source: src/tesselation.cpp@ 89c8b2

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 89c8b2 was 34e0592, checked in by Frederik Heber <heber@…>, 15 years ago

Merge branch 'ConcaveHull' of ssh://stud64d-02/home/metzler/workspace/espack into Ticket14

Conflicts:

molecuilder/src/boundary.cpp
molecuilder/src/tesselation.cpp

  • Property mode set to 100644
File size: 131.6 KB
RevLine 
[357fba]1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include "tesselation.hpp"
9
10// ======================================== Points on Boundary =================================
11
[16d866]12/** Constructor of BoundaryPointSet.
13 */
[357fba]14BoundaryPointSet::BoundaryPointSet()
15{
16 LinesCount = 0;
17 Nr = -1;
[1d9b7aa]18 value = 0.;
[16d866]19};
[357fba]20
[16d866]21/** Constructor of BoundaryPointSet with Tesselpoint.
22 * \param *Walker TesselPoint this boundary point represents
23 */
[357fba]24BoundaryPointSet::BoundaryPointSet(TesselPoint *Walker)
25{
26 node = Walker;
27 LinesCount = 0;
28 Nr = Walker->nr;
[1d9b7aa]29 value = 0.;
[16d866]30};
[357fba]31
[16d866]32/** Destructor of BoundaryPointSet.
33 * Sets node to NULL to avoid removing the original, represented TesselPoint.
34 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
35 */
[357fba]36BoundaryPointSet::~BoundaryPointSet()
37{
38 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
39 if (!lines.empty())
40 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some lines." << endl;
41 node = NULL;
[16d866]42};
[357fba]43
[16d866]44/** Add a line to the LineMap of this point.
45 * \param *line line to add
46 */
[357fba]47void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
48{
49 cout << Verbose(6) << "Adding " << *this << " to line " << *line << "."
50 << endl;
51 if (line->endpoints[0] == this)
52 {
53 lines.insert(LinePair(line->endpoints[1]->Nr, line));
54 }
55 else
56 {
57 lines.insert(LinePair(line->endpoints[0]->Nr, line));
58 }
59 LinesCount++;
[16d866]60};
[357fba]61
[16d866]62/** output operator for BoundaryPointSet.
63 * \param &ost output stream
64 * \param &a boundary point
65 */
66ostream & operator <<(ostream &ost, BoundaryPointSet &a)
[357fba]67{
68 ost << "[" << a.Nr << "|" << a.node->Name << "]";
69 return ost;
70}
71;
72
73// ======================================== Lines on Boundary =================================
74
[16d866]75/** Constructor of BoundaryLineSet.
76 */
[357fba]77BoundaryLineSet::BoundaryLineSet()
78{
79 for (int i = 0; i < 2; i++)
80 endpoints[i] = NULL;
81 Nr = -1;
[16d866]82};
[357fba]83
[16d866]84/** Constructor of BoundaryLineSet with two endpoints.
85 * Adds line automatically to each endpoints' LineMap
86 * \param *Point[2] array of two boundary points
87 * \param number number of the list
88 */
[357fba]89BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
90{
91 // set number
92 Nr = number;
93 // set endpoints in ascending order
94 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
95 // add this line to the hash maps of both endpoints
96 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
97 Point[1]->AddLine(this); //
98 // clear triangles list
99 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
[16d866]100};
[357fba]101
[16d866]102/** Destructor for BoundaryLineSet.
103 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
104 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
105 */
[357fba]106BoundaryLineSet::~BoundaryLineSet()
107{
108 int Numbers[2];
[16d866]109
110 // get other endpoint number of finding copies of same line
111 if (endpoints[1] != NULL)
112 Numbers[0] = endpoints[1]->Nr;
113 else
114 Numbers[0] = -1;
115 if (endpoints[0] != NULL)
116 Numbers[1] = endpoints[0]->Nr;
117 else
118 Numbers[1] = -1;
119
[357fba]120 for (int i = 0; i < 2; i++) {
[16d866]121 if (endpoints[i] != NULL) {
122 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
123 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
124 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
125 if ((*Runner).second == this) {
126 cout << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
127 endpoints[i]->lines.erase(Runner);
128 break;
129 }
130 } else { // there's just a single line left
131 if (endpoints[i]->lines.erase(Nr))
132 cout << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
[357fba]133 }
[16d866]134 if (endpoints[i]->lines.empty()) {
135 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
136 if (endpoints[i] != NULL) {
137 delete(endpoints[i]);
138 endpoints[i] = NULL;
139 }
140 }
141 }
[357fba]142 }
143 if (!triangles.empty())
144 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some triangles." << endl;
[16d866]145};
[357fba]146
[16d866]147/** Add triangle to TriangleMap of this boundary line.
148 * \param *triangle to add
149 */
150void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
[357fba]151{
[1d9b7aa]152 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
[357fba]153 triangles.insert(TrianglePair(triangle->Nr, triangle));
[16d866]154};
[357fba]155
156/** Checks whether we have a common endpoint with given \a *line.
157 * \param *line other line to test
158 * \return true - common endpoint present, false - not connected
159 */
160bool BoundaryLineSet::IsConnectedTo(class BoundaryLineSet *line)
161{
162 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
163 return true;
164 else
165 return false;
166};
167
168/** Checks whether the adjacent triangles of a baseline are convex or not.
169 * We sum the two angles of each normal vector with a ficticious normnal vector from this baselinbe pointing outwards.
170 * If greater/equal M_PI than we are convex.
171 * \param *out output stream for debugging
172 * \return true - triangles are convex, false - concave or less than two triangles connected
173 */
174bool BoundaryLineSet::CheckConvexityCriterion(ofstream *out)
175{
[5c7bf8]176 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
[357fba]177 // get the two triangles
[5c7bf8]178 if (triangles.size() != 2) {
179 *out << Verbose(1) << "ERROR: Baseline " << *this << " is connect to less than two triangles, Tesselation incomplete!" << endl;
[1d9b7aa]180 return true;
[357fba]181 }
[5c7bf8]182 // check normal vectors
[357fba]183 // have a normal vector on the base line pointing outwards
[1d9b7aa]184 //*out << Verbose(3) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
[62bb91]185 BaseLineCenter.CopyVector(endpoints[0]->node->node);
186 BaseLineCenter.AddVector(endpoints[1]->node->node);
187 BaseLineCenter.Scale(1./2.);
188 BaseLine.CopyVector(endpoints[0]->node->node);
189 BaseLine.SubtractVector(endpoints[1]->node->node);
[1d9b7aa]190 //*out << Verbose(3) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
[357fba]191
[62bb91]192 BaseLineNormal.Zero();
[5c7bf8]193 NormalCheck.Zero();
194 double sign = -1.;
[62bb91]195 int i=0;
196 class BoundaryPointSet *node = NULL;
197 for(TriangleMap::iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
[1d9b7aa]198 //*out << Verbose(3) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
[5c7bf8]199 NormalCheck.AddVector(&runner->second->NormalVector);
200 NormalCheck.Scale(sign);
201 sign = -sign;
[62bb91]202 BaseLineNormal.SubtractVector(&runner->second->NormalVector); // we subtract as BaseLineNormal has to point inward in direction of [pi,2pi]
203 node = runner->second->GetThirdEndpoint(this);
204 if (node != NULL) {
[1d9b7aa]205 //*out << Verbose(3) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
[62bb91]206 helper[i].CopyVector(node->node->node);
207 helper[i].SubtractVector(&BaseLineCenter);
208 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
[1d9b7aa]209 //*out << Verbose(4) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
[62bb91]210 i++;
211 } else {
[1d9b7aa]212 //*out << Verbose(2) << "WARNING: I cannot find third node in triangle, something's wrong." << endl;
[62bb91]213 return true;
214 }
215 }
[1d9b7aa]216 //*out << Verbose(3) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
[5c7bf8]217 if (NormalCheck.NormSquared() < MYEPSILON) {
[1d9b7aa]218 *out << Verbose(2) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl;
[5c7bf8]219 return true;
[62bb91]220 }
[f1cccd]221 double angle = GetAngle(helper[0], helper[1], BaseLineNormal);
[1d9b7aa]222 if ((angle - M_PI) > -MYEPSILON) {
223 *out << Verbose(2) << "ACCEPT: Angle is greater than pi: convex." << endl;
[357fba]224 return true;
[1d9b7aa]225 } else {
226 *out << Verbose(2) << "REJECT: Angle is less than pi: concave." << endl;
[357fba]227 return false;
[1d9b7aa]228 }
[357fba]229}
230
231/** Checks whether point is any of the two endpoints this line contains.
232 * \param *point point to test
233 * \return true - point is of the line, false - is not
234 */
235bool BoundaryLineSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
236{
237 for(int i=0;i<2;i++)
238 if (point == endpoints[i])
239 return true;
240 return false;
241};
242
[62bb91]243/** Returns other endpoint of the line.
244 * \param *point other endpoint
245 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
246 */
[08ef35]247class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(class BoundaryPointSet *point)
[62bb91]248{
249 if (endpoints[0] == point)
250 return endpoints[1];
251 else if (endpoints[1] == point)
252 return endpoints[0];
253 else
254 return NULL;
255};
256
[16d866]257/** output operator for BoundaryLineSet.
258 * \param &ost output stream
259 * \param &a boundary line
260 */
261ostream & operator <<(ostream &ost, BoundaryLineSet &a)
[357fba]262{
263 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
264 return ost;
[16d866]265};
[357fba]266
267// ======================================== Triangles on Boundary =================================
268
[16d866]269/** Constructor for BoundaryTriangleSet.
270 */
[357fba]271BoundaryTriangleSet::BoundaryTriangleSet()
272{
273 for (int i = 0; i < 3; i++)
274 {
275 endpoints[i] = NULL;
276 lines[i] = NULL;
277 }
278 Nr = -1;
[16d866]279};
[357fba]280
[16d866]281/** Constructor for BoundaryTriangleSet with three lines.
282 * \param *line[3] lines that make up the triangle
283 * \param number number of triangle
284 */
[357fba]285BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
286{
287 // set number
288 Nr = number;
289 // set lines
290 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
291 for (int i = 0; i < 3; i++)
292 {
293 lines[i] = line[i];
294 lines[i]->AddTriangle(this);
295 }
296 // get ascending order of endpoints
297 map<int, class BoundaryPointSet *> OrderMap;
298 for (int i = 0; i < 3; i++)
299 // for all three lines
300 for (int j = 0; j < 2; j++)
301 { // for both endpoints
302 OrderMap.insert(pair<int, class BoundaryPointSet *> (
303 line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
304 // and we don't care whether insertion fails
305 }
306 // set endpoints
307 int Counter = 0;
308 cout << Verbose(6) << " with end points ";
309 for (map<int, class BoundaryPointSet *>::iterator runner = OrderMap.begin(); runner
310 != OrderMap.end(); runner++)
311 {
312 endpoints[Counter] = runner->second;
313 cout << " " << *endpoints[Counter];
314 Counter++;
315 }
316 if (Counter < 3)
317 {
318 cerr << "ERROR! We have a triangle with only two distinct endpoints!"
319 << endl;
320 //exit(1);
321 }
322 cout << "." << endl;
[16d866]323};
[357fba]324
[16d866]325/** Destructor of BoundaryTriangleSet.
326 * Removes itself from each of its lines' LineMap and removes them if necessary.
327 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
328 */
[357fba]329BoundaryTriangleSet::~BoundaryTriangleSet()
330{
331 for (int i = 0; i < 3; i++) {
[16d866]332 if (lines[i] != NULL) {
333 if (lines[i]->triangles.erase(Nr))
334 cout << Verbose(5) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
335 if (lines[i]->triangles.empty()) {
336 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
337 delete (lines[i]);
338 lines[i] = NULL;
339 }
340 }
[357fba]341 }
[16d866]342 cout << Verbose(5) << "Erasing triangle Nr." << Nr << " itself." << endl;
343};
[357fba]344
345/** Calculates the normal vector for this triangle.
346 * Is made unique by comparison with \a OtherVector to point in the other direction.
347 * \param &OtherVector direction vector to make normal vector unique.
348 */
349void BoundaryTriangleSet::GetNormalVector(Vector &OtherVector)
350{
351 // get normal vector
352 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
353
354 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
[658efb]355 if (NormalVector.ScalarProduct(&OtherVector) > 0.)
[357fba]356 NormalVector.Scale(-1.);
357};
358
359/** Finds the point on the triangle \a *BTS the line defined by \a *MolCenter and \a *x crosses through.
360 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
361 * This we test if it's really on the plane and whether it's inside the triangle on the plane or not.
362 * The latter is done as follows: if it's really outside, then for any endpoint of the triangle and it's opposite
363 * base line, the intersection between the line from endpoint to intersection and the base line will have a Vector::NormSquared()
364 * smaller than the first line.
