source: src/tesselation.cpp@ f04f11

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 Candidate_v1.7.0 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since f04f11 was f04f11, checked in by Frederik Heber <heber@…>, 16 years ago

small changes to tesselation.

  • Property mode set to 100644
File size: 231.0 KB
RevLine 
[357fba]1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
[f66195]8#include <fstream>
[f04f11]9#include <assert.h>
[f66195]10
[a2028e]11#include "helpers.hpp"
[f67b6e]12#include "info.hpp"
[57066a]13#include "linkedcell.hpp"
[e138de]14#include "log.hpp"
[357fba]15#include "tesselation.hpp"
[57066a]16#include "tesselationhelpers.hpp"
[8db598]17#include "triangleintersectionlist.hpp"
[57066a]18#include "vector.hpp"
[f66195]19#include "verbose.hpp"
[57066a]20
21class molecule;
[357fba]22
23// ======================================== Points on Boundary =================================
24
[16d866]25/** Constructor of BoundaryPointSet.
26 */
[1e168b]27BoundaryPointSet::BoundaryPointSet() :
[6613ec]28 LinesCount(0), value(0.), Nr(-1)
[357fba]29{
[6613ec]30 Info FunctionInfo(__func__);
[a67d19]31 DoLog(1) && (Log() << Verbose(1) << "Adding noname." << endl);
[6613ec]32}
33;
[357fba]34
[16d866]35/** Constructor of BoundaryPointSet with Tesselpoint.
36 * \param *Walker TesselPoint this boundary point represents
37 */
[9473f6]38BoundaryPointSet::BoundaryPointSet(TesselPoint * const Walker) :
[6613ec]39 LinesCount(0), node(Walker), value(0.), Nr(Walker->nr)
[357fba]40{
[6613ec]41 Info FunctionInfo(__func__);
[a67d19]42 DoLog(1) && (Log() << Verbose(1) << "Adding Node " << *Walker << endl);
[6613ec]43}
44;
[357fba]45
[16d866]46/** Destructor of BoundaryPointSet.
47 * Sets node to NULL to avoid removing the original, represented TesselPoint.
48 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
49 */
[357fba]50BoundaryPointSet::~BoundaryPointSet()
51{
[6613ec]52 Info FunctionInfo(__func__);
[f67b6e]53 //Log() << Verbose(0) << "Erasing point nr. " << Nr << "." << endl;
[357fba]54 if (!lines.empty())
[6613ec]55 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some lines." << endl);
[357fba]56 node = NULL;
[6613ec]57}
58;
[357fba]59
[16d866]60/** Add a line to the LineMap of this point.
61 * \param *line line to add
62 */
[9473f6]63void BoundaryPointSet::AddLine(BoundaryLineSet * const line)
[357fba]64{
[6613ec]65 Info FunctionInfo(__func__);
[a67d19]66 DoLog(1) && (Log() << Verbose(1) << "Adding " << *this << " to line " << *line << "." << endl);
[6613ec]67 if (line->endpoints[0] == this) {
68 lines.insert(LinePair(line->endpoints[1]->Nr, line));
69 } else {
70 lines.insert(LinePair(line->endpoints[0]->Nr, line));
71 }
[357fba]72 LinesCount++;
[6613ec]73}
74;
[357fba]75
[16d866]76/** output operator for BoundaryPointSet.
77 * \param &ost output stream
78 * \param &a boundary point
79 */
[776b64]80ostream & operator <<(ostream &ost, const BoundaryPointSet &a)
[357fba]81{
[57066a]82 ost << "[" << a.Nr << "|" << a.node->Name << " at " << *a.node->node << "]";
[357fba]83 return ost;
84}
85;
86
87// ======================================== Lines on Boundary =================================
88
[16d866]89/** Constructor of BoundaryLineSet.
90 */
[1e168b]91BoundaryLineSet::BoundaryLineSet() :
[6613ec]92 Nr(-1)
[357fba]93{
[6613ec]94 Info FunctionInfo(__func__);
[357fba]95 for (int i = 0; i < 2; i++)
96 endpoints[i] = NULL;
[6613ec]97}
98;
[357fba]99
[16d866]100/** Constructor of BoundaryLineSet with two endpoints.
101 * Adds line automatically to each endpoints' LineMap
102 * \param *Point[2] array of two boundary points
103 * \param number number of the list
104 */
[9473f6]105BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point[2], const int number)
[357fba]106{
[6613ec]107 Info FunctionInfo(__func__);
[357fba]108 // set number
109 Nr = number;
110 // set endpoints in ascending order
111 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
112 // add this line to the hash maps of both endpoints
113 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
114 Point[1]->AddLine(this); //
[1e168b]115 // set skipped to false
116 skipped = false;
[357fba]117 // clear triangles list
[a67d19]118 DoLog(0) && (Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl);
[6613ec]119}
120;
[357fba]121
[9473f6]122/** Constructor of BoundaryLineSet with two endpoints.
123 * Adds line automatically to each endpoints' LineMap
124 * \param *Point1 first boundary point
125 * \param *Point2 second boundary point
126 * \param number number of the list
127 */
128BoundaryLineSet::BoundaryLineSet(BoundaryPointSet * const Point1, BoundaryPointSet * const Point2, const int number)
129{
130 Info FunctionInfo(__func__);
131 // set number
132 Nr = number;
133 // set endpoints in ascending order
134 SetEndpointsOrdered(endpoints, Point1, Point2);
135 // add this line to the hash maps of both endpoints
136 Point1->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
137 Point2->AddLine(this); //
138 // set skipped to false
139 skipped = false;
140 // clear triangles list
[a67d19]141 DoLog(0) && (Log() << Verbose(0) << "New Line with endpoints " << *this << "." << endl);
[6613ec]142}
143;
[9473f6]144
[16d866]145/** Destructor for BoundaryLineSet.
146 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
147 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
148 */
[357fba]149BoundaryLineSet::~BoundaryLineSet()
150{
[6613ec]151 Info FunctionInfo(__func__);
[357fba]152 int Numbers[2];
[16d866]153
154 // get other endpoint number of finding copies of same line
155 if (endpoints[1] != NULL)
156 Numbers[0] = endpoints[1]->Nr;
157 else
158 Numbers[0] = -1;
159 if (endpoints[0] != NULL)
160 Numbers[1] = endpoints[0]->Nr;
161 else
162 Numbers[1] = -1;
163
[357fba]164 for (int i = 0; i < 2; i++) {
[16d866]165 if (endpoints[i] != NULL) {
166 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
167 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
168 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
169 if ((*Runner).second == this) {
[f67b6e]170 //Log() << Verbose(0) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
[16d866]171 endpoints[i]->lines.erase(Runner);
172 break;
173 }
174 } else { // there's just a single line left
[57066a]175 if (endpoints[i]->lines.erase(Nr)) {
[f67b6e]176 //Log() << Verbose(0) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
[57066a]177 }
[357fba]178 }
[16d866]179 if (endpoints[i]->lines.empty()) {
[f67b6e]180 //Log() << Verbose(0) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
[16d866]181 if (endpoints[i] != NULL) {
[6613ec]182 delete (endpoints[i]);
[16d866]183 endpoints[i] = NULL;
184 }
185 }
186 }
[357fba]187 }
188 if (!triangles.empty())
[6613ec]189 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *this << " am still connected to some triangles." << endl);
190}
191;
[357fba]192
[16d866]193/** Add triangle to TriangleMap of this boundary line.
194 * \param *triangle to add
195 */
[9473f6]196void BoundaryLineSet::AddTriangle(BoundaryTriangleSet * const triangle)
[357fba]197{
[6613ec]198 Info FunctionInfo(__func__);
[a67d19]199 DoLog(0) && (Log() << Verbose(0) << "Add " << triangle->Nr << " to line " << *this << "." << endl);
[357fba]200 triangles.insert(TrianglePair(triangle->Nr, triangle));
[6613ec]201}
202;
[357fba]203
204/** Checks whether we have a common endpoint with given \a *line.
205 * \param *line other line to test
206 * \return true - common endpoint present, false - not connected
207 */
[9473f6]208bool BoundaryLineSet::IsConnectedTo(const BoundaryLineSet * const line) const
[357fba]209{
[6613ec]210 Info FunctionInfo(__func__);
[357fba]211 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
212 return true;
213 else
214 return false;
[6613ec]215}
216;
[357fba]217
218/** Checks whether the adjacent triangles of a baseline are convex or not.
[57066a]219 * We sum the two angles of each height vector with respect to the center of the baseline.
[357fba]220 * If greater/equal M_PI than we are convex.
221 * \param *out output stream for debugging
222 * \return true - triangles are convex, false - concave or less than two triangles connected
223 */
[9473f6]224bool BoundaryLineSet::CheckConvexityCriterion() const
[357fba]225{
[6613ec]226 Info FunctionInfo(__func__);
[5c7bf8]227 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
[357fba]228 // get the two triangles
[5c7bf8]229 if (triangles.size() != 2) {
[6613ec]230 DoeLog(0) && (eLog() << Verbose(0) << "Baseline " << *this << " is connected to less than two triangles, Tesselation incomplete!" << endl);
[1d9b7aa]231 return true;
[357fba]232 }
[5c7bf8]233 // check normal vectors
[357fba]234 // have a normal vector on the base line pointing outwards
[f67b6e]235 //Log() << Verbose(0) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
[62bb91]236 BaseLineCenter.CopyVector(endpoints[0]->node->node);
237 BaseLineCenter.AddVector(endpoints[1]->node->node);
[6613ec]238 BaseLineCenter.Scale(1. / 2.);
[62bb91]239 BaseLine.CopyVector(endpoints[0]->node->node);
240 BaseLine.SubtractVector(endpoints[1]->node->node);
[f67b6e]241 //Log() << Verbose(0) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
[357fba]242
[62bb91]243 BaseLineNormal.Zero();
[5c7bf8]244 NormalCheck.Zero();
245 double sign = -1.;
[6613ec]246 int i = 0;
[62bb91]247 class BoundaryPointSet *node = NULL;
[6613ec]248 for (TriangleMap::const_iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
[f67b6e]249 //Log() << Verbose(0) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
[5c7bf8]250 NormalCheck.AddVector(&runner->second->NormalVector);
251 NormalCheck.Scale(sign);
252 sign = -sign;
[57066a]253 if (runner->second->NormalVector.NormSquared() > MYEPSILON)
[6613ec]254 BaseLineNormal.CopyVector(&runner->second->NormalVector); // yes, copy second on top of first
[57066a]255 else {
[6613ec]256 DoeLog(0) && (eLog() << Verbose(0) << "Triangle " << *runner->second << " has zero normal vector!" << endl);
[57066a]257 }
[62bb91]258 node = runner->second->GetThirdEndpoint(this);
259 if (node != NULL) {
[f67b6e]260 //Log() << Verbose(0) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
[62bb91]261 helper[i].CopyVector(node->node->node);
262 helper[i].SubtractVector(&BaseLineCenter);
[6613ec]263 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
[f67b6e]264 //Log() << Verbose(0) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
[62bb91]265 i++;
266 } else {
[6613ec]267 DoeLog(1) && (eLog() << Verbose(1) << "I cannot find third node in triangle, something's wrong." << endl);
[62bb91]268 return true;
269 }
270 }
[f67b6e]271 //Log() << Verbose(0) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
[5c7bf8]272 if (NormalCheck.NormSquared() < MYEPSILON) {
[a67d19]273 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl);
[5c7bf8]274 return true;
[62bb91]275 }
[57066a]276 BaseLineNormal.Scale(-1.);
[f1cccd]277 double angle = GetAngle(helper[0], helper[1], BaseLineNormal);
[1d9b7aa]278 if ((angle - M_PI) > -MYEPSILON) {
[a67d19]279 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Angle is greater than pi: convex." << endl);
[357fba]280 return true;
[1d9b7aa]281 } else {
[a67d19]282 DoLog(0) && (Log() << Verbose(0) << "REJECT: Angle is less than pi: concave." << endl);
[357fba]283 return false;
[1d9b7aa]284 }
[357fba]285}
286
287/** Checks whether point is any of the two endpoints this line contains.
288 * \param *point point to test
289 * \return true - point is of the line, false - is not
290 */
[9473f6]291bool BoundaryLineSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
[357fba]292{
[6613ec]293 Info FunctionInfo(__func__);
294 for (int i = 0; i < 2; i++)
[357fba]295 if (point == endpoints[i])
296 return true;
297 return false;
[6613ec]298}
299;
[357fba]300
[62bb91]301/** Returns other endpoint of the line.
302 * \param *point other endpoint
303 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
304 */
[9473f6]305class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(const BoundaryPointSet * const point) const
[62bb91]306{
[6613ec]307 Info FunctionInfo(__func__);
[62bb91]308 if (endpoints[0] == point)
309 return endpoints[1];
310 else if (endpoints[1] == point)
311 return endpoints[0];
312 else
313 return NULL;
[6613ec]314}
315;
[62bb91]316
[16d866]317/** output operator for BoundaryLineSet.
318 * \param &ost output stream
319 * \param &a boundary line
320 */
[6613ec]321ostream & operator <<(ostream &ost, const BoundaryLineSet &a)
[357fba]322{
[57066a]323 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << "," << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "]";
[357fba]324 return ost;
[6613ec]325}
326;
[357fba]327
328// ======================================== Triangles on Boundary =================================
329
[16d866]330/** Constructor for BoundaryTriangleSet.
331 */
[1e168b]332BoundaryTriangleSet::BoundaryTriangleSet() :
333 Nr(-1)
[357fba]334{
[6613ec]335 Info FunctionInfo(__func__);
336 for (int i = 0; i < 3; i++) {
337 endpoints[i] = NULL;
338 lines[i] = NULL;
339 }
340}
341;
[357fba]342
[16d866]343/** Constructor for BoundaryTriangleSet with three lines.
344 * \param *line[3] lines that make up the triangle
345 * \param number number of triangle
346 */
[9473f6]347BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) :
[1e168b]348 Nr(number)
[357fba]349{
[6613ec]350 Info FunctionInfo(__func__);
[357fba]351 // set number
352 // set lines
[f67b6e]353 for (int i = 0; i < 3; i++) {
354 lines[i] = line[i];
355 lines[i]->AddTriangle(this);
356 }
[357fba]357 // get ascending order of endpoints
[f67b6e]358 PointMap OrderMap;
[357fba]359 for (int i = 0; i < 3; i++)
360 // for all three lines
[f67b6e]361 for (int j = 0; j < 2; j++) { // for both endpoints
[6613ec]362 OrderMap.insert(pair<int, class BoundaryPointSet *> (line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
[f67b6e]363 // and we don't care whether insertion fails
364 }
[357fba]365 // set endpoints
366 int Counter = 0;
[a67d19]367 DoLog(0) && (Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl);
[f67b6e]368 for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
369 endpoints[Counter] = runner->second;
[a67d19]370 DoLog(0) && (Log() << Verbose(0) << " " << *endpoints[Counter] << endl);
[f67b6e]371 Counter++;
372 }
373 if (Counter < 3) {
[6613ec]374 DoeLog(0) && (eLog() << Verbose(0) << "We have a triangle with only two distinct endpoints!" << endl);
[f67b6e]375 performCriticalExit();
376 }
[6613ec]377}
378;
[357fba]379
[16d866]380/** Destructor of BoundaryTriangleSet.
381 * Removes itself from each of its lines' LineMap and removes them if necessary.
382 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
383 */
[357fba]384BoundaryTriangleSet::~BoundaryTriangleSet()
385{
[6613ec]386 Info FunctionInfo(__func__);
[357fba]387 for (int i = 0; i < 3; i++) {
[16d866]388 if (lines[i] != NULL) {
[57066a]389 if (lines[i]->triangles.erase(Nr)) {
[f67b6e]390 //Log() << Verbose(0) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
[57066a]391 }
[16d866]392 if (lines[i]->triangles.empty()) {
[6613ec]393 //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
394 delete (lines[i]);
395 lines[i] = NULL;
[16d866]396 }
397 }
[357fba]398 }
[f67b6e]399 //Log() << Verbose(0) << "Erasing triangle Nr." << Nr << " itself." << endl;
[6613ec]400}
401;
[357fba]402
403/** Calculates the normal vector for this triangle.
404 * Is made unique by comparison with \a OtherVector to point in the other direction.
405 * \param &OtherVector direction vector to make normal vector unique.
406 */
[9473f6]407void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector)
[357fba]408{
[6613ec]409 Info FunctionInfo(__func__);
[357fba]410 // get normal vector
411 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
412
413 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
[658efb]414 if (NormalVector.ScalarProduct(&OtherVector) > 0.)
[357fba]415 NormalVector.Scale(-1.);
[a67d19]416 DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl);
[6613ec]417}
418;
[357fba]419
[97498a]420/** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
[357fba]421 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
[9473f6]422 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
[7dea7c]423 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
424 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
425 * the first two basepoints) or not.
[357fba]426 * \param *out output stream for debugging
427 * \param *MolCenter offset vector of line
428 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
429 * \param *Intersection intersection on plane on return
430 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
431 */
[9473f6]432bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector * const MolCenter, const Vector * const x, Vector * const Intersection) const
[357fba]433{
[fee69b]434 Info FunctionInfo(__func__);
[357fba]435 Vector CrossPoint;
436 Vector helper;
437
[e138de]438 if (!Intersection->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, MolCenter, x)) {
[6613ec]439 DoeLog(1) && (eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl);
[357fba]440 return false;
441 }
442
[a67d19]443 DoLog(1) && (Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl);
444 DoLog(1) && (Log() << Verbose(1) << "INFO: Line is from " << *MolCenter << " to " << *x << "." << endl);
445 DoLog(1) && (Log() << Verbose(1) << "INFO: Intersection is " << *Intersection << "." << endl);
[97498a]446
[fee69b]447 if (Intersection->DistanceSquared(endpoints[0]->node->node) < MYEPSILON) {
[a67d19]448 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl);
[fee69b]449 return true;
[6613ec]450 } else if (Intersection->DistanceSquared(endpoints[1]->node->node) < MYEPSILON) {
[a67d19]451 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl);
[fee69b]452 return true;
[6613ec]453 } else if (Intersection->DistanceSquared(endpoints[2]->node->node) < MYEPSILON) {
[a67d19]454 DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl);
[fee69b]455 return true;
456 }
[357fba]457 // Calculate cross point between one baseline and the line from the third endpoint to intersection
[6613ec]458 int i = 0;
[357fba]459 do {
[6613ec]460 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(endpoints[i % 3]->node->node, endpoints[(i + 1) % 3]->node->node, endpoints[(i + 2) % 3]->node->node, Intersection, &NormalVector)) {
461 helper.CopyVector(endpoints[(i + 1) % 3]->node->node);
462 helper.SubtractVector(endpoints[i % 3]->node->node);
463 CrossPoint.SubtractVector(endpoints[i % 3]->node->node); // cross point was returned as absolute vector
464 const double s = CrossPoint.ScalarProduct(&helper) / helper.NormSquared();
[a67d19]465 DoLog(1) && (Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl);
[6613ec]466 if ((s < -MYEPSILON) || ((s - 1.) > MYEPSILON)) {
[a67d19]467 DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl);
[6613ec]468 i = 4;
[fee69b]469 break;
470 }
[5c7bf8]471 i++;
[6613ec]472 } else
[fcad4b]473 break;
[6613ec]474 } while (i < 3);
475 if (i == 3) {
[a67d19]476 DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl);
[357fba]477 return true;
[fcad4b]478 } else {
[a67d19]479 DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " outside of triangle." << endl);
[357fba]480 return false;
481 }
[6613ec]482}
483;
[357fba]484
[8db598]485/** Finds the point on the triangle to the point \a *x.
486 * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point.
487 * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the
488 * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down.
[9473f6]489 * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
490 * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
491 * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
492 * the first two basepoints) or not.
493 * \param *x point
494 * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector
495 * \return Distance squared between \a *x and closest point inside triangle
496 */
497double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector * const x, Vector * const ClosestPoint) const
498{
499 Info FunctionInfo(__func__);
500 Vector Direction;
501
502 // 1. get intersection with plane
[a67d19]503 DoLog(1) && (Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << *x << "." << endl);
[9473f6]504 GetCenter(&Direction);
505 if (!ClosestPoint->GetIntersectionWithPlane(&NormalVector, endpoints[0]->node->node, x, &Direction)) {
506 ClosestPoint->CopyVector(x);
507 }
508
509 // 2. Calculate in plane part of line (x, intersection)
510 Vector InPlane;
511 InPlane.CopyVector(x);
[6613ec]512 InPlane.SubtractVector(ClosestPoint); // points from plane intersection to straight-down point
[9473f6]513 InPlane.ProjectOntoPlane(&NormalVector);
514 InPlane.AddVector(ClosestPoint);
515
[a67d19]516 DoLog(2) && (Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl);
517 DoLog(2) && (Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << *x << "." << endl);
518 DoLog(2) && (Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl);
[9473f6]519
520 // Calculate cross point between one baseline and the desired point such that distance is shortest
521 double ShortestDistance = -1.;
522 bool InsideFlag = false;
523 Vector CrossDirection[3];
524 Vector CrossPoint[3];
525 Vector helper;
[6613ec]526 for (int i = 0; i < 3; i++) {
[9473f6]527 // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point
[6613ec]528 Direction.CopyVector(endpoints[(i + 1) % 3]->node->node);
529 Direction.SubtractVector(endpoints[i % 3]->node->node);
[9473f6]530 // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);
[6613ec]531 CrossPoint[i].GetIntersectionWithPlane(&Direction, &InPlane, endpoints[i % 3]->node->node, endpoints[(i + 1) % 3]->node->node);
[9473f6]532 CrossDirection[i].CopyVector(&CrossPoint[i]);
533 CrossDirection[i].SubtractVector(&InPlane);
[6613ec]534 CrossPoint[i].SubtractVector(endpoints[i % 3]->node->node); // cross point was returned as absolute vector
535 const double s = CrossPoint[i].ScalarProduct(&Direction) / Direction.NormSquared();
[a67d19]536 DoLog(2) && (Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl);
[6613ec]537 if ((s >= -MYEPSILON) && ((s - 1.) <= MYEPSILON)) {
538 CrossPoint[i].AddVector(endpoints[i % 3]->node->node); // make cross point absolute again
[a67d19]539 DoLog(2) && (Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << *endpoints[i % 3]->node->node << " and " << *endpoints[(i + 1) % 3]->node->node << "." << endl);
[9473f6]540 const double distance = CrossPoint[i].DistanceSquared(x);
541 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
542 ShortestDistance = distance;
543 ClosestPoint->CopyVector(&CrossPoint[i]);
544 }
545 } else
546 CrossPoint[i].Zero();
547 }
548 InsideFlag = true;
[6613ec]549 for (int i = 0; i < 3; i++) {
550 const double sign = CrossDirection[i].ScalarProduct(&CrossDirection[(i + 1) % 3]);
551 const double othersign = CrossDirection[i].ScalarProduct(&CrossDirection[(i + 2) % 3]);
552 ;
553 if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign
[9473f6]554 InsideFlag = false;
555 }
556 if (InsideFlag) {
557 ClosestPoint->CopyVector(&InPlane);
558 ShortestDistance = InPlane.DistanceSquared(x);
[6613ec]559 } else { // also check endnodes
560 for (int i = 0; i < 3; i++) {
[9473f6]561 const double distance = x->DistanceSquared(endpoints[i]->node->node);
562 if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
563 ShortestDistance = distance;
564 ClosestPoint->CopyVector(endpoints[i]->node->node);
565 }
566 }
567 }
[a67d19]568 DoLog(1) && (Log() << Verbose(1) << "INFO: Closest Point is " << *ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl);
[9473f6]569 return ShortestDistance;
[6613ec]570}
571;
[9473f6]572
[357fba]573/** Checks whether lines is any of the three boundary lines this triangle contains.
574 * \param *line line to test
575 * \return true - line is of the triangle, false - is not
576 */
[9473f6]577bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
[357fba]578{
[6613ec]579 Info FunctionInfo(__func__);
580 for (int i = 0; i < 3; i++)
[357fba]581 if (line == lines[i])
582 return true;
583 return false;
[6613ec]584}
585;
[357fba]586
587/** Checks whether point is any of the three endpoints this triangle contains.
588 * \param *point point to test
589 * \return true - point is of the triangle, false - is not
590 */
[9473f6]591bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
[357fba]592{
[6613ec]593 Info FunctionInfo(__func__);
594 for (int i = 0; i < 3; i++)
[357fba]595 if (point == endpoints[i])
596 return true;
597 return false;
[6613ec]598}
599;
[357fba]600
[7dea7c]601/** Checks whether point is any of the three endpoints this triangle contains.
602 * \param *point TesselPoint to test
603 * \return true - point is of the triangle, false - is not
604 */
[9473f6]605bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const
[7dea7c]606{
[6613ec]607 Info FunctionInfo(__func__);
608 for (int i = 0; i < 3; i++)
[7dea7c]609 if (point == endpoints[i]->node)
610 return true;
611 return false;
[6613ec]612}
613;
[7dea7c]614
[357fba]615/** Checks whether three given \a *Points coincide with triangle's endpoints.
616 * \param *Points[3] pointer to BoundaryPointSet
617 * \return true - is the very triangle, false - is not
618 */
[9473f6]619bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const
[357fba]620{
[6613ec]621 Info FunctionInfo(__func__);
[a67d19]622 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl);
[6613ec]623 return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2])
624
625 ));
626}
627;
[357fba]628
[57066a]629/** Checks whether three given \a *Points coincide with triangle's endpoints.
630 * \param *Points[3] pointer to BoundaryPointSet
631 * \return true - is the very triangle, false - is not
632 */
[9473f6]633bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const
[57066a]634{
[6613ec]635 Info FunctionInfo(__func__);
636 return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2])
637
638 ));
639}
640;
[57066a]641
[62bb91]642/** Returns the endpoint which is not contained in the given \a *line.
643 * \param *line baseline defining two endpoints
644 * \return pointer third endpoint or NULL if line does not belong to triangle.
645 */
[9473f6]646class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const
[62bb91]647{
[6613ec]648 Info FunctionInfo(__func__);
[62bb91]649 // sanity check
650 if (!ContainsBoundaryLine(line))
651 return NULL;
[6613ec]652 for (int i = 0; i < 3; i++)
[62bb91]653 if (!line->ContainsBoundaryPoint(endpoints[i]))
654 return endpoints[i];
655 // actually, that' impossible :)
656 return NULL;
[6613ec]657}
658;
[62bb91]659
660/** Calculates the center point of the triangle.
661 * Is third of the sum of all endpoints.
662 * \param *center central point on return.
663 */
[9473f6]664void BoundaryTriangleSet::GetCenter(Vector * const center) const
[62bb91]665{
[6613ec]666 Info FunctionInfo(__func__);
[62bb91]667 center->Zero();
[6613ec]668 for (int i = 0; i < 3; i++)
[62bb91]669 center->AddVector(endpoints[i]->node->node);
[6613ec]670 center->Scale(1. / 3.);
[a67d19]671 DoLog(1) && (Log() << Verbose(1) << "INFO: Center is at " << *center << "." << endl);
[62bb91]672}
673
[16d866]674/** output operator for BoundaryTriangleSet.
675 * \param &ost output stream
676 * \param &a boundary triangle
677 */
[776b64]678ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
[357fba]679{
[f67b6e]680 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
[6613ec]681 // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
682 // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
[357fba]683 return ost;
[6613ec]684}
685;
[357fba]686
[262bae]687// ======================================== Polygons on Boundary =================================
688
689/** Constructor for BoundaryPolygonSet.
690 */
691BoundaryPolygonSet::BoundaryPolygonSet() :
692 Nr(-1)
693{
694 Info FunctionInfo(__func__);
[6613ec]695}
696;
[262bae]697
698/** Destructor of BoundaryPolygonSet.
699 * Just clears endpoints.
700 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
701 */
702BoundaryPolygonSet::~BoundaryPolygonSet()
703{
704 Info FunctionInfo(__func__);
705 endpoints.clear();
[a67d19]706 DoLog(1) && (Log() << Verbose(1) << "Erasing polygon Nr." << Nr << " itself." << endl);
[6613ec]707}
708;
[262bae]709
710/** Calculates the normal vector for this triangle.
711 * Is made unique by comparison with \a OtherVector to point in the other direction.
712 * \param &OtherVector direction vector to make normal vector unique.
713 * \return allocated vector in normal direction
714 */
715Vector * BoundaryPolygonSet::GetNormalVector(const Vector &OtherVector) const
716{
717 Info FunctionInfo(__func__);
718 // get normal vector
719 Vector TemporaryNormal;
720 Vector *TotalNormal = new Vector;
721 PointSet::const_iterator Runner[3];
[6613ec]722 for (int i = 0; i < 3; i++) {
[262bae]723 Runner[i] = endpoints.begin();
[6613ec]724 for (int j = 0; j < i; j++) { // go as much further
[262bae]725 Runner[i]++;
726 if (Runner[i] == endpoints.end()) {
[6613ec]727 DoeLog(0) && (eLog() << Verbose(0) << "There are less than three endpoints in the polygon!" << endl);
[262bae]728 performCriticalExit();
729 }
730 }
731 }
732 TotalNormal->Zero();
[6613ec]733 int counter = 0;
734 for (; Runner[2] != endpoints.end();) {
[262bae]735 TemporaryNormal.MakeNormalVector((*Runner[0])->node->node, (*Runner[1])->node->node, (*Runner[2])->node->node);
[6613ec]736 for (int i = 0; i < 3; i++) // increase each of them
[262bae]737 Runner[i]++;
738 TotalNormal->AddVector(&TemporaryNormal);
739 }
[6613ec]740 TotalNormal->Scale(1. / (double) counter);
[262bae]741
742 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
743 if (TotalNormal->ScalarProduct(&OtherVector) > 0.)
744 TotalNormal->Scale(-1.);
[a67d19]745 DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << *TotalNormal << "." << endl);
[262bae]746
747 return TotalNormal;
[6613ec]748}
749;
[262bae]750
751/** Calculates the center point of the triangle.
752 * Is third of the sum of all endpoints.
753 * \param *center central point on return.
754 */
755void BoundaryPolygonSet::GetCenter(Vector * const center) const
756{
757 Info FunctionInfo(__func__);
758 center->Zero();
759 int counter = 0;
[6613ec]760 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
[262bae]761 center->AddVector((*Runner)->node->node);
762 counter++;
763 }
[6613ec]764 center->Scale(1. / (double) counter);
[a67d19]765 DoLog(1) && (Log() << Verbose(1) << "Center is at " << *center << "." << endl);
[262bae]766}
767
768/** Checks whether the polygons contains all three endpoints of the triangle.
769 * \param *triangle triangle to test
770 * \return true - triangle is contained polygon, false - is not
771 */
772bool BoundaryPolygonSet::ContainsBoundaryTriangle(const BoundaryTriangleSet * const triangle) const
773{
774 Info FunctionInfo(__func__);
775 return ContainsPresentTupel(triangle->endpoints, 3);
[6613ec]776}
777;
[262bae]778
779/** Checks whether the polygons contains both endpoints of the line.
780 * \param *line line to test
781 * \return true - line is of the triangle, false - is not
782 */
783bool BoundaryPolygonSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
784{
[856098]785 Info FunctionInfo(__func__);
[262bae]786 return ContainsPresentTupel(line->endpoints, 2);
[6613ec]787}
788;
[262bae]789
790/** Checks whether point is any of the three endpoints this triangle contains.
791 * \param *point point to test
792 * \return true - point is of the triangle, false - is not
793 */
794bool BoundaryPolygonSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
795{
796 Info FunctionInfo(__func__);
[6613ec]797 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
[a67d19]798 DoLog(0) && (Log() << Verbose(0) << "Checking against " << **Runner << endl);
[856098]799 if (point == (*Runner)) {
[a67d19]800 DoLog(0) && (Log() << Verbose(0) << " Contained." << endl);
[262bae]801 return true;
[856098]802 }
803 }
[a67d19]804 DoLog(0) && (Log() << Verbose(0) << " Not contained." << endl);
[262bae]805 return false;
[6613ec]806}
807;
[262bae]808
809/** Checks whether point is any of the three endpoints this triangle contains.
