;
|
---|
| 975 | for (int i=0;i<3;i++)
|
---|
| 976 | PairTrianglenodes.endpoints.insert((*PairWalker)->endpoints[i]);
|
---|
[856098] | 977 | const int size = PairTrianglenodes.endpoints.size();
|
---|
| 978 | if (size == 4) {
|
---|
| 979 | Log() << Verbose(0) << " Current pair of triangles: " << **Walker << "," << **PairWalker << " with " << size << " distinct endpoints:" << PairTrianglenodes << endl;
|
---|
| 980 | // now check
|
---|
| 981 | if (PairTrianglenodes.ContainsPresentTupel(P)) {
|
---|
| 982 | counter++;
|
---|
| 983 | Log() << Verbose(0) << " ACCEPT: Matches with " << *P << endl;
|
---|
| 984 | } else {
|
---|
| 985 | Log() << Verbose(0) << " REJECT: No match with " << *P << endl;
|
---|
| 986 | }
|
---|
[262bae] | 987 | } else {
|
---|
[856098] | 988 | Log() << Verbose(0) << " REJECT: Less than four endpoints." << endl;
|
---|
[262bae] | 989 | }
|
---|
| 990 | }
|
---|
| 991 | }
|
---|
[856098] | 992 | Trianglenodes.clear();
|
---|
[262bae] | 993 | }
|
---|
| 994 | return counter;
|
---|
| 995 | };
|
---|
| 996 |
|
---|
| 997 | /** Checks whether two give polygons have two or more points in common.
|
---|
| 998 | * \param *P1 first polygon
|
---|
| 999 | * \param *P2 second polygon
|
---|
| 1000 | * \return true - are connected, false = are note
|
---|
| 1001 | */
|
---|
| 1002 | bool ArePolygonsEdgeConnected(const BoundaryPolygonSet * const P1, const BoundaryPolygonSet * const P2)
|
---|
| 1003 | {
|
---|
| 1004 | Info FunctionInfo(__func__);
|
---|
| 1005 | int counter = 0;
|
---|
| 1006 | for(PointSet::const_iterator Runner = P1->endpoints.begin(); Runner != P1->endpoints.end(); Runner++) {
|
---|
| 1007 | if (P2->ContainsBoundaryPoint((*Runner))) {
|
---|
| 1008 | counter++;
|
---|
| 1009 | Log() << Verbose(1) << *(*Runner) << " of second polygon is found in the first one." << endl;
|
---|
| 1010 | return true;
|
---|
| 1011 | }
|
---|
| 1012 | }
|
---|
| 1013 | return false;
|
---|
| 1014 | };
|
---|
| 1015 |
|
---|
| 1016 | /** Combines second into the first and deletes the second.
|
---|
| 1017 | * \param *P1 first polygon, contains all nodes on return
|
---|
| 1018 | * \param *&P2 second polygon, is deleted.
|
---|
| 1019 | */
|
---|
| 1020 | void CombinePolygons(BoundaryPolygonSet * const P1, BoundaryPolygonSet * &P2)
|
---|
| 1021 | {
|
---|
| 1022 | Info FunctionInfo(__func__);
|
---|
[856098] | 1023 | pair <PointSet::iterator, bool> Tester;
|
---|
| 1024 | for(PointSet::iterator Runner = P2->endpoints.begin(); Runner != P2->endpoints.end(); Runner++) {
|
---|
| 1025 | Tester = P1->endpoints.insert((*Runner));
|
---|
| 1026 | if (Tester.second)
|
---|
| 1027 | Log() << Verbose(0) << "Inserting endpoint " << *(*Runner) << " into first polygon." << endl;
|
---|
[262bae] | 1028 | }
|
---|
| 1029 | P2->endpoints.clear();
|
---|
| 1030 | delete(P2);
|
---|
| 1031 | };
|
---|
| 1032 |
|
---|