365 * \param *out output stream for debugging
366 * \param *MolCenter offset vector of line
367 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
368 * \param *Intersection intersection on plane on return
369 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
370 */
371bool BoundaryTriangleSet::GetIntersectionInsideTriangle(ofstream *out, Vector *MolCenter, Vector *x, Vector *Intersection)
372{
373 Vector CrossPoint;
374 Vector helper;
375
[5c7bf8]376 if (!Intersection->GetIntersectionWithPlane(out, &NormalVector, endpoints[0]->node->node, MolCenter, x)) {
377 *out << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl;
[357fba]378 return false;
379 }
380
381 // Calculate cross point between one baseline and the line from the third endpoint to intersection
[5c7bf8]382 int i=0;
[357fba]383 do {
[5c7bf8]384 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(out, endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node, endpoints[(i+2)%3]->node->node, Intersection, &NormalVector)) {
385 helper.CopyVector(endpoints[(i+1)%3]->node->node);
386 helper.SubtractVector(endpoints[i%3]->node->node);
387 } else
388 i++;
389 if (i>2)
[357fba]390 break;
391 } while (CrossPoint.NormSquared() < MYEPSILON);
[5c7bf8]392 if (i==3) {
[357fba]393 *out << Verbose(1) << "ERROR: Could not find any cross points, something's utterly wrong here!" << endl;
394 exit(255);
395 }
396 CrossPoint.SubtractVector(endpoints[i%3]->node->node);
397
398 // check whether intersection is inside or not by comparing length of intersection and length of cross point
399 if ((CrossPoint.NormSquared() - helper.NormSquared()) > -MYEPSILON) { // inside
400 return true;
401 } else { // outside!
402 Intersection->Zero();
403 return false;
404 }
405};
406
407/** Checks whether lines is any of the three boundary lines this triangle contains.
408 * \param *line line to test
409 * \return true - line is of the triangle, false - is not
410 */
411bool BoundaryTriangleSet::ContainsBoundaryLine(class BoundaryLineSet *line)
412{
413 for(int i=0;i<3;i++)
414 if (line == lines[i])
415 return true;
416 return false;
417};
418
419/** Checks whether point is any of the three endpoints this triangle contains.
420 * \param *point point to test
421 * \return true - point is of the triangle, false - is not
422 */
423bool BoundaryTriangleSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
424{
425 for(int i=0;i<3;i++)
426 if (point == endpoints[i])
427 return true;
428 return false;
429};
430
431/** Checks whether three given \a *Points coincide with triangle's endpoints.
432 * \param *Points[3] pointer to BoundaryPointSet
433 * \return true - is the very triangle, false - is not
434 */
435bool BoundaryTriangleSet::IsPresentTupel(class BoundaryPointSet *Points[3])
436{
437 return (((endpoints[0] == Points[0])
438 || (endpoints[0] == Points[1])
439 || (endpoints[0] == Points[2])
440 ) && (
441 (endpoints[1] == Points[0])
442 || (endpoints[1] == Points[1])
443 || (endpoints[1] == Points[2])
444 ) && (
445 (endpoints[2] == Points[0])
446 || (endpoints[2] == Points[1])
447 || (endpoints[2] == Points[2])
[62bb91]448
[357fba]449 ));
450};
451
[62bb91]452/** Returns the endpoint which is not contained in the given \a *line.
453 * \param *line baseline defining two endpoints
454 * \return pointer third endpoint or NULL if line does not belong to triangle.
455 */
456class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(class BoundaryLineSet *line)
457{
458 // sanity check
459 if (!ContainsBoundaryLine(line))
460 return NULL;
461 for(int i=0;i<3;i++)
462 if (!line->ContainsBoundaryPoint(endpoints[i]))
463 return endpoints[i];
464 // actually, that' impossible :)
465 return NULL;
466};
467
468/** Calculates the center point of the triangle.
469 * Is third of the sum of all endpoints.
470 * \param *center central point on return.
471 */
472void BoundaryTriangleSet::GetCenter(Vector *center)
473{
474 center->Zero();
475 for(int i=0;i<3;i++)
476 center->AddVector(endpoints[i]->node->node);
477 center->Scale(1./3.);
478}
479
[16d866]480/** output operator for BoundaryTriangleSet.
481 * \param &ost output stream
482 * \param &a boundary triangle
483 */
484ostream &operator <<(ostream &ost, BoundaryTriangleSet &a)
[357fba]485{
486 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << ","
487 << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
488 return ost;
[16d866]489};
[357fba]490
491// =========================================================== class TESSELPOINT ===========================================
492
493/** Constructor of class TesselPoint.
494 */
495TesselPoint::TesselPoint()
496{
497 node = NULL;
498 nr = -1;
499 Name = NULL;
500};
501
502/** Destructor for class TesselPoint.
503 */
504TesselPoint::~TesselPoint()
505{
506 Free((void **)&Name, "TesselPoint::~TesselPoint: *Name");
507};
508
509/** Prints LCNode to screen.
510 */
511ostream & operator << (ostream &ost, const TesselPoint &a)
512{
513 ost << "[" << (a.Name) << "|" << &a << "]";
514 return ost;
515};
516
[5c7bf8]517/** Prints LCNode to screen.
518 */
519ostream & TesselPoint::operator << (ostream &ost)
520{
521 ost << "[" << (Name) << "|" << this << "]";
522 return ost;
523};
524
[357fba]525
526// =========================================================== class POINTCLOUD ============================================
527
528/** Constructor of class PointCloud.
529 */
530PointCloud::PointCloud()
531{
532
533};
534
535/** Destructor for class PointCloud.
536 */
537PointCloud::~PointCloud()
538{
539
540};
541
542// ============================ CandidateForTesselation =============================
543
544/** Constructor of class CandidateForTesselation.
545 */
546CandidateForTesselation::CandidateForTesselation(TesselPoint *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) {
547 point = candidate;
548 BaseLine = line;
549 OptCenter.CopyVector(&OptCandidateCenter);
550 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
551};
552
553/** Destructor for class CandidateForTesselation.
554 */
555CandidateForTesselation::~CandidateForTesselation() {
556 point = NULL;
557 BaseLine = NULL;
558};
559
560// =========================================================== class TESSELATION ===========================================
561
562/** Constructor of class Tesselation.
563 */
564Tesselation::Tesselation()
565{
566 PointsOnBoundaryCount = 0;
567 LinesOnBoundaryCount = 0;
568 TrianglesOnBoundaryCount = 0;
[5c7bf8]569 InternalPointer = PointsOnBoundary.begin();
[357fba]570}
571;
572
573/** Destructor of class Tesselation.
574 * We have to free all points, lines and triangles.
575 */
576Tesselation::~Tesselation()
577{
578 cout << Verbose(1) << "Free'ing TesselStruct ... " << endl;
579 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
580 if (runner->second != NULL) {
581 delete (runner->second);
582 runner->second = NULL;
583 } else
584 cerr << "ERROR: The triangle " << runner->first << " has already been free'd." << endl;
585 }
586}
587;
588
[5c7bf8]589/** PointCloud implementation of GetCenter
590 * Uses PointsOnBoundary and STL stuff.
591 */
592Vector * Tesselation::GetCenter(ofstream *out)
593{
594 Vector *Center = new Vector(0.,0.,0.);
595 int num=0;
596 for (GoToFirst(); (!IsEnd()); GoToNext()) {
597 Center->AddVector(GetPoint()->node);
598 num++;
599 }
600 Center->Scale(1./num);
601 return Center;
602};
603
604/** PointCloud implementation of GoPoint
605 * Uses PointsOnBoundary and STL stuff.
606 */
607TesselPoint * Tesselation::GetPoint()
608{
609 return (InternalPointer->second->node);
610};
611
612/** PointCloud implementation of GetTerminalPoint.
613 * Uses PointsOnBoundary and STL stuff.
614 */
615TesselPoint * Tesselation::GetTerminalPoint()
616{
617 PointMap::iterator Runner = PointsOnBoundary.end();
618 Runner--;
619 return (Runner->second->node);
620};
621
622/** PointCloud implementation of GoToNext.
623 * Uses PointsOnBoundary and STL stuff.
624 */
625void Tesselation::GoToNext()
626{
627 if (InternalPointer != PointsOnBoundary.end())
628 InternalPointer++;
629};
630
631/** PointCloud implementation of GoToPrevious.
632 * Uses PointsOnBoundary and STL stuff.
633 */
634void Tesselation::GoToPrevious()
635{
636 if (InternalPointer != PointsOnBoundary.begin())
637 InternalPointer--;
638};
639
640/** PointCloud implementation of GoToFirst.
641 * Uses PointsOnBoundary and STL stuff.
642 */
643void Tesselation::GoToFirst()
644{
645 InternalPointer = PointsOnBoundary.begin();
646};
647
648/** PointCloud implementation of GoToLast.
649 * Uses PointsOnBoundary and STL stuff.
650 */
651void Tesselation::GoToLast()
652{
653 InternalPointer = PointsOnBoundary.end();
654 InternalPointer--;
655};
656
657/** PointCloud implementation of IsEmpty.
658 * Uses PointsOnBoundary and STL stuff.
659 */
660bool Tesselation::IsEmpty()
661{
662 return (PointsOnBoundary.empty());
663};
664
665/** PointCloud implementation of IsLast.
666 * Uses PointsOnBoundary and STL stuff.
667 */
668bool Tesselation::IsEnd()
669{
670 return (InternalPointer == PointsOnBoundary.end());
671};
672
673
[357fba]674/** Gueses first starting triangle of the convex envelope.
675 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
676 * \param *out output stream for debugging
677 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
678 */
679void
680Tesselation::GuessStartingTriangle(ofstream *out)
681{
682 // 4b. create a starting triangle
683 // 4b1. create all distances
684 DistanceMultiMap DistanceMMap;
685 double distance, tmp;
686 Vector PlaneVector, TrialVector;
687 PointMap::iterator A, B, C; // three nodes of the first triangle
688 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
689
690 // with A chosen, take each pair B,C and sort
691 if (A != PointsOnBoundary.end())
692 {
693 B = A;
694 B++;
695 for (; B != PointsOnBoundary.end(); B++)
696 {
697 C = B;
698 C++;
699 for (; C != PointsOnBoundary.end(); C++)
700 {
701 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
702 distance = tmp * tmp;
703 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
704 distance += tmp * tmp;
705 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
706 distance += tmp * tmp;
707 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
708 }
709 }
710 }
711 // // listing distances
712 // *out << Verbose(1) << "Listing DistanceMMap:";
713 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
714 // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
715 // }
716 // *out << endl;
717 // 4b2. pick three baselines forming a triangle
718 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
719 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
720 for (; baseline != DistanceMMap.end(); baseline++)
721 {
722 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
723 // 2. next, we have to check whether all points reside on only one side of the triangle
724 // 3. construct plane vector
725 PlaneVector.MakeNormalVector(A->second->node->node,
726 baseline->second.first->second->node->node,
727 baseline->second.second->second->node->node);
728 *out << Verbose(2) << "Plane vector of candidate triangle is ";
729 PlaneVector.Output(out);
730 *out << endl;
731 // 4. loop over all points
732 double sign = 0.;
733 PointMap::iterator checker = PointsOnBoundary.begin();
734 for (; checker != PointsOnBoundary.end(); checker++)
735 {
736 // (neglecting A,B,C)
737 if ((checker == A) || (checker == baseline->second.first) || (checker
738 == baseline->second.second))
739 continue;
740 // 4a. project onto plane vector
741 TrialVector.CopyVector(checker->second->node->node);
742 TrialVector.SubtractVector(A->second->node->node);
[658efb]743 distance = TrialVector.ScalarProduct(&PlaneVector);
[357fba]744 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
745 continue;
746 *out << Verbose(3) << "Projection of " << checker->second->node->Name
747 << " yields distance of " << distance << "." << endl;
748 tmp = distance / fabs(distance);
749 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
750 if ((sign != 0) && (tmp != sign))
751 {
752 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
753 *out << Verbose(2) << "Current candidates: "
754 << A->second->node->Name << ","
755 << baseline->second.first->second->node->Name << ","
756 << baseline->second.second->second->node->Name << " leaves "
757 << checker->second->node->Name << " outside the convex hull."
758 << endl;
759 break;
760 }
761 else
762 { // note the sign for later
763 *out << Verbose(2) << "Current candidates: "
764 << A->second->node->Name << ","
765 << baseline->second.first->second->node->Name << ","
766 << baseline->second.second->second->node->Name << " leave "
767 << checker->second->node->Name << " inside the convex hull."
768 << endl;
769 sign = tmp;
770 }
771 // 4d. Check whether the point is inside the triangle (check distance to each node
772 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
773 int innerpoint = 0;
774 if ((tmp < A->second->node->node->DistanceSquared(
775 baseline->second.first->second->node->node)) && (tmp
776 < A->second->node->node->DistanceSquared(
777 baseline->second.second->second->node->node)))
778 innerpoint++;
779 tmp = checker->second->node->node->DistanceSquared(
780 baseline->second.first->second->node->node);
781 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(
782 A->second->node->node)) && (tmp
783 < baseline->second.first->second->node->node->DistanceSquared(
784 baseline->second.second->second->node->node)))
785 innerpoint++;
786 tmp = checker->second->node->node->DistanceSquared(
787 baseline->second.second->second->node->node);
788 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(
789 baseline->second.first->second->node->node)) && (tmp
790 < baseline->second.second->second->node->node->DistanceSquared(
791 A->second->node->node)))
792 innerpoint++;
793 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
794 if (innerpoint == 3)
795 break;
796 }
797 // 5. come this far, all on same side? Then break 1. loop and construct triangle
798 if (checker == PointsOnBoundary.end())
799 {
800 *out << "Looks like we have a candidate!" << endl;
801 break;
802 }
803 }
804 if (baseline != DistanceMMap.end())
805 {
806 BPS[0] = baseline->second.first->second;
807 BPS[1] = baseline->second.second->second;
808 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
809 BPS[0] = A->second;
810 BPS[1] = baseline->second.second->second;
811 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
812 BPS[0] = baseline->second.first->second;
813 BPS[1] = A->second;
814 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
815
816 // 4b3. insert created triangle
817 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
818 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
819 TrianglesOnBoundaryCount++;
820 for (int i = 0; i < NDIM; i++)
821 {
822 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
823 LinesOnBoundaryCount++;
824 }
825
826 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
827 }
828 else
829 {
830 *out << Verbose(1) << "No starting triangle found." << endl;
831 exit(255);
832 }
833}
834;
835
836/** Tesselates the convex envelope of a cluster from a single starting triangle.