810 * \param *point TesselPoint to test
811 * \return true - point is of the triangle, false - is not
812 */
813bool BoundaryPolygonSet::ContainsBoundaryPoint(const TesselPoint * const point) const
814{
815 Info FunctionInfo(__func__);
[6613ec]816 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)
[856098]817 if (point == (*Runner)->node) {
[a67d19]818 DoLog(0) && (Log() << Verbose(0) << " Contained." << endl);
[262bae]819 return true;
[856098]820 }
[a67d19]821 DoLog(0) && (Log() << Verbose(0) << " Not contained." << endl);
[262bae]822 return false;
[6613ec]823}
824;
[262bae]825
826/** Checks whether given array of \a *Points coincide with polygons's endpoints.
827 * \param **Points pointer to an array of BoundaryPointSet
828 * \param dim dimension of array
829 * \return true - set of points is contained in polygon, false - is not
830 */
831bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPointSet * const * Points, const int dim) const
832{
[856098]833 Info FunctionInfo(__func__);
[262bae]834 int counter = 0;
[a67d19]835 DoLog(1) && (Log() << Verbose(1) << "Polygon is " << *this << endl);
[6613ec]836 for (int i = 0; i < dim; i++) {
[a67d19]837 DoLog(1) && (Log() << Verbose(1) << " Testing endpoint " << *Points[i] << endl);
[856098]838 if (ContainsBoundaryPoint(Points[i])) {
[262bae]839 counter++;
[856098]840 }
841 }
[262bae]842
843 if (counter == dim)
844 return true;
845 else
846 return false;
[6613ec]847}
848;
[262bae]849
850/** Checks whether given PointList coincide with polygons's endpoints.
851 * \param &endpoints PointList
852 * \return true - set of points is contained in polygon, false - is not
853 */
854bool BoundaryPolygonSet::ContainsPresentTupel(const PointSet &endpoints) const
855{
[856098]856 Info FunctionInfo(__func__);
[262bae]857 size_t counter = 0;
[a67d19]858 DoLog(1) && (Log() << Verbose(1) << "Polygon is " << *this << endl);
[6613ec]859 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++) {
[a67d19]860 DoLog(1) && (Log() << Verbose(1) << " Testing endpoint " << **Runner << endl);
[262bae]861 if (ContainsBoundaryPoint(*Runner))
862 counter++;
863 }
864
865 if (counter == endpoints.size())
866 return true;
867 else
868 return false;
[6613ec]869}
870;
[262bae]871
872/** Checks whether given set of \a *Points coincide with polygons's endpoints.
873 * \param *P pointer to BoundaryPolygonSet
874 * \return true - is the very triangle, false - is not
875 */
876bool BoundaryPolygonSet::ContainsPresentTupel(const BoundaryPolygonSet * const P) const
877{
[6613ec]878 return ContainsPresentTupel((const PointSet) P->endpoints);
879}
880;
[262bae]881
882/** Gathers all the endpoints' triangles in a unique set.
883 * \return set of all triangles
884 */
[856098]885TriangleSet * BoundaryPolygonSet::GetAllContainedTrianglesFromEndpoints() const
[262bae]886{
887 Info FunctionInfo(__func__);
[6613ec]888 pair<TriangleSet::iterator, bool> Tester;
[262bae]889 TriangleSet *triangles = new TriangleSet;
890
[6613ec]891 for (PointSet::const_iterator Runner = endpoints.begin(); Runner != endpoints.end(); Runner++)
892 for (LineMap::const_iterator Walker = (*Runner)->lines.begin(); Walker != (*Runner)->lines.end(); Walker++)
893 for (TriangleMap::const_iterator Sprinter = (Walker->second)->triangles.begin(); Sprinter != (Walker->second)->triangles.end(); Sprinter++) {
[856098]894 //Log() << Verbose(0) << " Testing triangle " << *(Sprinter->second) << endl;
895 if (ContainsBoundaryTriangle(Sprinter->second)) {
896 Tester = triangles->insert(Sprinter->second);
897 if (Tester.second)
[a67d19]898 DoLog(0) && (Log() << Verbose(0) << "Adding triangle " << *(Sprinter->second) << endl);
[856098]899 }
900 }
[262bae]901
[a67d19]902 DoLog(1) && (Log() << Verbose(1) << "The Polygon of " << endpoints.size() << " endpoints has " << triangles->size() << " unique triangles in total." << endl);
[262bae]903 return triangles;
[6613ec]904}
905;
[262bae]906
907/** Fills the endpoints of this polygon from the triangles attached to \a *line.
908 * \param *line lines with triangles attached
[856098]909 * \return true - polygon contains endpoints, false - line was NULL
[262bae]910 */
911bool BoundaryPolygonSet::FillPolygonFromTrianglesOfLine(const BoundaryLineSet * const line)
912{
[856098]913 Info FunctionInfo(__func__);
[6613ec]914 pair<PointSet::iterator, bool> Tester;
[856098]915 if (line == NULL)
916 return false;
[a67d19]917 DoLog(1) && (Log() << Verbose(1) << "Filling polygon from line " << *line << endl);
[6613ec]918 for (TriangleMap::const_iterator Runner = line->triangles.begin(); Runner != line->triangles.end(); Runner++) {
919 for (int i = 0; i < 3; i++) {
[856098]920 Tester = endpoints.insert((Runner->second)->endpoints[i]);
921 if (Tester.second)
[a67d19]922 DoLog(1) && (Log() << Verbose(1) << " Inserting endpoint " << *((Runner->second)->endpoints[i]) << endl);
[856098]923 }
[262bae]924 }
925
[856098]926 return true;
[6613ec]927}
928;
[262bae]929
930/** output operator for BoundaryPolygonSet.
931 * \param &ost output stream
932 * \param &a boundary polygon
933 */
934ostream &operator <<(ostream &ost, const BoundaryPolygonSet &a)
935{
936 ost << "[" << a.Nr << "|";
[6613ec]937 for (PointSet::const_iterator Runner = a.endpoints.begin(); Runner != a.endpoints.end();) {
938 ost << (*Runner)->node->Name;
939 Runner++;
940 if (Runner != a.endpoints.end())
941 ost << ",";
[262bae]942 }
[6613ec]943 ost << "]";
[262bae]944 return ost;
[6613ec]945}
946;
[262bae]947
[357fba]948// =========================================================== class TESSELPOINT ===========================================
949
950/** Constructor of class TesselPoint.
951 */
952TesselPoint::TesselPoint()
953{
[244a84]954 //Info FunctionInfo(__func__);
[357fba]955 node = NULL;
956 nr = -1;
[6613ec]957 Name = NULL;
958}
959;
[357fba]960
961/** Destructor for class TesselPoint.
962 */
963TesselPoint::~TesselPoint()
964{
[244a84]965 //Info FunctionInfo(__func__);
[6613ec]966}
967;
[357fba]968
969/** Prints LCNode to screen.
970 */
[6613ec]971ostream & operator <<(ostream &ost, const TesselPoint &a)
[357fba]972{
[57066a]973 ost << "[" << (a.Name) << "|" << a.Name << " at " << *a.node << "]";
[357fba]974 return ost;
[6613ec]975}
976;
[357fba]977
[5c7bf8]978/** Prints LCNode to screen.
979 */
[6613ec]980ostream & TesselPoint::operator <<(ostream &ost)
[5c7bf8]981{
[6613ec]982 Info FunctionInfo(__func__);
[27bd2f]983 ost << "[" << (nr) << "|" << this << "]";
[5c7bf8]984 return ost;
[6613ec]985}
986;
[357fba]987
988// =========================================================== class POINTCLOUD ============================================
989
990/** Constructor of class PointCloud.
991 */
992PointCloud::PointCloud()
993{
[6613ec]994 //Info FunctionInfo(__func__);
995}
996;
[357fba]997
998/** Destructor for class PointCloud.
999 */
1000PointCloud::~PointCloud()
1001{
[6613ec]1002 //Info FunctionInfo(__func__);
1003}
1004;
[357fba]1005
1006// ============================ CandidateForTesselation =============================
1007
1008/** Constructor of class CandidateForTesselation.
1009 */
[6613ec]1010CandidateForTesselation::CandidateForTesselation(BoundaryLineSet* line) :
1011 BaseLine(line), ThirdPoint(NULL), T(NULL), ShortestAngle(2. * M_PI), OtherShortestAngle(2. * M_PI)
[1e168b]1012{
[6613ec]1013 Info FunctionInfo(__func__);
1014}
1015;
[1e168b]1016
1017/** Constructor of class CandidateForTesselation.
1018 */
[6613ec]1019CandidateForTesselation::CandidateForTesselation(TesselPoint *candidate, BoundaryLineSet* line, BoundaryPointSet* point, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) :
1020 BaseLine(line), ThirdPoint(point), T(NULL), ShortestAngle(2. * M_PI), OtherShortestAngle(2. * M_PI)
[1e168b]1021{
[6613ec]1022 Info FunctionInfo(__func__);
[357fba]1023 OptCenter.CopyVector(&OptCandidateCenter);
1024 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
[6613ec]1025}
1026;
[357fba]1027
1028/** Destructor for class CandidateForTesselation.
1029 */
[6613ec]1030CandidateForTesselation::~CandidateForTesselation()
1031{
1032}
1033;
[357fba]1034
[734816]1035/** Checks validity of a given sphere of a candidate line.
1036 * Sphere must touch all candidates and the baseline endpoints and there must be no other atoms inside.
1037 * \param RADIUS radius of sphere
1038 * \param *LC LinkedCell structure with other atoms
1039 * \return true - sphere is valid, false - sphere contains other points
1040 */
1041bool CandidateForTesselation::CheckValidity(const double RADIUS, const LinkedCell *LC) const
1042{
[09898c]1043 Info FunctionInfo(__func__);
1044
[6613ec]1045 const double radiusSquared = RADIUS * RADIUS;
[734816]1046 list<const Vector *> VectorList;
1047 VectorList.push_back(&OptCenter);
[09898c]1048 //VectorList.push_back(&OtherOptCenter); // don't check the other (wrong) center
[734816]1049
[09898c]1050 if (!pointlist.empty())
[6613ec]1051 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains candidate list and baseline " << *BaseLine->endpoints[0] << "<->" << *BaseLine->endpoints[1] << " only ..." << endl);
[09898c]1052 else
1053 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere with no candidates contains baseline " << *BaseLine->endpoints[0] << "<->" << *BaseLine->endpoints[1] << " only ..." << endl);
[734816]1054 // check baseline for OptCenter and OtherOptCenter being on sphere's surface
1055 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
[6613ec]1056 for (int i = 0; i < 2; i++) {
[f07f86d]1057 const double distance = fabs((*VRunner)->DistanceSquared(BaseLine->endpoints[i]->node->node) - radiusSquared);
1058 if (distance > HULLEPSILON) {
[6613ec]1059 DoeLog(1) && (eLog() << Verbose(1) << "Endpoint " << *BaseLine->endpoints[i] << " is out of sphere at " << *(*VRunner) << " by " << distance << "." << endl);
[734816]1060 return false;
1061 }
[f07f86d]1062 }
[734816]1063 }
1064
1065 // check Candidates for OptCenter and OtherOptCenter being on sphere's surface
[6613ec]1066 for (TesselPointList::const_iterator Runner = pointlist.begin(); Runner != pointlist.end(); ++Runner) {
[734816]1067 const TesselPoint *Walker = *Runner;
1068 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
[f07f86d]1069 const double distance = fabs((*VRunner)->DistanceSquared(Walker->node) - radiusSquared);
1070 if (distance > HULLEPSILON) {
[6613ec]1071 DoeLog(1) && (eLog() << Verbose(1) << "Candidate " << *Walker << " is out of sphere at " << *(*VRunner) << " by " << distance << "." << endl);
[734816]1072 return false;
[6613ec]1073 } else {
[a67d19]1074 DoLog(1) && (Log() << Verbose(1) << "Candidate " << *Walker << " is inside by " << distance << "." << endl);
[734816]1075 }
1076 }
1077 }
1078
[09898c]1079 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains no others points ..." << endl);
[734816]1080 bool flag = true;
1081 for (list<const Vector *>::const_iterator VRunner = VectorList.begin(); VRunner != VectorList.end(); ++VRunner) {
1082 // get all points inside the sphere
1083 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, (*VRunner));
[6613ec]1084
[a67d19]1085 DoLog(1) && (Log() << Verbose(1) << "The following atoms are inside sphere at " << OtherOptCenter << ":" << endl);
[6613ec]1086 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
[a67d19]1087 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&OtherOptCenter) << "." << endl);
[6613ec]1088
[734816]1089 // remove baseline's endpoints and candidates
[6613ec]1090 for (int i = 0; i < 2; i++) {
[a67d19]1091 DoLog(1) && (Log() << Verbose(1) << "INFO: removing baseline tesselpoint " << *BaseLine->endpoints[i]->node << "." << endl);
[734816]1092 ListofPoints->remove(BaseLine->endpoints[i]->node);
[6613ec]1093 }
1094 for (TesselPointList::const_iterator Runner = pointlist.begin(); Runner != pointlist.end(); ++Runner) {
[a67d19]1095 DoLog(1) && (Log() << Verbose(1) << "INFO: removing candidate tesselpoint " << *(*Runner) << "." << endl);
[734816]1096 ListofPoints->remove(*Runner);
[6613ec]1097 }
[734816]1098 if (!ListofPoints->empty()) {
[6613ec]1099 DoeLog(1) && (eLog() << Verbose(1) << "CheckValidity: There are still " << ListofPoints->size() << " points inside the sphere." << endl);
[734816]1100 flag = false;
[09898c]1101 DoeLog(1) && (eLog() << Verbose(1) << "External atoms inside of sphere at " << *(*VRunner) << ":" << endl);
1102 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
1103 DoeLog(1) && (eLog() << Verbose(1) << " " << *(*Runner) << endl);
[734816]1104 }
[6613ec]1105 delete (ListofPoints);
[09898c]1106
1107 // check with animate_sphere.tcl VMD script
1108 if (ThirdPoint != NULL) {
[a67d19]1109 DoLog(1) && (Log() << Verbose(1) << "Check by: animate_sphere 0 " << BaseLine->endpoints[0]->Nr + 1 << " " << BaseLine->endpoints[1]->Nr + 1 << " " << ThirdPoint->Nr + 1 << " " << RADIUS << " " << OldCenter.x[0] << " " << OldCenter.x[1] << " " << OldCenter.x[2] << " " << (*VRunner)->x[0] << " " << (*VRunner)->x[1] << " " << (*VRunner)->x[2] << endl);
[09898c]1110 } else {
[a67d19]1111 DoLog(1) && (Log() << Verbose(1) << "Check by: ... missing third point ..." << endl);
1112 DoLog(1) && (Log() << Verbose(1) << "Check by: animate_sphere 0 " << BaseLine->endpoints[0]->Nr + 1 << " " << BaseLine->endpoints[1]->Nr + 1 << " ??? " << RADIUS << " " << OldCenter.x[0] << " " << OldCenter.x[1] << " " << OldCenter.x[2] << " " << (*VRunner)->x[0] << " " << (*VRunner)->x[1] << " " << (*VRunner)->x[2] << endl);
[09898c]1113 }
[734816]1114 }
1115 return flag;
[6613ec]1116}
1117;
[734816]1118
[1e168b]1119/** output operator for CandidateForTesselation.
1120 * \param &ost output stream
1121 * \param &a boundary line
1122 */
[6613ec]1123ostream & operator <<(ostream &ost, const CandidateForTesselation &a)
[1e168b]1124{
1125 ost << "[" << a.BaseLine->Nr << "|" << a.BaseLine->endpoints[0]->node->Name << "," << a.BaseLine->endpoints[1]->node->Name << "] with ";
[f67b6e]1126 if (a.pointlist.empty())
[1e168b]1127 ost << "no candidate.";
[f67b6e]1128 else {
1129 ost << "candidate";
1130 if (a.pointlist.size() != 1)
1131 ost << "s ";
1132 else
1133 ost << " ";
1134 for (TesselPointList::const_iterator Runner = a.pointlist.begin(); Runner != a.pointlist.end(); Runner++)
1135 ost << *(*Runner) << " ";
[6613ec]1136 ost << " at angle " << (a.ShortestAngle) << ".";
[f67b6e]1137 }
[1e168b]1138
1139 return ost;
[6613ec]1140}
1141;
[1e168b]1142
[357fba]1143// =========================================================== class TESSELATION ===========================================
1144
1145/** Constructor of class Tesselation.
1146 */
[1e168b]1147Tesselation::Tesselation() :
[6613ec]1148 PointsOnBoundaryCount(0), LinesOnBoundaryCount(0), TrianglesOnBoundaryCount(0), LastTriangle(NULL), TriangleFilesWritten(0), InternalPointer(PointsOnBoundary.begin())
[357fba]1149{
[6613ec]1150 Info FunctionInfo(__func__);
[357fba]1151}
1152;
1153
1154/** Destructor of class Tesselation.
1155 * We have to free all points, lines and triangles.
1156 */
1157Tesselation::~Tesselation()
1158{
[6613ec]1159 Info FunctionInfo(__func__);
[a67d19]1160 DoLog(0) && (Log() << Verbose(0) << "Free'ing TesselStruct ... " << endl);
[357fba]1161 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
1162 if (runner->second != NULL) {
1163 delete (runner->second);
1164 runner->second = NULL;
1165 } else
[6613ec]1166 DoeLog(1) && (eLog() << Verbose(1) << "The triangle " << runner->first << " has already been free'd." << endl);
[357fba]1167 }
[a67d19]1168 DoLog(0) && (Log() << Verbose(0) << "This envelope was written to file " << TriangleFilesWritten << " times(s)." << endl);
[357fba]1169}
1170;
1171
[5c7bf8]1172/** PointCloud implementation of GetCenter
1173 * Uses PointsOnBoundary and STL stuff.
[6613ec]1174 */
[776b64]1175Vector * Tesselation::GetCenter(ofstream *out) const
[5c7bf8]1176{
[6613ec]1177 Info FunctionInfo(__func__);
1178 Vector *Center = new Vector(0., 0., 0.);
1179 int num = 0;
[5c7bf8]1180 for (GoToFirst(); (!IsEnd()); GoToNext()) {
1181 Center->AddVector(GetPoint()->node);
1182 num++;
1183 }
[6613ec]1184 Center->Scale(1. / num);
[5c7bf8]1185 return Center;
[6613ec]1186}
1187;
[5c7bf8]1188
1189/** PointCloud implementation of GoPoint
1190 * Uses PointsOnBoundary and STL stuff.
[6613ec]1191 */
[776b64]1192TesselPoint * Tesselation::GetPoint() const
[5c7bf8]1193{
[6613ec]1194 Info FunctionInfo(__func__);
[5c7bf8]1195 return (InternalPointer->second->node);
[6613ec]1196}
1197;
[5c7bf8]1198
1199/** PointCloud implementation of GetTerminalPoint.
1200 * Uses PointsOnBoundary and STL stuff.
[6613ec]1201 */
[776b64]1202TesselPoint * Tesselation::GetTerminalPoint() const
[5c7bf8]1203{
[6613ec]1204 Info FunctionInfo(__func__);
[776b64]1205 PointMap::const_iterator Runner = PointsOnBoundary.end();
[5c7bf8]1206 Runner--;
1207 return (Runner->second->node);
[6613ec]1208}
1209;
[5c7bf8]1210
1211/** PointCloud implementation of GoToNext.
1212 * Uses PointsOnBoundary and STL stuff.
[6613ec]1213 */
[776b64]1214void Tesselation::GoToNext() const
[5c7bf8]1215{
[6613ec]1216 Info FunctionInfo(__func__);
[5c7bf8]1217 if (InternalPointer != PointsOnBoundary.end())
1218 InternalPointer++;
[6613ec]1219}
1220;
[5c7bf8]1221
1222/** PointCloud implementation of GoToPrevious.
1223 * Uses PointsOnBoundary and STL stuff.
[6613ec]1224 */
[776b64]1225void Tesselation::GoToPrevious() const
[5c7bf8]1226{
[6613ec]1227 Info FunctionInfo(__func__);
[5c7bf8]1228 if (InternalPointer != PointsOnBoundary.begin())
1229 InternalPointer--;
[6613ec]1230}
1231;
[5c7bf8]1232
1233/** PointCloud implementation of GoToFirst.
1234 * Uses PointsOnBoundary and STL stuff.
[6613ec]1235 */
[776b64]1236void Tesselation::GoToFirst() const
[5c7bf8]1237{
[6613ec]1238 Info FunctionInfo(__func__);
[5c7bf8]1239 InternalPointer = PointsOnBoundary.begin();
[6613ec]1240}
1241;
[5c7bf8]1242
1243/** PointCloud implementation of GoToLast.
1244 * Uses PointsOnBoundary and STL stuff.
[776b64]1245 */
1246void Tesselation::GoToLast() const
[5c7bf8]1247{
[6613ec]1248 Info FunctionInfo(__func__);
[5c7bf8]1249 InternalPointer = PointsOnBoundary.end();
1250 InternalPointer--;
[6613ec]1251}
1252;
[5c7bf8]1253
1254/** PointCloud implementation of IsEmpty.
1255 * Uses PointsOnBoundary and STL stuff.
[6613ec]1256 */
[776b64]1257bool Tesselation::IsEmpty() const
[5c7bf8]1258{
[6613ec]1259 Info FunctionInfo(__func__);
[5c7bf8]1260 return (PointsOnBoundary.empty());
[6613ec]1261}
1262;
[5c7bf8]1263
1264/** PointCloud implementation of IsLast.
1265 * Uses PointsOnBoundary and STL stuff.
[6613ec]1266 */
[776b64]1267bool Tesselation::IsEnd() const
[5c7bf8]1268{
[6613ec]1269 Info FunctionInfo(__func__);
[5c7bf8]1270 return (InternalPointer == PointsOnBoundary.end());
[6613ec]1271}
1272;
[5c7bf8]1273
[357fba]1274/** Gueses first starting triangle of the convex envelope.
1275 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
1276 * \param *out output stream for debugging
1277 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
1278 */
[244a84]1279void Tesselation::GuessStartingTriangle()
[357fba]1280{
[6613ec]1281 Info FunctionInfo(__func__);
[357fba]1282 // 4b. create a starting triangle
1283 // 4b1. create all distances
1284 DistanceMultiMap DistanceMMap;
1285 double distance, tmp;
1286 Vector PlaneVector, TrialVector;
1287 PointMap::iterator A, B, C; // three nodes of the first triangle
1288 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
1289
1290 // with A chosen, take each pair B,C and sort
[6613ec]1291 if (A != PointsOnBoundary.end()) {
1292 B = A;
1293 B++;
1294 for (; B != PointsOnBoundary.end(); B++) {
1295 C = B;
1296 C++;
1297 for (; C != PointsOnBoundary.end(); C++) {
1298 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
1299 distance = tmp * tmp;
1300 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
1301 distance += tmp * tmp;
1302 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
1303 distance += tmp * tmp;
1304 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
1305 }
[357fba]1306 }
[6613ec]1307 }
[357fba]1308 // // listing distances
[e138de]1309 // Log() << Verbose(1) << "Listing DistanceMMap:";
[357fba]1310 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
[e138de]1311 // Log() << Verbose(0) << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
[357fba]1312 // }
[e138de]1313 // Log() << Verbose(0) << endl;
[357fba]1314 // 4b2. pick three baselines forming a triangle
1315 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1316 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
[6613ec]1317 for (; baseline != DistanceMMap.end(); baseline++) {
1318 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
1319 // 2. next, we have to check whether all points reside on only one side of the triangle
1320 // 3. construct plane vector
1321 PlaneVector.MakeNormalVector(A->second->node->node, baseline->second.first->second->node->node, baseline->second.second->second->node->node);
[a67d19]1322 DoLog(2) && (Log() << Verbose(2) << "Plane vector of candidate triangle is " << PlaneVector << endl);
[6613ec]1323 // 4. loop over all points
1324 double sign = 0.;
1325 PointMap::iterator checker = PointsOnBoundary.begin();
1326 for (; checker != PointsOnBoundary.end(); checker++) {
1327 // (neglecting A,B,C)
1328 if ((checker == A) || (checker == baseline->second.first) || (checker == baseline->second.second))
1329 continue;
1330 // 4a. project onto plane vector
1331 TrialVector.CopyVector(checker->second->node->node);
1332 TrialVector.SubtractVector(A->second->node->node);
1333 distance = TrialVector.ScalarProduct(&PlaneVector);
1334 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
1335 continue;
[a67d19]1336 DoLog(2) && (Log() << Verbose(2) << "Projection of " << checker->second->node->Name << " yields distance of " << distance << "." << endl);
[6613ec]1337 tmp = distance / fabs(distance);
1338 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
1339 if ((sign != 0) && (tmp != sign)) {
1340 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
[a67d19]1341 DoLog(2) && (Log() << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leaves " << checker->second->node->Name << " outside the convex hull." << endl);
[6613ec]1342 break;
1343 } else { // note the sign for later
[a67d19]1344 DoLog(2) && (Log() << Verbose(2) << "Current candidates: " << A->second->node->Name << "," << baseline->second.first->second->node->Name << "," << baseline->second.second->second->node->Name << " leave " << checker->second->node->Name << " inside the convex hull." << endl);
[6613ec]1345 sign = tmp;
1346 }
1347 // 4d. Check whether the point is inside the triangle (check distance to each node
1348 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
1349 int innerpoint = 0;
1350 if ((tmp < A->second->node->node->DistanceSquared(baseline->second.first->second->node->node)) && (tmp < A->second->node->node->DistanceSquared(baseline->second.second->second->node->node)))
1351 innerpoint++;
1352 tmp = checker->second->node->node->DistanceSquared(baseline->second.first->second->node->node);
1353 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(A->second->node->node)) && (tmp < baseline->second.first->second->node->node->DistanceSquared(baseline->second.second->second->node->node)))
1354 innerpoint++;
1355 tmp = checker->second->node->node->DistanceSquared(baseline->second.second->second->node->node);
1356 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(baseline->second.first->second->node->node)) && (tmp < baseline->second.second->second->node->node->DistanceSquared(A->second->node->node)))
1357 innerpoint++;
1358 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
1359 if (innerpoint == 3)
1360 break;
[357fba]1361 }
[6613ec]1362 // 5. come this far, all on same side? Then break 1. loop and construct triangle
1363 if (checker == PointsOnBoundary.end()) {
[a67d19]1364 DoLog(2) && (Log() << Verbose(2) << "Looks like we have a candidate!" << endl);
[6613ec]1365 break;
[357fba]1366 }
[6613ec]1367 }
1368 if (baseline != DistanceMMap.end()) {
1369 BPS[0] = baseline->second.first->second;
1370 BPS[1] = baseline->second.second->second;
1371 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1372 BPS[0] = A->second;
1373 BPS[1] = baseline->second.second->second;
1374 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1375 BPS[0] = baseline->second.first->second;
1376 BPS[1] = A->second;
1377 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1378
1379 // 4b3. insert created triangle
1380 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
1381 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1382 TrianglesOnBoundaryCount++;
1383 for (int i = 0; i < NDIM; i++) {
1384 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
1385 LinesOnBoundaryCount++;
[357fba]1386 }
[6613ec]1387
[a67d19]1388 DoLog(1) && (Log() << Verbose(1) << "Starting triangle is " << *BTS << "." << endl);
[6613ec]1389 } else {
1390 DoeLog(0) && (eLog() << Verbose(0) << "No starting triangle found." << endl);
1391 }
[357fba]1392}
1393;
1394
1395/** Tesselates the convex envelope of a cluster from a single starting triangle.