837 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
838 * 2 triangles. Hence, we go through all current lines:
839 * -# if the lines contains to only one triangle
840 * -# We search all points in the boundary
841 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
842 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
843 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
844 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
845 * \param *out output stream for debugging
846 * \param *configuration for IsAngstroem
847 * \param *cloud cluster of points
848 */
849void Tesselation::TesselateOnBoundary(ofstream *out, PointCloud *cloud)
850{
851 bool flag;
852 PointMap::iterator winner;
853 class BoundaryPointSet *peak = NULL;
854 double SmallestAngle, TempAngle;
855 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
856 LineMap::iterator LineChecker[2];
857
858 Center = cloud->GetCenter(out);
859 // create a first tesselation with the given BoundaryPoints
860 do {
861 flag = false;
862 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
[5c7bf8]863 if (baseline->second->triangles.size() == 1) {
[357fba]864 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
865 SmallestAngle = M_PI;
866
867 // get peak point with respect to this base line's only triangle
868 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
869 *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
870 for (int i = 0; i < 3; i++)
871 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
872 peak = BTS->endpoints[i];
873 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
874
875 // prepare some auxiliary vectors
876 Vector BaseLineCenter, BaseLine;
877 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
878 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
879 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
880 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
881 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
882
883 // offset to center of triangle
884 CenterVector.Zero();
885 for (int i = 0; i < 3; i++)
886 CenterVector.AddVector(BTS->endpoints[i]->node->node);
887 CenterVector.Scale(1. / 3.);
888 *out << Verbose(4) << "CenterVector of base triangle is " << CenterVector << endl;
889
890 // normal vector of triangle
891 NormalVector.CopyVector(Center);
892 NormalVector.SubtractVector(&CenterVector);
893 BTS->GetNormalVector(NormalVector);
894 NormalVector.CopyVector(&BTS->NormalVector);
895 *out << Verbose(4) << "NormalVector of base triangle is " << NormalVector << endl;
896
897 // vector in propagation direction (out of triangle)
898 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
899 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
900 TempVector.CopyVector(&CenterVector);
901 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
902 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
[658efb]903 if (PropagationVector.ScalarProduct(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
[357fba]904 PropagationVector.Scale(-1.);
905 *out << Verbose(4) << "PropagationVector of base triangle is " << PropagationVector << endl;
906 winner = PointsOnBoundary.end();
907
908 // loop over all points and calculate angle between normal vector of new and present triangle
909 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
910 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
911 *out << Verbose(3) << "Target point is " << *(target->second) << ":" << endl;
912
913 // first check direction, so that triangles don't intersect
914 VirtualNormalVector.CopyVector(target->second->node->node);
915 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
916 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
917 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
918 *out << Verbose(4) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl;
919 if (TempAngle > (M_PI/2.)) { // no bends bigger than Pi/2 (90 degrees)
920 *out << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
921 continue;
922 } else
923 *out << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
924
925 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
926 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
927 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
[5c7bf8]928 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
929 *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl;
[357fba]930 continue;
931 }
[5c7bf8]932 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
933 *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl;
[357fba]934 continue;
935 }
936
937 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
938 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
939 *out << Verbose(4) << "Current target is peak!" << endl;
940 continue;
941 }
942
943 // check for linear dependence
944 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
945 TempVector.SubtractVector(target->second->node->node);
946 helper.CopyVector(baseline->second->endpoints[1]->node->node);
947 helper.SubtractVector(target->second->node->node);
948 helper.ProjectOntoPlane(&TempVector);
949 if (fabs(helper.NormSquared()) < MYEPSILON) {
950 *out << Verbose(4) << "Chosen set of vectors is linear dependent." << endl;
951 continue;
952 }
953
954 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
955 flag = true;
956 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
957 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
958 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
959 TempVector.AddVector(target->second->node->node);
960 TempVector.Scale(1./3.);
961 TempVector.SubtractVector(Center);
962 // make it always point outward
[658efb]963 if (VirtualNormalVector.ScalarProduct(&TempVector) < 0)
[357fba]964 VirtualNormalVector.Scale(-1.);
965 // calculate angle
966 TempAngle = NormalVector.Angle(&VirtualNormalVector);
967 *out << Verbose(4) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl;
968 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
969 SmallestAngle = TempAngle;
970 winner = target;
971 *out << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
972 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
973 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
974 helper.CopyVector(target->second->node->node);
975 helper.SubtractVector(&BaseLineCenter);
976 helper.ProjectOntoPlane(&BaseLine);
977 // ...the one with the smaller angle is the better candidate
978 TempVector.CopyVector(target->second->node->node);
979 TempVector.SubtractVector(&BaseLineCenter);
980 TempVector.ProjectOntoPlane(&VirtualNormalVector);
981 TempAngle = TempVector.Angle(&helper);
982 TempVector.CopyVector(winner->second->node->node);
983 TempVector.SubtractVector(&BaseLineCenter);
984 TempVector.ProjectOntoPlane(&VirtualNormalVector);
985 if (TempAngle < TempVector.Angle(&helper)) {
986 TempAngle = NormalVector.Angle(&VirtualNormalVector);
987 SmallestAngle = TempAngle;
988 winner = target;
989 *out << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl;
990 } else
991 *out << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl;
992 } else
993 *out << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
994 }
995 } // end of loop over all boundary points
996
997 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
998 if (winner != PointsOnBoundary.end()) {
999 *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
1000 // create the lins of not yet present
1001 BLS[0] = baseline->second;
1002 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1003 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1004 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1005 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1006 BPS[0] = baseline->second->endpoints[0];
1007 BPS[1] = winner->second;
1008 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1009 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1010 LinesOnBoundaryCount++;
1011 } else
1012 BLS[1] = LineChecker[0]->second;
1013 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1014 BPS[0] = baseline->second->endpoints[1];
1015 BPS[1] = winner->second;
1016 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1017 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1018 LinesOnBoundaryCount++;
1019 } else
1020 BLS[2] = LineChecker[1]->second;
1021 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[62bb91]1022 BTS->GetCenter(&helper);
1023 helper.SubtractVector(Center);
1024 helper.Scale(-1);
1025 BTS->GetNormalVector(helper);
[357fba]1026 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1027 TrianglesOnBoundaryCount++;
1028 } else {
1029 *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
1030 }
1031
1032 // 5d. If the set of lines is not yet empty, go to 5. and continue
1033 } else
[5c7bf8]1034 *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl;
[357fba]1035 } while (flag);
1036
1037 // exit
1038 delete(Center);
1039};
1040
[62bb91]1041/** Inserts all points outside of the tesselated surface into it by adding new triangles.
[357fba]1042 * \param *out output stream for debugging
1043 * \param *cloud cluster of points
[62bb91]1044 * \param *LC LinkedCell structure to find nearest point quickly
[357fba]1045 * \return true - all straddling points insert, false - something went wrong
1046 */
[62bb91]1047bool Tesselation::InsertStraddlingPoints(ofstream *out, PointCloud *cloud, LinkedCell *LC)
[357fba]1048{
[5c7bf8]1049 Vector Intersection, Normal;
[357fba]1050 TesselPoint *Walker = NULL;
1051 Vector *Center = cloud->GetCenter(out);
[62bb91]1052 list<BoundaryTriangleSet*> *triangles = NULL;
1053
1054 *out << Verbose(1) << "Begin of InsertStraddlingPoints" << endl;
[357fba]1055
1056 cloud->GoToFirst();
[1999d8]1057 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
[5c7bf8]1058 LinkedCell BoundaryPoints(this, 5.);
[357fba]1059 Walker = cloud->GetPoint();
[62bb91]1060 *out << Verbose(2) << "Current point is " << *Walker << "." << endl;
[357fba]1061 // get the next triangle
[5c7bf8]1062 triangles = FindClosestTrianglesToPoint(out, Walker->node, &BoundaryPoints);
[62bb91]1063 if (triangles == NULL) {
1064 *out << Verbose(1) << "No triangles found, probably a tesselation point itself." << endl;
1065 cloud->GoToNext();
1066 continue;
1067 } else {
1068 BTS = triangles->front();
[357fba]1069 }
[5c7bf8]1070 *out << Verbose(2) << "Closest triangle is " << *BTS << "." << endl;
[357fba]1071 // get the intersection point
1072 if (BTS->GetIntersectionInsideTriangle(out, Center, Walker->node, &Intersection)) {
[62bb91]1073 *out << Verbose(2) << "We have an intersection at " << Intersection << "." << endl;
[357fba]1074 // we have the intersection, check whether in- or outside of boundary
1075 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1076 // inside, next!
[5c7bf8]1077 *out << Verbose(2) << *Walker << " is inside wrt triangle " << *BTS << "." << endl;
[357fba]1078 } else {
1079 // outside!
[5c7bf8]1080 *out << Verbose(2) << *Walker << " is outside wrt triangle " << *BTS << "." << endl;
[357fba]1081 class BoundaryLineSet *OldLines[3], *NewLines[3];
1082 class BoundaryPointSet *OldPoints[3], *NewPoint;
1083 // store the three old lines and old points
1084 for (int i=0;i<3;i++) {
1085 OldLines[i] = BTS->lines[i];
1086 OldPoints[i] = BTS->endpoints[i];
1087 }
[5c7bf8]1088 Normal.CopyVector(&BTS->NormalVector);
[357fba]1089 // add Walker to boundary points
[5c7bf8]1090 *out << Verbose(2) << "Adding " << *Walker << " to BoundaryPoints." << endl;
[16d866]1091 if (AddBoundaryPoint(Walker,0))
[357fba]1092 NewPoint = BPS[0];
1093 else
1094 continue;
1095 // remove triangle
[5c7bf8]1096 *out << Verbose(2) << "Erasing triangle " << *BTS << "." << endl;
[357fba]1097 TrianglesOnBoundary.erase(BTS->Nr);
[5c7bf8]1098 delete(BTS);
[357fba]1099 // create three new boundary lines
1100 for (int i=0;i<3;i++) {
1101 BPS[0] = NewPoint;
1102 BPS[1] = OldPoints[i];
1103 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
[5c7bf8]1104 *out << Verbose(3) << "Creating new line " << *NewLines[i] << "." << endl;
[357fba]1105 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1106 LinesOnBoundaryCount++;
1107 }
1108 // create three new triangle with new point
1109 for (int i=0;i<3;i++) { // find all baselines
1110 BLS[0] = OldLines[i];
1111 int n = 1;
1112 for (int j=0;j<3;j++) {
1113 if (NewLines[j]->IsConnectedTo(BLS[0])) {
1114 if (n>2) {
1115 *out << Verbose(1) << "ERROR: " << BLS[0] << " connects to all of the new lines?!" << endl;
1116 return false;
1117 } else
1118 BLS[n++] = NewLines[j];
1119 }
1120 }
1121 // create the triangle
1122 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[5c7bf8]1123 Normal.Scale(-1.);
1124 BTS->GetNormalVector(Normal);
1125 Normal.Scale(-1.);
1126 *out << Verbose(2) << "Created new triangle " << *BTS << "." << endl;
[357fba]1127 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1128 TrianglesOnBoundaryCount++;
1129 }
1130 }
1131 } else { // something is wrong with FindClosestTriangleToPoint!
1132 *out << Verbose(1) << "ERROR: The closest triangle did not produce an intersection!" << endl;
1133 return false;
1134 }
1135 cloud->GoToNext();
1136 }
1137
1138 // exit
1139 delete(Center);
[62bb91]1140 *out << Verbose(1) << "End of InsertStraddlingPoints" << endl;
[357fba]1141 return true;
1142};
1143
[16d866]1144/** Adds a point to the tesselation::PointsOnBoundary list.
[62bb91]1145 * \param *Walker point to add
[08ef35]1146 * \param n TesselStruct::BPS index to put pointer into
1147 * \return true - new point was added, false - point already present
[357fba]1148 */
[08ef35]1149bool
[16d866]1150Tesselation::AddBoundaryPoint(TesselPoint *Walker, int n)
[357fba]1151{
1152 PointTestPair InsertUnique;
[08ef35]1153 BPS[n] = new class BoundaryPointSet(Walker);
1154 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1155 if (InsertUnique.second) { // if new point was not present before, increase counter
[357fba]1156 PointsOnBoundaryCount++;
[08ef35]1157 return true;
1158 } else {
1159 delete(BPS[n]);
1160 BPS[n] = InsertUnique.first->second;
1161 return false;
[357fba]1162 }
1163}
1164;
1165
1166/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1167 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1168 * @param Candidate point to add
1169 * @param n index for this point in Tesselation::TPS array
1170 */
1171void
[16d866]1172Tesselation::AddTesselationPoint(TesselPoint* Candidate, int n)
[357fba]1173{
1174 PointTestPair InsertUnique;
1175 TPS[n] = new class BoundaryPointSet(Candidate);
1176 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1177 if (InsertUnique.second) { // if new point was not present before, increase counter
1178 PointsOnBoundaryCount++;
1179 } else {
1180 delete TPS[n];
1181 cout << Verbose(3) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl;
1182 TPS[n] = (InsertUnique.first)->second;
1183 }
1184}
1185;
1186
1187/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1188 * If successful it raises the line count and inserts the new line into the BLS,
1189 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
1190 * @param *a first endpoint
1191 * @param *b second endpoint
1192 * @param n index of Tesselation::BLS giving the line with both endpoints
1193 */
[16d866]1194void Tesselation::AddTesselationLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n) {
[357fba]1195 bool insertNewLine = true;
1196
1197 if (a->lines.find(b->node->nr) != a->lines.end()) {
1198 LineMap::iterator FindLine;
1199 pair<LineMap::iterator,LineMap::iterator> FindPair;
1200 FindPair = a->lines.equal_range(b->node->nr);
1201
1202 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
1203 // If there is a line with less than two attached triangles, we don't need a new line.
[5c7bf8]1204 if (FindLine->second->triangles.size() < 2) {
[357fba]1205 insertNewLine = false;
1206 cout << Verbose(3) << "Using existing line " << *FindLine->second << endl;
1207
1208 BPS[0] = FindLine->second->endpoints[0];
1209 BPS[1] = FindLine->second->endpoints[1];
1210 BLS[n] = FindLine->second;
1211
1212 break;
1213 }
1214 }
1215 }
1216
1217 if (insertNewLine) {
[16d866]1218 AlwaysAddTesselationTriangleLine(a, b, n);
[357fba]1219 }
1220}
1221;
1222
1223/**
1224 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1225 * Raises the line count and inserts the new line into the BLS.
1226 *
1227 * @param *a first endpoint
1228 * @param *b second endpoint
1229 * @param n index of Tesselation::BLS giving the line with both endpoints
1230 */
[16d866]1231void Tesselation::AlwaysAddTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n)
[357fba]1232{
1233 cout << Verbose(3) << "Adding line between " << *(a->node) << " and " << *(b->node) << "." << endl;
1234 BPS[0] = a;
1235 BPS[1] = b;
1236 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
1237 // add line to global map
1238 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1239 // increase counter
1240 LinesOnBoundaryCount++;
1241};
1242
1243/** Function tries to add Triangle just created to Triangle and remarks if already existent (Failure of algorithm).
1244 * Furthermore it adds the triangle to all of its lines, in order to recognize those which are saturated later.
1245 */
[16d866]1246void Tesselation::AddTesselationTriangle()
[357fba]1247{
1248 cout << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1249
1250 // add triangle to global map
1251 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1252 TrianglesOnBoundaryCount++;
1253
1254 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
[16d866]1255};
1256
1257/** Removes a triangle from the tesselation.
1258 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1259 * Removes itself from memory.
1260 * \param *triangle to remove
1261 */
1262void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1263{
1264 if (triangle == NULL)
1265 return;
1266 for (int i = 0; i < 3; i++) {
1267 if (triangle->lines[i] != NULL) {
1268 cout << Verbose(5) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl;
1269 triangle->lines[i]->triangles.erase(triangle->Nr);
1270 if (triangle->lines[i]->triangles.empty()) {
1271 cout << Verbose(5) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl;
1272 RemoveTesselationLine(triangle->lines[i]);
1273 triangle->lines[i] = NULL;
1274 } else
1275 cout << Verbose(5) << *triangle->lines[i] << " is still attached to another triangle." << endl;
1276 } else
1277 cerr << "ERROR: This line " << i << " has already been free'd." << endl;
1278 }
1279
1280 if (TrianglesOnBoundary.erase(triangle->Nr))
1281 cout << Verbose(5) << "Removing triangle Nr. " << triangle->Nr << "." << endl;
1282 delete(triangle);
1283};
1284
1285/** Removes a line from the tesselation.
1286 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1287 * \param *line line to remove
1288 */
1289void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1290{
1291 int Numbers[2];
1292
1293 if (line == NULL)
1294 return;
1295 // get other endpoint number of finding copies of same line
1296 if (line->endpoints[1] != NULL)
1297 Numbers[0] = line->endpoints[1]->Nr;
1298 else
1299 Numbers[0] = -1;
1300 if (line->endpoints[0] != NULL)
1301 Numbers[1] = line->endpoints[0]->Nr;
1302 else
1303 Numbers[1] = -1;
1304
1305 for (int i = 0; i < 2; i++) {
1306 if (line->endpoints[i] != NULL) {
1307 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1308 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1309 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1310 if ((*Runner).second == line) {
1311 cout << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1312 line->endpoints[i]->lines.erase(Runner);
1313 break;
1314 }
1315 } else { // there's just a single line left
1316 if (line->endpoints[i]->lines.erase(line->Nr))
1317 cout << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1318 }
1319 if (line->endpoints[i]->lines.empty()) {
1320 cout << Verbose(5) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl;
1321 RemoveTesselationPoint(line->endpoints[i]);
1322 line->endpoints[i] = NULL;
1323 } else
1324 cout << Verbose(5) << *line->endpoints[i] << " has still lines it's attached to." << endl;
1325 } else
1326 cerr << "ERROR: Endpoint " << i << " has already been free'd." << endl;
1327 }
1328 if (!line->triangles.empty())
1329 cerr << "WARNING: Memory Leak! I " << *line << " am still connected to some triangles." << endl;
1330
1331 if (LinesOnBoundary.erase(line->Nr))
1332 cout << Verbose(5) << "Removing line Nr. " << line->Nr << "." << endl;
1333 delete(line);
1334};
1335
1336/** Removes a point from the tesselation.
1337 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
1338 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
1339 * \param *point point to remove
1340 */
1341void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
1342{
1343 if (point == NULL)
1344 return;
1345 if (PointsOnBoundary.erase(point->Nr))
1346 cout << Verbose(5) << "Removing point Nr. " << point->Nr << "." << endl;
1347 delete(point);
1348};
[357fba]1349
[62bb91]1350/** Checks whether the triangle consisting of the three points is already present.
[357fba]1351 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1352 * lines. If any of the three edges already has two triangles attached, false is
1353 * returned.
1354 * \param *out output stream for debugging
1355 * \param *Candidates endpoints of the triangle candidate
1356 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
1357 * triangles exist which is the maximum for three points
1358 */
1359int Tesselation::CheckPresenceOfTriangle(ofstream *out, TesselPoint *Candidates[3]) {
1360 int adjacentTriangleCount = 0;
1361 class BoundaryPointSet *Points[3];
1362
1363 *out << Verbose(2) << "Begin of CheckPresenceOfTriangle" << endl;
1364 // builds a triangle point set (Points) of the end points
1365 for (int i = 0; i < 3; i++) {
1366 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1367 if (FindPoint != PointsOnBoundary.end()) {
1368 Points[i] = FindPoint->second;
1369 } else {
1370 Points[i] = NULL;
1371 }
1372 }
1373
1374 // checks lines between the points in the Points for their adjacent triangles
1375 for (int i = 0; i < 3; i++) {
1376 if (Points[i] != NULL) {
1377 for (int j = i; j < 3; j++) {
1378 if (Points[j] != NULL) {
1379 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
1380 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
1381 TriangleMap *triangles = &FindLine->second->triangles;
1382 *out << Verbose(3) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl;
1383 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1384 if (FindTriangle->second->IsPresentTupel(Points)) {
1385 adjacentTriangleCount++;
1386 }
1387 }
1388 *out << Verbose(3) << "end." << endl;
1389 }
1390 // Only one of the triangle lines must be considered for the triangle count.
1391 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1392 return adjacentTriangleCount;
1393 }
1394 }
1395 }
1396 }
1397
1398 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1399 *out << Verbose(2) << "End of CheckPresenceOfTriangle" << endl;
1400 return adjacentTriangleCount;
1401};
1402
1403
[f1cccd]1404/** Finds the starting triangle for FindNonConvexBorder().
1405 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
1406 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
[357fba]1407 * point are called.
1408 * \param *out output stream for debugging
1409 * \param RADIUS radius of virtual rolling sphere
1410 * \param *LC LinkedCell structure with neighbouring TesselPoint's
1411 */
[f1cccd]1412void Tesselation::FindStartingTriangle(ofstream *out, const double RADIUS, LinkedCell *LC)
[357fba]1413{
[f1cccd]1414 cout << Verbose(1) << "Begin of FindStartingTriangle\n";
[357fba]1415 int i = 0;
1416 LinkedNodes *List = NULL;
1417 TesselPoint* FirstPoint = NULL;
1418 TesselPoint* SecondPoint = NULL;
[62bb91]1419 TesselPoint* MaxPoint[NDIM];
[f1cccd]1420 double maxCoordinate[NDIM];
[357fba]1421 Vector Oben;
1422 Vector helper;
1423 Vector Chord;
1424 Vector SearchDirection;
1425
1426 Oben.Zero();
1427
1428 for (i = 0; i < 3; i++) {
[62bb91]1429 MaxPoint[i] = NULL;
[f1cccd]1430 maxCoordinate[i] = -1;
[357fba]1431 }
1432
[62bb91]1433 // 1. searching topmost point with respect to each axis
[357fba]1434 for (int i=0;i<NDIM;i++) { // each axis
1435 LC->n[i] = LC->N[i]-1; // current axis is topmost cell
1436 for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
1437 for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
1438 List = LC->GetCurrentCell();
1439 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
1440 if (List != NULL) {
1441 for (LinkedNodes::iterator Runner = List->begin();Runner != List->end();Runner++) {
[f1cccd]1442 if ((*Runner)->node->x[i] > maxCoordinate[i]) {
[357fba]1443 cout << Verbose(2) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl;
[f1cccd]1444 maxCoordinate[i] = (*Runner)->node->x[i];
[62bb91]1445 MaxPoint[i] = (*Runner);
[357fba]1446 }
1447 }
1448 } else {
1449 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
1450 }
1451 }
1452 }
1453
1454 cout << Verbose(2) << "Found maximum coordinates: ";
1455 for (int i=0;i<NDIM;i++)
[62bb91]1456 cout << i << ": " << *MaxPoint[i] << "\t";
[357fba]1457 cout << endl;
1458
1459 BTS = NULL;
[f1cccd]1460 CandidateList *OptCandidates = new CandidateList();
[357fba]1461 for (int k=0;k<NDIM;k++) {
1462 Oben.x[k] = 1.;
[62bb91]1463 FirstPoint = MaxPoint[k];
[357fba]1464 cout << Verbose(1) << "Coordinates of start node at " << *FirstPoint->node << "." << endl;
1465
1466 double ShortestAngle;
[f1cccd]1467 TesselPoint* OptCandidate = NULL;
[357fba]1468 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1469
[f1cccd]1470 FindSecondPointForTesselation(FirstPoint, NULL, Oben, OptCandidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
1471 SecondPoint = OptCandidate;
[357fba]1472 if (SecondPoint == NULL) // have we found a second point?