1396 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
1397 * 2 triangles. Hence, we go through all current lines:
1398 * -# if the lines contains to only one triangle
1399 * -# We search all points in the boundary
1400 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
1401 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
1402 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
1403 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
1404 * \param *out output stream for debugging
1405 * \param *configuration for IsAngstroem
1406 * \param *cloud cluster of points
1407 */
[e138de]1408void Tesselation::TesselateOnBoundary(const PointCloud * const cloud)
[357fba]1409{
[6613ec]1410 Info FunctionInfo(__func__);
[357fba]1411 bool flag;
1412 PointMap::iterator winner;
1413 class BoundaryPointSet *peak = NULL;
1414 double SmallestAngle, TempAngle;
1415 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
1416 LineMap::iterator LineChecker[2];
1417
[e138de]1418 Center = cloud->GetCenter();
[357fba]1419 // create a first tesselation with the given BoundaryPoints
1420 do {
1421 flag = false;
1422 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
[5c7bf8]1423 if (baseline->second->triangles.size() == 1) {
[357fba]1424 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
1425 SmallestAngle = M_PI;
1426
1427 // get peak point with respect to this base line's only triangle
1428 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
[a67d19]1429 DoLog(0) && (Log() << Verbose(0) << "Current baseline is between " << *(baseline->second) << "." << endl);
[357fba]1430 for (int i = 0; i < 3; i++)
1431 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
1432 peak = BTS->endpoints[i];
[a67d19]1433 DoLog(1) && (Log() << Verbose(1) << " and has peak " << *peak << "." << endl);
[357fba]1434
1435 // prepare some auxiliary vectors
1436 Vector BaseLineCenter, BaseLine;
1437 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
1438 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
1439 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
1440 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
1441 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
1442
1443 // offset to center of triangle
1444 CenterVector.Zero();
1445 for (int i = 0; i < 3; i++)
1446 CenterVector.AddVector(BTS->endpoints[i]->node->node);
1447 CenterVector.Scale(1. / 3.);
[a67d19]1448 DoLog(2) && (Log() << Verbose(2) << "CenterVector of base triangle is " << CenterVector << endl);
[357fba]1449
1450 // normal vector of triangle
1451 NormalVector.CopyVector(Center);
1452 NormalVector.SubtractVector(&CenterVector);
1453 BTS->GetNormalVector(NormalVector);
1454 NormalVector.CopyVector(&BTS->NormalVector);
[a67d19]1455 DoLog(2) && (Log() << Verbose(2) << "NormalVector of base triangle is " << NormalVector << endl);
[357fba]1456
1457 // vector in propagation direction (out of triangle)
1458 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
1459 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
1460 TempVector.CopyVector(&CenterVector);
1461 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
[f67b6e]1462 //Log() << Verbose(0) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
[658efb]1463 if (PropagationVector.ScalarProduct(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
[357fba]1464 PropagationVector.Scale(-1.);
[a67d19]1465 DoLog(2) && (Log() << Verbose(2) << "PropagationVector of base triangle is " << PropagationVector << endl);
[357fba]1466 winner = PointsOnBoundary.end();
1467
1468 // loop over all points and calculate angle between normal vector of new and present triangle
1469 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
1470 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
[a67d19]1471 DoLog(1) && (Log() << Verbose(1) << "Target point is " << *(target->second) << ":" << endl);
[357fba]1472
1473 // first check direction, so that triangles don't intersect
1474 VirtualNormalVector.CopyVector(target->second->node->node);
1475 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
1476 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
1477 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
[a67d19]1478 DoLog(2) && (Log() << Verbose(2) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl);
[6613ec]1479 if (TempAngle > (M_PI / 2.)) { // no bends bigger than Pi/2 (90 degrees)
[a67d19]1480 DoLog(2) && (Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl);
[357fba]1481 continue;
1482 } else
[a67d19]1483 DoLog(2) && (Log() << Verbose(2) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl);
[357fba]1484
1485 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
1486 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
1487 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
[5c7bf8]1488 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
[a67d19]1489 DoLog(2) && (Log() << Verbose(2) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl);
[357fba]1490 continue;
1491 }
[5c7bf8]1492 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
[a67d19]1493 DoLog(2) && (Log() << Verbose(2) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl);
[357fba]1494 continue;
1495 }
1496
1497 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
1498 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
[a67d19]1499 DoLog(4) && (Log() << Verbose(4) << "Current target is peak!" << endl);
[357fba]1500 continue;
1501 }
1502
1503 // check for linear dependence
1504 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1505 TempVector.SubtractVector(target->second->node->node);
1506 helper.CopyVector(baseline->second->endpoints[1]->node->node);
1507 helper.SubtractVector(target->second->node->node);
1508 helper.ProjectOntoPlane(&TempVector);
1509 if (fabs(helper.NormSquared()) < MYEPSILON) {
[a67d19]1510 DoLog(2) && (Log() << Verbose(2) << "Chosen set of vectors is linear dependent." << endl);
[357fba]1511 continue;
1512 }
1513
1514 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
1515 flag = true;
1516 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
1517 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
1518 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
1519 TempVector.AddVector(target->second->node->node);
[6613ec]1520 TempVector.Scale(1. / 3.);
[357fba]1521 TempVector.SubtractVector(Center);
1522 // make it always point outward
[658efb]1523 if (VirtualNormalVector.ScalarProduct(&TempVector) < 0)
[357fba]1524 VirtualNormalVector.Scale(-1.);
1525 // calculate angle
1526 TempAngle = NormalVector.Angle(&VirtualNormalVector);
[a67d19]1527 DoLog(2) && (Log() << Verbose(2) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl);
[357fba]1528 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
1529 SmallestAngle = TempAngle;
1530 winner = target;
[a67d19]1531 DoLog(2) && (Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl);
[357fba]1532 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
1533 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
1534 helper.CopyVector(target->second->node->node);
1535 helper.SubtractVector(&BaseLineCenter);
1536 helper.ProjectOntoPlane(&BaseLine);
1537 // ...the one with the smaller angle is the better candidate
1538 TempVector.CopyVector(target->second->node->node);
1539 TempVector.SubtractVector(&BaseLineCenter);
1540 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1541 TempAngle = TempVector.Angle(&helper);
1542 TempVector.CopyVector(winner->second->node->node);
1543 TempVector.SubtractVector(&BaseLineCenter);
1544 TempVector.ProjectOntoPlane(&VirtualNormalVector);
1545 if (TempAngle < TempVector.Angle(&helper)) {
1546 TempAngle = NormalVector.Angle(&VirtualNormalVector);
1547 SmallestAngle = TempAngle;
1548 winner = target;
[a67d19]1549 DoLog(2) && (Log() << Verbose(2) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl);
[357fba]1550 } else
[a67d19]1551 DoLog(2) && (Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl);
[357fba]1552 } else
[a67d19]1553 DoLog(2) && (Log() << Verbose(2) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl);
[357fba]1554 }
1555 } // end of loop over all boundary points
1556
1557 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
1558 if (winner != PointsOnBoundary.end()) {
[a67d19]1559 DoLog(0) && (Log() << Verbose(0) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl);
[357fba]1560 // create the lins of not yet present
1561 BLS[0] = baseline->second;
1562 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1563 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1564 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1565 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1566 BPS[0] = baseline->second->endpoints[0];
1567 BPS[1] = winner->second;
1568 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1569 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1570 LinesOnBoundaryCount++;
1571 } else
1572 BLS[1] = LineChecker[0]->second;
1573 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1574 BPS[0] = baseline->second->endpoints[1];
1575 BPS[1] = winner->second;
1576 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1577 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1578 LinesOnBoundaryCount++;
1579 } else
1580 BLS[2] = LineChecker[1]->second;
1581 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[62bb91]1582 BTS->GetCenter(&helper);
1583 helper.SubtractVector(Center);
1584 helper.Scale(-1);
1585 BTS->GetNormalVector(helper);
[357fba]1586 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1587 TrianglesOnBoundaryCount++;
1588 } else {
[6613ec]1589 DoeLog(2) && (eLog() << Verbose(2) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl);
[357fba]1590 }
1591
1592 // 5d. If the set of lines is not yet empty, go to 5. and continue
1593 } else
[a67d19]1594 DoLog(0) && (Log() << Verbose(0) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl);
[357fba]1595 } while (flag);
1596
1597 // exit
[6613ec]1598 delete (Center);
1599}
1600;
[357fba]1601
[62bb91]1602/** Inserts all points outside of the tesselated surface into it by adding new triangles.
[357fba]1603 * \param *out output stream for debugging
1604 * \param *cloud cluster of points
[62bb91]1605 * \param *LC LinkedCell structure to find nearest point quickly
[357fba]1606 * \return true - all straddling points insert, false - something went wrong
1607 */
[e138de]1608bool Tesselation::InsertStraddlingPoints(const PointCloud *cloud, const LinkedCell *LC)
[357fba]1609{
[6613ec]1610 Info FunctionInfo(__func__);
[5c7bf8]1611 Vector Intersection, Normal;
[357fba]1612 TesselPoint *Walker = NULL;
[e138de]1613 Vector *Center = cloud->GetCenter();
[c15ca2]1614 TriangleList *triangles = NULL;
[7dea7c]1615 bool AddFlag = false;
1616 LinkedCell *BoundaryPoints = NULL;
[62bb91]1617
[357fba]1618 cloud->GoToFirst();
[7dea7c]1619 BoundaryPoints = new LinkedCell(this, 5.);
[6613ec]1620 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
[7dea7c]1621 if (AddFlag) {
[6613ec]1622 delete (BoundaryPoints);
[7dea7c]1623 BoundaryPoints = new LinkedCell(this, 5.);
1624 AddFlag = false;
1625 }
[357fba]1626 Walker = cloud->GetPoint();
[a67d19]1627 DoLog(0) && (Log() << Verbose(0) << "Current point is " << *Walker << "." << endl);
[357fba]1628 // get the next triangle
[c15ca2]1629 triangles = FindClosestTrianglesToVector(Walker->node, BoundaryPoints);
[7dea7c]1630 BTS = triangles->front();
1631 if ((triangles == NULL) || (BTS->ContainsBoundaryPoint(Walker))) {
[a67d19]1632 DoLog(0) && (Log() << Verbose(0) << "No triangles found, probably a tesselation point itself." << endl);
[62bb91]1633 cloud->GoToNext();
1634 continue;
1635 } else {
[357fba]1636 }
[a67d19]1637 DoLog(0) && (Log() << Verbose(0) << "Closest triangle is " << *BTS << "." << endl);
[357fba]1638 // get the intersection point
[e138de]1639 if (BTS->GetIntersectionInsideTriangle(Center, Walker->node, &Intersection)) {
[a67d19]1640 DoLog(0) && (Log() << Verbose(0) << "We have an intersection at " << Intersection << "." << endl);
[357fba]1641 // we have the intersection, check whether in- or outside of boundary
1642 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1643 // inside, next!
[a67d19]1644 DoLog(0) && (Log() << Verbose(0) << *Walker << " is inside wrt triangle " << *BTS << "." << endl);
[357fba]1645 } else {
1646 // outside!
[a67d19]1647 DoLog(0) && (Log() << Verbose(0) << *Walker << " is outside wrt triangle " << *BTS << "." << endl);
[357fba]1648 class BoundaryLineSet *OldLines[3], *NewLines[3];
1649 class BoundaryPointSet *OldPoints[3], *NewPoint;
1650 // store the three old lines and old points
[6613ec]1651 for (int i = 0; i < 3; i++) {
[357fba]1652 OldLines[i] = BTS->lines[i];
1653 OldPoints[i] = BTS->endpoints[i];
1654 }
[5c7bf8]1655 Normal.CopyVector(&BTS->NormalVector);
[357fba]1656 // add Walker to boundary points
[a67d19]1657 DoLog(0) && (Log() << Verbose(0) << "Adding " << *Walker << " to BoundaryPoints." << endl);
[7dea7c]1658 AddFlag = true;
[6613ec]1659 if (AddBoundaryPoint(Walker, 0))
[357fba]1660 NewPoint = BPS[0];
1661 else
1662 continue;
1663 // remove triangle
[a67d19]1664 DoLog(0) && (Log() << Verbose(0) << "Erasing triangle " << *BTS << "." << endl);
[357fba]1665 TrianglesOnBoundary.erase(BTS->Nr);
[6613ec]1666 delete (BTS);
[357fba]1667 // create three new boundary lines
[6613ec]1668 for (int i = 0; i < 3; i++) {
[357fba]1669 BPS[0] = NewPoint;
1670 BPS[1] = OldPoints[i];
1671 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
[a67d19]1672 DoLog(1) && (Log() << Verbose(1) << "Creating new line " << *NewLines[i] << "." << endl);
[357fba]1673 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1674 LinesOnBoundaryCount++;
1675 }
1676 // create three new triangle with new point
[6613ec]1677 for (int i = 0; i < 3; i++) { // find all baselines
[357fba]1678 BLS[0] = OldLines[i];
1679 int n = 1;
[6613ec]1680 for (int j = 0; j < 3; j++) {
[357fba]1681 if (NewLines[j]->IsConnectedTo(BLS[0])) {
[6613ec]1682 if (n > 2) {
1683 DoeLog(2) && (eLog() << Verbose(2) << BLS[0] << " connects to all of the new lines?!" << endl);
[357fba]1684 return false;
1685 } else
1686 BLS[n++] = NewLines[j];
1687 }
1688 }
1689 // create the triangle
1690 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[5c7bf8]1691 Normal.Scale(-1.);
1692 BTS->GetNormalVector(Normal);
1693 Normal.Scale(-1.);
[a67d19]1694 DoLog(0) && (Log() << Verbose(0) << "Created new triangle " << *BTS << "." << endl);
[357fba]1695 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1696 TrianglesOnBoundaryCount++;
1697 }
1698 }
1699 } else { // something is wrong with FindClosestTriangleToPoint!
[6613ec]1700 DoeLog(1) && (eLog() << Verbose(1) << "The closest triangle did not produce an intersection!" << endl);
[357fba]1701 return false;
1702 }
1703 cloud->GoToNext();
1704 }
1705
1706 // exit
[6613ec]1707 delete (Center);
[357fba]1708 return true;
[6613ec]1709}
1710;
[357fba]1711
[16d866]1712/** Adds a point to the tesselation::PointsOnBoundary list.
[62bb91]1713 * \param *Walker point to add
[08ef35]1714 * \param n TesselStruct::BPS index to put pointer into
1715 * \return true - new point was added, false - point already present
[357fba]1716 */
[776b64]1717bool Tesselation::AddBoundaryPoint(TesselPoint * Walker, const int n)
[357fba]1718{
[6613ec]1719 Info FunctionInfo(__func__);
[357fba]1720 PointTestPair InsertUnique;
[08ef35]1721 BPS[n] = new class BoundaryPointSet(Walker);
1722 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1723 if (InsertUnique.second) { // if new point was not present before, increase counter
[357fba]1724 PointsOnBoundaryCount++;
[08ef35]1725 return true;
1726 } else {
[6613ec]1727 delete (BPS[n]);
[08ef35]1728 BPS[n] = InsertUnique.first->second;
1729 return false;
[357fba]1730 }
1731}
1732;
1733
1734/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1735 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1736 * @param Candidate point to add
1737 * @param n index for this point in Tesselation::TPS array
1738 */
[776b64]1739void Tesselation::AddTesselationPoint(TesselPoint* Candidate, const int n)
[357fba]1740{
[6613ec]1741 Info FunctionInfo(__func__);
[357fba]1742 PointTestPair InsertUnique;
1743 TPS[n] = new class BoundaryPointSet(Candidate);
1744 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1745 if (InsertUnique.second) { // if new point was not present before, increase counter
1746 PointsOnBoundaryCount++;
1747 } else {
1748 delete TPS[n];
[a67d19]1749 DoLog(0) && (Log() << Verbose(0) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl);
[357fba]1750 TPS[n] = (InsertUnique.first)->second;
1751 }
1752}
1753;
1754
[f1ef60a]1755/** Sets point to a present Tesselation::PointsOnBoundary.
1756 * Tesselation::TPS is set to the existing one or NULL if not found.
1757 * @param Candidate point to set to
1758 * @param n index for this point in Tesselation::TPS array
1759 */
1760void Tesselation::SetTesselationPoint(TesselPoint* Candidate, const int n) const
1761{
[6613ec]1762 Info FunctionInfo(__func__);
[f1ef60a]1763 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidate->nr);
1764 if (FindPoint != PointsOnBoundary.end())
1765 TPS[n] = FindPoint->second;
1766 else
1767 TPS[n] = NULL;
[6613ec]1768}
1769;
[f1ef60a]1770
[357fba]1771/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1772 * If successful it raises the line count and inserts the new line into the BLS,
1773 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
[f07f86d]1774 * @param *OptCenter desired OptCenter if there are more than one candidate line
[d5fea7]1775 * @param *candidate third point of the triangle to be, for checking between multiple open line candidates
[357fba]1776 * @param *a first endpoint
1777 * @param *b second endpoint
1778 * @param n index of Tesselation::BLS giving the line with both endpoints
1779 */
[6613ec]1780void Tesselation::AddTesselationLine(const Vector * const OptCenter, const BoundaryPointSet * const candidate, class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
1781{
[357fba]1782 bool insertNewLine = true;
[b998c3]1783 LineMap::iterator FindLine = a->lines.find(b->node->nr);
[d5fea7]1784 BoundaryLineSet *WinningLine = NULL;
[b998c3]1785 if (FindLine != a->lines.end()) {
[a67d19]1786 DoLog(1) && (Log() << Verbose(1) << "INFO: There is at least one line between " << *a << " and " << *b << ": " << *(FindLine->second) << "." << endl);
[b998c3]1787
[6613ec]1788 pair<LineMap::iterator, LineMap::iterator> FindPair;
[357fba]1789 FindPair = a->lines.equal_range(b->node->nr);
1790
[6613ec]1791 for (FindLine = FindPair.first; (FindLine != FindPair.second) && (insertNewLine); FindLine++) {
[a67d19]1792 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking line " << *(FindLine->second) << " ..." << endl);
[357fba]1793 // If there is a line with less than two attached triangles, we don't need a new line.
[d5fea7]1794 if (FindLine->second->triangles.size() == 1) {
1795 CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
[f07f86d]1796 if (!Finder->second->pointlist.empty())
[a67d19]1797 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << "." << endl);
[f07f86d]1798 else
[a67d19]1799 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with no candidate." << endl);
[f07f86d]1800 // get open line
[6613ec]1801 for (TesselPointList::const_iterator CandidateChecker = Finder->second->pointlist.begin(); CandidateChecker != Finder->second->pointlist.end(); ++CandidateChecker) {
1802 if ((*(CandidateChecker) == candidate->node) && (OptCenter == NULL || *OptCenter == Finder->second->OptCenter)) { // stop searching if candidate matches
1803 insertNewLine = false;
1804 WinningLine = FindLine->second;
1805 break;
1806 }
[d5fea7]1807 }
[357fba]1808 }
1809 }
1810 }
1811
1812 if (insertNewLine) {
[474961]1813 AddNewTesselationTriangleLine(a, b, n);
[d5fea7]1814 } else {
1815 AddExistingTesselationTriangleLine(WinningLine, n);
[357fba]1816 }
1817}
1818;
1819
1820/**
1821 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1822 * Raises the line count and inserts the new line into the BLS.
1823 *
1824 * @param *a first endpoint
1825 * @param *b second endpoint
1826 * @param n index of Tesselation::BLS giving the line with both endpoints
1827 */
[474961]1828void Tesselation::AddNewTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, const int n)
[357fba]1829{
[6613ec]1830 Info FunctionInfo(__func__);
[a67d19]1831 DoLog(0) && (Log() << Verbose(0) << "Adding open line [" << LinesOnBoundaryCount << "|" << *(a->node) << " and " << *(b->node) << "." << endl);
[357fba]1832 BPS[0] = a;
1833 BPS[1] = b;
[6613ec]1834 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
[357fba]1835 // add line to global map
1836 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1837 // increase counter
1838 LinesOnBoundaryCount++;
[1e168b]1839 // also add to open lines
1840 CandidateForTesselation *CFT = new CandidateForTesselation(BLS[n]);
[6613ec]1841 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (BLS[n], CFT));
1842}
1843;
[357fba]1844
[474961]1845/** Uses an existing line for a new triangle.
1846 * Sets Tesselation::BLS[\a n] and removes the lines from Tesselation::OpenLines.
1847 * \param *FindLine the line to add
1848 * \param n index of the line to set in Tesselation::BLS
1849 */
1850void Tesselation::AddExistingTesselationTriangleLine(class BoundaryLineSet *Line, int n)
1851{
1852 Info FunctionInfo(__func__);
[a67d19]1853 DoLog(0) && (Log() << Verbose(0) << "Using existing line " << *Line << endl);
[474961]1854
1855 // set endpoints and line
1856 BPS[0] = Line->endpoints[0];
1857 BPS[1] = Line->endpoints[1];
1858 BLS[n] = Line;
1859 // remove existing line from OpenLines
1860 CandidateMap::iterator CandidateLine = OpenLines.find(BLS[n]);
1861 if (CandidateLine != OpenLines.end()) {
[a67d19]1862 DoLog(1) && (Log() << Verbose(1) << " Removing line from OpenLines." << endl);
[6613ec]1863 delete (CandidateLine->second);
[474961]1864 OpenLines.erase(CandidateLine);
1865 } else {
[6613ec]1866 DoeLog(1) && (eLog() << Verbose(1) << "Line exists and is attached to less than two triangles, but not in OpenLines!" << endl);
[474961]1867 }
[6613ec]1868}
1869;
[474961]1870
[7dea7c]1871/** Function adds triangle to global list.
1872 * Furthermore, the triangle receives the next free id and id counter \a TrianglesOnBoundaryCount is increased.
[357fba]1873 */
[16d866]1874void Tesselation::AddTesselationTriangle()
[357fba]1875{
[6613ec]1876 Info FunctionInfo(__func__);
[a67d19]1877 DoLog(1) && (Log() << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl);
[357fba]1878
1879 // add triangle to global map
1880 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1881 TrianglesOnBoundaryCount++;
1882
[57066a]1883 // set as last new triangle
1884 LastTriangle = BTS;
1885
[357fba]1886 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
[6613ec]1887}
1888;
[16d866]1889
[7dea7c]1890/** Function adds triangle to global list.
1891 * Furthermore, the triangle number is set to \a nr.
1892 * \param nr triangle number
1893 */
[776b64]1894void Tesselation::AddTesselationTriangle(const int nr)
[7dea7c]1895{
[6613ec]1896 Info FunctionInfo(__func__);
[a67d19]1897 DoLog(0) && (Log() << Verbose(0) << "Adding triangle to global TrianglesOnBoundary map." << endl);
[7dea7c]1898
1899 // add triangle to global map
1900 TrianglesOnBoundary.insert(TrianglePair(nr, BTS));
1901
1902 // set as last new triangle
1903 LastTriangle = BTS;
1904
1905 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
[6613ec]1906}
1907;
[7dea7c]1908
[16d866]1909/** Removes a triangle from the tesselation.
1910 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1911 * Removes itself from memory.
1912 * \param *triangle to remove
1913 */
1914void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1915{
[6613ec]1916 Info FunctionInfo(__func__);
[16d866]1917 if (triangle == NULL)
1918 return;
1919 for (int i = 0; i < 3; i++) {
1920 if (triangle->lines[i] != NULL) {
[a67d19]1921 DoLog(0) && (Log() << Verbose(0) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl);
[16d866]1922 triangle->lines[i]->triangles.erase(triangle->Nr);
1923 if (triangle->lines[i]->triangles.empty()) {
[a67d19]1924 DoLog(0) && (Log() << Verbose(0) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl);
[6613ec]1925 RemoveTesselationLine(triangle->lines[i]);
[065e82]1926 } else {
[a67d19]1927 DoLog(0) && (Log() << Verbose(0) << *triangle->lines[i] << " is still attached to another triangle: ");
[6613ec]1928 OpenLines.insert(pair<BoundaryLineSet *, CandidateForTesselation *> (triangle->lines[i], NULL));
1929 for (TriangleMap::iterator TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); TriangleRunner++)
[a67d19]1930 DoLog(0) && (Log() << Verbose(0) << "[" << (TriangleRunner->second)->Nr << "|" << *((TriangleRunner->second)->endpoints[0]) << ", " << *((TriangleRunner->second)->endpoints[1]) << ", " << *((TriangleRunner->second)->endpoints[2]) << "] \t");
1931 DoLog(0) && (Log() << Verbose(0) << endl);
[6613ec]1932 // for (int j=0;j<2;j++) {
1933 // Log() << Verbose(0) << "Lines of endpoint " << *(triangle->lines[i]->endpoints[j]) << ": ";
1934 // for(LineMap::iterator LineRunner = triangle->lines[i]->endpoints[j]->lines.begin(); LineRunner != triangle->lines[i]->endpoints[j]->lines.end(); LineRunner++)
1935 // Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t";
1936 // Log() << Verbose(0) << endl;
1937 // }
[065e82]1938 }
[6613ec]1939 triangle->lines[i] = NULL; // free'd or not: disconnect
[16d866]1940 } else
[6613ec]1941 DoeLog(1) && (eLog() << Verbose(1) << "This line " << i << " has already been free'd." << endl);
[16d866]1942 }
1943
1944 if (TrianglesOnBoundary.erase(triangle->Nr))
[a67d19]1945 DoLog(0) && (Log() << Verbose(0) << "Removing triangle Nr. " << triangle->Nr << "." << endl);
[6613ec]1946 delete (triangle);
1947}
1948;
[16d866]1949
1950/** Removes a line from the tesselation.
1951 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1952 * \param *line line to remove
1953 */
1954void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1955{
[6613ec]1956 Info FunctionInfo(__func__);
[16d866]1957 int Numbers[2];
1958
1959 if (line == NULL)
1960 return;
[065e82]1961 // get other endpoint number for finding copies of same line
[16d866]1962 if (line->endpoints[1] != NULL)
1963 Numbers[0] = line->endpoints[1]->Nr;
1964 else
1965 Numbers[0] = -1;
1966 if (line->endpoints[0] != NULL)
1967 Numbers[1] = line->endpoints[0]->Nr;
1968 else
1969 Numbers[1] = -1;
1970
1971 for (int i = 0; i < 2; i++) {
1972 if (line->endpoints[i] != NULL) {
1973 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1974 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1975 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1976 if ((*Runner).second == line) {
[a67d19]1977 DoLog(0) && (Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl);
[16d866]1978 line->endpoints[i]->lines.erase(Runner);
1979 break;
1980 }
1981 } else { // there's just a single line left
1982 if (line->endpoints[i]->lines.erase(line->Nr))
[a67d19]1983 DoLog(0) && (Log() << Verbose(0) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl);
[16d866]1984 }
1985 if (line->endpoints[i]->lines.empty()) {
[a67d19]1986 DoLog(0) && (Log() << Verbose(0) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl);
[16d866]1987 RemoveTesselationPoint(line->endpoints[i]);
[065e82]1988 } else {
[a67d19]1989 DoLog(0) && (Log() << Verbose(0) << *line->endpoints[i] << " has still lines it's attached to: ");
[6613ec]1990 for (LineMap::iterator LineRunner = line->endpoints[i]->lines.begin(); LineRunner != line->endpoints[i]->lines.end(); LineRunner++)
[a67d19]1991 DoLog(0) && (Log() << Verbose(0) << "[" << *(LineRunner->second) << "] \t");
1992 DoLog(0) && (Log() << Verbose(0) << endl);
[065e82]1993 }
[6613ec]1994 line->endpoints[i] = NULL; // free'd or not: disconnect
[16d866]1995 } else
[6613ec]1996 DoeLog(1) && (eLog() << Verbose(1) << "Endpoint " << i << " has already been free'd." << endl);
[16d866]1997 }
1998 if (!line->triangles.empty())
[6613ec]1999 DoeLog(2) && (eLog() << Verbose(2) << "Memory Leak! I " << *line << " am still connected to some triangles." << endl);
[16d866]2000
2001 if (LinesOnBoundary.erase(line->Nr))
[a67d19]2002 DoLog(0) && (Log() << Verbose(0) << "Removing line Nr. " << line->Nr << "." << endl);
[6613ec]2003 delete (line);
2004}
2005;
[16d866]2006
2007/** Removes a point from the tesselation.
2008 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
2009 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
2010 * \param *point point to remove
2011 */
2012void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
2013{
[6613ec]2014 Info FunctionInfo(__func__);
[16d866]2015 if (point == NULL)
2016 return;
2017 if (PointsOnBoundary.erase(point->Nr))
[a67d19]2018 DoLog(0) && (Log() << Verbose(0) << "Removing point Nr. " << point->Nr << "." << endl);
[6613ec]2019 delete (point);
2020}
2021;
[f07f86d]2022
2023/** Checks validity of a given sphere of a candidate line.
2024 * \sa CandidateForTesselation::CheckValidity(), which is more evolved.
[6613ec]2025 * We check CandidateForTesselation::OtherOptCenter
2026 * \param &CandidateLine contains other degenerated candidates which we have to subtract as well
[f07f86d]2027 * \param RADIUS radius of sphere
2028 * \param *LC LinkedCell structure with other atoms
2029 * \return true - candidate triangle is degenerated, false - candidate triangle is not degenerated
2030 */
[6613ec]2031bool Tesselation::CheckDegeneracy(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC) const
[f07f86d]2032{
2033 Info FunctionInfo(__func__);
2034
2035 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking whether sphere contains no others points ..." << endl);
2036 bool flag = true;
2037
[a67d19]2038 DoLog(1) && (Log() << Verbose(1) << "Check by: draw sphere {" << CandidateLine.OtherOptCenter.x[0] << " " << CandidateLine.OtherOptCenter.x[1] << " " << CandidateLine.OtherOptCenter.x[2] << "} radius " << RADIUS << " resolution 30" << endl);
[f07f86d]2039 // get all points inside the sphere
[6613ec]2040 TesselPointList *ListofPoints = LC->GetPointsInsideSphere(RADIUS, &CandidateLine.OtherOptCenter);
[f07f86d]2041
[a67d19]2042 DoLog(1) && (Log() << Verbose(1) << "The following atoms are inside sphere at " << CandidateLine.OtherOptCenter << ":" << endl);
[f07f86d]2043 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
[a67d19]2044 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&CandidateLine.OtherOptCenter) << "." << endl);
[f07f86d]2045
2046 // remove triangles's endpoints
[6613ec]2047 for (int i = 0; i < 2; i++)
2048 ListofPoints->remove(CandidateLine.BaseLine->endpoints[i]->node);
2049
2050 // remove other candidates
2051 for (TesselPointList::const_iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); ++Runner)
2052 ListofPoints->remove(*Runner);
[f07f86d]2053
2054 // check for other points
2055 if (!ListofPoints->empty()) {
[a67d19]2056 DoLog(1) && (Log() << Verbose(1) << "CheckDegeneracy: There are still " << ListofPoints->size() << " points inside the sphere." << endl);
[f07f86d]2057 flag = false;
[a67d19]2058 DoLog(1) && (Log() << Verbose(1) << "External atoms inside of sphere at " << CandidateLine.OtherOptCenter << ":" << endl);
[f07f86d]2059 for (TesselPointList::const_iterator Runner = ListofPoints->begin(); Runner != ListofPoints->end(); ++Runner)
[a67d19]2060 DoLog(1) && (Log() << Verbose(1) << " " << *(*Runner) << " with distance " << (*Runner)->node->Distance(&CandidateLine.OtherOptCenter) << "." << endl);
[f07f86d]2061 }
[6613ec]2062 delete (ListofPoints);
[f07f86d]2063
2064 return flag;
[6613ec]2065}
2066;
[f07f86d]2067
[62bb91]2068/** Checks whether the triangle consisting of the three points is already present.
[357fba]2069 * Searches for the points in Tesselation::PointsOnBoundary and checks their
2070 * lines. If any of the three edges already has two triangles attached, false is
2071 * returned.
2072 * \param *out output stream for debugging
2073 * \param *Candidates endpoints of the triangle candidate
2074 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
2075 * triangles exist which is the maximum for three points
2076 */
[f1ef60a]2077int Tesselation::CheckPresenceOfTriangle(TesselPoint *Candidates[3]) const
2078{
[6613ec]2079 Info FunctionInfo(__func__);
[357fba]2080 int adjacentTriangleCount = 0;
2081 class BoundaryPointSet *Points[3];
2082
2083 // builds a triangle point set (Points) of the end points
2084 for (int i = 0; i < 3; i++) {
[f1ef60a]2085 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
[357fba]2086 if (FindPoint != PointsOnBoundary.end()) {
2087 Points[i] = FindPoint->second;
2088 } else {
2089 Points[i] = NULL;
2090 }
2091 }
2092
2093 // checks lines between the points in the Points for their adjacent triangles
2094 for (int i = 0; i < 3; i++) {
2095 if (Points[i] != NULL) {
2096 for (int j = i; j < 3; j++) {
2097 if (Points[j] != NULL) {
[f1ef60a]2098 LineMap::const_iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
[357fba]2099 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
2100 TriangleMap *triangles = &FindLine->second->triangles;
[a67d19]2101 DoLog(1) && (Log() << Verbose(1) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl);
[f1ef60a]2102 for (TriangleMap::const_iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
[357fba]2103 if (FindTriangle->second->IsPresentTupel(Points)) {
2104 adjacentTriangleCount++;
2105 }
2106 }
[a67d19]2107 DoLog(1) && (Log() << Verbose(1) << "end." << endl);
[357fba]2108 }
2109 // Only one of the triangle lines must be considered for the triangle count.
[f67b6e]2110 //Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
[065e82]2111 //return adjacentTriangleCount;
[357fba]2112 }
2113 }
2114 }
2115 }
2116
[a67d19]2117 DoLog(0) && (Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl);
[357fba]2118 return adjacentTriangleCount;
[6613ec]2119}
2120;
[357fba]2121
[065e82]2122/** Checks whether the triangle consisting of the three points is already present.
2123 * Searches for the points in Tesselation::PointsOnBoundary and checks their
2124 * lines. If any of the three edges already has two triangles attached, false is
2125 * returned.
2126 * \param *out output stream for debugging
2127 * \param *Candidates endpoints of the triangle candidate
2128 * \return NULL - none found or pointer to triangle
2129 */
[e138de]2130class BoundaryTriangleSet * Tesselation::GetPresentTriangle(TesselPoint *Candidates[3])
[065e82]2131{
[6613ec]2132 Info FunctionInfo(__func__);
[065e82]2133 class BoundaryTriangleSet *triangle = NULL;
2134 class BoundaryPointSet *Points[3];
2135
2136 // builds a triangle point set (Points) of the end points
2137 for (int i = 0; i < 3; i++) {
2138 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
2139 if (FindPoint != PointsOnBoundary.end()) {
2140 Points[i] = FindPoint->second;
2141 } else {
2142 Points[i] = NULL;
2143 }
2144 }
2145
2146 // checks lines between the points in the Points for their adjacent triangles
2147 for (int i = 0; i < 3; i++) {
2148 if (Points[i] != NULL) {
2149 for (int j = i; j < 3; j++) {
2150 if (Points[j] != NULL) {
2151 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
2152 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
2153 TriangleMap *triangles = &FindLine->second->triangles;
2154 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
2155 if (FindTriangle->second->IsPresentTupel(Points)) {
2156 if ((triangle == NULL) || (triangle->Nr > FindTriangle->second->Nr))
2157 triangle = FindTriangle->second;
2158 }
2159 }
2160 }
2161 // Only one of the triangle lines must be considered for the triangle count.
[f67b6e]2162 //Log() << Verbose(0) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
[065e82]2163 //return adjacentTriangleCount;
2164 }
2165 }
2166 }
2167 }
2168
2169 return triangle;
[6613ec]2170}
2171;
[357fba]2172
[f1cccd]2173/** Finds the starting triangle for FindNonConvexBorder().