1473 continue;
1474 else
1475 cout << Verbose(1) << "Found second point is at " << *SecondPoint->node << ".\n";
1476
1477 helper.CopyVector(FirstPoint->node);
1478 helper.SubtractVector(SecondPoint->node);
1479 helper.Normalize();
1480 Oben.ProjectOntoPlane(&helper);
1481 Oben.Normalize();
1482 helper.VectorProduct(&Oben);
1483 ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1484
1485 Chord.CopyVector(FirstPoint->node); // bring into calling function
1486 Chord.SubtractVector(SecondPoint->node);
1487 double radius = Chord.ScalarProduct(&Chord);
1488 double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
1489 helper.CopyVector(&Oben);
1490 helper.Scale(CircleRadius);
1491 // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized)
1492
1493 // look in one direction of baseline for initial candidate
1494 SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ...
1495
[5c7bf8]1496 // adding point 1 and point 2 and add the line between them
[16d866]1497 AddTesselationPoint(FirstPoint, 0);
1498 AddTesselationPoint(SecondPoint, 1);
1499 AddTesselationLine(TPS[0], TPS[1], 0);
[357fba]1500
1501 //cout << Verbose(2) << "INFO: OldSphereCenter is at " << helper << ".\n";
[f1cccd]1502 FindThirdPointForTesselation(
1503 Oben, SearchDirection, helper, BLS[0], NULL, *&OptCandidates, &ShortestAngle, RADIUS, LC
[357fba]1504 );
1505 cout << Verbose(1) << "List of third Points is ";
[f1cccd]1506 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1507 cout << " " << *(*it)->point;
1508 }
1509 cout << endl;
1510
[f1cccd]1511 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1512 // add third triangle point
[16d866]1513 AddTesselationPoint((*it)->point, 2);
[357fba]1514 // add the second and third line
[16d866]1515 AddTesselationLine(TPS[1], TPS[2], 1);
1516 AddTesselationLine(TPS[0], TPS[2], 2);
[357fba]1517 // ... and triangles to the Maps of the Tesselation class
1518 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1519 AddTesselationTriangle();
[357fba]1520 // ... and calculate its normal vector (with correct orientation)
1521 (*it)->OptCenter.Scale(-1.);
1522 cout << Verbose(2) << "Anti-Oben is currently " << (*it)->OptCenter << "." << endl;
1523 BTS->GetNormalVector((*it)->OptCenter); // vector to compare with should point inwards
1524 cout << Verbose(0) << "==> Found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and "
1525 << *(*it)->point << " with normal vector " << BTS->NormalVector << ".\n";
1526
1527 // if we do not reach the end with the next step of iteration, we need to setup a new first line
[f1cccd]1528 if (it != OptCandidates->end()--) {
[357fba]1529 FirstPoint = (*it)->BaseLine->endpoints[0]->node;
1530 SecondPoint = (*it)->point;
1531 // adding point 1 and point 2 and the line between them
[16d866]1532 AddTesselationPoint(FirstPoint, 0);
1533 AddTesselationPoint(SecondPoint, 1);
1534 AddTesselationLine(TPS[0], TPS[1], 0);
[357fba]1535 }
[658efb]1536 cout << Verbose(2) << "Projection is " << BTS->NormalVector.ScalarProduct(&Oben) << "." << endl;
[357fba]1537 }
1538 if (BTS != NULL) // we have created one starting triangle
1539 break;
1540 else {
1541 // remove all candidates from the list and then the list itself
1542 class CandidateForTesselation *remover = NULL;
[f1cccd]1543 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1544 remover = *it;
1545 delete(remover);
1546 }
[f1cccd]1547 OptCandidates->clear();
[357fba]1548 }
1549 }
1550
1551 // remove all candidates from the list and then the list itself
1552 class CandidateForTesselation *remover = NULL;
[f1cccd]1553 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1554 remover = *it;
1555 delete(remover);
1556 }
[f1cccd]1557 delete(OptCandidates);
1558 cout << Verbose(1) << "End of FindStartingTriangle\n";
[357fba]1559};
1560
1561
1562/** This function finds a triangle to a line, adjacent to an existing one.
1563 * @param out output stream for debugging
1564 * @param Line current baseline to search from
1565 * @param T current triangle which \a Line is edge of
1566 * @param RADIUS radius of the rolling ball
1567 * @param N number of found triangles
[62bb91]1568 * @param *LC LinkedCell structure with neighbouring points
[357fba]1569 */
[f1cccd]1570bool Tesselation::FindNextSuitableTriangle(ofstream *out, BoundaryLineSet &Line, BoundaryTriangleSet &T, const double& RADIUS, int N, LinkedCell *LC)
[357fba]1571{
[f1cccd]1572 cout << Verbose(0) << "Begin of FindNextSuitableTriangle\n";
[357fba]1573 bool result = true;
[f1cccd]1574 CandidateList *OptCandidates = new CandidateList();
[357fba]1575
1576 Vector CircleCenter;
1577 Vector CirclePlaneNormal;
1578 Vector OldSphereCenter;
1579 Vector SearchDirection;
1580 Vector helper;
1581 TesselPoint *ThirdNode = NULL;
1582 LineMap::iterator testline;
1583 double ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1584 double radius, CircleRadius;
1585
1586 cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl;
1587 for (int i=0;i<3;i++)
1588 if ((T.endpoints[i]->node != Line.endpoints[0]->node) && (T.endpoints[i]->node != Line.endpoints[1]->node))
1589 ThirdNode = T.endpoints[i]->node;
1590
1591 // construct center of circle
1592 CircleCenter.CopyVector(Line.endpoints[0]->node->node);
1593 CircleCenter.AddVector(Line.endpoints[1]->node->node);
1594 CircleCenter.Scale(0.5);
1595
1596 // construct normal vector of circle
1597 CirclePlaneNormal.CopyVector(Line.endpoints[0]->node->node);
1598 CirclePlaneNormal.SubtractVector(Line.endpoints[1]->node->node);
1599
1600 // calculate squared radius of circle
1601 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
1602 if (radius/4. < RADIUS*RADIUS) {
1603 CircleRadius = RADIUS*RADIUS - radius/4.;
1604 CirclePlaneNormal.Normalize();
1605 cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
1606
1607 // construct old center
1608 GetCenterofCircumcircle(&OldSphereCenter, T.endpoints[0]->node->node, T.endpoints[1]->node->node, T.endpoints[2]->node->node);
1609 helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones
1610 radius = Line.endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
1611 helper.Scale(sqrt(RADIUS*RADIUS - radius));
1612 OldSphereCenter.AddVector(&helper);
1613 OldSphereCenter.SubtractVector(&CircleCenter);
1614 //cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
1615
1616 // construct SearchDirection
1617 SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal);
1618 helper.CopyVector(Line.endpoints[0]->node->node);
1619 helper.SubtractVector(ThirdNode->node);
1620 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
1621 SearchDirection.Scale(-1.);
1622 SearchDirection.ProjectOntoPlane(&OldSphereCenter);
1623 SearchDirection.Normalize();
1624 cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
1625 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
1626 // rotated the wrong way!
1627 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
1628 }
1629
1630 // add third point
[f1cccd]1631 FindThirdPointForTesselation(
1632 T.NormalVector, SearchDirection, OldSphereCenter, &Line, ThirdNode, OptCandidates,
[357fba]1633 &ShortestAngle, RADIUS, LC
1634 );
1635
1636 } else {
1637 cout << Verbose(1) << "Circumcircle for base line " << Line << " and base triangle " << T << " is too big!" << endl;
1638 }
1639
[f1cccd]1640 if (OptCandidates->begin() == OptCandidates->end()) {
[357fba]1641 cerr << "WARNING: Could not find a suitable candidate." << endl;
1642 return false;
1643 }
1644 cout << Verbose(1) << "Third Points are ";
[f1cccd]1645 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1646 cout << " " << *(*it)->point;
1647 }
1648 cout << endl;
1649
1650 BoundaryLineSet *BaseRay = &Line;
[f1cccd]1651 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1652 cout << Verbose(1) << " Third point candidate is " << *(*it)->point
1653 << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
1654 cout << Verbose(1) << " Baseline is " << *BaseRay << endl;
1655
1656 // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
[62bb91]1657 TesselPoint *PointCandidates[3];
1658 PointCandidates[0] = (*it)->point;
1659 PointCandidates[1] = BaseRay->endpoints[0]->node;
1660 PointCandidates[2] = BaseRay->endpoints[1]->node;
1661 int existentTrianglesCount = CheckPresenceOfTriangle(out, PointCandidates);
[357fba]1662
1663 BTS = NULL;
1664 // If there is no triangle, add it regularly.
1665 if (existentTrianglesCount == 0) {
[16d866]1666 AddTesselationPoint((*it)->point, 0);
1667 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
1668 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
[357fba]1669
[f1cccd]1670 if (CheckLineCriteriaForDegeneratedTriangle(TPS)) {
[16d866]1671 AddTesselationLine(TPS[0], TPS[1], 0);
1672 AddTesselationLine(TPS[0], TPS[2], 1);
1673 AddTesselationLine(TPS[1], TPS[2], 2);
[357fba]1674
[1953f9]1675 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1676 AddTesselationTriangle();
[1953f9]1677 (*it)->OptCenter.Scale(-1.);
1678 BTS->GetNormalVector((*it)->OptCenter);
1679 (*it)->OptCenter.Scale(-1.);
[357fba]1680
[1953f9]1681 cout << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector
1682 << " for this triangle ... " << endl;
[357fba]1683 //cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << *BaseRay << "." << endl;
[1953f9]1684 } else {
1685 cout << Verbose(1) << "WARNING: This triangle consisting of ";
1686 cout << *(*it)->point << ", ";
1687 cout << *BaseRay->endpoints[0]->node << " and ";
1688 cout << *BaseRay->endpoints[1]->node << " ";
1689 cout << "exists and is not added, as it does not seem helpful!" << endl;
1690 result = false;
1691 }
[357fba]1692 } else if (existentTrianglesCount == 1) { // If there is a planar region within the structure, we need this triangle a second time.
[16d866]1693 AddTesselationPoint((*it)->point, 0);
1694 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
1695 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
[357fba]1696
1697 // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
1698 // i.e. at least one of the three lines must be present with TriangleCount <= 1
[f1cccd]1699 if (CheckLineCriteriaForDegeneratedTriangle(TPS)) {
[16d866]1700 AddTesselationLine(TPS[0], TPS[1], 0);
1701 AddTesselationLine(TPS[0], TPS[2], 1);
1702 AddTesselationLine(TPS[1], TPS[2], 2);
[357fba]1703
1704 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1705 AddTesselationTriangle(); // add to global map
[357fba]1706
1707 (*it)->OtherOptCenter.Scale(-1.);
1708 BTS->GetNormalVector((*it)->OtherOptCenter);
1709 (*it)->OtherOptCenter.Scale(-1.);
1710
1711 cout << "--> WARNING: Special new triangle with " << *BTS << " and normal vector " << BTS->NormalVector
1712 << " for this triangle ... " << endl;
[5c7bf8]1713 cout << Verbose(1) << "We have "<< BaseRay->triangles.size() << " for line " << BaseRay << "." << endl;
[357fba]1714 } else {
1715 cout << Verbose(1) << "WARNING: This triangle consisting of ";
1716 cout << *(*it)->point << ", ";
1717 cout << *BaseRay->endpoints[0]->node << " and ";
1718 cout << *BaseRay->endpoints[1]->node << " ";
1719 cout << "exists and is not added, as it does not seem helpful!" << endl;
1720 result = false;
1721 }
1722 } else {
1723 cout << Verbose(1) << "This triangle consisting of ";
1724 cout << *(*it)->point << ", ";
1725 cout << *BaseRay->endpoints[0]->node << " and ";
1726 cout << *BaseRay->endpoints[1]->node << " ";
1727 cout << "is invalid!" << endl;
1728 result = false;
1729 }
1730
1731 // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point))
1732 BaseRay = BLS[0];
1733 }
1734
1735 // remove all candidates from the list and then the list itself
1736 class CandidateForTesselation *remover = NULL;
[f1cccd]1737 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1738 remover = *it;
1739 delete(remover);
1740 }
[f1cccd]1741 delete(OptCandidates);
1742 cout << Verbose(0) << "End of FindNextSuitableTriangle\n";
[357fba]1743 return result;
1744};
1745
[16d866]1746/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
1747 * We look whether the closest point on \a *Base with respect to the other baseline is outside
1748 * of the segment formed by both endpoints (concave) or not (convex).
1749 * \param *out output stream for debugging
1750 * \param *Base line to be flipped
1751 * \return NULL - concave, otherwise endpoint that makes it concave
1752 */
1753class BoundaryPointSet *Tesselation::IsConvexRectangle(ofstream *out, class BoundaryLineSet *Base)
1754{
1755 class BoundaryPointSet *Spot = NULL;
1756 class BoundaryLineSet *OtherBase;
[0077b5]1757 Vector *ClosestPoint;
[16d866]1758
1759 int m=0;
1760 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1761 for (int j=0;j<3;j++) // all of their endpoints and baselines
1762 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1763 BPS[m++] = runner->second->endpoints[j];
1764 OtherBase = new class BoundaryLineSet(BPS,-1);
1765
1766 *out << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
1767 *out << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
1768
1769 // get the closest point on each line to the other line
[0077b5]1770 ClosestPoint = GetClosestPointBetweenLine(out, Base, OtherBase);
[16d866]1771
1772 // delete the temporary other base line
1773 delete(OtherBase);
1774
1775 // get the distance vector from Base line to OtherBase line
[0077b5]1776 Vector DistanceToIntersection[2], BaseLine;
1777 double distance[2];
[16d866]1778 BaseLine.CopyVector(Base->endpoints[1]->node->node);
1779 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
[0077b5]1780 for (int i=0;i<2;i++) {
1781 DistanceToIntersection[i].CopyVector(ClosestPoint);
1782 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node);
1783 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]);
[16d866]1784 }
[1d9b7aa]1785 delete(ClosestPoint);
1786 if ((distance[0] * distance[1]) > 0) { // have same sign?
1787 *out << Verbose(3) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl;
[0077b5]1788 if (distance[0] < distance[1]) {
1789 Spot = Base->endpoints[0];
1790 } else {
1791 Spot = Base->endpoints[1];
1792 }
[16d866]1793 return Spot;
[0077b5]1794 } else { // different sign, i.e. we are in between
1795 *out << Verbose(3) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl;
[16d866]1796 return NULL;
1797 }
1798
1799};
1800
[0077b5]1801void Tesselation::PrintAllBoundaryPoints(ofstream *out)
1802{
1803 // print all lines
1804 *out << Verbose(1) << "Printing all boundary points for debugging:" << endl;
1805 for (PointMap::iterator PointRunner = PointsOnBoundary.begin();PointRunner != PointsOnBoundary.end(); PointRunner++)
1806 *out << Verbose(2) << *(PointRunner->second) << endl;
1807};
1808
1809void Tesselation::PrintAllBoundaryLines(ofstream *out)
1810{
1811 // print all lines
1812 *out << Verbose(1) << "Printing all boundary lines for debugging:" << endl;
1813 for (LineMap::iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
1814 *out << Verbose(2) << *(LineRunner->second) << endl;
1815};
1816
1817void Tesselation::PrintAllBoundaryTriangles(ofstream *out)
1818{
1819 // print all triangles
1820 *out << Verbose(1) << "Printing all boundary triangles for debugging:" << endl;
1821 for (TriangleMap::iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
1822 *out << Verbose(2) << *(TriangleRunner->second) << endl;
1823};
[357fba]1824
[16d866]1825/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
[357fba]1826 * \param *out output stream for debugging
[16d866]1827 * \param *Base line to be flipped
1828 * \return true - line was changed, false - same line as before
[357fba]1829 */
[16d866]1830bool Tesselation::PickFarthestofTwoBaselines(ofstream *out, class BoundaryLineSet *Base)
[357fba]1831{
[16d866]1832 class BoundaryLineSet *OtherBase;
1833 Vector *ClosestPoint[2];
1834
1835 int m=0;
1836 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1837 for (int j=0;j<3;j++) // all of their endpoints and baselines
1838 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1839 BPS[m++] = runner->second->endpoints[j];
1840 OtherBase = new class BoundaryLineSet(BPS,-1);
[62bb91]1841
[16d866]1842 *out << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
1843 *out << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
[62bb91]1844
[16d866]1845 // get the closest point on each line to the other line
1846 ClosestPoint[0] = GetClosestPointBetweenLine(out, Base, OtherBase);
1847 ClosestPoint[1] = GetClosestPointBetweenLine(out, OtherBase, Base);
1848
1849 // get the distance vector from Base line to OtherBase line
1850 Vector Distance;
1851 Distance.CopyVector(ClosestPoint[1]);
1852 Distance.SubtractVector(ClosestPoint[0]);
1853
[0077b5]1854 // delete the temporary other base line and the closest points
1855 delete(ClosestPoint[0]);
1856 delete(ClosestPoint[1]);
[16d866]1857 delete(OtherBase);
1858
1859 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
1860 *out << Verbose(3) << "REJECT: Both lines have an intersection: Nothing to do." << endl;
1861 return false;
1862 } else { // check for sign against BaseLineNormal
1863 Vector BaseLineNormal;
[5c7bf8]1864 BaseLineNormal.Zero();
1865 if (Base->triangles.size() < 2) {
1866 *out << Verbose(2) << "ERROR: Less than two triangles are attached to this baseline!" << endl;
1867 return false;
1868 }
1869 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1870 *out << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
1871 BaseLineNormal.AddVector(&(runner->second->NormalVector));
1872 }
[0077b5]1873 BaseLineNormal.Scale(1./2.);
[357fba]1874
[16d866]1875 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
1876 *out << Verbose(2) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl;
1877 FlipBaseline(out, Base);
1878 return true;
1879 } else { // Base higher than OtherBase -> do nothing
1880 *out << Verbose(2) << "REJECT: Base line is higher: Nothing to do." << endl;
1881 return false;
1882 }
1883 }
1884};
[357fba]1885
[16d866]1886/** Returns the closest point on \a *Base with respect to \a *OtherBase.
1887 * \param *out output stream for debugging
1888 * \param *Base reference line
1889 * \param *OtherBase other base line
1890 * \return Vector on reference line that has closest distance
1891 */
1892Vector * GetClosestPointBetweenLine(ofstream *out, class BoundaryLineSet *Base, class BoundaryLineSet *OtherBase)
1893{
1894 // construct the plane of the two baselines (i.e. take both their directional vectors)
1895 Vector Normal;
[0077b5]1896 Vector Baseline, OtherBaseline;
1897 Baseline.CopyVector(Base->endpoints[1]->node->node);
1898 Baseline.SubtractVector(Base->endpoints[0]->node->node);
[16d866]1899 OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
1900 OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
[0077b5]1901 Normal.CopyVector(&Baseline);
[16d866]1902 Normal.VectorProduct(&OtherBaseline);
1903 Normal.Normalize();
[0077b5]1904 *out << Verbose(4) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
[16d866]1905
[0077b5]1906 // project one offset point of OtherBase onto this plane (and add plane offset vector)
[16d866]1907 Vector NewOffset;
1908 NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
[1d9b7aa]1909 NewOffset.SubtractVector(Base->endpoints[0]->node->node);
[16d866]1910 NewOffset.ProjectOntoPlane(&Normal);
[0077b5]1911 NewOffset.AddVector(Base->endpoints[0]->node->node);
[1d9b7aa]1912 Vector NewDirection;
1913 NewDirection.CopyVector(&NewOffset);
1914 NewDirection.AddVector(&OtherBaseline);
[16d866]1915
1916 // calculate the intersection between this projected baseline and Base
1917 Vector *Intersection = new Vector;
[1d9b7aa]1918 Intersection->GetIntersectionOfTwoLinesOnPlane(out, Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
[0077b5]1919 Normal.CopyVector(Intersection);
1920 Normal.SubtractVector(Base->endpoints[0]->node->node);
1921 *out << Verbose(3) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
[16d866]1922
1923 return Intersection;
1924};
1925
1926/** For a given baseline and its two connected triangles, flips the baseline.
1927 * I.e. we create the new baseline between the other two endpoints of these four
1928 * endpoints and reconstruct the two triangles accordingly.
1929 * \param *out output stream for debugging
1930 * \param *Base line to be flipped
1931 * \return true - flipping successful, false - something went awry
1932 */
1933bool Tesselation::FlipBaseline(ofstream *out, class BoundaryLineSet *Base)
1934{
1935 class BoundaryLineSet *OldLines[4], *NewLine;
1936 class BoundaryPointSet *OldPoints[2];
1937 Vector BaseLineNormal;
1938 int OldTriangleNrs[2], OldBaseLineNr;
1939 int i,m;
1940
1941 *out << Verbose(1) << "Begin of FlipBaseline" << endl;
1942
1943 // calculate NormalVector for later use
1944 BaseLineNormal.Zero();
1945 if (Base->triangles.size() < 2) {
1946 *out << Verbose(2) << "ERROR: Less than two triangles are attached to this baseline!" << endl;
1947 return false;
1948 }
1949 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1950 *out << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
1951 BaseLineNormal.AddVector(&(runner->second->NormalVector));
1952 }
1953 BaseLineNormal.Scale(-1./2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
1954
1955 // get the two triangles
1956 // gather four endpoints and four lines
1957 for (int j=0;j<4;j++)
1958 OldLines[j] = NULL;
1959 for (int j=0;j<2;j++)
1960 OldPoints[j] = NULL;
1961 i=0;
1962 m=0;
1963 *out << Verbose(3) << "The four old lines are: ";
1964 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1965 for (int j=0;j<3;j++) // all of their endpoints and baselines
1966 if (runner->second->lines[j] != Base) { // pick not the central baseline
1967 OldLines[i++] = runner->second->lines[j];
1968 *out << *runner->second->lines[j] << "\t";
[357fba]1969 }
[16d866]1970 *out << endl;
1971 *out << Verbose(3) << "The two old points are: ";
1972 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1973 for (int j=0;j<3;j++) // all of their endpoints and baselines
1974 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
1975 OldPoints[m++] = runner->second->endpoints[j];
1976 *out << *runner->second->endpoints[j] << "\t";
1977 }
1978 *out << endl;
1979
1980 // check whether everything is in place to create new lines and triangles
1981 if (i<4) {
1982 *out << Verbose(1) << "ERROR: We have not gathered enough baselines!" << endl;
1983 return false;
1984 }
1985 for (int j=0;j<4;j++)
1986 if (OldLines[j] == NULL) {
1987 *out << Verbose(1) << "ERROR: We have not gathered enough baselines!" << endl;
1988 return false;
1989 }
1990 for (int j=0;j<2;j++)
1991 if (OldPoints[j] == NULL) {
1992 *out << Verbose(1) << "ERROR: We have not gathered enough endpoints!" << endl;
1993 return false;
[357fba]1994 }
[16d866]1995
1996 // remove triangles and baseline removes itself
1997 *out << Verbose(3) << "INFO: Deleting baseline " << *Base << " from global list." << endl;
1998 OldBaseLineNr = Base->Nr;
1999 m=0;
2000 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2001 *out << Verbose(3) << "INFO: Deleting triangle " << *(runner->second) << "." << endl;
2002 OldTriangleNrs[m++] = runner->second->Nr;
2003 RemoveTesselationTriangle(runner->second);
2004 }
2005
2006 // construct new baseline (with same number as old one)
2007 BPS[0] = OldPoints[0];
2008 BPS[1] = OldPoints[1];
2009 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
2010 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
2011 *out << Verbose(3) << "INFO: Created new baseline " << *NewLine << "." << endl;
2012
2013 // construct new triangles with flipped baseline
2014 i=-1;
2015 if (OldLines[0]->IsConnectedTo(OldLines[2]))
2016 i=2;
2017 if (OldLines[0]->IsConnectedTo(OldLines[3]))
2018 i=3;
2019 if (i!=-1) {
2020 BLS[0] = OldLines[0];
2021 BLS[1] = OldLines[i];
2022 BLS[2] = NewLine;
2023 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
2024 BTS->GetNormalVector(BaseLineNormal);
2025 TrianglesOnBoundary.insert(TrianglePair(OldTriangleNrs[0], BTS));
2026 *out << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2027
2028 BLS[0] = (i==2 ? OldLines[3] : OldLines[2]);
2029 BLS[1] = OldLines[1];
2030 BLS[2] = NewLine;
2031 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
2032 BTS->GetNormalVector(BaseLineNormal);
2033 TrianglesOnBoundary.insert(TrianglePair(OldTriangleNrs[1], BTS));
2034 *out << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2035 } else {
2036 *out << Verbose(1) << "The four old lines do not connect, something's utterly wrong here!" << endl;
2037 return false;
[357fba]2038 }
[16d866]2039
2040 *out << Verbose(1) << "End of FlipBaseline" << endl;
[357fba]2041 return true;
2042};
2043
[16d866]2044
[357fba]2045/** Finds the second point of starting triangle.
2046 * \param *a first node
2047 * \param *Candidate pointer to candidate node on return
2048 * \param Oben vector indicating the outside
[f1cccd]2049 * \param OptCandidate reference to recommended candidate on return
[357fba]2050 * \param Storage[3] array storing angles and other candidate information
2051 * \param RADIUS radius of virtual sphere
[62bb91]2052 * \param *LC LinkedCell structure with neighbouring points
[357fba]2053 */
[f1cccd]2054void Tesselation::FindSecondPointForTesselation(TesselPoint* a, TesselPoint* Candidate, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, LinkedCell *LC)
[357fba]2055{
[f1cccd]2056 cout << Verbose(2) << "Begin of FindSecondPointForTesselation" << endl;
[357fba]2057 Vector AngleCheck;
2058 double norm = -1., angle;
2059 LinkedNodes *List = NULL;
2060 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2061
[62bb91]2062 if (LC->SetIndexToNode(a)) { // get cell for the starting point
[357fba]2063 for(int i=0;i<NDIM;i++) // store indices of this cell
2064 N[i] = LC->n[i];
2065 } else {
[62bb91]2066 cerr << "ERROR: Point " << *a << " is not found in cell " << LC->index << "." << endl;
[357fba]2067 return;
2068 }
[62bb91]2069 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[357fba]2070 cout << Verbose(3) << "LC Intervals from [";
2071 for (int i=0;i<NDIM;i++) {
2072 cout << " " << N[i] << "<->" << LC->N[i];
2073 }
2074 cout << "] :";
2075 for (int i=0;i<NDIM;i++) {
2076 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2077 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2078 cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2079 }
2080 cout << endl;
2081
2082
2083 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2084 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2085 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2086 List = LC->GetCurrentCell();
2087 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2088 if (List != NULL) {
2089 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2090 Candidate = (*Runner);
2091 // check if we only have one unique point yet ...
2092 if (a != Candidate) {
2093 // Calculate center of the circle with radius RADIUS through points a and Candidate
[f1cccd]2094 Vector OrthogonalizedOben, aCandidate, Center;
[357fba]2095 double distance, scaleFactor;
2096
2097 OrthogonalizedOben.CopyVector(&Oben);
[f1cccd]2098 aCandidate.CopyVector(a->node);
2099 aCandidate.SubtractVector(Candidate->node);
2100 OrthogonalizedOben.ProjectOntoPlane(&aCandidate);
[357fba]2101 OrthogonalizedOben.Normalize();
[f1cccd]2102 distance = 0.5 * aCandidate.Norm();
[357fba]2103 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
2104 OrthogonalizedOben.Scale(scaleFactor);
2105
2106 Center.CopyVector(Candidate->node);
2107 Center.AddVector(a->node);
2108 Center.Scale(0.5);
2109 Center.AddVector(&OrthogonalizedOben);
2110
2111 AngleCheck.CopyVector(&Center);
2112 AngleCheck.SubtractVector(a->node);
[f1cccd]2113 norm = aCandidate.Norm();
[357fba]2114 // second point shall have smallest angle with respect to Oben vector
2115 if (norm < RADIUS*2.) {
2116 angle = AngleCheck.Angle(&Oben);
2117 if (angle < Storage[0]) {
2118 //cout << Verbose(3) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
2119 cout << Verbose(3) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
[f1cccd]2120 OptCandidate = Candidate;
[357fba]2121 Storage[0] = angle;
2122 //cout << Verbose(3) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
2123 } else {
[f1cccd]2124 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate << endl;
[357fba]2125 }
2126 } else {
2127 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
2128 }
2129 } else {
2130 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
2131 }
2132 }
2133 } else {
2134 cout << Verbose(3) << "Linked cell list is empty." << endl;
2135 }
2136 }
[f1cccd]2137 cout << Verbose(2) << "End of FindSecondPointForTesselation" << endl;
[357fba]2138};
2139
2140
2141/** This recursive function finds a third point, to form a triangle with two given ones.