2174 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
2175 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
[357fba]2176 * point are called.
2177 * \param *out output stream for debugging
2178 * \param RADIUS radius of virtual rolling sphere
2179 * \param *LC LinkedCell structure with neighbouring TesselPoint's
2180 */
[e138de]2181void Tesselation::FindStartingTriangle(const double RADIUS, const LinkedCell *LC)
[357fba]2182{
[6613ec]2183 Info FunctionInfo(__func__);
[357fba]2184 int i = 0;
[62bb91]2185 TesselPoint* MaxPoint[NDIM];
[7273fc]2186 TesselPoint* Temporary;
[f1cccd]2187 double maxCoordinate[NDIM];
[f07f86d]2188 BoundaryLineSet *BaseLine = NULL;
[357fba]2189 Vector helper;
2190 Vector Chord;
2191 Vector SearchDirection;
[6613ec]2192 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
[b998c3]2193 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2194 Vector SphereCenter;
2195 Vector NormalVector;
[357fba]2196
[b998c3]2197 NormalVector.Zero();
[357fba]2198
2199 for (i = 0; i < 3; i++) {
[62bb91]2200 MaxPoint[i] = NULL;
[f1cccd]2201 maxCoordinate[i] = -1;
[357fba]2202 }
2203
[62bb91]2204 // 1. searching topmost point with respect to each axis
[6613ec]2205 for (int i = 0; i < NDIM; i++) { // each axis
2206 LC->n[i] = LC->N[i] - 1; // current axis is topmost cell
2207 for (LC->n[(i + 1) % NDIM] = 0; LC->n[(i + 1) % NDIM] < LC->N[(i + 1) % NDIM]; LC->n[(i + 1) % NDIM]++)
2208 for (LC->n[(i + 2) % NDIM] = 0; LC->n[(i + 2) % NDIM] < LC->N[(i + 2) % NDIM]; LC->n[(i + 2) % NDIM]++) {
[734816]2209 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[f67b6e]2210 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
[357fba]2211 if (List != NULL) {
[6613ec]2212 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[f1cccd]2213 if ((*Runner)->node->x[i] > maxCoordinate[i]) {
[a67d19]2214 DoLog(1) && (Log() << Verbose(1) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl);
[f1cccd]2215 maxCoordinate[i] = (*Runner)->node->x[i];
[62bb91]2216 MaxPoint[i] = (*Runner);
[357fba]2217 }
2218 }
2219 } else {
[6613ec]2220 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl);
[357fba]2221 }
2222 }
2223 }
2224
[a67d19]2225 DoLog(1) && (Log() << Verbose(1) << "Found maximum coordinates: ");
[6613ec]2226 for (int i = 0; i < NDIM; i++)
[a67d19]2227 DoLog(0) && (Log() << Verbose(0) << i << ": " << *MaxPoint[i] << "\t");
2228 DoLog(0) && (Log() << Verbose(0) << endl);
[357fba]2229
2230 BTS = NULL;
[6613ec]2231 for (int k = 0; k < NDIM; k++) {
[b998c3]2232 NormalVector.Zero();
2233 NormalVector.x[k] = 1.;
[f07f86d]2234 BaseLine = new BoundaryLineSet();
2235 BaseLine->endpoints[0] = new BoundaryPointSet(MaxPoint[k]);
[a67d19]2236 DoLog(0) && (Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine->endpoints[0]->node << "." << endl);
[357fba]2237
2238 double ShortestAngle;
2239 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
2240
[f07f86d]2241 FindSecondPointForTesselation(BaseLine->endpoints[0]->node, NormalVector, Temporary, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
[711ac2]2242 if (Temporary == NULL) {
2243 // have we found a second point?
2244 delete BaseLine;
[357fba]2245 continue;
[711ac2]2246 }
[f07f86d]2247 BaseLine->endpoints[1] = new BoundaryPointSet(Temporary);
[357fba]2248
[b998c3]2249 // construct center of circle
[f07f86d]2250 CircleCenter.CopyVector(BaseLine->endpoints[0]->node->node);
2251 CircleCenter.AddVector(BaseLine->endpoints[1]->node->node);
[b998c3]2252 CircleCenter.Scale(0.5);
2253
2254 // construct normal vector of circle
[f07f86d]2255 CirclePlaneNormal.CopyVector(BaseLine->endpoints[0]->node->node);
2256 CirclePlaneNormal.SubtractVector(BaseLine->endpoints[1]->node->node);
[357fba]2257
[b998c3]2258 double radius = CirclePlaneNormal.NormSquared();
[6613ec]2259 double CircleRadius = sqrt(RADIUS * RADIUS - radius / 4.);
[b998c3]2260
2261 NormalVector.ProjectOntoPlane(&CirclePlaneNormal);
2262 NormalVector.Normalize();
[6613ec]2263 ShortestAngle = 2. * M_PI; // This will indicate the quadrant.
[b998c3]2264
2265 SphereCenter.CopyVector(&NormalVector);
2266 SphereCenter.Scale(CircleRadius);
2267 SphereCenter.AddVector(&CircleCenter);
2268 // Now, NormalVector and SphereCenter are two orthonormalized vectors in the plane defined by CirclePlaneNormal (not normalized)
[357fba]2269
2270 // look in one direction of baseline for initial candidate
[6613ec]2271 SearchDirection.MakeNormalVector(&CirclePlaneNormal, &NormalVector); // whether we look "left" first or "right" first is not important ...
[357fba]2272
[5c7bf8]2273 // adding point 1 and point 2 and add the line between them
[a67d19]2274 DoLog(0) && (Log() << Verbose(0) << "Coordinates of start node at " << *BaseLine->endpoints[0]->node << "." << endl);
2275 DoLog(0) && (Log() << Verbose(0) << "Found second point is at " << *BaseLine->endpoints[1]->node << ".\n");
[357fba]2276
[f67b6e]2277 //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << helper << ".\n";
[f07f86d]2278 CandidateForTesselation OptCandidates(BaseLine);
[b998c3]2279 FindThirdPointForTesselation(NormalVector, SearchDirection, SphereCenter, OptCandidates, NULL, RADIUS, LC);
[a67d19]2280 DoLog(0) && (Log() << Verbose(0) << "List of third Points is:" << endl);
[f67b6e]2281 for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); it++) {
[a67d19]2282 DoLog(0) && (Log() << Verbose(0) << " " << *(*it) << endl);
[357fba]2283 }
[f07f86d]2284 if (!OptCandidates.pointlist.empty()) {
2285 BTS = NULL;
2286 AddCandidatePolygon(OptCandidates, RADIUS, LC);
2287 } else {
2288 delete BaseLine;
2289 continue;
2290 }
[7273fc]2291
[711ac2]2292 if (BTS != NULL) { // we have created one starting triangle
2293 delete BaseLine;
[357fba]2294 break;
[711ac2]2295 } else {
[357fba]2296 // remove all candidates from the list and then the list itself
[7273fc]2297 OptCandidates.pointlist.clear();
[357fba]2298 }
[f07f86d]2299 delete BaseLine;
[357fba]2300 }
[6613ec]2301}
2302;
[357fba]2303
[f1ef60a]2304/** Checks for a given baseline and a third point candidate whether baselines of the found triangle don't have even better candidates.
2305 * This is supposed to prevent early closing of the tesselation.
[f67b6e]2306 * \param CandidateLine CandidateForTesselation with baseline and shortestangle , i.e. not \a *OptCandidate
[f1ef60a]2307 * \param *ThirdNode third point in triangle, not in BoundaryLineSet::endpoints
2308 * \param RADIUS radius of sphere
2309 * \param *LC LinkedCell structure
2310 * \return true - there is a better candidate (smaller angle than \a ShortestAngle), false - no better TesselPoint candidate found
2311 */
[f67b6e]2312//bool Tesselation::HasOtherBaselineBetterCandidate(CandidateForTesselation &CandidateLine, const TesselPoint * const ThirdNode, double RADIUS, const LinkedCell * const LC) const
2313//{
2314// Info FunctionInfo(__func__);
2315// bool result = false;
2316// Vector CircleCenter;
2317// Vector CirclePlaneNormal;
2318// Vector OldSphereCenter;
2319// Vector SearchDirection;
2320// Vector helper;
2321// TesselPoint *OtherOptCandidate = NULL;
2322// double OtherShortestAngle = 2.*M_PI; // This will indicate the quadrant.
2323// double radius, CircleRadius;
2324// BoundaryLineSet *Line = NULL;
2325// BoundaryTriangleSet *T = NULL;
2326//
2327// // check both other lines
2328// PointMap::const_iterator FindPoint = PointsOnBoundary.find(ThirdNode->nr);
2329// if (FindPoint != PointsOnBoundary.end()) {
2330// for (int i=0;i<2;i++) {
2331// LineMap::const_iterator FindLine = (FindPoint->second)->lines.find(BaseRay->endpoints[0]->node->nr);
2332// if (FindLine != (FindPoint->second)->lines.end()) {
2333// Line = FindLine->second;
2334// Log() << Verbose(0) << "Found line " << *Line << "." << endl;
2335// if (Line->triangles.size() == 1) {
2336// T = Line->triangles.begin()->second;
2337// // construct center of circle
2338// CircleCenter.CopyVector(Line->endpoints[0]->node->node);
2339// CircleCenter.AddVector(Line->endpoints[1]->node->node);
2340// CircleCenter.Scale(0.5);
2341//
2342// // construct normal vector of circle
2343// CirclePlaneNormal.CopyVector(Line->endpoints[0]->node->node);
2344// CirclePlaneNormal.SubtractVector(Line->endpoints[1]->node->node);
2345//
2346// // calculate squared radius of circle
2347// radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2348// if (radius/4. < RADIUS*RADIUS) {
2349// CircleRadius = RADIUS*RADIUS - radius/4.;
2350// CirclePlaneNormal.Normalize();
2351// //Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2352//
2353// // construct old center
2354// GetCenterofCircumcircle(&OldSphereCenter, *T->endpoints[0]->node->node, *T->endpoints[1]->node->node, *T->endpoints[2]->node->node);
2355// helper.CopyVector(&T->NormalVector); // normal vector ensures that this is correct center of the two possible ones
2356// radius = Line->endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
2357// helper.Scale(sqrt(RADIUS*RADIUS - radius));
2358// OldSphereCenter.AddVector(&helper);
2359// OldSphereCenter.SubtractVector(&CircleCenter);
2360// //Log() << Verbose(1) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
2361//
2362// // construct SearchDirection
2363// SearchDirection.MakeNormalVector(&T->NormalVector, &CirclePlaneNormal);
2364// helper.CopyVector(Line->endpoints[0]->node->node);
2365// helper.SubtractVector(ThirdNode->node);
2366// if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2367// SearchDirection.Scale(-1.);
2368// SearchDirection.ProjectOntoPlane(&OldSphereCenter);
2369// SearchDirection.Normalize();
2370// Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2371// if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
2372// // rotated the wrong way!
[58ed4a]2373// DoeLog(1) && (eLog()<< Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl);
[f67b6e]2374// }
2375//
2376// // add third point
2377// FindThirdPointForTesselation(T->NormalVector, SearchDirection, OldSphereCenter, OptCandidates, ThirdNode, RADIUS, LC);
2378// for (TesselPointList::iterator it = OptCandidates.pointlist.begin(); it != OptCandidates.pointlist.end(); ++it) {
2379// if (((*it) == BaseRay->endpoints[0]->node) || ((*it) == BaseRay->endpoints[1]->node)) // skip if it's the same triangle than suggested
2380// continue;
2381// Log() << Verbose(0) << " Third point candidate is " << (*it)
2382// << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
2383// Log() << Verbose(0) << " Baseline is " << *BaseRay << endl;
2384//
2385// // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
2386// TesselPoint *PointCandidates[3];
2387// PointCandidates[0] = (*it);
2388// PointCandidates[1] = BaseRay->endpoints[0]->node;
2389// PointCandidates[2] = BaseRay->endpoints[1]->node;
2390// bool check=false;
2391// int existentTrianglesCount = CheckPresenceOfTriangle(PointCandidates);
2392// // If there is no triangle, add it regularly.
2393// if (existentTrianglesCount == 0) {
2394// SetTesselationPoint((*it), 0);
2395// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
2396// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
2397//
2398// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const )TPS)) {
2399// OtherOptCandidate = (*it);
2400// check = true;
2401// }
2402// } else if ((existentTrianglesCount >= 1) && (existentTrianglesCount <= 3)) { // If there is a planar region within the structure, we need this triangle a second time.
2403// SetTesselationPoint((*it), 0);
2404// SetTesselationPoint(BaseRay->endpoints[0]->node, 1);
2405// SetTesselationPoint(BaseRay->endpoints[1]->node, 2);
2406//
2407// // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
2408// // i.e. at least one of the three lines must be present with TriangleCount <= 1
2409// if (CheckLineCriteriaForDegeneratedTriangle((const BoundaryPointSet ** const)TPS)) {
2410// OtherOptCandidate = (*it);
2411// check = true;
2412// }
2413// }
2414//
2415// if (check) {
2416// if (ShortestAngle > OtherShortestAngle) {
2417// Log() << Verbose(0) << "There is a better candidate than " << *ThirdNode << " with " << ShortestAngle << " from baseline " << *Line << ": " << *OtherOptCandidate << " with " << OtherShortestAngle << "." << endl;
2418// result = true;
2419// break;
2420// }
2421// }
2422// }
2423// delete(OptCandidates);
2424// if (result)
2425// break;
2426// } else {
2427// Log() << Verbose(0) << "Circumcircle for base line " << *Line << " and base triangle " << T << " is too big!" << endl;
2428// }
2429// } else {
[58ed4a]2430// DoeLog(2) && (eLog()<< Verbose(2) << "Baseline is connected to two triangles already?" << endl);
[f67b6e]2431// }
2432// } else {
2433// Log() << Verbose(1) << "No present baseline between " << BaseRay->endpoints[0] << " and candidate " << *ThirdNode << "." << endl;
2434// }
2435// }
2436// } else {
[58ed4a]2437// DoeLog(1) && (eLog()<< Verbose(1) << "Could not find the TesselPoint " << *ThirdNode << "." << endl);
[f67b6e]2438// }
2439//
2440// return result;
2441//};
[357fba]2442
2443/** This function finds a triangle to a line, adjacent to an existing one.
2444 * @param out output stream for debugging
[1e168b]2445 * @param CandidateLine current cadndiate baseline to search from
[357fba]2446 * @param T current triangle which \a Line is edge of
2447 * @param RADIUS radius of the rolling ball
2448 * @param N number of found triangles
[62bb91]2449 * @param *LC LinkedCell structure with neighbouring points
[357fba]2450 */
[f07f86d]2451bool Tesselation::FindNextSuitableTriangle(CandidateForTesselation &CandidateLine, const BoundaryTriangleSet &T, const double& RADIUS, const LinkedCell *LC)
[357fba]2452{
[6613ec]2453 Info FunctionInfo(__func__);
[357fba]2454 Vector CircleCenter;
2455 Vector CirclePlaneNormal;
[b998c3]2456 Vector RelativeSphereCenter;
[357fba]2457 Vector SearchDirection;
2458 Vector helper;
[09898c]2459 BoundaryPointSet *ThirdPoint = NULL;
[357fba]2460 LineMap::iterator testline;
2461 double radius, CircleRadius;
2462
[6613ec]2463 for (int i = 0; i < 3; i++)
[09898c]2464 if ((T.endpoints[i] != CandidateLine.BaseLine->endpoints[0]) && (T.endpoints[i] != CandidateLine.BaseLine->endpoints[1])) {
2465 ThirdPoint = T.endpoints[i];
[b998c3]2466 break;
2467 }
[a67d19]2468 DoLog(0) && (Log() << Verbose(0) << "Current baseline is " << *CandidateLine.BaseLine << " with ThirdPoint " << *ThirdPoint << " of triangle " << T << "." << endl);
[09898c]2469
2470 CandidateLine.T = &T;
[357fba]2471
2472 // construct center of circle
[1e168b]2473 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2474 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
[357fba]2475 CircleCenter.Scale(0.5);
2476
2477 // construct normal vector of circle
[1e168b]2478 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
2479 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
[357fba]2480
2481 // calculate squared radius of circle
2482 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
[6613ec]2483 if (radius / 4. < RADIUS * RADIUS) {
[b998c3]2484 // construct relative sphere center with now known CircleCenter
2485 RelativeSphereCenter.CopyVector(&T.SphereCenter);
2486 RelativeSphereCenter.SubtractVector(&CircleCenter);
2487
[6613ec]2488 CircleRadius = RADIUS * RADIUS - radius / 4.;
[357fba]2489 CirclePlaneNormal.Normalize();
[a67d19]2490 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl);
[357fba]2491
[a67d19]2492 DoLog(1) && (Log() << Verbose(1) << "INFO: OldSphereCenter is at " << T.SphereCenter << "." << endl);
[b998c3]2493
2494 // construct SearchDirection and an "outward pointer"
2495 SearchDirection.MakeNormalVector(&RelativeSphereCenter, &CirclePlaneNormal);
2496 helper.CopyVector(&CircleCenter);
[09898c]2497 helper.SubtractVector(ThirdPoint->node->node);
[357fba]2498 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
2499 SearchDirection.Scale(-1.);
[a67d19]2500 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl);
[b998c3]2501 if (fabs(RelativeSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
[357fba]2502 // rotated the wrong way!
[6613ec]2503 DoeLog(1) && (eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl);
[357fba]2504 }
2505
2506 // add third point
[09898c]2507 FindThirdPointForTesselation(T.NormalVector, SearchDirection, T.SphereCenter, CandidateLine, ThirdPoint, RADIUS, LC);
[357fba]2508
2509 } else {
[a67d19]2510 DoLog(0) && (Log() << Verbose(0) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and base triangle " << T << " is too big!" << endl);
[357fba]2511 }
2512
[f67b6e]2513 if (CandidateLine.pointlist.empty()) {
[6613ec]2514 DoeLog(2) && (eLog() << Verbose(2) << "Could not find a suitable candidate." << endl);
[357fba]2515 return false;
2516 }
[a67d19]2517 DoLog(0) && (Log() << Verbose(0) << "Third Points are: " << endl);
[f67b6e]2518 for (TesselPointList::iterator it = CandidateLine.pointlist.begin(); it != CandidateLine.pointlist.end(); ++it) {
[a67d19]2519 DoLog(0) && (Log() << Verbose(0) << " " << *(*it) << endl);
[357fba]2520 }
2521
[f67b6e]2522 return true;
[6613ec]2523}
2524;
[f67b6e]2525
[6613ec]2526/** Walks through Tesselation::OpenLines() and finds candidates for newly created ones.
2527 * \param *&LCList atoms in LinkedCell list
2528 * \param RADIUS radius of the virtual sphere
2529 * \return true - for all open lines without candidates so far, a candidate has been found,
2530 * false - at least one open line without candidate still
2531 */
2532bool Tesselation::FindCandidatesforOpenLines(const double RADIUS, const LinkedCell *&LCList)
2533{
2534 bool TesselationFailFlag = true;
2535 CandidateForTesselation *baseline = NULL;
2536 BoundaryTriangleSet *T = NULL;
2537
2538 for (CandidateMap::iterator Runner = OpenLines.begin(); Runner != OpenLines.end(); Runner++) {
2539 baseline = Runner->second;
2540 if (baseline->pointlist.empty()) {
[f04f11]2541 assert((baseline->BaseLine->triangles.size() == 1) && ("Open line without exactly one attached triangle"));
[6613ec]2542 T = (((baseline->BaseLine->triangles.begin()))->second);
[a67d19]2543 DoLog(1) && (Log() << Verbose(1) << "Finding best candidate for open line " << *baseline->BaseLine << " of triangle " << *T << endl);
[6613ec]2544 TesselationFailFlag = TesselationFailFlag && FindNextSuitableTriangle(*baseline, *T, RADIUS, LCList); //the line is there, so there is a triangle, but only one.
2545 }
2546 }
2547 return TesselationFailFlag;
2548}
2549;
[357fba]2550
[1e168b]2551/** Adds the present line and candidate point from \a &CandidateLine to the Tesselation.
[f67b6e]2552 * \param CandidateLine triangle to add
[474961]2553 * \param RADIUS Radius of sphere
2554 * \param *LC LinkedCell structure
2555 * \NOTE we need the copy operator here as the original CandidateForTesselation is removed in
2556 * AddTesselationLine() in AddCandidateTriangle()
[1e168b]2557 */
[474961]2558void Tesselation::AddCandidatePolygon(CandidateForTesselation CandidateLine, const double RADIUS, const LinkedCell *LC)
[1e168b]2559{
[ebb50e]2560 Info FunctionInfo(__func__);
[1e168b]2561 Vector Center;
[27bd2f]2562 TesselPoint * const TurningPoint = CandidateLine.BaseLine->endpoints[0]->node;
[09898c]2563 TesselPointList::iterator Runner;
2564 TesselPointList::iterator Sprinter;
[27bd2f]2565
2566 // fill the set of neighbours
[c15ca2]2567 TesselPointSet SetOfNeighbours;
[27bd2f]2568 SetOfNeighbours.insert(CandidateLine.BaseLine->endpoints[1]->node);
2569 for (TesselPointList::iterator Runner = CandidateLine.pointlist.begin(); Runner != CandidateLine.pointlist.end(); Runner++)
2570 SetOfNeighbours.insert(*Runner);
[c15ca2]2571 TesselPointList *connectedClosestPoints = GetCircleOfSetOfPoints(&SetOfNeighbours, TurningPoint, CandidateLine.BaseLine->endpoints[1]->node->node);
[27bd2f]2572
[a67d19]2573 DoLog(0) && (Log() << Verbose(0) << "List of Candidates for Turning Point " << *TurningPoint << ":" << endl);
[c15ca2]2574 for (TesselPointList::iterator TesselRunner = connectedClosestPoints->begin(); TesselRunner != connectedClosestPoints->end(); ++TesselRunner)
[a67d19]2575 DoLog(0) && (Log() << Verbose(0) << " " << **TesselRunner << endl);
[09898c]2576
2577 // go through all angle-sorted candidates (in degenerate n-nodes case we may have to add multiple triangles)
2578 Runner = connectedClosestPoints->begin();
2579 Sprinter = Runner;
[27bd2f]2580 Sprinter++;
[6613ec]2581 while (Sprinter != connectedClosestPoints->end()) {
[a67d19]2582 DoLog(0) && (Log() << Verbose(0) << "Current Runner is " << *(*Runner) << " and sprinter is " << *(*Sprinter) << "." << endl);
[6613ec]2583
[f07f86d]2584 AddTesselationPoint(TurningPoint, 0);
2585 AddTesselationPoint(*Runner, 1);
2586 AddTesselationPoint(*Sprinter, 2);
2587
[6613ec]2588 AddCandidateTriangle(CandidateLine, Opt);
2589
2590 Runner = Sprinter;
2591 Sprinter++;
2592 if (Sprinter != connectedClosestPoints->end()) {
2593 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
[f04f11]2594 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OptCenter); // Assume BTS contains last triangle
[a67d19]2595 DoLog(0) && (Log() << Verbose(0) << " There are still more triangles to add." << endl);
[6613ec]2596 }
2597 // pick candidates for other open lines as well
2598 FindCandidatesforOpenLines(RADIUS, LC);
2599
[f07f86d]2600 // check whether we add a degenerate or a normal triangle
[6613ec]2601 if (CheckDegeneracy(CandidateLine, RADIUS, LC)) {
[f07f86d]2602 // add normal and degenerate triangles
[a67d19]2603 DoLog(1) && (Log() << Verbose(1) << "Triangle of endpoints " << *TPS[0] << "," << *TPS[1] << " and " << *TPS[2] << " is degenerated, adding both sides." << endl);
[6613ec]2604 AddCandidateTriangle(CandidateLine, OtherOpt);
2605
2606 if (Sprinter != connectedClosestPoints->end()) {
2607 // fill the internal open lines with its respective candidate (otherwise lines in degenerate case are not picked)
2608 FindDegeneratedCandidatesforOpenLines(*Sprinter, &CandidateLine.OtherOptCenter);
2609 }
2610 // pick candidates for other open lines as well
2611 FindCandidatesforOpenLines(RADIUS, LC);
[474961]2612 }
[6613ec]2613 }
2614 delete (connectedClosestPoints);
2615};
[474961]2616
[6613ec]2617/** for polygons (multiple candidates for a baseline) sets internal edges to the correct next candidate.
2618 * \param *Sprinter next candidate to which internal open lines are set
2619 * \param *OptCenter OptCenter for this candidate
2620 */
2621void Tesselation::FindDegeneratedCandidatesforOpenLines(TesselPoint * const Sprinter, const Vector * const OptCenter)
2622{
2623 Info FunctionInfo(__func__);
2624
2625 pair<LineMap::iterator, LineMap::iterator> FindPair = TPS[0]->lines.equal_range(TPS[2]->node->nr);
2626 for (LineMap::const_iterator FindLine = FindPair.first; FindLine != FindPair.second; FindLine++) {
[a67d19]2627 DoLog(1) && (Log() << Verbose(1) << "INFO: Checking line " << *(FindLine->second) << " ..." << endl);
[6613ec]2628 // If there is a line with less than two attached triangles, we don't need a new line.
2629 if (FindLine->second->triangles.size() == 1) {
2630 CandidateMap::iterator Finder = OpenLines.find(FindLine->second);
2631 if (!Finder->second->pointlist.empty())
[a67d19]2632 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with candidate " << **(Finder->second->pointlist.begin()) << "." << endl);
[6613ec]2633 else {
[a67d19]2634 DoLog(1) && (Log() << Verbose(1) << "INFO: line " << *(FindLine->second) << " is open with no candidate, setting to next Sprinter" << (*Sprinter) << endl);
[f04f11]2635 Finder->second->T = BTS; // is last triangle
[6613ec]2636 Finder->second->pointlist.push_back(Sprinter);
2637 Finder->second->ShortestAngle = 0.;
2638 Finder->second->OptCenter.CopyVector(OptCenter);
2639 }
2640 }
[f67b6e]2641 }
[1e168b]2642};
2643
[f07f86d]2644/** If a given \a *triangle is degenerated, this adds both sides.
[474961]2645 * i.e. the triangle with same BoundaryPointSet's but NormalVector in opposite direction.
[f07f86d]2646 * Note that endpoints are stored in Tesselation::TPS
2647 * \param CandidateLine CanddiateForTesselation structure for the desired BoundaryLine
[474961]2648 * \param RADIUS radius of sphere
2649 * \param *LC pointer to LinkedCell structure
2650 */
[711ac2]2651void Tesselation::AddDegeneratedTriangle(CandidateForTesselation &CandidateLine, const double RADIUS, const LinkedCell *LC)
[474961]2652{
2653 Info FunctionInfo(__func__);
[f07f86d]2654 Vector Center;
2655 CandidateMap::const_iterator CandidateCheck = OpenLines.end();
[711ac2]2656 BoundaryTriangleSet *triangle = NULL;
[f07f86d]2657
[711ac2]2658 /// 1. Create or pick the lines for the first triangle
[a67d19]2659 DoLog(0) && (Log() << Verbose(0) << "INFO: Creating/Picking lines for first triangle ..." << endl);
[6613ec]2660 for (int i = 0; i < 3; i++) {
[711ac2]2661 BLS[i] = NULL;
[a67d19]2662 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl);
[6613ec]2663 AddTesselationLine(&CandidateLine.OptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
[474961]2664 }
[f07f86d]2665
[711ac2]2666 /// 2. create the first triangle and NormalVector and so on
[a67d19]2667 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding first triangle with center at " << CandidateLine.OptCenter << " ..." << endl);
[f07f86d]2668 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2669 AddTesselationTriangle();
[711ac2]2670
[f07f86d]2671 // create normal vector
2672 BTS->GetCenter(&Center);
2673 Center.SubtractVector(&CandidateLine.OptCenter);
2674 BTS->SphereCenter.CopyVector(&CandidateLine.OptCenter);
2675 BTS->GetNormalVector(Center);
2676 // give some verbose output about the whole procedure
2677 if (CandidateLine.T != NULL)
[a67d19]2678 DoLog(0) && (Log() << Verbose(0) << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl);
[f07f86d]2679 else
[a67d19]2680 DoLog(0) && (Log() << Verbose(0) << "--> New starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl);
[f07f86d]2681 triangle = BTS;
2682
[711ac2]2683 /// 3. Gather candidates for each new line
[a67d19]2684 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding candidates to new lines ..." << endl);
[6613ec]2685 for (int i = 0; i < 3; i++) {
[a67d19]2686 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl);
[f07f86d]2687 CandidateCheck = OpenLines.find(BLS[i]);
2688 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
2689 if (CandidateCheck->second->T == NULL)
2690 CandidateCheck->second->T = triangle;
2691 FindNextSuitableTriangle(*(CandidateCheck->second), *CandidateCheck->second->T, RADIUS, LC);
[474961]2692 }
[f07f86d]2693 }
[d5fea7]2694
[711ac2]2695 /// 4. Create or pick the lines for the second triangle
[a67d19]2696 DoLog(0) && (Log() << Verbose(0) << "INFO: Creating/Picking lines for second triangle ..." << endl);
[6613ec]2697 for (int i = 0; i < 3; i++) {
[a67d19]2698 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl);
[6613ec]2699 AddTesselationLine(&CandidateLine.OtherOptCenter, TPS[(i + 2) % 3], TPS[(i + 0) % 3], TPS[(i + 1) % 3], i);
[474961]2700 }
[f07f86d]2701
[711ac2]2702 /// 5. create the second triangle and NormalVector and so on
[a67d19]2703 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding second triangle with center at " << CandidateLine.OtherOptCenter << " ..." << endl);
[f07f86d]2704 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2705 AddTesselationTriangle();
[711ac2]2706
[f07f86d]2707 BTS->SphereCenter.CopyVector(&CandidateLine.OtherOptCenter);
2708 // create normal vector in other direction
2709 BTS->GetNormalVector(&triangle->NormalVector);
2710 BTS->NormalVector.Scale(-1.);
2711 // give some verbose output about the whole procedure
2712 if (CandidateLine.T != NULL)
[a67d19]2713 DoLog(0) && (Log() << Verbose(0) << "--> New degenerate triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl);
[f07f86d]2714 else
[a67d19]2715 DoLog(0) && (Log() << Verbose(0) << "--> New degenerate starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl);
[f07f86d]2716
[711ac2]2717 /// 6. Adding triangle to new lines
[a67d19]2718 DoLog(0) && (Log() << Verbose(0) << "INFO: Adding second triangles to new lines ..." << endl);
[6613ec]2719 for (int i = 0; i < 3; i++) {
[a67d19]2720 DoLog(0) && (Log() << Verbose(0) << "Current line is between " << *TPS[(i + 0) % 3] << " and " << *TPS[(i + 1) % 3] << ":" << endl);
[711ac2]2721 CandidateCheck = OpenLines.find(BLS[i]);
2722 if ((CandidateCheck != OpenLines.end()) && (CandidateCheck->second->pointlist.empty())) {
2723 if (CandidateCheck->second->T == NULL)
2724 CandidateCheck->second->T = BTS;
2725 }
2726 }
[6613ec]2727}
2728;
[474961]2729
2730/** Adds a triangle to the Tesselation structure from three given TesselPoint's.
[f07f86d]2731 * Note that endpoints are in Tesselation::TPS.