2142 * Note that this function is for the starting triangle.
2143 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
2144 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
2145 * the center of the sphere is still fixed up to a single parameter. The band of possible values
2146 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
2147 * us the "null" on this circle, the new center of the candidate point will be some way along this
2148 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
2149 * by the normal vector of the base triangle that always points outwards by construction.
2150 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
2151 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2152 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2153 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2154 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2155 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2156 * both.
2157 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2158 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2159 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2160 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2161 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2162 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
[f1cccd]2163 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
[357fba]2164 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
2165 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
2166 * @param BaseLine BoundaryLineSet with the current base line
[62bb91]2167 * @param ThirdNode third point to avoid in search
[357fba]2168 * @param candidates list of equally good candidates to return
[f1cccd]2169 * @param ShortestAngle the current path length on this circle band for the current OptCandidate
[357fba]2170 * @param RADIUS radius of sphere
[62bb91]2171 * @param *LC LinkedCell structure with neighbouring points
[357fba]2172 */
[f1cccd]2173void Tesselation::FindThirdPointForTesselation(Vector NormalVector, Vector SearchDirection, Vector OldSphereCenter, class BoundaryLineSet *BaseLine, class TesselPoint *ThirdNode, CandidateList* &candidates, double *ShortestAngle, const double RADIUS, LinkedCell *LC)
[357fba]2174{
2175 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2176 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2177 Vector SphereCenter;
2178 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2179 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2180 Vector NewNormalVector; // normal vector of the Candidate's triangle
2181 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
2182 LinkedNodes *List = NULL;
2183 double CircleRadius; // radius of this circle
2184 double radius;
2185 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2186 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2187 TesselPoint *Candidate = NULL;
2188 CandidateForTesselation *optCandidate = NULL;
2189
[f1cccd]2190 cout << Verbose(1) << "Begin of FindThirdPointForTesselation" << endl;
[357fba]2191
2192 //cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
2193
2194 // construct center of circle
2195 CircleCenter.CopyVector(BaseLine->endpoints[0]->node->node);
2196 CircleCenter.AddVector(BaseLine->endpoints[1]->node->node);
2197 CircleCenter.Scale(0.5);
2198
2199 // construct normal vector of circle
2200 CirclePlaneNormal.CopyVector(BaseLine->endpoints[0]->node->node);
2201 CirclePlaneNormal.SubtractVector(BaseLine->endpoints[1]->node->node);
2202
[ab1932]2203 // calculate squared radius TesselPoint *ThirdNode,f circle
[357fba]2204 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2205 if (radius/4. < RADIUS*RADIUS) {
2206 CircleRadius = RADIUS*RADIUS - radius/4.;
2207 CirclePlaneNormal.Normalize();
2208 //cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2209
2210 // test whether old center is on the band's plane
2211 if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
2212 cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
2213 OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
2214 }
2215 radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
2216 if (fabs(radius - CircleRadius) < HULLEPSILON) {
2217
2218 // check SearchDirection
2219 //cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2220 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2221 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
2222 }
2223
[62bb91]2224 // get cell for the starting point
[357fba]2225 if (LC->SetIndexToVector(&CircleCenter)) {
2226 for(int i=0;i<NDIM;i++) // store indices of this cell
2227 N[i] = LC->n[i];
2228 //cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2229 } else {
2230 cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
2231 return;
2232 }
[62bb91]2233 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[357fba]2234 //cout << Verbose(2) << "LC Intervals:";
2235 for (int i=0;i<NDIM;i++) {
2236 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2237 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2238 //cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2239 }
2240 //cout << endl;
2241 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2242 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2243 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2244 List = LC->GetCurrentCell();
2245 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2246 if (List != NULL) {
2247 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2248 Candidate = (*Runner);
2249
2250 // check for three unique points
[1953f9]2251 //cout << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->node << "." << endl;
[357fba]2252 if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) ){
2253
2254 // construct both new centers
2255 GetCenterofCircumcircle(&NewSphereCenter, BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node);
2256 OtherNewSphereCenter.CopyVector(&NewSphereCenter);
2257
2258 if ((NewNormalVector.MakeNormalVector(BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node))
2259 && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)
2260 ) {
2261 helper.CopyVector(&NewNormalVector);
2262 //cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
2263 radius = BaseLine->endpoints[0]->node->node->DistanceSquared(&NewSphereCenter);
2264 if (radius < RADIUS*RADIUS) {
2265 helper.Scale(sqrt(RADIUS*RADIUS - radius));
2266 //cout << Verbose(2) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << " with sphere radius " << RADIUS << "." << endl;
2267 NewSphereCenter.AddVector(&helper);
2268 NewSphereCenter.SubtractVector(&CircleCenter);
2269 //cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
2270
2271 // OtherNewSphereCenter is created by the same vector just in the other direction
2272 helper.Scale(-1.);
2273 OtherNewSphereCenter.AddVector(&helper);
2274 OtherNewSphereCenter.SubtractVector(&CircleCenter);
2275 //cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
2276
2277 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2278 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2279 alpha = min(alpha, Otheralpha);
2280 // if there is a better candidate, drop the current list and add the new candidate
2281 // otherwise ignore the new candidate and keep the list
2282 if (*ShortestAngle > (alpha - HULLEPSILON)) {
2283 optCandidate = new CandidateForTesselation(Candidate, BaseLine, OptCandidateCenter, OtherOptCandidateCenter);
2284 if (fabs(alpha - Otheralpha) > MYEPSILON) {
2285 optCandidate->OptCenter.CopyVector(&NewSphereCenter);
2286 optCandidate->OtherOptCenter.CopyVector(&OtherNewSphereCenter);
2287 } else {
2288 optCandidate->OptCenter.CopyVector(&OtherNewSphereCenter);
2289 optCandidate->OtherOptCenter.CopyVector(&NewSphereCenter);
2290 }
2291 // if there is an equal candidate, add it to the list without clearing the list
2292 if ((*ShortestAngle - HULLEPSILON) < alpha) {
2293 candidates->push_back(optCandidate);
2294 cout << Verbose(2) << "ACCEPT: We have found an equally good candidate: " << *(optCandidate->point) << " with "
2295 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2296 } else {
2297 // remove all candidates from the list and then the list itself
2298 class CandidateForTesselation *remover = NULL;
2299 for (CandidateList::iterator it = candidates->begin(); it != candidates->end(); ++it) {
2300 remover = *it;
2301 delete(remover);
2302 }
2303 candidates->clear();
2304 candidates->push_back(optCandidate);
2305 cout << Verbose(2) << "ACCEPT: We have found a better candidate: " << *(optCandidate->point) << " with "
2306 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2307 }
2308 *ShortestAngle = alpha;
2309 //cout << Verbose(2) << "INFO: There are " << candidates->size() << " candidates in the list now." << endl;
2310 } else {
2311 if ((optCandidate != NULL) && (optCandidate->point != NULL)) {
[1953f9]2312 //cout << Verbose(2) << "REJECT: Old candidate " << *(optCandidate->point) << " with " << *ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl;
[357fba]2313 } else {
2314 //cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
2315 }
2316 }
2317
2318 } else {
[1953f9]2319 //cout << Verbose(2) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl;
[357fba]2320 }
2321 } else {
2322 //cout << Verbose(2) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
2323 }
2324 } else {
2325 if (ThirdNode != NULL) {
2326 //cout << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
2327 } else {
2328 //cout << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl;
2329 }
2330 }
2331 }
2332 }
2333 }
2334 } else {
2335 cerr << Verbose(2) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
2336 }
2337 } else {
2338 if (ThirdNode != NULL)
2339 cout << Verbose(2) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
2340 else
2341 cout << Verbose(2) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl;
2342 }
2343
2344 //cout << Verbose(2) << "INFO: Sorting candidate list ..." << endl;
2345 if (candidates->size() > 1) {
2346 candidates->unique();
[f1cccd]2347 candidates->sort(SortCandidates);
[357fba]2348 }
2349
[f1cccd]2350 cout << Verbose(1) << "End of FindThirdPointForTesselation" << endl;
[357fba]2351};
2352
2353/** Finds the endpoint two lines are sharing.
2354 * \param *line1 first line
2355 * \param *line2 second line
2356 * \return point which is shared or NULL if none
2357 */
2358class BoundaryPointSet *Tesselation::GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
2359{
2360 class BoundaryLineSet * lines[2] =
2361 { line1, line2 };
2362 class BoundaryPointSet *node = NULL;
2363 map<int, class BoundaryPointSet *> OrderMap;
2364 pair<map<int, class BoundaryPointSet *>::iterator, bool> OrderTest;
2365 for (int i = 0; i < 2; i++)
2366 // for both lines
2367 for (int j = 0; j < 2; j++)
2368 { // for both endpoints
2369 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (
2370 lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
2371 if (!OrderTest.second)
2372 { // if insertion fails, we have common endpoint
2373 node = OrderTest.first->second;
2374 cout << Verbose(5) << "Common endpoint of lines " << *line1
2375 << " and " << *line2 << " is: " << *node << "." << endl;
2376 j = 2;
2377 i = 2;
2378 break;
2379 }
2380 }
2381 return node;
2382};
2383
[62bb91]2384/** Finds the triangle that is closest to a given Vector \a *x.
2385 * \param *out output stream for debugging
2386 * \param *x Vector to look from
2387 * \return list of BoundaryTriangleSet of nearest triangles or NULL in degenerate case.
2388 */
2389list<BoundaryTriangleSet*> * Tesselation::FindClosestTrianglesToPoint(ofstream *out, Vector *x, LinkedCell* LC)
2390{
[5c7bf8]2391 TesselPoint *trianglePoints[3];
2392 TesselPoint *SecondPoint = NULL;
[62bb91]2393
2394 if (LinesOnBoundary.empty()) {
[5c7bf8]2395 *out << Verbose(0) << "Error: There is no tesselation structure to compare the point with, please create one first.";
[62bb91]2396 return NULL;
2397 }
2398
[f1cccd]2399 trianglePoints[0] = FindClosestPoint(x, SecondPoint, LC);
[5c7bf8]2400
[62bb91]2401 // check whether closest point is "too close" :), then it's inside
[5c7bf8]2402 if (trianglePoints[0] == NULL) {
2403 *out << Verbose(1) << "Is the only point, no one else is closeby." << endl;
2404 return NULL;
2405 }
[62bb91]2406 if (trianglePoints[0]->node->DistanceSquared(x) < MYEPSILON) {
2407 *out << Verbose(1) << "Point is right on a tesselation point, no nearest triangle." << endl;
2408 return NULL;
2409 }
[f1cccd]2410 list<TesselPoint*> *connectedPoints = GetCircleOfConnectedPoints(out, trianglePoints[0]);
2411 list<TesselPoint*> *connectedClosestPoints = GetNeighboursOnCircleOfConnectedPoints(out, connectedPoints, trianglePoints[0], x);
[16d866]2412 delete(connectedPoints);
[62bb91]2413 trianglePoints[1] = connectedClosestPoints->front();
2414 trianglePoints[2] = connectedClosestPoints->back();
2415 for (int i=0;i<3;i++) {
2416 if (trianglePoints[i] == NULL) {
2417 *out << Verbose(1) << "IsInnerPoint encounters serious error, point " << i << " not found." << endl;
2418 }
[5c7bf8]2419 //*out << Verbose(1) << "List of possible points:" << endl;
2420 //*out << Verbose(2) << *trianglePoints[i] << endl;
[62bb91]2421 }
2422
2423 list<BoundaryTriangleSet*> *triangles = FindTriangles(trianglePoints);
2424
[5c7bf8]2425 delete(connectedClosestPoints);
2426
[62bb91]2427 if (triangles->empty()) {
2428 *out << Verbose(0) << "Error: There is no nearest triangle. Please check the tesselation structure.";
2429 return NULL;
2430 } else
2431 return triangles;
2432};
2433
2434/** Finds closest triangle to a point.
2435 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
2436 * \param *out output stream for debugging
2437 * \param *x Vector to look from
2438 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
2439 */
2440class BoundaryTriangleSet * Tesselation::FindClosestTriangleToPoint(ofstream *out, Vector *x, LinkedCell* LC)
2441{
2442 class BoundaryTriangleSet *result = NULL;
2443 list<BoundaryTriangleSet*> *triangles = FindClosestTrianglesToPoint(out, x, LC);
2444
2445 if (triangles == NULL)
2446 return NULL;
2447
2448 if (x->ScalarProduct(&triangles->front()->NormalVector) < 0)
2449 result = triangles->back();
2450 else
2451 result = triangles->front();
2452
2453 delete(triangles);
2454 return result;
2455};
2456
2457/** Checks whether the provided Vector is within the tesselation structure.