2732 * \param CandidateLine CandidateForTesselation structure contains other information
[6613ec]2733 * \param type which opt center to add (i.e. which side) and thus which NormalVector to take
[474961]2734 */
[6613ec]2735void Tesselation::AddCandidateTriangle(CandidateForTesselation &CandidateLine, enum centers type)
[474961]2736{
2737 Info FunctionInfo(__func__);
[f07f86d]2738 Vector Center;
[6613ec]2739 Vector *OptCenter = (type == Opt) ? &CandidateLine.OptCenter : &CandidateLine.OtherOptCenter;
[474961]2740
2741 // add the lines
[6613ec]2742 AddTesselationLine(OptCenter, TPS[2], TPS[0], TPS[1], 0);
2743 AddTesselationLine(OptCenter, TPS[1], TPS[0], TPS[2], 1);
2744 AddTesselationLine(OptCenter, TPS[0], TPS[1], TPS[2], 2);
[474961]2745
2746 // add the triangles
2747 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
2748 AddTesselationTriangle();
[f07f86d]2749
2750 // create normal vector
2751 BTS->GetCenter(&Center);
[6613ec]2752 Center.SubtractVector(OptCenter);
2753 BTS->SphereCenter.CopyVector(OptCenter);
[f07f86d]2754 BTS->GetNormalVector(Center);
2755
2756 // give some verbose output about the whole procedure
2757 if (CandidateLine.T != NULL)
[a67d19]2758 DoLog(0) && (Log() << Verbose(0) << "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "triangle with " << *BTS << " and normal vector " << BTS->NormalVector << ", from " << *CandidateLine.T << " and angle " << CandidateLine.ShortestAngle << "." << endl);
[f07f86d]2759 else
[a67d19]2760 DoLog(0) && (Log() << Verbose(0) << "--> New" << ((type == OtherOpt) ? " degenerate " : " ") << "starting triangle with " << *BTS << " and normal vector " << BTS->NormalVector << " and no top triangle." << endl);
[6613ec]2761}
2762;
[474961]2763
[16d866]2764/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
2765 * We look whether the closest point on \a *Base with respect to the other baseline is outside
2766 * of the segment formed by both endpoints (concave) or not (convex).
2767 * \param *out output stream for debugging
2768 * \param *Base line to be flipped
[57066a]2769 * \return NULL - convex, otherwise endpoint that makes it concave
[16d866]2770 */
[e138de]2771class BoundaryPointSet *Tesselation::IsConvexRectangle(class BoundaryLineSet *Base)
[16d866]2772{
[6613ec]2773 Info FunctionInfo(__func__);
[16d866]2774 class BoundaryPointSet *Spot = NULL;
2775 class BoundaryLineSet *OtherBase;
[0077b5]2776 Vector *ClosestPoint;
[16d866]2777
[6613ec]2778 int m = 0;
2779 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2780 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
[16d866]2781 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2782 BPS[m++] = runner->second->endpoints[j];
[6613ec]2783 OtherBase = new class BoundaryLineSet(BPS, -1);
[16d866]2784
[a67d19]2785 DoLog(1) && (Log() << Verbose(1) << "INFO: Current base line is " << *Base << "." << endl);
2786 DoLog(1) && (Log() << Verbose(1) << "INFO: Other base line is " << *OtherBase << "." << endl);
[16d866]2787
2788 // get the closest point on each line to the other line
[e138de]2789 ClosestPoint = GetClosestPointBetweenLine(Base, OtherBase);
[16d866]2790
2791 // delete the temporary other base line
[6613ec]2792 delete (OtherBase);
[16d866]2793
2794 // get the distance vector from Base line to OtherBase line
[0077b5]2795 Vector DistanceToIntersection[2], BaseLine;
2796 double distance[2];
[16d866]2797 BaseLine.CopyVector(Base->endpoints[1]->node->node);
2798 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
[6613ec]2799 for (int i = 0; i < 2; i++) {
[0077b5]2800 DistanceToIntersection[i].CopyVector(ClosestPoint);
2801 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node);
2802 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]);
[16d866]2803 }
[6613ec]2804 delete (ClosestPoint);
2805 if ((distance[0] * distance[1]) > 0) { // have same sign?
[a67d19]2806 DoLog(1) && (Log() << Verbose(1) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl);
[0077b5]2807 if (distance[0] < distance[1]) {
2808 Spot = Base->endpoints[0];
2809 } else {
2810 Spot = Base->endpoints[1];
2811 }
[16d866]2812 return Spot;
[6613ec]2813 } else { // different sign, i.e. we are in between
[a67d19]2814 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl);
[16d866]2815 return NULL;
2816 }
2817
[6613ec]2818}
2819;
[16d866]2820
[776b64]2821void Tesselation::PrintAllBoundaryPoints(ofstream *out) const
[0077b5]2822{
[6613ec]2823 Info FunctionInfo(__func__);
[0077b5]2824 // print all lines
[a67d19]2825 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary points for debugging:" << endl);
[6613ec]2826 for (PointMap::const_iterator PointRunner = PointsOnBoundary.begin(); PointRunner != PointsOnBoundary.end(); PointRunner++)
[a67d19]2827 DoLog(0) && (Log() << Verbose(0) << *(PointRunner->second) << endl);
[6613ec]2828}
2829;
[0077b5]2830
[776b64]2831void Tesselation::PrintAllBoundaryLines(ofstream *out) const
[0077b5]2832{
[6613ec]2833 Info FunctionInfo(__func__);
[0077b5]2834 // print all lines
[a67d19]2835 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary lines for debugging:" << endl);
[776b64]2836 for (LineMap::const_iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
[a67d19]2837 DoLog(0) && (Log() << Verbose(0) << *(LineRunner->second) << endl);
[6613ec]2838}
2839;
[0077b5]2840
[776b64]2841void Tesselation::PrintAllBoundaryTriangles(ofstream *out) const
[0077b5]2842{
[6613ec]2843 Info FunctionInfo(__func__);
[0077b5]2844 // print all triangles
[a67d19]2845 DoLog(0) && (Log() << Verbose(0) << "Printing all boundary triangles for debugging:" << endl);
[776b64]2846 for (TriangleMap::const_iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
[a67d19]2847 DoLog(0) && (Log() << Verbose(0) << *(TriangleRunner->second) << endl);
[6613ec]2848}
2849;
[357fba]2850
[16d866]2851/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
[357fba]2852 * \param *out output stream for debugging
[16d866]2853 * \param *Base line to be flipped
[57066a]2854 * \return volume change due to flipping (0 - then no flipped occured)
[357fba]2855 */
[e138de]2856double Tesselation::PickFarthestofTwoBaselines(class BoundaryLineSet *Base)
[357fba]2857{
[6613ec]2858 Info FunctionInfo(__func__);
[16d866]2859 class BoundaryLineSet *OtherBase;
2860 Vector *ClosestPoint[2];
[57066a]2861 double volume;
[16d866]2862
[6613ec]2863 int m = 0;
2864 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2865 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
[16d866]2866 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
2867 BPS[m++] = runner->second->endpoints[j];
[6613ec]2868 OtherBase = new class BoundaryLineSet(BPS, -1);
[62bb91]2869
[a67d19]2870 DoLog(0) && (Log() << Verbose(0) << "INFO: Current base line is " << *Base << "." << endl);
2871 DoLog(0) && (Log() << Verbose(0) << "INFO: Other base line is " << *OtherBase << "." << endl);
[62bb91]2872
[16d866]2873 // get the closest point on each line to the other line
[e138de]2874 ClosestPoint[0] = GetClosestPointBetweenLine(Base, OtherBase);
2875 ClosestPoint[1] = GetClosestPointBetweenLine(OtherBase, Base);
[16d866]2876
2877 // get the distance vector from Base line to OtherBase line
2878 Vector Distance;
2879 Distance.CopyVector(ClosestPoint[1]);
2880 Distance.SubtractVector(ClosestPoint[0]);
2881
[57066a]2882 // calculate volume
[c0f6c6]2883 volume = CalculateVolumeofGeneralTetraeder(*Base->endpoints[1]->node->node, *OtherBase->endpoints[0]->node->node, *OtherBase->endpoints[1]->node->node, *Base->endpoints[0]->node->node);
[57066a]2884
[0077b5]2885 // delete the temporary other base line and the closest points
[6613ec]2886 delete (ClosestPoint[0]);
2887 delete (ClosestPoint[1]);
2888 delete (OtherBase);
[16d866]2889
2890 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
[a67d19]2891 DoLog(0) && (Log() << Verbose(0) << "REJECT: Both lines have an intersection: Nothing to do." << endl);
[16d866]2892 return false;
2893 } else { // check for sign against BaseLineNormal
2894 Vector BaseLineNormal;
[5c7bf8]2895 BaseLineNormal.Zero();
2896 if (Base->triangles.size() < 2) {
[6613ec]2897 DoeLog(1) && (eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl);
[57066a]2898 return 0.;
[5c7bf8]2899 }
2900 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
[a67d19]2901 DoLog(1) && (Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl);
[5c7bf8]2902 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2903 }
[6613ec]2904 BaseLineNormal.Scale(1. / 2.);
[357fba]2905
[16d866]2906 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
[a67d19]2907 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl);
[57066a]2908 // calculate volume summand as a general tetraeder
2909 return volume;
[6613ec]2910 } else { // Base higher than OtherBase -> do nothing
[a67d19]2911 DoLog(0) && (Log() << Verbose(0) << "REJECT: Base line is higher: Nothing to do." << endl);
[57066a]2912 return 0.;
[16d866]2913 }
2914 }
[6613ec]2915}
2916;
[357fba]2917
[16d866]2918/** For a given baseline and its two connected triangles, flips the baseline.
2919 * I.e. we create the new baseline between the other two endpoints of these four
2920 * endpoints and reconstruct the two triangles accordingly.
2921 * \param *out output stream for debugging
2922 * \param *Base line to be flipped
[57066a]2923 * \return pointer to allocated new baseline - flipping successful, NULL - something went awry
[16d866]2924 */
[e138de]2925class BoundaryLineSet * Tesselation::FlipBaseline(class BoundaryLineSet *Base)
[16d866]2926{
[6613ec]2927 Info FunctionInfo(__func__);
[16d866]2928 class BoundaryLineSet *OldLines[4], *NewLine;
2929 class BoundaryPointSet *OldPoints[2];
2930 Vector BaseLineNormal;
2931 int OldTriangleNrs[2], OldBaseLineNr;
[6613ec]2932 int i, m;
[16d866]2933
2934 // calculate NormalVector for later use
2935 BaseLineNormal.Zero();
2936 if (Base->triangles.size() < 2) {
[6613ec]2937 DoeLog(1) && (eLog() << Verbose(1) << "Less than two triangles are attached to this baseline!" << endl);
[57066a]2938 return NULL;
[16d866]2939 }
2940 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
[a67d19]2941 DoLog(1) && (Log() << Verbose(1) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl);
[16d866]2942 BaseLineNormal.AddVector(&(runner->second->NormalVector));
2943 }
[6613ec]2944 BaseLineNormal.Scale(-1. / 2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
[16d866]2945
2946 // get the two triangles
2947 // gather four endpoints and four lines
[6613ec]2948 for (int j = 0; j < 4; j++)
[16d866]2949 OldLines[j] = NULL;
[6613ec]2950 for (int j = 0; j < 2; j++)
[16d866]2951 OldPoints[j] = NULL;
[6613ec]2952 i = 0;
2953 m = 0;
[a67d19]2954 DoLog(0) && (Log() << Verbose(0) << "The four old lines are: ");
[6613ec]2955 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2956 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
[16d866]2957 if (runner->second->lines[j] != Base) { // pick not the central baseline
2958 OldLines[i++] = runner->second->lines[j];
[a67d19]2959 DoLog(0) && (Log() << Verbose(0) << *runner->second->lines[j] << "\t");
[357fba]2960 }
[a67d19]2961 DoLog(0) && (Log() << Verbose(0) << endl);
2962 DoLog(0) && (Log() << Verbose(0) << "The two old points are: ");
[6613ec]2963 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
2964 for (int j = 0; j < 3; j++) // all of their endpoints and baselines
[16d866]2965 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
2966 OldPoints[m++] = runner->second->endpoints[j];
[a67d19]2967 DoLog(0) && (Log() << Verbose(0) << *runner->second->endpoints[j] << "\t");
[16d866]2968 }
[a67d19]2969 DoLog(0) && (Log() << Verbose(0) << endl);
[16d866]2970
2971 // check whether everything is in place to create new lines and triangles
[6613ec]2972 if (i < 4) {
2973 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl);
[57066a]2974 return NULL;
[16d866]2975 }
[6613ec]2976 for (int j = 0; j < 4; j++)
[16d866]2977 if (OldLines[j] == NULL) {
[6613ec]2978 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough baselines!" << endl);
[57066a]2979 return NULL;
[16d866]2980 }
[6613ec]2981 for (int j = 0; j < 2; j++)
[16d866]2982 if (OldPoints[j] == NULL) {
[6613ec]2983 DoeLog(1) && (eLog() << Verbose(1) << "We have not gathered enough endpoints!" << endl);
[57066a]2984 return NULL;
[357fba]2985 }
[16d866]2986
2987 // remove triangles and baseline removes itself
[a67d19]2988 DoLog(0) && (Log() << Verbose(0) << "INFO: Deleting baseline " << *Base << " from global list." << endl);
[16d866]2989 OldBaseLineNr = Base->Nr;
[6613ec]2990 m = 0;
2991 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
[a67d19]2992 DoLog(0) && (Log() << Verbose(0) << "INFO: Deleting triangle " << *(runner->second) << "." << endl);
[16d866]2993 OldTriangleNrs[m++] = runner->second->Nr;
2994 RemoveTesselationTriangle(runner->second);
2995 }
2996
2997 // construct new baseline (with same number as old one)
2998 BPS[0] = OldPoints[0];
2999 BPS[1] = OldPoints[1];
3000 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
3001 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
[a67d19]3002 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new baseline " << *NewLine << "." << endl);
[16d866]3003
3004 // construct new triangles with flipped baseline
[6613ec]3005 i = -1;
[16d866]3006 if (OldLines[0]->IsConnectedTo(OldLines[2]))
[6613ec]3007 i = 2;
[16d866]3008 if (OldLines[0]->IsConnectedTo(OldLines[3]))
[6613ec]3009 i = 3;
3010 if (i != -1) {
[16d866]3011 BLS[0] = OldLines[0];
3012 BLS[1] = OldLines[i];
3013 BLS[2] = NewLine;
3014 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
3015 BTS->GetNormalVector(BaseLineNormal);
[7dea7c]3016 AddTesselationTriangle(OldTriangleNrs[0]);
[a67d19]3017 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl);
[16d866]3018
[6613ec]3019 BLS[0] = (i == 2 ? OldLines[3] : OldLines[2]);
[16d866]3020 BLS[1] = OldLines[1];
3021 BLS[2] = NewLine;
3022 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
3023 BTS->GetNormalVector(BaseLineNormal);
[7dea7c]3024 AddTesselationTriangle(OldTriangleNrs[1]);
[a67d19]3025 DoLog(0) && (Log() << Verbose(0) << "INFO: Created new triangle " << *BTS << "." << endl);
[16d866]3026 } else {
[6613ec]3027 DoeLog(0) && (eLog() << Verbose(0) << "The four old lines do not connect, something's utterly wrong here!" << endl);
[57066a]3028 return NULL;
[357fba]3029 }
[16d866]3030
[57066a]3031 return NewLine;
[6613ec]3032}
3033;
[16d866]3034
[357fba]3035/** Finds the second point of starting triangle.
3036 * \param *a first node
3037 * \param Oben vector indicating the outside
[f1cccd]3038 * \param OptCandidate reference to recommended candidate on return
[357fba]3039 * \param Storage[3] array storing angles and other candidate information
3040 * \param RADIUS radius of virtual sphere
[62bb91]3041 * \param *LC LinkedCell structure with neighbouring points
[357fba]3042 */
[776b64]3043void Tesselation::FindSecondPointForTesselation(TesselPoint* a, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, const LinkedCell *LC)
[357fba]3044{
[6613ec]3045 Info FunctionInfo(__func__);
[357fba]3046 Vector AngleCheck;
[57066a]3047 class TesselPoint* Candidate = NULL;
[776b64]3048 double norm = -1.;
3049 double angle = 0.;
3050 int N[NDIM];
3051 int Nlower[NDIM];
3052 int Nupper[NDIM];
[357fba]3053
[6613ec]3054 if (LC->SetIndexToNode(a)) { // get cell for the starting point
3055 for (int i = 0; i < NDIM; i++) // store indices of this cell
[357fba]3056 N[i] = LC->n[i];
3057 } else {
[6613ec]3058 DoeLog(1) && (eLog() << Verbose(1) << "Point " << *a << " is not found in cell " << LC->index << "." << endl);
[357fba]3059 return;
3060 }
[62bb91]3061 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[6613ec]3062 for (int i = 0; i < NDIM; i++) {
3063 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
3064 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
[357fba]3065 }
[a67d19]3066 DoLog(0) && (Log() << Verbose(0) << "LC Intervals from [" << N[0] << "<->" << LC->N[0] << ", " << N[1] << "<->" << LC->N[1] << ", " << N[2] << "<->" << LC->N[2] << "] :" << " [" << Nlower[0] << "," << Nupper[0] << "], " << " [" << Nlower[1] << "," << Nupper[1] << "], " << " [" << Nlower[2] << "," << Nupper[2] << "], " << endl);
[357fba]3067
3068 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3069 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3070 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]3071 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[f67b6e]3072 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
[357fba]3073 if (List != NULL) {
[734816]3074 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[357fba]3075 Candidate = (*Runner);
3076 // check if we only have one unique point yet ...
3077 if (a != Candidate) {
3078 // Calculate center of the circle with radius RADIUS through points a and Candidate
[f1cccd]3079 Vector OrthogonalizedOben, aCandidate, Center;
[357fba]3080 double distance, scaleFactor;
3081
3082 OrthogonalizedOben.CopyVector(&Oben);
[f1cccd]3083 aCandidate.CopyVector(a->node);
3084 aCandidate.SubtractVector(Candidate->node);
3085 OrthogonalizedOben.ProjectOntoPlane(&aCandidate);
[357fba]3086 OrthogonalizedOben.Normalize();
[f1cccd]3087 distance = 0.5 * aCandidate.Norm();
[357fba]3088 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
3089 OrthogonalizedOben.Scale(scaleFactor);
3090
3091 Center.CopyVector(Candidate->node);
3092 Center.AddVector(a->node);
3093 Center.Scale(0.5);
3094 Center.AddVector(&OrthogonalizedOben);
3095
3096 AngleCheck.CopyVector(&Center);
3097 AngleCheck.SubtractVector(a->node);
[f1cccd]3098 norm = aCandidate.Norm();
[357fba]3099 // second point shall have smallest angle with respect to Oben vector
[6613ec]3100 if (norm < RADIUS * 2.) {
[357fba]3101 angle = AngleCheck.Angle(&Oben);
3102 if (angle < Storage[0]) {
[f67b6e]3103 //Log() << Verbose(1) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
[a67d19]3104 DoLog(1) && (Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n");
[f1cccd]3105 OptCandidate = Candidate;
[357fba]3106 Storage[0] = angle;
[f67b6e]3107 //Log() << Verbose(1) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
[357fba]3108 } else {
[f67b6e]3109 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate << endl;
[357fba]3110 }
3111 } else {
[f67b6e]3112 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
[357fba]3113 }
3114 } else {
[f67b6e]3115 //Log() << Verbose(1) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
[357fba]3116 }
3117 }
3118 } else {
[a67d19]3119 DoLog(0) && (Log() << Verbose(0) << "Linked cell list is empty." << endl);
[357fba]3120 }
3121 }
[6613ec]3122}
3123;
[357fba]3124
3125/** This recursive function finds a third point, to form a triangle with two given ones.
3126 * Note that this function is for the starting triangle.
3127 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
3128 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
3129 * the center of the sphere is still fixed up to a single parameter. The band of possible values
3130 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
3131 * us the "null" on this circle, the new center of the candidate point will be some way along this
3132 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
3133 * by the normal vector of the base triangle that always points outwards by construction.
3134 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
3135 * We construct the normal vector that defines the plane this circle lies in, it is just in the
3136 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
3137 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
3138 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
3139 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
3140 * both.
3141 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
3142 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
3143 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
3144 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
3145 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
3146 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
[f1cccd]3147 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
[357fba]3148 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
3149 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
[f67b6e]3150 * @param CandidateLine CandidateForTesselation with the current base line and list of candidates and ShortestAngle
[09898c]3151 * @param ThirdPoint third point to avoid in search
[357fba]3152 * @param RADIUS radius of sphere
[62bb91]3153 * @param *LC LinkedCell structure with neighbouring points
[357fba]3154 */
[6613ec]3155void Tesselation::FindThirdPointForTesselation(const Vector &NormalVector, const Vector &SearchDirection, const Vector &OldSphereCenter, CandidateForTesselation &CandidateLine, const class BoundaryPointSet * const ThirdPoint, const double RADIUS, const LinkedCell *LC) const
[357fba]3156{
[6613ec]3157 Info FunctionInfo(__func__);
3158 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
[357fba]3159 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
3160 Vector SphereCenter;
[6613ec]3161 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
3162 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
3163 Vector NewNormalVector; // normal vector of the Candidate's triangle
[357fba]3164 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
[b998c3]3165 Vector RelativeOldSphereCenter;
3166 Vector NewPlaneCenter;
[357fba]3167 double CircleRadius; // radius of this circle
3168 double radius;
[b998c3]3169 double otherradius;
[357fba]3170 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
3171 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
3172 TesselPoint *Candidate = NULL;
3173
[a67d19]3174 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl);
[357fba]3175
[09898c]3176 // copy old center
3177 CandidateLine.OldCenter.CopyVector(&OldSphereCenter);
3178 CandidateLine.ThirdPoint = ThirdPoint;
3179 CandidateLine.pointlist.clear();
3180
[357fba]3181 // construct center of circle
[f67b6e]3182 CircleCenter.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
3183 CircleCenter.AddVector(CandidateLine.BaseLine->endpoints[1]->node->node);
[357fba]3184 CircleCenter.Scale(0.5);
3185
3186 // construct normal vector of circle
[f67b6e]3187 CirclePlaneNormal.CopyVector(CandidateLine.BaseLine->endpoints[0]->node->node);
3188 CirclePlaneNormal.SubtractVector(CandidateLine.BaseLine->endpoints[1]->node->node);
[357fba]3189
[b998c3]3190 RelativeOldSphereCenter.CopyVector(&OldSphereCenter);
3191 RelativeOldSphereCenter.SubtractVector(&CircleCenter);
3192
[09898c]3193 // calculate squared radius TesselPoint *ThirdPoint,f circle
[6613ec]3194 radius = CirclePlaneNormal.NormSquared() / 4.;
3195 if (radius < RADIUS * RADIUS) {
3196 CircleRadius = RADIUS * RADIUS - radius;
[357fba]3197 CirclePlaneNormal.Normalize();
[a67d19]3198 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl);
[357fba]3199
3200 // test whether old center is on the band's plane
[b998c3]3201 if (fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
[6613ec]3202 DoeLog(1) && (eLog() << Verbose(1) << "Something's very wrong here: RelativeOldSphereCenter is not on the band's plane as desired by " << fabs(RelativeOldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl);
[b998c3]3203 RelativeOldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
[357fba]3204 }
[b998c3]3205 radius = RelativeOldSphereCenter.NormSquared();
[357fba]3206 if (fabs(radius - CircleRadius) < HULLEPSILON) {
[a67d19]3207 DoLog(1) && (Log() << Verbose(1) << "INFO: RelativeOldSphereCenter is at " << RelativeOldSphereCenter << "." << endl);
[357fba]3208
3209 // check SearchDirection
[a67d19]3210 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl);
[6613ec]3211 if (fabs(RelativeOldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
3212 DoeLog(1) && (eLog() << Verbose(1) << "SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl);
[357fba]3213 }
3214
[62bb91]3215 // get cell for the starting point
[357fba]3216 if (LC->SetIndexToVector(&CircleCenter)) {
[6613ec]3217 for (int i = 0; i < NDIM; i++) // store indices of this cell
3218 N[i] = LC->n[i];
[f67b6e]3219 //Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
[357fba]3220 } else {
[6613ec]3221 DoeLog(1) && (eLog() << Verbose(1) << "Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl);
[357fba]3222 return;
3223 }
[62bb91]3224 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[f67b6e]3225 //Log() << Verbose(1) << "LC Intervals:";
[6613ec]3226 for (int i = 0; i < NDIM; i++) {
3227 Nlower[i] = ((N[i] - 1) >= 0) ? N[i] - 1 : 0;
3228 Nupper[i] = ((N[i] + 1) < LC->N[i]) ? N[i] + 1 : LC->N[i] - 1;
[e138de]3229 //Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ";
[357fba]3230 }
[e138de]3231 //Log() << Verbose(0) << endl;
[357fba]3232 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3233 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3234 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]3235 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[f67b6e]3236 //Log() << Verbose(1) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
[357fba]3237 if (List != NULL) {
[734816]3238 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[357fba]3239 Candidate = (*Runner);
3240
3241 // check for three unique points
[a67d19]3242 DoLog(2) && (Log() << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " for BaseLine " << *CandidateLine.BaseLine << " with OldSphereCenter " << OldSphereCenter << "." << endl);
[6613ec]3243 if ((Candidate != CandidateLine.BaseLine->endpoints[0]->node) && (Candidate != CandidateLine.BaseLine->endpoints[1]->node)) {
[357fba]3244
[b998c3]3245 // find center on the plane
3246 GetCenterofCircumcircle(&NewPlaneCenter, *CandidateLine.BaseLine->endpoints[0]->node->node, *CandidateLine.BaseLine->endpoints[1]->node->node, *Candidate->node);
[a67d19]3247 DoLog(1) && (Log() << Verbose(1) << "INFO: NewPlaneCenter is " << NewPlaneCenter << "." << endl);
[357fba]3248
[6613ec]3249 if (NewNormalVector.MakeNormalVector(CandidateLine.BaseLine->endpoints[0]->node->node, CandidateLine.BaseLine->endpoints[1]->node->node, Candidate->node) && (fabs(NewNormalVector.NormSquared()) > HULLEPSILON)) {
[a67d19]3250 DoLog(1) && (Log() << Verbose(1) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl);
[b998c3]3251 radius = CandidateLine.BaseLine->endpoints[0]->node->node->DistanceSquared(&NewPlaneCenter);
[a67d19]3252 DoLog(1) && (Log() << Verbose(1) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl);
3253 DoLog(1) && (Log() << Verbose(1) << "INFO: SearchDirection is " << SearchDirection << "." << endl);
3254 DoLog(1) && (Log() << Verbose(1) << "INFO: Radius of CircumCenterCircle is " << radius << "." << endl);
[6613ec]3255 if (radius < RADIUS * RADIUS) {
[b998c3]3256 otherradius = CandidateLine.BaseLine->endpoints[1]->node->node->DistanceSquared(&NewPlaneCenter);
3257 if (fabs(radius - otherradius) > HULLEPSILON) {
[6613ec]3258 DoeLog(1) && (eLog() << Verbose(1) << "Distance to center of circumcircle is not the same from each corner of the triangle: " << fabs(radius - otherradius) << endl);
[b998c3]3259 }
3260 // construct both new centers
3261 NewSphereCenter.CopyVector(&NewPlaneCenter);
3262 OtherNewSphereCenter.CopyVector(&NewPlaneCenter);
3263 helper.CopyVector(&NewNormalVector);
[6613ec]3264 helper.Scale(sqrt(RADIUS * RADIUS - radius));
[a67d19]3265 DoLog(2) && (Log() << Verbose(2) << "INFO: Distance of NewPlaneCenter " << NewPlaneCenter << " to either NewSphereCenter is " << helper.Norm() << " of vector " << helper << " with sphere radius " << RADIUS << "." << endl);
[357fba]3266 NewSphereCenter.AddVector(&helper);
[a67d19]3267 DoLog(2) && (Log() << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl);
[357fba]3268 // OtherNewSphereCenter is created by the same vector just in the other direction
3269 helper.Scale(-1.);
3270 OtherNewSphereCenter.AddVector(&helper);
[a67d19]3271 DoLog(2) && (Log() << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl);
[357fba]3272
3273 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
3274 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
3275 alpha = min(alpha, Otheralpha);
[b998c3]3276
[125b3c]3277 // if there is a better candidate, drop the current list and add the new candidate
3278 // otherwise ignore the new candidate and keep the list
3279 if (CandidateLine.ShortestAngle > (alpha - HULLEPSILON)) {
3280 if (fabs(alpha - Otheralpha) > MYEPSILON) {
3281 CandidateLine.OptCenter.CopyVector(&NewSphereCenter);
3282 CandidateLine.OtherOptCenter.CopyVector(&OtherNewSphereCenter);
3283 } else {
3284 CandidateLine.OptCenter.CopyVector(&OtherNewSphereCenter);
3285 CandidateLine.OtherOptCenter.CopyVector(&NewSphereCenter);
3286 }
3287 // if there is an equal candidate, add it to the list without clearing the list
3288 if ((CandidateLine.ShortestAngle - HULLEPSILON) < alpha) {
3289 CandidateLine.pointlist.push_back(Candidate);
[a67d19]3290 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: We have found an equally good candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl);
[357fba]3291 } else {
[125b3c]3292 // remove all candidates from the list and then the list itself
3293 CandidateLine.pointlist.clear();
3294 CandidateLine.pointlist.push_back(Candidate);
[a67d19]3295 DoLog(0) && (Log() << Verbose(0) << "ACCEPT: We have found a better candidate: " << *(Candidate) << " with " << alpha << " and circumsphere's center at " << CandidateLine.OptCenter << "." << endl);
[357fba]3296 }
[125b3c]3297 CandidateLine.ShortestAngle = alpha;
[a67d19]3298 DoLog(0) && (Log() << Verbose(0) << "INFO: There are " << CandidateLine.pointlist.size() << " candidates in the list now." << endl);
[357fba]3299 } else {
[125b3c]3300 if ((Candidate != NULL) && (CandidateLine.pointlist.begin() != CandidateLine.pointlist.end())) {
[a67d19]3301 DoLog(1) && (Log() << Verbose(1) << "REJECT: Old candidate " << *(*CandidateLine.pointlist.begin()) << " with " << CandidateLine.ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl);
[357fba]3302 } else {
[a67d19]3303 DoLog(1) && (Log() << Verbose(1) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl);
[357fba]3304 }
3305 }
3306 } else {
[a67d19]3307 DoLog(1) && (Log() << Verbose(1) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl);
[357fba]3308 }
3309 } else {
[a67d19]3310 DoLog(1) && (Log() << Verbose(1) << "REJECT: Three points from " << *CandidateLine.BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl);
[357fba]3311 }
3312 } else {
[09898c]3313 if (ThirdPoint != NULL) {
[a67d19]3314 DoLog(1) && (Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " and " << *ThirdPoint << " contains Candidate " << *Candidate << "." << endl);
[357fba]3315 } else {
[a67d19]3316 DoLog(1) && (Log() << Verbose(1) << "REJECT: Base triangle " << *CandidateLine.BaseLine << " contains Candidate " << *Candidate << "." << endl);
[357fba]3317 }
3318 }
3319 }
3320 }
3321 }
3322 } else {
[6613ec]3323 DoeLog(1) && (eLog() << Verbose(1) << "The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl);
[357fba]3324 }
3325 } else {
[09898c]3326 if (ThirdPoint != NULL)
[a67d19]3327 DoLog(1) && (Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " and third node " << *ThirdPoint << " is too big!" << endl);
[357fba]3328 else
[a67d19]3329 DoLog(1) && (Log() << Verbose(1) << "Circumcircle for base line " << *CandidateLine.BaseLine << " is too big!" << endl);
[357fba]3330 }
3331
[734816]3332 DoLog(1) && (Log() << Verbose(1) << "INFO: Sorting candidate list ..." << endl);
[f67b6e]3333 if (CandidateLine.pointlist.size() > 1) {
3334 CandidateLine.pointlist.unique();
3335 CandidateLine.pointlist.sort(); //SortCandidates);
[357fba]3336 }
[6613ec]3337
3338 if ((!CandidateLine.pointlist.empty()) && (!CandidateLine.CheckValidity(RADIUS, LC))) {
3339 DoeLog(0) && (eLog() << Verbose(0) << "There were other points contained in the rolling sphere as well!" << endl);
3340 performCriticalExit();
3341 }
3342}
3343;
[357fba]3344
3345/** Finds the endpoint two lines are sharing.
3346 * \param *line1 first line
3347 * \param *line2 second line
3348 * \return point which is shared or NULL if none
3349 */
[776b64]3350class BoundaryPointSet *Tesselation::GetCommonEndpoint(const BoundaryLineSet * line1, const BoundaryLineSet * line2) const
[357fba]3351{
[6613ec]3352 Info FunctionInfo(__func__);
[776b64]3353 const BoundaryLineSet * lines[2] = { line1, line2 };
[357fba]3354 class BoundaryPointSet *node = NULL;
[c15ca2]3355 PointMap OrderMap;
3356 PointTestPair OrderTest;
[357fba]3357 for (int i = 0; i < 2; i++)
3358 // for both lines
[6613ec]3359 for (int j = 0; j < 2; j++) { // for both endpoints
3360 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
3361 if (!OrderTest.second) { // if insertion fails, we have common endpoint
3362 node = OrderTest.first->second;
[a67d19]3363 DoLog(1) && (Log() << Verbose(1) << "Common endpoint of lines " << *line1 << " and " << *line2 << " is: " << *node << "." << endl);
[6613ec]3364 j = 2;
3365 i = 2;
3366 break;
[357fba]3367 }
[6613ec]3368 }
[357fba]3369 return node;
[6613ec]3370}
3371;
[357fba]3372
[c15ca2]3373/** Finds the boundary points that are closest to a given Vector \a *x.
[62bb91]3374 * \param *out output stream for debugging
3375 * \param *x Vector to look from
[c15ca2]3376 * \return map of BoundaryPointSet of closest points sorted by squared distance or NULL.
[62bb91]3377 */
[97498a]3378DistanceToPointMap * Tesselation::FindClosestBoundaryPointsToVector(const Vector *x, const LinkedCell* LC) const
[62bb91]3379{
[c15ca2]3380 Info FunctionInfo(__func__);
[71b20e]3381 PointMap::const_iterator FindPoint;
3382 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
[62bb91]3383
3384 if (LinesOnBoundary.empty()) {
[6613ec]3385 DoeLog(1) && (eLog() << Verbose(1) << "There is no tesselation structure to compare the point with, please create one first." << endl);
[62bb91]3386 return NULL;
3387 }
[71b20e]3388
3389 // gather all points close to the desired one
3390 LC->SetIndexToVector(x); // ignore status as we calculate bounds below sensibly
[6613ec]3391 for (int i = 0; i < NDIM; i++) // store indices of this cell
[71b20e]3392 N[i] = LC->n[i];
[a67d19]3393 DoLog(1) && (Log() << Verbose(1) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl);
[97498a]3394 DistanceToPointMap * points = new DistanceToPointMap;
[71b20e]3395 LC->GetNeighbourBounds(Nlower, Nupper);
3396 //Log() << Verbose(1) << endl;
3397 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
3398 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
3399 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]3400 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[71b20e]3401 //Log() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
3402 if (List != NULL) {
[734816]3403 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[71b20e]3404 FindPoint = PointsOnBoundary.find((*Runner)->nr);
[97498a]3405 if (FindPoint != PointsOnBoundary.end()) {
[6613ec]3406 points->insert(DistanceToPointPair(FindPoint->second->node->node->DistanceSquared(x), FindPoint->second));
[a67d19]3407 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *FindPoint->second << " into the list." << endl);
[97498a]3408 }
[71b20e]3409 }
3410 } else {
[6613ec]3411 DoeLog(1) && (eLog() << Verbose(1) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl);
[99593f]3412 }
[57066a]3413 }
[62bb91]3414
[71b20e]3415 // check whether we found some points
[c15ca2]3416 if (points->empty()) {
[6613ec]3417 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
3418 delete (points);
[c15ca2]3419 return NULL;
3420 }
3421 return points;
[6613ec]3422}
3423;
[c15ca2]3424
3425/** Finds the boundary line that is closest to a given Vector \a *x.
3426 * \param *out output stream for debugging
3427 * \param *x Vector to look from
3428 * \return closest BoundaryLineSet or NULL in degenerate case.
3429 */
3430BoundaryLineSet * Tesselation::FindClosestBoundaryLineToVector(const Vector *x, const LinkedCell* LC) const
3431{
3432 Info FunctionInfo(__func__);
3433 // get closest points
[6613ec]3434 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
[c15ca2]3435 if (points == NULL) {
[6613ec]3436 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
[71b20e]3437 return NULL;
3438 }
[62bb91]3439
[71b20e]3440 // for each point, check its lines, remember closest
[a67d19]3441 DoLog(1) && (Log() << Verbose(1) << "Finding closest BoundaryLine to " << *x << " ... " << endl);
[71b20e]3442 BoundaryLineSet *ClosestLine = NULL;
3443 double MinDistance = -1.;
3444 Vector helper;
3445 Vector Center;
3446 Vector BaseLine;
[97498a]3447 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
[c15ca2]3448 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
[71b20e]3449 // calculate closest point on line to desired point
3450 helper.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3451 helper.AddVector((LineRunner->second)->endpoints[1]->node->node);
3452 helper.Scale(0.5);
3453 Center.CopyVector(x);
3454 Center.SubtractVector(&helper);
3455 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3456 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3457 Center.ProjectOntoPlane(&BaseLine);
3458 const double distance = Center.NormSquared();
3459 if ((ClosestLine == NULL) || (distance < MinDistance)) {
3460 // additionally calculate intersection on line (whether it's on the line section or not)
3461 helper.CopyVector(x);
3462 helper.SubtractVector((LineRunner->second)->endpoints[0]->node->node);
3463 helper.SubtractVector(&Center);
3464 const double lengthA = helper.ScalarProduct(&BaseLine);
3465 helper.CopyVector(x);
3466 helper.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3467 helper.SubtractVector(&Center);
3468 const double lengthB = helper.ScalarProduct(&BaseLine);
[6613ec]3469 if (lengthB * lengthA < 0) { // if have different sign
[71b20e]3470 ClosestLine = LineRunner->second;
3471 MinDistance = distance;
[a67d19]3472 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: New closest line is " << *ClosestLine << " with projected distance " << MinDistance << "." << endl);
[71b20e]3473 } else {
[a67d19]3474 DoLog(1) && (Log() << Verbose(1) << "REJECT: Intersection is outside of the line section: " << lengthA << " and " << lengthB << "." << endl);
[71b20e]3475 }
3476 } else {
[a67d19]3477 DoLog(1) && (Log() << Verbose(1) << "REJECT: Point is too further away than present line: " << distance << " >> " << MinDistance << "." << endl);
[71b20e]3478 }
[99593f]3479 }
[57066a]3480 }
[6613ec]3481 delete (points);
[71b20e]3482 // check whether closest line is "too close" :), then it's inside
3483 if (ClosestLine == NULL) {
[a67d19]3484 DoLog(0) && (Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl);
[62bb91]3485 return NULL;
[71b20e]3486 }
[c15ca2]3487 return ClosestLine;
[6613ec]3488}
3489;
[c15ca2]3490
3491/** Finds the triangle that is closest to a given Vector \a *x.
3492 * \param *out output stream for debugging
3493 * \param *x Vector to look from
3494 * \return BoundaryTriangleSet of nearest triangle or NULL.
3495 */
3496TriangleList * Tesselation::FindClosestTrianglesToVector(const Vector *x, const LinkedCell* LC) const
3497{
[6613ec]3498 Info FunctionInfo(__func__);
3499 // get closest points
3500 DistanceToPointMap * points = FindClosestBoundaryPointsToVector(x, LC);
[c15ca2]3501 if (points == NULL) {
[6613ec]3502 DoeLog(1) && (eLog() << Verbose(1) << "There is no nearest point: too far away from the surface." << endl);
[c15ca2]3503 return NULL;
3504 }
3505
3506 // for each point, check its lines, remember closest
[a67d19]3507 DoLog(1) && (Log() << Verbose(1) << "Finding closest BoundaryTriangle to " << *x << " ... " << endl);
[48b47a]3508 LineSet ClosestLines;
[97498a]3509 double MinDistance = 1e+16;
3510 Vector BaseLineIntersection;
[c15ca2]3511 Vector Center;
3512 Vector BaseLine;
[97498a]3513 Vector BaseLineCenter;
3514 for (DistanceToPointMap::iterator Runner = points->begin(); Runner != points->end(); Runner++) {
[c15ca2]3515 for (LineMap::iterator LineRunner = Runner->second->lines.begin(); LineRunner != Runner->second->lines.end(); LineRunner++) {
[97498a]3516
3517 BaseLine.CopyVector((LineRunner->second)->endpoints[0]->node->node);
3518 BaseLine.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3519 const double lengthBase = BaseLine.NormSquared();
3520
3521 BaseLineIntersection.CopyVector(x);
3522 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[0]->node->node);
3523 const double lengthEndA = BaseLineIntersection.NormSquared();
3524
3525 BaseLineIntersection.CopyVector(x);
3526 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3527 const double lengthEndB = BaseLineIntersection.NormSquared();
3528
[6613ec]3529 if ((lengthEndA > lengthBase) || (lengthEndB > lengthBase) || ((lengthEndA < MYEPSILON) || (lengthEndB < MYEPSILON))) { // intersection would be outside, take closer endpoint
[48b47a]3530 const double lengthEnd = Min(lengthEndA, lengthEndB);
3531 if (lengthEnd - MinDistance < -MYEPSILON) { // new best line
3532 ClosestLines.clear();
3533 ClosestLines.insert(LineRunner->second);
3534 MinDistance = lengthEnd;
[a67d19]3535 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[0]->node << " is closer with " << lengthEnd << "." << endl);
[6613ec]3536 } else if (fabs(lengthEnd - MinDistance) < MYEPSILON) { // additional best candidate
[48b47a]3537 ClosestLines.insert(LineRunner->second);
[a67d19]3538 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Line " << *LineRunner->second << " to endpoint " << *LineRunner->second->endpoints[1]->node << " is equally good with " << lengthEnd << "." << endl);
[48b47a]3539 } else { // line is worse
[a67d19]3540 DoLog(1) && (Log() << Verbose(1) << "REJECT: Line " << *LineRunner->second << " to either endpoints is further away than present closest line candidate: " << lengthEndA << ", " << lengthEndB << ", and distance is longer than baseline:" << lengthBase << "." << endl);
[97498a]3541 }
3542 } else { // intersection is closer, calculate
[c15ca2]3543 // calculate closest point on line to desired point
[97498a]3544 BaseLineIntersection.CopyVector(x);
3545 BaseLineIntersection.SubtractVector((LineRunner->second)->endpoints[1]->node->node);
3546 Center.CopyVector(&BaseLineIntersection);
[c15ca2]3547 Center.ProjectOntoPlane(&BaseLine);
[97498a]3548 BaseLineIntersection.SubtractVector(&Center);
3549 const double distance = BaseLineIntersection.NormSquared();
3550 if (Center.NormSquared() > BaseLine.NormSquared()) {
[6613ec]3551 DoeLog(0) && (eLog() << Verbose(0) << "Algorithmic error: In second case we have intersection outside of baseline!" << endl);
[97498a]3552 }
[48b47a]3553 if ((ClosestLines.empty()) || (distance < MinDistance)) {
3554 ClosestLines.insert(LineRunner->second);
[97498a]3555 MinDistance = distance;
[a67d19]3556 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Intersection in between endpoints, new closest line " << *LineRunner->second << " is " << *ClosestLines.begin() << " with projected distance " << MinDistance << "." << endl);
[c15ca2]3557 } else {
[a67d19]3558 DoLog(2) && (Log() << Verbose(2) << "REJECT: Point is further away from line " << *LineRunner->second << " than present closest line: " << distance << " >> " << MinDistance << "." << endl);
[c15ca2]3559 }
3560 }
3561 }
3562 }
[6613ec]3563 delete (points);
[c15ca2]3564
3565 // check whether closest line is "too close" :), then it's inside
[48b47a]3566 if (ClosestLines.empty()) {
[a67d19]3567 DoLog(0) && (Log() << Verbose(0) << "Is the only point, no one else is closeby." << endl);
[c15ca2]3568 return NULL;
3569 }
3570 TriangleList * candidates = new TriangleList;
[48b47a]3571 for (LineSet::iterator LineRunner = ClosestLines.begin(); LineRunner != ClosestLines.end(); LineRunner++)
3572 for (TriangleMap::iterator Runner = (*LineRunner)->triangles.begin(); Runner != (*LineRunner)->triangles.end(); Runner++) {
[6613ec]3573 candidates->push_back(Runner->second);
3574 }
[c15ca2]3575 return candidates;
[6613ec]3576}
3577;
[62bb91]3578
3579/** Finds closest triangle to a point.
3580 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
3581 * \param *out output stream for debugging
3582 * \param *x Vector to look from
[8db598]3583 * \param &distance contains found distance on return
[62bb91]3584 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
3585 */
[c15ca2]3586class BoundaryTriangleSet * Tesselation::FindClosestTriangleToVector(const Vector *x, const LinkedCell* LC) const
[62bb91]3587{
[6613ec]3588 Info FunctionInfo(__func__);
[62bb91]3589 class BoundaryTriangleSet *result = NULL;
[c15ca2]3590 TriangleList *triangles = FindClosestTrianglesToVector(x, LC);
3591 TriangleList candidates;
[57066a]3592 Vector Center;
[71b20e]3593 Vector helper;
[62bb91]3594
[71b20e]3595 if ((triangles == NULL) || (triangles->empty()))
[62bb91]3596 return NULL;
3597
[97498a]3598 // go through all and pick the one with the best alignment to x
[6613ec]3599 double MinAlignment = 2. * M_PI;
[c15ca2]3600 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++) {
[71b20e]3601 (*Runner)->GetCenter(&Center);
3602 helper.CopyVector(x);
3603 helper.SubtractVector(&Center);
[97498a]3604 const double Alignment = helper.Angle(&(*Runner)->NormalVector);
3605 if (Alignment < MinAlignment) {
3606 result = *Runner;
3607 MinAlignment = Alignment;
[a67d19]3608 DoLog(1) && (Log() << Verbose(1) << "ACCEPT: Triangle " << *result << " is better aligned with " << MinAlignment << "." << endl);
[71b20e]3609 } else {
[a67d19]3610 DoLog(1) && (Log() << Verbose(1) << "REJECT: Triangle " << *result << " is worse aligned with " << MinAlignment << "." << endl);
[57066a]3611 }
3612 }
[6613ec]3613 delete (triangles);
[97498a]3614
[62bb91]3615 return result;
[6613ec]3616}
3617;
[62bb91]3618
[9473f6]3619/** Checks whether the provided Vector is within the Tesselation structure.
3620 * Basically calls Tesselation::GetDistanceToSurface() and checks the sign of the return value.
3621 * @param point of which to check the position
3622 * @param *LC LinkedCell structure
3623 *
3624 * @return true if the point is inside the Tesselation structure, false otherwise
3625 */
3626bool Tesselation::IsInnerPoint(const Vector &Point, const LinkedCell* const LC) const
3627{
[8db598]3628 Info FunctionInfo(__func__);
[6613ec]3629 TriangleIntersectionList Intersections(&Point, this, LC);
[8db598]3630
3631 return Intersections.IsInside();
[6613ec]3632}
3633;
[9473f6]3634
3635/** Returns the distance to the surface given by the tesselation.
[97498a]3636 * Calls FindClosestTriangleToVector() and checks whether the resulting triangle's BoundaryTriangleSet#NormalVector points
[9473f6]3637 * towards or away from the given \a &Point. Additionally, we check whether it's normal to the normal vector, i.e. on the
3638 * closest triangle's plane. Then, we have to check whether \a Point is inside the triangle or not to determine whether it's
3639 * an inside or outside point. This is done by calling BoundaryTriangleSet::GetIntersectionInsideTriangle().
3640 * In the end we additionally find the point on the triangle who was smallest distance to \a Point:
3641 * -# Separate distance from point to center in vector in NormalDirection and on the triangle plane.
3642 * -# Check whether vector on triangle plane points inside the triangle or crosses triangle bounds.
3643 * -# If inside, take it to calculate closest distance
3644 * -# If not, take intersection with BoundaryLine as distance
3645 *
3646 * @note distance is squared despite it still contains a sign to determine in-/outside!
[62bb91]3647 *
3648 * @param point of which to check the position
3649 * @param *LC LinkedCell structure
3650 *
[244a84]3651 * @return >0 if outside, ==0 if on surface, <0 if inside
[62bb91]3652 */
[244a84]3653double Tesselation::GetDistanceSquaredToTriangle(const Vector &Point, const BoundaryTriangleSet* const triangle) const
[62bb91]3654{
[fcad4b]3655 Info FunctionInfo(__func__);
[57066a]3656 Vector Center;
[71b20e]3657 Vector helper;
[97498a]3658 Vector DistanceToCenter;
3659 Vector Intersection;
[9473f6]3660 double distance = 0.;
[57066a]3661
[244a84]3662 if (triangle == NULL) {// is boundary point or only point in point cloud?
[a67d19]3663 DoLog(1) && (Log() << Verbose(1) << "No triangle given!" << endl);
[244a84]3664 return -1.;
[71b20e]3665 } else {
[a67d19]3666 DoLog(1) && (Log() << Verbose(1) << "INFO: Closest triangle found is " << *triangle << " with normal vector " << triangle->NormalVector << "." << endl);
[57066a]3667 }
3668
[244a84]3669 triangle->GetCenter(&Center);
[a67d19]3670 DoLog(2) && (Log() << Verbose(2) << "INFO: Central point of the triangle is " << Center << "." << endl);
[97498a]3671 DistanceToCenter.CopyVector(&Center);
3672 DistanceToCenter.SubtractVector(&Point);
[a67d19]3673 DoLog(2) && (Log() << Verbose(2) << "INFO: Vector from point to test to center is " << DistanceToCenter << "." << endl);
[97498a]3674
3675 // check whether we are on boundary
[244a84]3676 if (fabs(DistanceToCenter.ScalarProduct(&triangle->NormalVector)) < MYEPSILON) {
[97498a]3677 // calculate whether inside of triangle
[fcad4b]3678 DistanceToCenter.CopyVector(&Point);
3679 Center.CopyVector(&Point);
[244a84]3680 Center.SubtractVector(&triangle->NormalVector); // points towards MolCenter
3681 DistanceToCenter.AddVector(&triangle->NormalVector); // points outside
[a67d19]3682 DoLog(1) && (Log() << Verbose(1) << "INFO: Calling Intersection with " << Center << " and " << DistanceToCenter << "." << endl);
[244a84]3683 if (triangle->GetIntersectionInsideTriangle(&Center, &DistanceToCenter, &Intersection)) {
[a67d19]3684 DoLog(1) && (Log() << Verbose(1) << Point << " is inner point: sufficiently close to boundary, " << Intersection << "." << endl);
[9473f6]3685 return 0.;
[97498a]3686 } else {
[a67d19]3687 DoLog(1) && (Log() << Verbose(1) << Point << " is NOT an inner point: on triangle plane but outside of triangle bounds." << endl);
[97498a]3688 return false;
3689 }
[57066a]3690 } else {
[9473f6]3691 // calculate smallest distance
[244a84]3692 distance = triangle->GetClosestPointInsideTriangle(&Point, &Intersection);
[a67d19]3693 DoLog(1) && (Log() << Verbose(1) << "Closest point on triangle is " << Intersection << "." << endl);
[9473f6]3694
3695 // then check direction to boundary
[244a84]3696 if (DistanceToCenter.ScalarProduct(&triangle->NormalVector) > MYEPSILON) {
[a67d19]3697 DoLog(1) && (Log() << Verbose(1) << Point << " is an inner point, " << distance << " below surface." << endl);
[9473f6]3698 return -distance;
3699 } else {
[a67d19]3700 DoLog(1) && (Log() << Verbose(1) << Point << " is NOT an inner point, " << distance << " above surface." << endl);
[9473f6]3701 return +distance;
3702 }
[57066a]3703 }
[6613ec]3704}
3705;
[62bb91]3706
[8db598]3707/** Calculates minimum distance from \a&Point to a tesselated surface.
[244a84]3708 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
3709 * \param &Point point to calculate distance from
3710 * \param *LC needed for finding closest points fast
3711 * \return distance squared to closest point on surface
3712 */
[8db598]3713double Tesselation::GetDistanceToSurface(const Vector &Point, const LinkedCell* const LC) const
[244a84]3714{
[8db598]3715 Info FunctionInfo(__func__);
[6613ec]3716 TriangleIntersectionList Intersections(&Point, this, LC);
[8db598]3717
3718 return Intersections.GetSmallestDistance();
[6613ec]3719}
3720;
[8db598]3721
3722/** Calculates minimum distance from \a&Point to a tesselated surface.
3723 * Combines \sa FindClosestTrianglesToVector() and \sa GetDistanceSquaredToTriangle().
3724 * \param &Point point to calculate distance from
3725 * \param *LC needed for finding closest points fast
3726 * \return distance squared to closest point on surface
3727 */
3728BoundaryTriangleSet * Tesselation::GetClosestTriangleOnSurface(const Vector &Point, const LinkedCell* const LC) const
3729{
3730 Info FunctionInfo(__func__);
[6613ec]3731 TriangleIntersectionList Intersections(&Point, this, LC);
[8db598]3732
3733 return Intersections.GetClosestTriangle();
[6613ec]3734}
3735;
[244a84]3736
[62bb91]3737/** Gets all points connected to the provided point by triangulation lines.
3738 *
3739 * @param *Point of which get all connected points
3740 *
[065e82]3741 * @return set of the all points linked to the provided one
[62bb91]3742 */
[c15ca2]3743TesselPointSet * Tesselation::GetAllConnectedPoints(const TesselPoint* const Point) const
[62bb91]3744{
[6613ec]3745 Info FunctionInfo(__func__);
3746 TesselPointSet *connectedPoints = new TesselPointSet;
[5c7bf8]3747 class BoundaryPointSet *ReferencePoint = NULL;
[62bb91]3748 TesselPoint* current;
3749 bool takePoint = false;
[5c7bf8]3750 // find the respective boundary point
[776b64]3751 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
[5c7bf8]3752 if (PointRunner != PointsOnBoundary.end()) {
3753 ReferencePoint = PointRunner->second;
3754 } else {
[6613ec]3755 DoeLog(2) && (eLog() << Verbose(2) << "GetAllConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl);
[5c7bf8]3756 ReferencePoint = NULL;
3757 }
[62bb91]3758
[065e82]3759 // little trick so that we look just through lines connect to the BoundaryPoint
[5c7bf8]3760 // OR fall-back to look through all lines if there is no such BoundaryPoint
[6613ec]3761 const LineMap *Lines;
3762 ;
[5c7bf8]3763 if (ReferencePoint != NULL)
3764 Lines = &(ReferencePoint->lines);
[776b64]3765 else
3766 Lines = &LinesOnBoundary;
3767 LineMap::const_iterator findLines = Lines->begin();
[5c7bf8]3768 while (findLines != Lines->end()) {
[6613ec]3769 takePoint = false;
3770
3771 if (findLines->second->endpoints[0]->Nr == Point->nr) {
3772 takePoint = true;
3773 current = findLines->second->endpoints[1]->node;
3774 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
3775 takePoint = true;
3776 current = findLines->second->endpoints[0]->node;
3777 }
[065e82]3778
[6613ec]3779 if (takePoint) {
[a67d19]3780 DoLog(1) && (Log() << Verbose(1) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is enlisted." << endl);
[6613ec]3781 connectedPoints->insert(current);
3782 }
[62bb91]3783
[6613ec]3784 findLines++;
[62bb91]3785 }
3786
[71b20e]3787 if (connectedPoints->empty()) { // if have not found any points
[6613ec]3788 DoeLog(1) && (eLog() << Verbose(1) << "We have not found any connected points to " << *Point << "." << endl);
[16d866]3789 return NULL;
3790 }
[065e82]3791
[16d866]3792 return connectedPoints;
[6613ec]3793}
3794;
[065e82]3795
3796/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
[16d866]3797 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
3798 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
3799 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
3800 * triangle we are looking for.
3801 *
3802 * @param *out output stream for debugging
[27bd2f]3803 * @param *SetOfNeighbours all points for which the angle should be calculated
[16d866]3804 * @param *Point of which get all connected points
[065e82]3805 * @param *Reference Reference vector for zero angle or NULL for no preference
3806 * @return list of the all points linked to the provided one
[16d866]3807 */
[c15ca2]3808TesselPointList * Tesselation::GetCircleOfConnectedTriangles(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const
[16d866]3809{
[6613ec]3810 Info FunctionInfo(__func__);
[16d866]3811 map<double, TesselPoint*> anglesOfPoints;
[c15ca2]3812 TesselPointList *connectedCircle = new TesselPointList;
[71b20e]3813 Vector PlaneNormal;
3814 Vector AngleZero;
3815 Vector OrthogonalVector;
3816 Vector helper;
[6613ec]3817 const TesselPoint * const TrianglePoints[3] = { Point, NULL, NULL };
[c15ca2]3818 TriangleList *triangles = NULL;
[71b20e]3819
3820 if (SetOfNeighbours == NULL) {
[6613ec]3821 DoeLog(2) && (eLog() << Verbose(2) << "Could not find any connected points!" << endl);
3822 delete (connectedCircle);
[71b20e]3823 return NULL;
3824 }
3825
3826 // calculate central point
3827 triangles = FindTriangles(TrianglePoints);
3828 if ((triangles != NULL) && (!triangles->empty())) {
[c15ca2]3829 for (TriangleList::iterator Runner = triangles->begin(); Runner != triangles->end(); Runner++)
[71b20e]3830 PlaneNormal.AddVector(&(*Runner)->NormalVector);
3831 } else {
[6613ec]3832 DoeLog(0) && (eLog() << Verbose(0) << "Could not find any triangles for point " << *Point << "." << endl);
[71b20e]3833 performCriticalExit();
3834 }
[6613ec]3835 PlaneNormal.Scale(1.0 / triangles->size());
[a67d19]3836 DoLog(1) && (Log() << Verbose(1) << "INFO: Calculated PlaneNormal of all circle points is " << PlaneNormal << "." << endl);
[71b20e]3837 PlaneNormal.Normalize();
3838
3839 // construct one orthogonal vector
3840 if (Reference != NULL) {
3841 AngleZero.CopyVector(Reference);
3842 AngleZero.SubtractVector(Point->node);
3843 AngleZero.ProjectOntoPlane(&PlaneNormal);
3844 }
[6613ec]3845 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON)) {
[a67d19]3846 DoLog(1) && (Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl);
[71b20e]3847 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);
3848 AngleZero.SubtractVector(Point->node);
3849 AngleZero.ProjectOntoPlane(&PlaneNormal);
3850 if (AngleZero.NormSquared() < MYEPSILON) {
[6613ec]3851 DoeLog(0) && (eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl);
[71b20e]3852 performCriticalExit();
3853 }
3854 }
[a67d19]3855 DoLog(1) && (Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl);
[71b20e]3856 if (AngleZero.NormSquared() > MYEPSILON)
3857 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
3858 else
3859 OrthogonalVector.MakeNormalVector(&PlaneNormal);
[a67d19]3860 DoLog(1) && (Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl);
[71b20e]3861
3862 // go through all connected points and calculate angle
[c15ca2]3863 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
[71b20e]3864 helper.CopyVector((*listRunner)->node);
3865 helper.SubtractVector(Point->node);
3866 helper.ProjectOntoPlane(&PlaneNormal);
3867 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
[a67d19]3868 DoLog(0) && (Log() << Verbose(0) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl);
[6613ec]3869 anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
[71b20e]3870 }
3871
[6613ec]3872 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
[71b20e]3873 connectedCircle->push_back(AngleRunner->second);
3874 }
3875
3876 return connectedCircle;
3877}
3878
3879/** Gets all points connected to the provided point by triangulation lines, ordered such that we have the circle round the point.
3880 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
3881 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
3882 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
3883 * triangle we are looking for.
3884 *
3885 * @param *SetOfNeighbours all points for which the angle should be calculated
3886 * @param *Point of which get all connected points
3887 * @param *Reference Reference vector for zero angle or NULL for no preference
3888 * @return list of the all points linked to the provided one
3889 */
[c15ca2]3890TesselPointList * Tesselation::GetCircleOfSetOfPoints(TesselPointSet *SetOfNeighbours, const TesselPoint* const Point, const Vector * const Reference) const
[71b20e]3891{
3892 Info FunctionInfo(__func__);
3893 map<double, TesselPoint*> anglesOfPoints;
[c15ca2]3894 TesselPointList *connectedCircle = new TesselPointList;
[065e82]3895 Vector center;
3896 Vector PlaneNormal;
3897 Vector AngleZero;
3898 Vector OrthogonalVector;
3899 Vector helper;
[62bb91]3900
[27bd2f]3901 if (SetOfNeighbours == NULL) {
[6613ec]3902 DoeLog(2) && (eLog() << Verbose(2) << "Could not find any connected points!" << endl);
3903 delete (connectedCircle);
[99593f]3904 return NULL;
3905 }
[a2028e]3906
[97498a]3907 // check whether there's something to do
3908 if (SetOfNeighbours->size() < 3) {
3909 for (TesselPointSet::iterator TesselRunner = SetOfNeighbours->begin(); TesselRunner != SetOfNeighbours->end(); TesselRunner++)
3910 connectedCircle->push_back(*TesselRunner);
3911 return connectedCircle;
3912 }
3913
[a67d19]3914 DoLog(1) && (Log() << Verbose(1) << "INFO: Point is " << *Point << " and Reference is " << *Reference << "." << endl);
[16d866]3915 // calculate central point
[97498a]3916 TesselPointSet::const_iterator TesselA = SetOfNeighbours->begin();
3917 TesselPointSet::const_iterator TesselB = SetOfNeighbours->begin();
3918 TesselPointSet::const_iterator TesselC = SetOfNeighbours->begin();
3919 TesselB++;
3920 TesselC++;
3921 TesselC++;
3922 int counter = 0;
3923 while (TesselC != SetOfNeighbours->end()) {
3924 helper.MakeNormalVector((*TesselA)->node, (*TesselB)->node, (*TesselC)->node);
[a67d19]3925 DoLog(0) && (Log() << Verbose(0) << "Making normal vector out of " << *(*TesselA) << ", " << *(*TesselB) << " and " << *(*TesselC) << ":" << helper << endl);
[97498a]3926 counter++;
3927 TesselA++;
3928 TesselB++;
3929 TesselC++;
3930 PlaneNormal.AddVector(&helper);
3931 }
3932 //Log() << Verbose(0) << "Summed vectors " << center << "; number of points " << connectedPoints.size()
3933 // << "; scale factor " << counter;
[6613ec]3934 PlaneNormal.Scale(1.0 / (double) counter);
3935 // Log() << Verbose(1) << "INFO: Calculated center of all circle points is " << center << "." << endl;
3936 //
3937 // // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
3938 // PlaneNormal.CopyVector(Point->node);
3939 // PlaneNormal.SubtractVector(&center);
3940 // PlaneNormal.Normalize();
[a67d19]3941 DoLog(1) && (Log() << Verbose(1) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl);
[62bb91]3942
3943 // construct one orthogonal vector
[a2028e]3944 if (Reference != NULL) {
[065e82]3945 AngleZero.CopyVector(Reference);
[a2028e]3946 AngleZero.SubtractVector(Point->node);
3947 AngleZero.ProjectOntoPlane(&PlaneNormal);
3948 }
[6613ec]3949 if ((Reference == NULL) || (AngleZero.NormSquared() < MYEPSILON)) {
[a67d19]3950 DoLog(1) && (Log() << Verbose(1) << "Using alternatively " << *(*SetOfNeighbours->begin())->node << " as angle 0 referencer." << endl);
[27bd2f]3951 AngleZero.CopyVector((*SetOfNeighbours->begin())->node);
[a2028e]3952 AngleZero.SubtractVector(Point->node);
3953 AngleZero.ProjectOntoPlane(&PlaneNormal);
3954 if (AngleZero.NormSquared() < MYEPSILON) {
[6613ec]3955 DoeLog(0) && (eLog() << Verbose(0) << "CRITIAL: AngleZero is 0 even with alternative reference. The algorithm has to be changed here!" << endl);
[a2028e]3956 performCriticalExit();
3957 }
3958 }
[a67d19]3959 DoLog(1) && (Log() << Verbose(1) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl);
[a2028e]3960 if (AngleZero.NormSquared() > MYEPSILON)
3961 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
3962 else
3963 OrthogonalVector.MakeNormalVector(&PlaneNormal);
[a67d19]3964 DoLog(1) && (Log() << Verbose(1) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl);
[16d866]3965
[5c7bf8]3966 // go through all connected points and calculate angle
[6613ec]3967 pair<map<double, TesselPoint*>::iterator, bool> InserterTest;
[c15ca2]3968 for (TesselPointSet::iterator listRunner = SetOfNeighbours->begin(); listRunner != SetOfNeighbours->end(); listRunner++) {
[5c7bf8]3969 helper.CopyVector((*listRunner)->node);
3970 helper.SubtractVector(Point->node);
3971 helper.ProjectOntoPlane(&PlaneNormal);
[f1cccd]3972 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
[97498a]3973 if (angle > M_PI) // the correction is of no use here (and not desired)
[6613ec]3974 angle = 2. * M_PI - angle;
[a67d19]3975 DoLog(0) && (Log() << Verbose(0) << "INFO: Calculated angle between " << helper << " and " << AngleZero << " is " << angle << " for point " << **listRunner << "." << endl);
[6613ec]3976 InserterTest = anglesOfPoints.insert(pair<double, TesselPoint*> (angle, (*listRunner)));
[c15ca2]3977 if (!InserterTest.second) {
[6613ec]3978 DoeLog(0) && (eLog() << Verbose(0) << "GetCircleOfSetOfPoints() got two atoms with same angle: " << *((InserterTest.first)->second) << " and " << (*listRunner) << endl);
[c15ca2]3979 performCriticalExit();
3980 }
[62bb91]3981 }
3982
[6613ec]3983 for (map<double, TesselPoint*>::iterator AngleRunner = anglesOfPoints.begin(); AngleRunner != anglesOfPoints.end(); AngleRunner++) {
[065e82]3984 connectedCircle->push_back(AngleRunner->second);
3985 }
[62bb91]3986
[065e82]3987 return connectedCircle;
3988}
[62bb91]3989
[065e82]3990/** Gets all points connected to the provided point by triangulation lines, ordered such that we walk along a closed path.
3991 *
3992 * @param *out output stream for debugging
3993 * @param *Point of which get all connected points
3994 * @return list of the all points linked to the provided one
3995 */
[244a84]3996ListOfTesselPointList * Tesselation::GetPathsOfConnectedPoints(const TesselPoint* const Point) const
[065e82]3997{
[6613ec]3998 Info FunctionInfo(__func__);
[065e82]3999 map<double, TesselPoint*> anglesOfPoints;
[6613ec]4000 list<TesselPointList *> *ListOfPaths = new list<TesselPointList *> ;
[c15ca2]4001 TesselPointList *connectedPath = NULL;
[065e82]4002 Vector center;
4003 Vector PlaneNormal;
4004 Vector AngleZero;
4005 Vector OrthogonalVector;
4006 Vector helper;
4007 class BoundaryPointSet *ReferencePoint = NULL;
4008 class BoundaryPointSet *CurrentPoint = NULL;
4009 class BoundaryTriangleSet *triangle = NULL;
4010 class BoundaryLineSet *CurrentLine = NULL;
4011 class BoundaryLineSet *StartLine = NULL;
4012 // find the respective boundary point
[776b64]4013 PointMap::const_iterator PointRunner = PointsOnBoundary.find(Point->nr);
[065e82]4014 if (PointRunner != PointsOnBoundary.end()) {
4015 ReferencePoint = PointRunner->second;
4016 } else {
[6613ec]4017 DoeLog(1) && (eLog() << Verbose(1) << "GetPathOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl);
[065e82]4018 return NULL;
4019 }
4020
[6613ec]4021 map<class BoundaryLineSet *, bool> TouchedLine;
4022 map<class BoundaryTriangleSet *, bool> TouchedTriangle;
4023 map<class BoundaryLineSet *, bool>::iterator LineRunner;
4024 map<class BoundaryTriangleSet *, bool>::iterator TriangleRunner;
[57066a]4025 for (LineMap::iterator Runner = ReferencePoint->lines.begin(); Runner != ReferencePoint->lines.end(); Runner++) {
[6613ec]4026 TouchedLine.insert(pair<class BoundaryLineSet *, bool> (Runner->second, false));
[57066a]4027 for (TriangleMap::iterator Sprinter = Runner->second->triangles.begin(); Sprinter != Runner->second->triangles.end(); Sprinter++)
[6613ec]4028 TouchedTriangle.insert(pair<class BoundaryTriangleSet *, bool> (Sprinter->second, false));
[57066a]4029 }
[065e82]4030 if (!ReferencePoint->lines.empty()) {
4031 for (LineMap::iterator runner = ReferencePoint->lines.begin(); runner != ReferencePoint->lines.end(); runner++) {
[57066a]4032 LineRunner = TouchedLine.find(runner->second);
4033 if (LineRunner == TouchedLine.end()) {
[6613ec]4034 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *runner->second << " in the touched list." << endl);
[57066a]4035 } else if (!LineRunner->second) {
4036 LineRunner->second = true;
[c15ca2]4037 connectedPath = new TesselPointList;
[065e82]4038 triangle = NULL;
4039 CurrentLine = runner->second;
4040 StartLine = CurrentLine;
4041 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
[a67d19]4042 DoLog(1) && (Log() << Verbose(1) << "INFO: Beginning path retrieval at " << *CurrentPoint << " of line " << *CurrentLine << "." << endl);
[065e82]4043 do {
4044 // push current one
[a67d19]4045 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl);
[065e82]4046 connectedPath->push_back(CurrentPoint->node);
4047
4048 // find next triangle
[57066a]4049 for (TriangleMap::iterator Runner = CurrentLine->triangles.begin(); Runner != CurrentLine->triangles.end(); Runner++) {
[a67d19]4050 DoLog(1) && (Log() << Verbose(1) << "INFO: Inspecting triangle " << *Runner->second << "." << endl);
[57066a]4051 if ((Runner->second != triangle)) { // look for first triangle not equal to old one
4052 triangle = Runner->second;
4053 TriangleRunner = TouchedTriangle.find(triangle);
4054 if (TriangleRunner != TouchedTriangle.end()) {
4055 if (!TriangleRunner->second) {
4056 TriangleRunner->second = true;
[a67d19]4057 DoLog(1) && (Log() << Verbose(1) << "INFO: Connecting triangle is " << *triangle << "." << endl);
[57066a]4058 break;
4059 } else {
[a67d19]4060 DoLog(1) && (Log() << Verbose(1) << "INFO: Skipping " << *triangle << ", as we have already visited it." << endl);
[57066a]4061 triangle = NULL;
4062 }
4063 } else {
[6613ec]4064 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *triangle << " in the touched list." << endl);
[57066a]4065 triangle = NULL;
4066 }
[065e82]4067 }
4068 }
[57066a]4069 if (triangle == NULL)
4070 break;
[065e82]4071 // find next line
[6613ec]4072 for (int i = 0; i < 3; i++) {
[065e82]4073 if ((triangle->lines[i] != CurrentLine) && (triangle->lines[i]->ContainsBoundaryPoint(ReferencePoint))) { // not the current line and still containing Point
4074 CurrentLine = triangle->lines[i];
[a67d19]4075 DoLog(1) && (Log() << Verbose(1) << "INFO: Connecting line is " << *CurrentLine << "." << endl);
[065e82]4076 break;
4077 }
4078 }
[57066a]4079 LineRunner = TouchedLine.find(CurrentLine);
4080 if (LineRunner == TouchedLine.end())
[6613ec]4081 DoeLog(1) && (eLog() << Verbose(1) << "I could not find " << *CurrentLine << " in the touched list." << endl);
[065e82]4082 else
[57066a]4083 LineRunner->second = true;
[065e82]4084 // find next point
4085 CurrentPoint = CurrentLine->GetOtherEndpoint(ReferencePoint);
4086
4087 } while (CurrentLine != StartLine);
4088 // last point is missing, as it's on start line
[a67d19]4089 DoLog(1) && (Log() << Verbose(1) << "INFO: Putting " << *CurrentPoint << " at end of path." << endl);
[57066a]4090 if (StartLine->GetOtherEndpoint(ReferencePoint)->node != connectedPath->back())
4091 connectedPath->push_back(StartLine->GetOtherEndpoint(ReferencePoint)->node);
[065e82]4092
4093 ListOfPaths->push_back(connectedPath);
4094 } else {
[a67d19]4095 DoLog(1) && (Log() << Verbose(1) << "INFO: Skipping " << *runner->second << ", as we have already visited it." << endl);
[065e82]4096 }
4097 }
4098 } else {
[6613ec]4099 DoeLog(1) && (eLog() << Verbose(1) << "There are no lines attached to " << *ReferencePoint << "." << endl);
[065e82]4100 }
4101
4102 return ListOfPaths;
[62bb91]4103}
4104
[065e82]4105/** Gets all closed paths on the circle of points connected to the provided point by triangulation lines, if this very point is removed.
4106 * From GetPathsOfConnectedPoints() extracts all single loops of intracrossing paths in the list of closed paths.
4107 * @param *out output stream for debugging
4108 * @param *Point of which get all connected points
4109 * @return list of the closed paths
4110 */
[244a84]4111ListOfTesselPointList * Tesselation::GetClosedPathsOfConnectedPoints(const TesselPoint* const Point) const
[065e82]4112{
[6613ec]4113 Info FunctionInfo(__func__);
[c15ca2]4114 list<TesselPointList *> *ListofPaths = GetPathsOfConnectedPoints(Point);
[6613ec]4115 list<TesselPointList *> *ListofClosedPaths = new list<TesselPointList *> ;
[c15ca2]4116 TesselPointList *connectedPath = NULL;
4117 TesselPointList *newPath = NULL;
[065e82]4118 int count = 0;
[c15ca2]4119 TesselPointList::iterator CircleRunner;
4120 TesselPointList::iterator CircleStart;
[065e82]4121
[6613ec]4122 for (list<TesselPointList *>::iterator ListRunner = ListofPaths->begin(); ListRunner != ListofPaths->end(); ListRunner++) {
[065e82]4123 connectedPath = *ListRunner;
4124
[a67d19]4125 DoLog(1) && (Log() << Verbose(1) << "INFO: Current path is " << connectedPath << "." << endl);
[065e82]4126
4127 // go through list, look for reappearance of starting Point and count
4128 CircleStart = connectedPath->begin();
4129 // go through list, look for reappearance of starting Point and create list
[c15ca2]4130 TesselPointList::iterator Marker = CircleStart;
[065e82]4131 for (CircleRunner = CircleStart; CircleRunner != connectedPath->end(); CircleRunner++) {
4132 if ((*CircleRunner == *CircleStart) && (CircleRunner != CircleStart)) { // is not the very first point
4133 // we have a closed circle from Marker to new Marker
[a67d19]4134 DoLog(1) && (Log() << Verbose(1) << count + 1 << ". closed path consists of: ");
[c15ca2]4135 newPath = new TesselPointList;
4136 TesselPointList::iterator CircleSprinter = Marker;
[065e82]4137 for (; CircleSprinter != CircleRunner; CircleSprinter++) {
4138 newPath->push_back(*CircleSprinter);
[a67d19]4139 DoLog(0) && (Log() << Verbose(0) << (**CircleSprinter) << " <-> ");
[065e82]4140 }
[a67d19]4141 DoLog(0) && (Log() << Verbose(0) << ".." << endl);
[065e82]4142 count++;
4143 Marker = CircleRunner;
4144
4145 // add to list
4146 ListofClosedPaths->push_back(newPath);
4147 }
4148 }
4149 }
[a67d19]4150 DoLog(1) && (Log() << Verbose(1) << "INFO: " << count << " closed additional path(s) have been created." << endl);
[065e82]4151
4152 // delete list of paths
4153 while (!ListofPaths->empty()) {
4154 connectedPath = *(ListofPaths->begin());
4155 ListofPaths->remove(connectedPath);
[6613ec]4156 delete (connectedPath);
[065e82]4157 }
[6613ec]4158 delete (ListofPaths);
[065e82]4159
4160 // exit
4161 return ListofClosedPaths;
[6613ec]4162}
4163;
[065e82]4164
4165/** Gets all belonging triangles for a given BoundaryPointSet.
4166 * \param *out output stream for debugging
4167 * \param *Point BoundaryPoint
4168 * \return pointer to allocated list of triangles
4169 */
[c15ca2]4170TriangleSet *Tesselation::GetAllTriangles(const BoundaryPointSet * const Point) const
[065e82]4171{
[6613ec]4172 Info FunctionInfo(__func__);
4173 TriangleSet *connectedTriangles = new TriangleSet;
[065e82]4174
4175 if (Point == NULL) {
[6613ec]4176 DoeLog(1) && (eLog() << Verbose(1) << "Point given is NULL." << endl);
[065e82]4177 } else {
4178 // go through its lines and insert all triangles
[776b64]4179 for (LineMap::const_iterator LineRunner = Point->lines.begin(); LineRunner != Point->lines.end(); LineRunner++)
[065e82]4180 for (TriangleMap::iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
[6613ec]4181 connectedTriangles->insert(TriangleRunner->second);
4182 }
[065e82]4183 }
4184
4185 return connectedTriangles;
[6613ec]4186}
4187;
[065e82]4188
[16d866]4189/** Removes a boundary point from the envelope while keeping it closed.
[57066a]4190 * We remove the old triangles connected to the point and re-create new triangles to close the surface following this ansatz:
4191 * -# a closed path(s) of boundary points surrounding the point to be removed is constructed
4192 * -# on each closed path, we pick three adjacent points, create a triangle with them and subtract the middle point from the path
4193 * -# we advance two points (i.e. the next triangle will start at the ending point of the last triangle) and continue as before
4194 * -# the surface is closed, when the path is empty
4195 * Thereby, we (hopefully) make sure that the removed points remains beneath the surface (this is checked via IsInnerPoint eventually).
[16d866]4196 * \param *out output stream for debugging
4197 * \param *point point to be removed
4198 * \return volume added to the volume inside the tesselated surface by the removal
4199 */
[6613ec]4200double Tesselation::RemovePointFromTesselatedSurface(class BoundaryPointSet *point)
4201{
[16d866]4202 class BoundaryLineSet *line = NULL;
4203 class BoundaryTriangleSet *triangle = NULL;
[57066a]4204 Vector OldPoint, NormalVector;
[16d866]4205 double volume = 0;
4206 int count = 0;
4207
[1d9b7aa]4208 if (point == NULL) {
[6613ec]4209 DoeLog(1) && (eLog() << Verbose(1) << "Cannot remove the point " << point << ", it's NULL!" << endl);
[1d9b7aa]4210 return 0.;
4211 } else
[a67d19]4212 DoLog(0) && (Log() << Verbose(0) << "Removing point " << *point << " from tesselated boundary ..." << endl);
[1d9b7aa]4213
[16d866]4214 // copy old location for the volume
4215 OldPoint.CopyVector(point->node->node);
4216
4217 // get list of connected points
4218 if (point->lines.empty()) {
[6613ec]4219 DoeLog(1) && (eLog() << Verbose(1) << "Cannot remove the point " << *point << ", it's connected to no lines!" << endl);
[16d866]4220 return 0.;
4221 }
4222
[c15ca2]4223 list<TesselPointList *> *ListOfClosedPaths = GetClosedPathsOfConnectedPoints(point->node);
4224 TesselPointList *connectedPath = NULL;
[065e82]4225
4226 // gather all triangles
[16d866]4227 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
[6613ec]4228 count += LineRunner->second->triangles.size();
[c15ca2]4229 TriangleMap Candidates;
[57066a]4230 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
[16d866]4231 line = LineRunner->second;
4232 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
4233 triangle = TriangleRunner->second;
[6613ec]4234 Candidates.insert(TrianglePair(triangle->Nr, triangle));
[16d866]4235 }
4236 }
4237
[065e82]4238 // remove all triangles
[6613ec]4239 count = 0;
[57066a]4240 NormalVector.Zero();
[c15ca2]4241 for (TriangleMap::iterator Runner = Candidates.begin(); Runner != Candidates.end(); Runner++) {
[a67d19]4242 DoLog(1) && (Log() << Verbose(1) << "INFO: Removing triangle " << *(Runner->second) << "." << endl);
[c15ca2]4243 NormalVector.SubtractVector(&Runner->second->NormalVector); // has to point inward
4244 RemoveTesselationTriangle(Runner->second);
[065e82]4245 count++;
4246 }
[a67d19]4247 DoLog(1) && (Log() << Verbose(1) << count << " triangles were removed." << endl);
[065e82]4248
[c15ca2]4249 list<TesselPointList *>::iterator ListAdvance = ListOfClosedPaths->begin();
4250 list<TesselPointList *>::iterator ListRunner = ListAdvance;
4251 TriangleMap::iterator NumberRunner = Candidates.begin();
4252 TesselPointList::iterator StartNode, MiddleNode, EndNode;
[57066a]4253 double angle;
4254 double smallestangle;
4255 Vector Point, Reference, OrthogonalVector;
[6613ec]4256 if (count > 2) { // less than three triangles, then nothing will be created
[065e82]4257 class TesselPoint *TriangleCandidates[3];
4258 count = 0;
[6613ec]4259 for (; ListRunner != ListOfClosedPaths->end(); ListRunner = ListAdvance) { // go through all closed paths
[065e82]4260 if (ListAdvance != ListOfClosedPaths->end())
4261 ListAdvance++;
4262
4263 connectedPath = *ListRunner;
4264 // re-create all triangles by going through connected points list
[c15ca2]4265 LineList NewLines;
[6613ec]4266 for (; !connectedPath->empty();) {
[57066a]4267 // search middle node with widest angle to next neighbours
4268 EndNode = connectedPath->end();
4269 smallestangle = 0.;
4270 for (MiddleNode = connectedPath->begin(); MiddleNode != connectedPath->end(); MiddleNode++) {
[a67d19]4271 DoLog(1) && (Log() << Verbose(1) << "INFO: MiddleNode is " << **MiddleNode << "." << endl);
[57066a]4272 // construct vectors to next and previous neighbour
4273 StartNode = MiddleNode;
4274 if (StartNode == connectedPath->begin())
4275 StartNode = connectedPath->end();
4276 StartNode--;
[e138de]4277 //Log() << Verbose(3) << "INFO: StartNode is " << **StartNode << "." << endl;
[57066a]4278 Point.CopyVector((*StartNode)->node);
4279 Point.SubtractVector((*MiddleNode)->node);
4280 StartNode = MiddleNode;
4281 StartNode++;
4282 if (StartNode == connectedPath->end())
4283 StartNode = connectedPath->begin();
[e138de]4284 //Log() << Verbose(3) << "INFO: EndNode is " << **StartNode << "." << endl;
[57066a]4285 Reference.CopyVector((*StartNode)->node);
4286 Reference.SubtractVector((*MiddleNode)->node);
4287 OrthogonalVector.CopyVector((*MiddleNode)->node);
4288 OrthogonalVector.SubtractVector(&OldPoint);
4289 OrthogonalVector.MakeNormalVector(&Reference);
4290 angle = GetAngle(Point, Reference, OrthogonalVector);
4291 //if (angle < M_PI) // no wrong-sided triangles, please?
[6613ec]4292 if (fabs(angle - M_PI) < fabs(smallestangle - M_PI)) { // get straightest angle (i.e. construct those triangles with smallest area first)
4293 smallestangle = angle;
4294 EndNode = MiddleNode;
4295 }
[57066a]4296 }
4297 MiddleNode = EndNode;
4298 if (MiddleNode == connectedPath->end()) {
[6613ec]4299 DoeLog(0) && (eLog() << Verbose(0) << "CRITICAL: Could not find a smallest angle!" << endl);
[f67b6e]4300 performCriticalExit();
[57066a]4301 }
4302 StartNode = MiddleNode;
4303 if (StartNode == connectedPath->begin())
4304 StartNode = connectedPath->end();
4305 StartNode--;
4306 EndNode++;
4307 if (EndNode == connectedPath->end())
4308 EndNode = connectedPath->begin();
[a67d19]4309 DoLog(2) && (Log() << Verbose(2) << "INFO: StartNode is " << **StartNode << "." << endl);
4310 DoLog(2) && (Log() << Verbose(2) << "INFO: MiddleNode is " << **MiddleNode << "." << endl);
4311 DoLog(2) && (Log() << Verbose(2) << "INFO: EndNode is " << **EndNode << "." << endl);
4312 DoLog(1) && (Log() << Verbose(1) << "INFO: Attempting to create triangle " << (*StartNode)->Name << ", " << (*MiddleNode)->Name << " and " << (*EndNode)->Name << "." << endl);
[57066a]4313 TriangleCandidates[0] = *StartNode;
4314 TriangleCandidates[1] = *MiddleNode;
4315 TriangleCandidates[2] = *EndNode;
[e138de]4316 triangle = GetPresentTriangle(TriangleCandidates);
[57066a]4317 if (triangle != NULL) {
[6613ec]4318 DoeLog(0) && (eLog() << Verbose(0) << "New triangle already present, skipping!" << endl);
[57066a]4319 StartNode++;
4320 MiddleNode++;
4321 EndNode++;
4322 if (StartNode == connectedPath->end())
4323 StartNode = connectedPath->begin();
4324 if (MiddleNode == connectedPath->end())
4325 MiddleNode = connectedPath->begin();
4326 if (EndNode == connectedPath->end())
4327 EndNode = connectedPath->begin();
4328 continue;
4329 }
[a67d19]4330 DoLog(3) && (Log() << Verbose(3) << "Adding new triangle points." << endl);
[57066a]4331 AddTesselationPoint(*StartNode, 0);
4332 AddTesselationPoint(*MiddleNode, 1);
4333 AddTesselationPoint(*EndNode, 2);
[a67d19]4334 DoLog(3) && (Log() << Verbose(3) << "Adding new triangle lines." << endl);
[f07f86d]4335 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4336 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
[57066a]4337 NewLines.push_back(BLS[1]);
[f07f86d]4338 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
[065e82]4339 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[57066a]4340 BTS->GetNormalVector(NormalVector);
[065e82]4341 AddTesselationTriangle();
4342 // calculate volume summand as a general tetraeder
[c0f6c6]4343 volume += CalculateVolumeofGeneralTetraeder(*TPS[0]->node->node, *TPS[1]->node->node, *TPS[2]->node->node, OldPoint);
[065e82]4344 // advance number
4345 count++;
[57066a]4346
4347 // prepare nodes for next triangle
4348 StartNode = EndNode;
[a67d19]4349 DoLog(2) && (Log() << Verbose(2) << "Removing " << **MiddleNode << " from closed path, remaining points: " << connectedPath->size() << "." << endl);
[57066a]4350 connectedPath->remove(*MiddleNode); // remove the middle node (it is surrounded by triangles)
4351 if (connectedPath->size() == 2) { // we are done
4352 connectedPath->remove(*StartNode); // remove the start node
4353 connectedPath->remove(*EndNode); // remove the end node
4354 break;
4355 } else if (connectedPath->size() < 2) { // something's gone wrong!
[6613ec]4356 DoeLog(0) && (eLog() << Verbose(0) << "CRITICAL: There are only two endpoints left!" << endl);
[f67b6e]4357 performCriticalExit();
[57066a]4358 } else {
4359 MiddleNode = StartNode;
4360 MiddleNode++;
4361 if (MiddleNode == connectedPath->end())
4362 MiddleNode = connectedPath->begin();
4363 EndNode = MiddleNode;
4364 EndNode++;
4365 if (EndNode == connectedPath->end())
4366 EndNode = connectedPath->begin();
4367 }
[065e82]4368 }
[57066a]4369 // maximize the inner lines (we preferentially created lines with a huge angle, which is for the tesselation not wanted though useful for the closing)
4370 if (NewLines.size() > 1) {
[c15ca2]4371 LineList::iterator Candidate;
[57066a]4372 class BoundaryLineSet *OtherBase = NULL;
4373 double tmp, maxgain;
4374 do {
4375 maxgain = 0;
[6613ec]4376 for (LineList::iterator Runner = NewLines.begin(); Runner != NewLines.end(); Runner++) {
[e138de]4377 tmp = PickFarthestofTwoBaselines(*Runner);
[57066a]4378 if (maxgain < tmp) {
4379 maxgain = tmp;
4380 Candidate = Runner;
4381 }
4382 }
4383 if (maxgain != 0) {
4384 volume += maxgain;
[a67d19]4385 DoLog(1) && (Log() << Verbose(1) << "Flipping baseline with highest volume" << **Candidate << "." << endl);
[e138de]4386 OtherBase = FlipBaseline(*Candidate);
[57066a]4387 NewLines.erase(Candidate);
4388 NewLines.push_back(OtherBase);
4389 }
4390 } while (maxgain != 0.);
4391 }
4392
[065e82]4393 ListOfClosedPaths->remove(connectedPath);
[6613ec]4394 delete (connectedPath);
[16d866]4395 }
[a67d19]4396 DoLog(0) && (Log() << Verbose(0) << count << " triangles were created." << endl);
[065e82]4397 } else {
4398 while (!ListOfClosedPaths->empty()) {
4399 ListRunner = ListOfClosedPaths->begin();
4400 connectedPath = *ListRunner;
4401 ListOfClosedPaths->remove(connectedPath);
[6613ec]4402 delete (connectedPath);
[065e82]4403 }
[a67d19]4404 DoLog(0) && (Log() << Verbose(0) << "No need to create any triangles." << endl);
[16d866]4405 }
[6613ec]4406 delete (ListOfClosedPaths);
[16d866]4407
[a67d19]4408 DoLog(0) && (Log() << Verbose(0) << "Removed volume is " << volume << "." << endl);
[357fba]4409
[57066a]4410 return volume;
[6613ec]4411}
4412;
[ab1932]4413
4414/**
[62bb91]4415 * Finds triangles belonging to the three provided points.
[ab1932]4416 *
[71b20e]4417 * @param *Points[3] list, is expected to contain three points (NULL means wildcard)
[ab1932]4418 *
[62bb91]4419 * @return triangles which belong to the provided points, will be empty if there are none,
[ab1932]4420 * will usually be one, in case of degeneration, there will be two
4421 */
[c15ca2]4422TriangleList *Tesselation::FindTriangles(const TesselPoint* const Points[3]) const
[ab1932]4423{
[6613ec]4424 Info FunctionInfo(__func__);
4425 TriangleList *result = new TriangleList;
[776b64]4426 LineMap::const_iterator FindLine;
4427 TriangleMap::const_iterator FindTriangle;
[ab1932]4428 class BoundaryPointSet *TrianglePoints[3];
[71b20e]4429 size_t NoOfWildcards = 0;
[ab1932]4430
4431 for (int i = 0; i < 3; i++) {
[71b20e]4432 if (Points[i] == NULL) {
4433 NoOfWildcards++;
[ab1932]4434 TrianglePoints[i] = NULL;
[71b20e]4435 } else {
4436 PointMap::const_iterator FindPoint = PointsOnBoundary.find(Points[i]->nr);
4437 if (FindPoint != PointsOnBoundary.end()) {
4438 TrianglePoints[i] = FindPoint->second;
4439 } else {
4440 TrianglePoints[i] = NULL;
4441 }
[ab1932]4442 }
4443 }
4444
[71b20e]4445 switch (NoOfWildcards) {
4446 case 0: // checks lines between the points in the Points for their adjacent triangles
4447 for (int i = 0; i < 3; i++) {
4448 if (TrianglePoints[i] != NULL) {
[6613ec]4449 for (int j = i + 1; j < 3; j++) {
[71b20e]4450 if (TrianglePoints[j] != NULL) {
4451 for (FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr); // is a multimap!
[6613ec]4452 (FindLine != TrianglePoints[i]->lines.end()) && (FindLine->first == TrianglePoints[j]->node->nr); FindLine++) {
4453 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
[71b20e]4454 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
4455 result->push_back(FindTriangle->second);
4456 }
4457 }
[ab1932]4458 }
[71b20e]4459 // Is it sufficient to consider one of the triangle lines for this.
4460 return result;
[ab1932]4461 }
4462 }
4463 }
4464 }
[71b20e]4465 break;
4466 case 1: // copy all triangles of the respective line
4467 {
[6613ec]4468 int i = 0;
[71b20e]4469 for (; i < 3; i++)
4470 if (TrianglePoints[i] == NULL)
4471 break;
[6613ec]4472 for (FindLine = TrianglePoints[(i + 1) % 3]->lines.find(TrianglePoints[(i + 2) % 3]->node->nr); // is a multimap!
4473 (FindLine != TrianglePoints[(i + 1) % 3]->lines.end()) && (FindLine->first == TrianglePoints[(i + 2) % 3]->node->nr); FindLine++) {
4474 for (FindTriangle = FindLine->second->triangles.begin(); FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
[71b20e]4475 if (FindTriangle->second->IsPresentTupel(TrianglePoints)) {
4476 result->push_back(FindTriangle->second);
4477 }
4478 }
4479 }
4480 break;
4481 }
4482 case 2: // copy all triangles of the respective point
4483 {
[6613ec]4484 int i = 0;
[71b20e]4485 for (; i < 3; i++)
4486 if (TrianglePoints[i] != NULL)
4487 break;
4488 for (LineMap::const_iterator line = TrianglePoints[i]->lines.begin(); line != TrianglePoints[i]->lines.end(); line++)
4489 for (TriangleMap::const_iterator triangle = line->second->triangles.begin(); triangle != line->second->triangles.end(); triangle++)
4490 result->push_back(triangle->second);
4491 result->sort();
4492 result->unique();
4493 break;
4494 }
4495 case 3: // copy all triangles
4496 {
4497 for (TriangleMap::const_iterator triangle = TrianglesOnBoundary.begin(); triangle != TrianglesOnBoundary.end(); triangle++)
4498 result->push_back(triangle->second);
4499 break;
[ab1932]4500 }
[71b20e]4501 default:
[6613ec]4502 DoeLog(0) && (eLog() << Verbose(0) << "Number of wildcards is greater than 3, cannot happen!" << endl);
[71b20e]4503 performCriticalExit();
4504 break;
[ab1932]4505 }
4506
4507 return result;
4508}
4509
[6613ec]4510struct BoundaryLineSetCompare
4511{
4512 bool operator()(const BoundaryLineSet * const a, const BoundaryLineSet * const b)
4513 {
[856098]4514 int lowerNra = -1;
4515 int lowerNrb = -1;
4516
4517 if (a->endpoints[0] < a->endpoints[1])
4518 lowerNra = 0;
4519 else
4520 lowerNra = 1;
4521
4522 if (b->endpoints[0] < b->endpoints[1])
4523 lowerNrb = 0;
4524 else
4525 lowerNrb = 1;
4526
4527 if (a->endpoints[lowerNra] < b->endpoints[lowerNrb])
4528 return true;
4529 else if (a->endpoints[lowerNra] > b->endpoints[lowerNrb])
4530 return false;
[6613ec]4531 else { // both lower-numbered endpoints are the same ...
4532 if (a->endpoints[(lowerNra + 1) % 2] < b->endpoints[(lowerNrb + 1) % 2])
4533 return true;
4534 else if (a->endpoints[(lowerNra + 1) % 2] > b->endpoints[(lowerNrb + 1) % 2])
4535 return false;
[856098]4536 }
4537 return false;
[6613ec]4538 }
4539 ;
[856098]4540};
4541
4542#define UniqueLines set < class BoundaryLineSet *, BoundaryLineSetCompare>
4543
[7c14ec]4544/**
[57066a]4545 * Finds all degenerated lines within the tesselation structure.
[7c14ec]4546 *
[57066a]4547 * @return map of keys of degenerated line pairs, each line occurs twice
[7c14ec]4548 * in the list, once as key and once as value
4549 */
[c15ca2]4550IndexToIndex * Tesselation::FindAllDegeneratedLines()
[7c14ec]4551{
[6613ec]4552 Info FunctionInfo(__func__);
4553 UniqueLines AllLines;
[c15ca2]4554 IndexToIndex * DegeneratedLines = new IndexToIndex;
[7c14ec]4555
4556 // sanity check
4557 if (LinesOnBoundary.empty()) {
[6613ec]4558 DoeLog(2) && (eLog() << Verbose(2) << "FindAllDegeneratedTriangles() was called without any tesselation structure.");
[57066a]4559 return DegeneratedLines;
[7c14ec]4560 }
[57066a]4561 LineMap::iterator LineRunner1;
[6613ec]4562 pair<UniqueLines::iterator, bool> tester;
[7c14ec]4563 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
[6613ec]4564 tester = AllLines.insert(LineRunner1->second);
[856098]4565 if (!tester.second) { // found degenerated line
[6613ec]4566 DegeneratedLines->insert(pair<int, int> (LineRunner1->second->Nr, (*tester.first)->Nr));
4567 DegeneratedLines->insert(pair<int, int> ((*tester.first)->Nr, LineRunner1->second->Nr));
[57066a]4568 }
4569 }
4570
4571 AllLines.clear();
4572
[a67d19]4573 DoLog(0) && (Log() << Verbose(0) << "FindAllDegeneratedLines() found " << DegeneratedLines->size() << " lines." << endl);
[c15ca2]4574 IndexToIndex::iterator it;
[856098]4575 for (it = DegeneratedLines->begin(); it != DegeneratedLines->end(); it++) {
4576 const LineMap::const_iterator Line1 = LinesOnBoundary.find((*it).first);
4577 const LineMap::const_iterator Line2 = LinesOnBoundary.find((*it).second);
4578 if (Line1 != LinesOnBoundary.end() && Line2 != LinesOnBoundary.end())
[a67d19]4579 DoLog(0) && (Log() << Verbose(0) << *Line1->second << " => " << *Line2->second << endl);
[856098]4580 else
[6613ec]4581 DoeLog(1) && (eLog() << Verbose(1) << "Either " << (*it).first << " or " << (*it).second << " are not in LinesOnBoundary!" << endl);
[856098]4582 }
[57066a]4583
4584 return DegeneratedLines;
4585}
4586
4587/**
4588 * Finds all degenerated triangles within the tesselation structure.
4589 *
4590 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
4591 * in the list, once as key and once as value
4592 */
[c15ca2]4593IndexToIndex * Tesselation::FindAllDegeneratedTriangles()
[57066a]4594{
[6613ec]4595 Info FunctionInfo(__func__);
[c15ca2]4596 IndexToIndex * DegeneratedLines = FindAllDegeneratedLines();
4597 IndexToIndex * DegeneratedTriangles = new IndexToIndex;
[57066a]4598 TriangleMap::iterator TriangleRunner1, TriangleRunner2;
4599 LineMap::iterator Liner;
4600 class BoundaryLineSet *line1 = NULL, *line2 = NULL;
4601
[c15ca2]4602 for (IndexToIndex::iterator LineRunner = DegeneratedLines->begin(); LineRunner != DegeneratedLines->end(); ++LineRunner) {
[57066a]4603 // run over both lines' triangles
4604 Liner = LinesOnBoundary.find(LineRunner->first);
4605 if (Liner != LinesOnBoundary.end())
4606 line1 = Liner->second;
4607 Liner = LinesOnBoundary.find(LineRunner->second);
4608 if (Liner != LinesOnBoundary.end())
4609 line2 = Liner->second;
4610 for (TriangleRunner1 = line1->triangles.begin(); TriangleRunner1 != line1->triangles.end(); ++TriangleRunner1) {
4611 for (TriangleRunner2 = line2->triangles.begin(); TriangleRunner2 != line2->triangles.end(); ++TriangleRunner2) {
[6613ec]4612 if ((TriangleRunner1->second != TriangleRunner2->second) && (TriangleRunner1->second->IsPresentTupel(TriangleRunner2->second))) {
4613 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner1->second->Nr, TriangleRunner2->second->Nr));
4614 DegeneratedTriangles->insert(pair<int, int> (TriangleRunner2->second->Nr, TriangleRunner1->second->Nr));
[7c14ec]4615 }
4616 }
4617 }
4618 }
[6613ec]4619 delete (DegeneratedLines);
[7c14ec]4620
[a67d19]4621 DoLog(0) && (Log() << Verbose(0) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles->size() << " triangles:" << endl);
[c15ca2]4622 IndexToIndex::iterator it;
[57066a]4623 for (it = DegeneratedTriangles->begin(); it != DegeneratedTriangles->end(); it++)
[a67d19]4624 DoLog(0) && (Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl);
[7c14ec]4625
4626 return DegeneratedTriangles;
4627}
4628
4629/**
4630 * Purges degenerated triangles from the tesselation structure if they are not
4631 * necessary to keep a single point within the structure.
4632 */
4633void Tesselation::RemoveDegeneratedTriangles()
4634{
[6613ec]4635 Info FunctionInfo(__func__);
[c15ca2]4636 IndexToIndex * DegeneratedTriangles = FindAllDegeneratedTriangles();
[57066a]4637 TriangleMap::iterator finder;
4638 BoundaryTriangleSet *triangle = NULL, *partnerTriangle = NULL;
[6613ec]4639 int count = 0;
[7c14ec]4640
[6613ec]4641 for (IndexToIndex::iterator TriangleKeyRunner = DegeneratedTriangles->begin(); TriangleKeyRunner != DegeneratedTriangles->end(); ++TriangleKeyRunner) {
[57066a]4642 finder = TrianglesOnBoundary.find(TriangleKeyRunner->first);
4643 if (finder != TrianglesOnBoundary.end())
4644 triangle = finder->second;
4645 else
4646 break;
4647 finder = TrianglesOnBoundary.find(TriangleKeyRunner->second);
4648 if (finder != TrianglesOnBoundary.end())
4649 partnerTriangle = finder->second;
4650 else
4651 break;
[7c14ec]4652
4653 bool trianglesShareLine = false;
4654 for (int i = 0; i < 3; ++i)
4655 for (int j = 0; j < 3; ++j)
4656 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
4657
[6613ec]4658 if (trianglesShareLine && (triangle->endpoints[1]->LinesCount > 2) && (triangle->endpoints[2]->LinesCount > 2) && (triangle->endpoints[0]->LinesCount > 2)) {
[57066a]4659 // check whether we have to fix lines
4660 BoundaryTriangleSet *Othertriangle = NULL;
4661 BoundaryTriangleSet *OtherpartnerTriangle = NULL;
4662 TriangleMap::iterator TriangleRunner;
4663 for (int i = 0; i < 3; ++i)
4664 for (int j = 0; j < 3; ++j)
4665 if (triangle->lines[i] != partnerTriangle->lines[j]) {
4666 // get the other two triangles
4667 for (TriangleRunner = triangle->lines[i]->triangles.begin(); TriangleRunner != triangle->lines[i]->triangles.end(); ++TriangleRunner)
4668 if (TriangleRunner->second != triangle) {
4669 Othertriangle = TriangleRunner->second;
4670 }
4671 for (TriangleRunner = partnerTriangle->lines[i]->triangles.begin(); TriangleRunner != partnerTriangle->lines[i]->triangles.end(); ++TriangleRunner)
4672 if (TriangleRunner->second != partnerTriangle) {
4673 OtherpartnerTriangle = TriangleRunner->second;
4674 }
4675 /// interchanges their lines so that triangle->lines[i] == partnerTriangle->lines[j]
4676 // the line of triangle receives the degenerated ones
4677 triangle->lines[i]->triangles.erase(Othertriangle->Nr);
[6613ec]4678 triangle->lines[i]->triangles.insert(TrianglePair(partnerTriangle->Nr, partnerTriangle));
4679 for (int k = 0; k < 3; k++)
[57066a]4680 if (triangle->lines[i] == Othertriangle->lines[k]) {
4681 Othertriangle->lines[k] = partnerTriangle->lines[j];
4682 break;
4683 }
4684 // the line of partnerTriangle receives the non-degenerated ones
[6613ec]4685 partnerTriangle->lines[j]->triangles.erase(partnerTriangle->Nr);
4686 partnerTriangle->lines[j]->triangles.insert(TrianglePair(Othertriangle->Nr, Othertriangle));
[57066a]4687 partnerTriangle->lines[j] = triangle->lines[i];
4688 }
4689
4690 // erase the pair
4691 count += (int) DegeneratedTriangles->erase(triangle->Nr);
[a67d19]4692 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl);
[7c14ec]4693 RemoveTesselationTriangle(triangle);
[57066a]4694 count += (int) DegeneratedTriangles->erase(partnerTriangle->Nr);
[a67d19]4695 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl);
[7c14ec]4696 RemoveTesselationTriangle(partnerTriangle);
4697 } else {
[a67d19]4698 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle << " and its partner " << *partnerTriangle << " because it is essential for at" << " least one of the endpoints to be kept in the tesselation structure." << endl);
[7c14ec]4699 }
4700 }
[6613ec]4701 delete (DegeneratedTriangles);
[6a7f78c]4702 if (count > 0)
4703 LastTriangle = NULL;
[57066a]4704
[a67d19]4705 DoLog(0) && (Log() << Verbose(0) << "RemoveDegeneratedTriangles() removed " << count << " triangles:" << endl);
[7c14ec]4706}
4707
[57066a]4708/** Adds an outside Tesselpoint to the envelope via (two) degenerated triangles.
4709 * We look for the closest point on the boundary, we look through its connected boundary lines and
4710 * seek the one with the minimum angle between its center point and the new point and this base line.
4711 * We open up the line by adding a degenerated triangle, whose other side closes the base line again.
4712 * \param *out output stream for debugging
4713 * \param *point point to add
4714 * \param *LC Linked Cell structure to find nearest point
[ab1932]4715 */
[e138de]4716void Tesselation::AddBoundaryPointByDegeneratedTriangle(class TesselPoint *point, LinkedCell *LC)
[ab1932]4717{
[6613ec]4718 Info FunctionInfo(__func__);
[57066a]4719 // find nearest boundary point
4720 class TesselPoint *BackupPoint = NULL;
[71b20e]4721 class TesselPoint *NearestPoint = FindClosestTesselPoint(point->node, BackupPoint, LC);
[57066a]4722 class BoundaryPointSet *NearestBoundaryPoint = NULL;
4723 PointMap::iterator PointRunner;
4724
4725 if (NearestPoint == point)
4726 NearestPoint = BackupPoint;
4727 PointRunner = PointsOnBoundary.find(NearestPoint->nr);
4728 if (PointRunner != PointsOnBoundary.end()) {
4729 NearestBoundaryPoint = PointRunner->second;
4730 } else {
[6613ec]4731 DoeLog(1) && (eLog() << Verbose(1) << "I cannot find the boundary point." << endl);
[57066a]4732 return;
4733 }
[a67d19]4734 DoLog(0) && (Log() << Verbose(0) << "Nearest point on boundary is " << NearestPoint->Name << "." << endl);
[57066a]4735
4736 // go through its lines and find the best one to split
4737 Vector CenterToPoint;
4738 Vector BaseLine;
4739 double angle, BestAngle = 0.;
4740 class BoundaryLineSet *BestLine = NULL;
4741 for (LineMap::iterator Runner = NearestBoundaryPoint->lines.begin(); Runner != NearestBoundaryPoint->lines.end(); Runner++) {
4742 BaseLine.CopyVector(Runner->second->endpoints[0]->node->node);
4743 BaseLine.SubtractVector(Runner->second->endpoints[1]->node->node);
4744 CenterToPoint.CopyVector(Runner->second->endpoints[0]->node->node);
4745 CenterToPoint.AddVector(Runner->second->endpoints[1]->node->node);
4746 CenterToPoint.Scale(0.5);
4747 CenterToPoint.SubtractVector(point->node);
4748 angle = CenterToPoint.Angle(&BaseLine);
[6613ec]4749 if (fabs(angle - M_PI / 2.) < fabs(BestAngle - M_PI / 2.)) {
[57066a]4750 BestAngle = angle;
4751 BestLine = Runner->second;
4752 }
[ab1932]4753 }
4754
[57066a]4755 // remove one triangle from the chosen line
4756 class BoundaryTriangleSet *TempTriangle = (BestLine->triangles.begin())->second;
4757 BestLine->triangles.erase(TempTriangle->Nr);
4758 int nr = -1;
[6613ec]4759 for (int i = 0; i < 3; i++) {
[57066a]4760 if (TempTriangle->lines[i] == BestLine) {
4761 nr = i;
4762 break;
4763 }
4764 }
[ab1932]4765
[57066a]4766 // create new triangle to connect point (connects automatically with the missing spot of the chosen line)
[a67d19]4767 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle points." << endl);
[57066a]4768 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
4769 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
4770 AddTesselationPoint(point, 2);
[a67d19]4771 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle lines." << endl);
[f07f86d]4772 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4773 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
4774 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
[57066a]4775 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4776 BTS->GetNormalVector(TempTriangle->NormalVector);
4777 BTS->NormalVector.Scale(-1.);
[a67d19]4778 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of new triangle is " << BTS->NormalVector << "." << endl);
[57066a]4779 AddTesselationTriangle();
4780
4781 // create other side of this triangle and close both new sides of the first created triangle
[a67d19]4782 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle points." << endl);
[57066a]4783 AddTesselationPoint((BestLine->endpoints[0]->node), 0);
4784 AddTesselationPoint((BestLine->endpoints[1]->node), 1);
4785 AddTesselationPoint(point, 2);
[a67d19]4786 DoLog(2) && (Log() << Verbose(2) << "Adding new triangle lines." << endl);
[f07f86d]4787 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
4788 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
4789 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
[57066a]4790 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
4791 BTS->GetNormalVector(TempTriangle->NormalVector);
[a67d19]4792 DoLog(1) && (Log() << Verbose(1) << "INFO: NormalVector of other new triangle is " << BTS->NormalVector << "." << endl);
[57066a]4793 AddTesselationTriangle();
4794
4795 // add removed triangle to the last open line of the second triangle
[6613ec]4796 for (int i = 0; i < 3; i++) { // look for the same line as BestLine (only it's its degenerated companion)
[57066a]4797 if ((BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[0])) && (BTS->lines[i]->ContainsBoundaryPoint(BestLine->endpoints[1]))) {
[6613ec]4798 if (BestLine == BTS->lines[i]) {
4799 DoeLog(0) && (eLog() << Verbose(0) << "BestLine is same as found line, something's wrong here!" << endl);
[f67b6e]4800 performCriticalExit();
[57066a]4801 }
[6613ec]4802 BTS->lines[i]->triangles.insert(pair<int, class BoundaryTriangleSet *> (TempTriangle->Nr, TempTriangle));
[57066a]4803 TempTriangle->lines[nr] = BTS->lines[i];
4804 break;
4805 }
4806 }
[6613ec]4807}
4808;
[57066a]4809
4810/** Writes the envelope to file.
4811 * \param *out otuput stream for debugging
4812 * \param *filename basename of output file
4813 * \param *cloud PointCloud structure with all nodes
4814 */
[e138de]4815void Tesselation::Output(const char *filename, const PointCloud * const cloud)
[57066a]4816{
[6613ec]4817 Info FunctionInfo(__func__);
[57066a]4818 ofstream *tempstream = NULL;
4819 string NameofTempFile;
4820 char NumberName[255];
4821
4822 if (LastTriangle != NULL) {
[6613ec]4823 sprintf(NumberName, "-%04d-%s_%s_%s", (int) TrianglesOnBoundary.size(), LastTriangle->endpoints[0]->node->Name, LastTriangle->endpoints[1]->node->Name, LastTriangle->endpoints[2]->node->Name);
[57066a]4824 if (DoTecplotOutput) {
4825 string NameofTempFile(filename);
4826 NameofTempFile.append(NumberName);
[6613ec]4827 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
4828 NameofTempFile.erase(npos, 1);
[57066a]4829 NameofTempFile.append(TecplotSuffix);
[a67d19]4830 DoLog(0) && (Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n");
[57066a]4831 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
[e138de]4832 WriteTecplotFile(tempstream, this, cloud, TriangleFilesWritten);
[57066a]4833 tempstream->close();
4834 tempstream->flush();
[6613ec]4835 delete (tempstream);
[57066a]4836 }
4837
4838 if (DoRaster3DOutput) {
4839 string NameofTempFile(filename);
4840 NameofTempFile.append(NumberName);
[6613ec]4841 for (size_t npos = NameofTempFile.find_first_of(' '); npos != string::npos; npos = NameofTempFile.find(' ', npos))
4842 NameofTempFile.erase(npos, 1);
[57066a]4843 NameofTempFile.append(Raster3DSuffix);
[a67d19]4844 DoLog(0) && (Log() << Verbose(0) << "Writing temporary non convex hull to file " << NameofTempFile << ".\n");
[57066a]4845 tempstream = new ofstream(NameofTempFile.c_str(), ios::trunc);
[e138de]4846 WriteRaster3dFile(tempstream, this, cloud);
4847 IncludeSphereinRaster3D(tempstream, this, cloud);
[57066a]4848 tempstream->close();
4849 tempstream->flush();
[6613ec]4850 delete (tempstream);
[57066a]4851 }
4852 }
4853 if (DoTecplotOutput || DoRaster3DOutput)
4854 TriangleFilesWritten++;
[6613ec]4855}
4856;
[262bae]4857
[6613ec]4858struct BoundaryPolygonSetCompare
4859{
4860 bool operator()(const BoundaryPolygonSet * s1, const BoundaryPolygonSet * s2) const
4861 {
[856098]4862 if (s1->endpoints.size() < s2->endpoints.size())
4863 return true;
4864 else if (s1->endpoints.size() > s2->endpoints.size())
4865 return false;
4866 else { // equality of number of endpoints
4867 PointSet::const_iterator Walker1 = s1->endpoints.begin();
4868 PointSet::const_iterator Walker2 = s2->endpoints.begin();
4869 while ((Walker1 != s1->endpoints.end()) || (Walker2 != s2->endpoints.end())) {
4870 if ((*Walker1)->Nr < (*Walker2)->Nr)
4871 return true;
4872 else if ((*Walker1)->Nr > (*Walker2)->Nr)
4873 return false;
4874 Walker1++;
4875 Walker2++;
4876 }
4877 return false;
4878 }
4879 }
4880};
4881
4882#define UniquePolygonSet set < BoundaryPolygonSet *, BoundaryPolygonSetCompare>
4883
[262bae]4884/** Finds all degenerated polygons and calls ReTesselateDegeneratedPolygon()/
4885 * \return number of polygons found
4886 */
4887int Tesselation::CorrectAllDegeneratedPolygons()
4888{
4889 Info FunctionInfo(__func__);
[fad93c]4890 /// 2. Go through all BoundaryPointSet's, check their triangles' NormalVector
[c15ca2]4891 IndexToIndex *DegeneratedTriangles = FindAllDegeneratedTriangles();
[6613ec]4892 set<BoundaryPointSet *> EndpointCandidateList;
4893 pair<set<BoundaryPointSet *>::iterator, bool> InsertionTester;
4894 pair<map<int, Vector *>::iterator, bool> TriangleInsertionTester;
[fad93c]4895 for (PointMap::const_iterator Runner = PointsOnBoundary.begin(); Runner != PointsOnBoundary.end(); Runner++) {
[a67d19]4896 DoLog(0) && (Log() << Verbose(0) << "Current point is " << *Runner->second << "." << endl);
[6613ec]4897 map<int, Vector *> TriangleVectors;
[fad93c]4898 // gather all NormalVectors
[a67d19]4899 DoLog(1) && (Log() << Verbose(1) << "Gathering triangles ..." << endl);
[fad93c]4900 for (LineMap::const_iterator LineRunner = (Runner->second)->lines.begin(); LineRunner != (Runner->second)->lines.end(); LineRunner++)
4901 for (TriangleMap::const_iterator TriangleRunner = (LineRunner->second)->triangles.begin(); TriangleRunner != (LineRunner->second)->triangles.end(); TriangleRunner++) {
[b998c3]4902 if (DegeneratedTriangles->find(TriangleRunner->second->Nr) == DegeneratedTriangles->end()) {
[6613ec]4903 TriangleInsertionTester = TriangleVectors.insert(pair<int, Vector *> ((TriangleRunner->second)->Nr, &((TriangleRunner->second)->NormalVector)));
[b998c3]4904 if (TriangleInsertionTester.second)
[a67d19]4905 DoLog(1) && (Log() << Verbose(1) << " Adding triangle " << *(TriangleRunner->second) << " to triangles to check-list." << endl);
[b998c3]4906 } else {
[a67d19]4907 DoLog(1) && (Log() << Verbose(1) << " NOT adding triangle " << *(TriangleRunner->second) << " as it's a simply degenerated one." << endl);
[b998c3]4908 }
[fad93c]4909 }
4910 // check whether there are two that are parallel
[a67d19]4911 DoLog(1) && (Log() << Verbose(1) << "Finding two parallel triangles ..." << endl);
[6613ec]4912 for (map<int, Vector *>::iterator VectorWalker = TriangleVectors.begin(); VectorWalker != TriangleVectors.end(); VectorWalker++)
4913 for (map<int, Vector *>::iterator VectorRunner = VectorWalker; VectorRunner != TriangleVectors.end(); VectorRunner++)
[fad93c]4914 if (VectorWalker != VectorRunner) { // skip equals
[6613ec]4915 const double SCP = VectorWalker->second->ScalarProduct(VectorRunner->second); // ScalarProduct should result in -1. for degenerated triangles
[a67d19]4916 DoLog(1) && (Log() << Verbose(1) << "Checking " << *VectorWalker->second << " against " << *VectorRunner->second << ": " << SCP << endl);
[fad93c]4917 if (fabs(SCP + 1.) < ParallelEpsilon) {
4918 InsertionTester = EndpointCandidateList.insert((Runner->second));
4919 if (InsertionTester.second)
[a67d19]4920 DoLog(0) && (Log() << Verbose(0) << " Adding " << *Runner->second << " to endpoint candidate list." << endl);
[fad93c]4921 // and break out of both loops
4922 VectorWalker = TriangleVectors.end();
4923 VectorRunner = TriangleVectors.end();
4924 break;
4925 }
4926 }
4927 }
[6613ec]4928 delete (DegeneratedTriangles);
[fad93c]4929 /// 3. Find connected endpoint candidates and put them into a polygon
4930 UniquePolygonSet ListofDegeneratedPolygons;
4931 BoundaryPointSet *Walker = NULL;
4932 BoundaryPointSet *OtherWalker = NULL;
4933 BoundaryPolygonSet *Current = NULL;
[6613ec]4934 stack<BoundaryPointSet*> ToCheckConnecteds;
[fad93c]4935 while (!EndpointCandidateList.empty()) {
4936 Walker = *(EndpointCandidateList.begin());
[6613ec]4937 if (Current == NULL) { // create a new polygon with current candidate
[a67d19]4938 DoLog(0) && (Log() << Verbose(0) << "Starting new polygon set at point " << *Walker << endl);
[fad93c]4939 Current = new BoundaryPolygonSet;
4940 Current->endpoints.insert(Walker);
4941 EndpointCandidateList.erase(Walker);
4942 ToCheckConnecteds.push(Walker);
[856098]4943 }
[262bae]4944
[fad93c]4945 // go through to-check stack
4946 while (!ToCheckConnecteds.empty()) {
4947 Walker = ToCheckConnecteds.top(); // fetch ...
4948 ToCheckConnecteds.pop(); // ... and remove
4949 for (LineMap::const_iterator LineWalker = Walker->lines.begin(); LineWalker != Walker->lines.end(); LineWalker++) {
4950 OtherWalker = (LineWalker->second)->GetOtherEndpoint(Walker);
[a67d19]4951 DoLog(1) && (Log() << Verbose(1) << "Checking " << *OtherWalker << endl);
[6613ec]4952 set<BoundaryPointSet *>::iterator Finder = EndpointCandidateList.find(OtherWalker);
4953 if (Finder != EndpointCandidateList.end()) { // found a connected partner
[a67d19]4954 DoLog(1) && (Log() << Verbose(1) << " Adding to polygon." << endl);
[fad93c]4955 Current->endpoints.insert(OtherWalker);
[6613ec]4956 EndpointCandidateList.erase(Finder); // remove from candidates
4957 ToCheckConnecteds.push(OtherWalker); // but check its partners too
[856098]4958 } else {
[a67d19]4959 DoLog(1) && (Log() << Verbose(1) << " is not connected to " << *Walker << endl);
[856098]4960 }
4961 }
4962 }
[262bae]4963
[a67d19]4964 DoLog(0) && (Log() << Verbose(0) << "Final polygon is " << *Current << endl);
[fad93c]4965 ListofDegeneratedPolygons.insert(Current);
4966 Current = NULL;
[262bae]4967 }
4968
[fad93c]4969 const int counter = ListofDegeneratedPolygons.size();
[262bae]4970
[a67d19]4971 DoLog(0) && (Log() << Verbose(0) << "The following " << counter << " degenerated polygons have been found: " << endl);
[fad93c]4972 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++)
[a67d19]4973 DoLog(0) && (Log() << Verbose(0) << " " << **PolygonRunner << endl);
[856098]4974
[262bae]4975 /// 4. Go through all these degenerated polygons
[fad93c]4976 for (UniquePolygonSet::iterator PolygonRunner = ListofDegeneratedPolygons.begin(); PolygonRunner != ListofDegeneratedPolygons.end(); PolygonRunner++) {
[6613ec]4977 stack<int> TriangleNrs;
[856098]4978 Vector NormalVector;
[262bae]4979 /// 4a. Gather all triangles of this polygon
[856098]4980 TriangleSet *T = (*PolygonRunner)->GetAllContainedTrianglesFromEndpoints();
[262bae]4981
[125b3c]4982 // check whether number is bigger than 2, otherwise it's just a simply degenerated one and nothing to do.
[b998c3]4983 if (T->size() == 2) {
[a67d19]4984 DoLog(1) && (Log() << Verbose(1) << " Skipping degenerated polygon, is just a (already simply degenerated) triangle." << endl);
[6613ec]4985 delete (T);
[b998c3]4986 continue;
4987 }
4988
[125b3c]4989 // check whether number is even
4990 // If this case occurs, we have to think about it!
4991 // The Problem is probably due to two degenerated polygons being connected by a bridging, non-degenerated polygon, as somehow one node has
4992 // connections to either polygon ...
4993 if (T->size() % 2 != 0) {
[6613ec]4994 DoeLog(0) && (eLog() << Verbose(0) << " degenerated polygon contains an odd number of triangles, probably contains bridging non-degenerated ones, too!" << endl);
[125b3c]4995 performCriticalExit();
4996 }
[6613ec]4997 TriangleSet::iterator TriangleWalker = T->begin(); // is the inner iterator
[262bae]4998 /// 4a. Get NormalVector for one side (this is "front")
[856098]4999 NormalVector.CopyVector(&(*TriangleWalker)->NormalVector);
[a67d19]5000 DoLog(1) && (Log() << Verbose(1) << "\"front\" defining triangle is " << **TriangleWalker << " and Normal vector of \"front\" side is " << NormalVector << endl);
[856098]5001 TriangleWalker++;
5002 TriangleSet::iterator TriangleSprinter = TriangleWalker; // is the inner advanced iterator
[262bae]5003 /// 4b. Remove all triangles whose NormalVector is in opposite direction (i.e. "back")
[856098]5004 BoundaryTriangleSet *triangle = NULL;
5005 while (TriangleSprinter != T->end()) {
5006 TriangleWalker = TriangleSprinter;
5007 triangle = *TriangleWalker;
5008 TriangleSprinter++;
[a67d19]5009 DoLog(1) && (Log() << Verbose(1) << "Current triangle to test for removal: " << *triangle << endl);
[856098]5010 if (triangle->NormalVector.ScalarProduct(&NormalVector) < 0) { // if from other side, then delete and remove from list
[a67d19]5011 DoLog(1) && (Log() << Verbose(1) << " Removing ... " << endl);
[856098]5012 TriangleNrs.push(triangle->Nr);
[262bae]5013 T->erase(TriangleWalker);
[856098]5014 RemoveTesselationTriangle(triangle);
5015 } else
[a67d19]5016 DoLog(1) && (Log() << Verbose(1) << " Keeping ... " << endl);
[262bae]5017 }
5018 /// 4c. Copy all "front" triangles but with inverse NormalVector
5019 TriangleWalker = T->begin();
[6613ec]5020 while (TriangleWalker != T->end()) { // go through all front triangles
[a67d19]5021 DoLog(1) && (Log() << Verbose(1) << " Re-creating triangle " << **TriangleWalker << " with NormalVector " << (*TriangleWalker)->NormalVector << endl);
[856098]5022 for (int i = 0; i < 3; i++)
5023 AddTesselationPoint((*TriangleWalker)->endpoints[i]->node, i);
[f07f86d]5024 AddTesselationLine(NULL, NULL, TPS[0], TPS[1], 0);
5025 AddTesselationLine(NULL, NULL, TPS[0], TPS[2], 1);
5026 AddTesselationLine(NULL, NULL, TPS[1], TPS[2], 2);
[fad93c]5027 if (TriangleNrs.empty())
[6613ec]5028 DoeLog(0) && (eLog() << Verbose(0) << "No more free triangle numbers!" << endl);
[856098]5029 BTS = new BoundaryTriangleSet(BLS, TriangleNrs.top()); // copy triangle ...
5030 AddTesselationTriangle(); // ... and add
5031 TriangleNrs.pop();
5032 BTS->NormalVector.CopyVector(&(*TriangleWalker)->NormalVector);
5033 BTS->NormalVector.Scale(-1.);
[262bae]5034 TriangleWalker++;
5035 }
[856098]5036 if (!TriangleNrs.empty()) {
[6613ec]5037 DoeLog(0) && (eLog() << Verbose(0) << "There have been less triangles created than removed!" << endl);
[856098]5038 }
[6613ec]5039 delete (T); // remove the triangleset
[262bae]5040 }
[c15ca2]5041 IndexToIndex * SimplyDegeneratedTriangles = FindAllDegeneratedTriangles();
[a67d19]5042 DoLog(0) && (Log() << Verbose(0) << "Final list of simply degenerated triangles found, containing " << SimplyDegeneratedTriangles->size() << " triangles:" << endl);
[c15ca2]5043 IndexToIndex::iterator it;
[856098]5044 for (it = SimplyDegeneratedTriangles->begin(); it != SimplyDegeneratedTriangles->end(); it++)
[a67d19]5045 DoLog(0) && (Log() << Verbose(0) << (*it).first << " => " << (*it).second << endl);
[6613ec]5046 delete (SimplyDegeneratedTriangles);
[262bae]5047 /// 5. exit
[856098]5048 UniquePolygonSet::iterator PolygonRunner;
[fad93c]5049 while (!ListofDegeneratedPolygons.empty()) {
5050 PolygonRunner = ListofDegeneratedPolygons.begin();
[6613ec]5051 delete (*PolygonRunner);
[fad93c]5052 ListofDegeneratedPolygons.erase(PolygonRunner);
[262bae]5053 }
5054
5055 return counter;
[6613ec]5056}
5057;
Note: See TracBrowser for help on using the repository browser.