2458 *
2459 * @param point of which to check the position
2460 * @param *LC LinkedCell structure
2461 *
2462 * @return true if the point is inside the tesselation structure, false otherwise
2463 */
2464bool Tesselation::IsInnerPoint(ofstream *out, Vector Point, LinkedCell* LC)
2465{
2466 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(out, &Point, LC);
2467 if (result == NULL)
2468 return true;
2469 if (Point.ScalarProduct(&result->NormalVector) < 0)
2470 return true;
2471 else
2472 return false;
2473}
2474
2475/** Checks whether the provided TesselPoint is within the tesselation structure.
2476 *
2477 * @param *Point of which to check the position
2478 * @param *LC Linked Cell structure
2479 *
2480 * @return true if the point is inside the tesselation structure, false otherwise
2481 */
2482bool Tesselation::IsInnerPoint(ofstream *out, TesselPoint *Point, LinkedCell* LC)
2483{
2484 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(out, Point->node, LC);
2485 if (result == NULL)
2486 return true;
2487 if (Point->node->ScalarProduct(&result->NormalVector) < 0)
2488 return true;
2489 else
2490 return false;
2491}
2492
2493/** Gets all points connected to the provided point by triangulation lines.
2494 *
2495 * @param *Point of which get all connected points
2496 *
[16d866]2497 * @return list of the all points linked to the provided one
[62bb91]2498 */
[f1cccd]2499list<TesselPoint*> * Tesselation::GetCircleOfConnectedPoints(ofstream *out, TesselPoint* Point)
[62bb91]2500{
[16d866]2501 list<TesselPoint*> *connectedPoints = new list<TesselPoint*>;
[5c7bf8]2502 class BoundaryPointSet *ReferencePoint = NULL;
[62bb91]2503 TesselPoint* current;
2504 bool takePoint = false;
2505
[5c7bf8]2506 // find the respective boundary point
2507 PointMap::iterator PointRunner = PointsOnBoundary.find(Point->nr);
2508 if (PointRunner != PointsOnBoundary.end()) {
2509 ReferencePoint = PointRunner->second;
2510 } else {
2511 *out << Verbose(2) << "getCircleOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
2512 ReferencePoint = NULL;
2513 }
[62bb91]2514
[5c7bf8]2515 // little trick so that we look just through lines connect to the BoundaryPoint
2516 // OR fall-back to look through all lines if there is no such BoundaryPoint
2517 LineMap *Lines = &LinesOnBoundary;
2518 if (ReferencePoint != NULL)
2519 Lines = &(ReferencePoint->lines);
2520 LineMap::iterator findLines = Lines->begin();
2521 while (findLines != Lines->end()) {
[62bb91]2522 takePoint = false;
2523
2524 if (findLines->second->endpoints[0]->Nr == Point->nr) {
2525 takePoint = true;
2526 current = findLines->second->endpoints[1]->node;
2527 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
2528 takePoint = true;
2529 current = findLines->second->endpoints[0]->node;
2530 }
[5c7bf8]2531
[62bb91]2532 if (takePoint) {
[5c7bf8]2533 *out << Verbose(3) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is taken into the circle." << endl;
[16d866]2534 connectedPoints->push_back(current);
[62bb91]2535 }
2536
2537 findLines++;
2538 }
2539
[16d866]2540 if (connectedPoints->size() == 0) { // if have not found any points
2541 *out << Verbose(1) << "ERROR: We have not found any connected points to " << *Point<< "." << endl;
2542 return NULL;
2543 }
2544 return connectedPoints;
2545}
2546
2547/** Gets the two neighbouring points with respect to a reference line to the provided point.
2548 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
2549 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
2550 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
2551 * triangle we are looking for.
2552 *
2553 * @param *out output stream for debugging
2554 * @param *connectedPoints list of connected points to the central \a *Point
2555 * @param *Point of which get all connected points
2556 * @param *Reference Vector to be checked whether it is an inner point
2557 *
2558 * @return list of the two points linked to the provided one and closest to the point to be checked,
2559 */
[f1cccd]2560list<TesselPoint*> * Tesselation::GetNeighboursOnCircleOfConnectedPoints(ofstream *out, list<TesselPoint*> *connectedPoints, TesselPoint* Point, Vector* Reference)
[16d866]2561{
2562 map<double, TesselPoint*> anglesOfPoints;
2563 map<double, TesselPoint*>::iterator runner;
2564 ;
2565 Vector center, PlaneNormal, OrthogonalVector, helper, AngleZero;
[62bb91]2566
[16d866]2567 if (connectedPoints->size() == 0) { // if have not found any points
[5c7bf8]2568 *out << Verbose(1) << "ERROR: We have not found any connected points to " << *Point<< "." << endl;
2569 return NULL;
2570 }
[62bb91]2571
[16d866]2572 // calculate central point
2573 for (list<TesselPoint*>::iterator TesselRunner = connectedPoints->begin(); TesselRunner != connectedPoints->end(); TesselRunner++)
2574 center.AddVector((*TesselRunner)->node);
2575 //*out << "Summed vectors " << center << "; number of points " << connectedPoints.size()
2576 // << "; scale factor " << 1.0/connectedPoints.size();
2577 center.Scale(1.0/connectedPoints->size());
[5c7bf8]2578 *out << Verbose(4) << "INFO: Calculated center of all circle points is " << center << "." << endl;
2579
2580 // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
2581 PlaneNormal.CopyVector(Point->node);
2582 PlaneNormal.SubtractVector(&center);
2583 PlaneNormal.Normalize();
2584 *out << Verbose(4) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;
[62bb91]2585
2586 // construct one orthogonal vector
[5c7bf8]2587 AngleZero.CopyVector(Reference);
2588 AngleZero.SubtractVector(Point->node);
2589 AngleZero.ProjectOntoPlane(&PlaneNormal);
2590 *out << Verbose(4) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
2591 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
2592 *out << Verbose(4) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
[16d866]2593
[5c7bf8]2594 // go through all connected points and calculate angle
[16d866]2595 for (list<TesselPoint*>::iterator listRunner = connectedPoints->begin(); listRunner != connectedPoints->end(); listRunner++) {
[5c7bf8]2596 helper.CopyVector((*listRunner)->node);
2597 helper.SubtractVector(Point->node);
2598 helper.ProjectOntoPlane(&PlaneNormal);
[f1cccd]2599 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
[5c7bf8]2600 *out << Verbose(2) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl;
[62bb91]2601 anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner)));
2602 }
2603
2604 list<TesselPoint*> *result = new list<TesselPoint*>;
2605 runner = anglesOfPoints.begin();
2606 result->push_back(runner->second);
2607 runner = anglesOfPoints.end();
2608 runner--;
2609 result->push_back(runner->second);
2610
[5c7bf8]2611 *out << Verbose(2) << "List of closest points has " << result->size() << " elements, which are "
[62bb91]2612 << *(result->front()) << " and " << *(result->back()) << endl;
2613
2614 return result;
2615}
2616
[16d866]2617/** Removes a boundary point from the envelope while keeping it closed.
2618 * We create new triangles and remove the old ones connected to the point.
2619 * \param *out output stream for debugging
2620 * \param *point point to be removed
2621 * \return volume added to the volume inside the tesselated surface by the removal
2622 */
2623double Tesselation::RemovePointFromTesselatedSurface(ofstream *out, class BoundaryPointSet *point) {
2624 class BoundaryLineSet *line = NULL;
2625 class BoundaryTriangleSet *triangle = NULL;
2626 Vector OldPoint, TetraederVector[3];
2627 double volume = 0;
2628 int *numbers = NULL;
2629 int count = 0;
2630 int i;
2631
[1d9b7aa]2632 if (point == NULL) {
2633 *out << Verbose(1) << "ERROR: Cannot remove the point " << point << ", it's NULL!" << endl;
2634 return 0.;
2635 } else
2636 *out << Verbose(2) << "Removing point " << *point << " from tesselated boundary ..." << endl;
2637
[16d866]2638 // copy old location for the volume
2639 OldPoint.CopyVector(point->node->node);
2640
2641 // get list of connected points
2642 if (point->lines.empty()) {
2643 *out << Verbose(1) << "ERROR: Cannot remove the point " << *point << ", it's connected to no lines!" << endl;
2644 return 0.;
2645 }
[f1cccd]2646 list<TesselPoint*> *CircleofPoints = GetCircleOfConnectedPoints(out, point->node);
[16d866]2647
2648 // remove all triangles
2649 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
2650 count+=LineRunner->second->triangles.size();
2651 numbers = new int[count];
[1d9b7aa]2652 class BoundaryTriangleSet **Candidates = new BoundaryTriangleSet*[count];
[16d866]2653 i=0;
2654 for (LineMap::iterator LineRunner = point->lines.begin(); (point != NULL) && (LineRunner != point->lines.end()); LineRunner++) {
2655 line = LineRunner->second;
2656 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
2657 triangle = TriangleRunner->second;
[1d9b7aa]2658 Candidates[i] = triangle;
[16d866]2659 numbers[i++] = triangle->Nr;
2660 }
2661 }
[1d9b7aa]2662 for (int j=0;j<i;j++) {
2663 RemoveTesselationTriangle(Candidates[j]);
2664 }
2665 delete[](Candidates);
[16d866]2666 *out << Verbose(1) << i << " triangles were removed." << endl;
2667
2668 // re-create all triangles by going through connected points list
2669 list<TesselPoint*>::iterator CircleRunner = CircleofPoints->begin();
2670 list<TesselPoint*>::iterator OtherCircleRunner = CircleofPoints->begin();
2671 class TesselPoint *CentralNode = *CircleRunner;
2672 // advance two with CircleRunner and one with OtherCircleRunner
2673 CircleRunner++;
2674 CircleRunner++;
2675 OtherCircleRunner++;
2676 i=0;
2677 cout << Verbose(2) << "INFO: CentralNode is " << *CentralNode << "." << endl;
2678 for (; (OtherCircleRunner != CircleofPoints->end()) && (CircleRunner != CircleofPoints->end()); (CircleRunner++), (OtherCircleRunner++)) {
2679 cout << Verbose(3) << "INFO: CircleRunner's node is " << **CircleRunner << "." << endl;
2680 cout << Verbose(3) << "INFO: OtherCircleRunner's node is " << **OtherCircleRunner << "." << endl;
2681 *out << Verbose(4) << "Adding new triangle points."<< endl;
2682 AddTesselationPoint(CentralNode, 0);
2683 AddTesselationPoint(*OtherCircleRunner, 1);
2684 AddTesselationPoint(*CircleRunner, 2);
2685 *out << Verbose(4) << "Adding new triangle lines."<< endl;
2686 AddTesselationLine(TPS[0], TPS[1], 0);
2687 AddTesselationLine(TPS[0], TPS[2], 1);
2688 AddTesselationLine(TPS[1], TPS[2], 2);
2689 BTS = new class BoundaryTriangleSet(BLS, numbers[i]);
2690 TrianglesOnBoundary.insert(TrianglePair(numbers[i], BTS));
2691 *out << Verbose(4) << "Created triangle " << *BTS << "." << endl;
2692 // calculate volume summand as a general tetraeder
2693 for (int j=0;j<3;j++) {
2694 TetraederVector[j].CopyVector(TPS[j]->node->node);
2695 TetraederVector[j].SubtractVector(&OldPoint);
2696 }
2697 OldPoint.CopyVector(&TetraederVector[0]);
2698 OldPoint.VectorProduct(&TetraederVector[1]);
2699 volume += 1./6. * fabs(OldPoint.ScalarProduct(&TetraederVector[2]));
2700 // advance number
2701 i++;
2702 if (i >= count)
2703 *out << Verbose(2) << "WARNING: Maximum of numbers reached!" << endl;
2704 }
2705 *out << Verbose(1) << i << " triangles were created." << endl;
2706
2707 delete[](numbers);
2708
2709 return volume;
2710};
2711
[357fba]2712/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
2713 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
2714 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
2715 * \param TPS[3] nodes of the triangle
2716 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
2717 */
[f1cccd]2718bool CheckLineCriteriaForDegeneratedTriangle(class BoundaryPointSet *nodes[3])
[357fba]2719{
2720 bool result = false;
2721 int counter = 0;
2722
2723 // check all three points
2724 for (int i=0;i<3;i++)
2725 for (int j=i+1; j<3; j++) {
2726 if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
2727 LineMap::iterator FindLine;
2728 pair<LineMap::iterator,LineMap::iterator> FindPair;
2729 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
2730 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
2731 // If there is a line with less than two attached triangles, we don't need a new line.
[5c7bf8]2732 if (FindLine->second->triangles.size() < 2) {
[357fba]2733 counter++;
2734 break; // increase counter only once per edge
2735 }
2736 }
2737 } else { // no line
[5c7bf8]2738 cout << Verbose(1) << "The line between " << nodes[i] << " and " << nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
[357fba]2739 result = true;
2740 }
2741 }
2742 if (counter > 1) {
2743 cout << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
2744 result = true;
2745 }
2746 return result;
2747};
2748
2749
2750/** Sort function for the candidate list.
2751 */
[f1cccd]2752bool SortCandidates(CandidateForTesselation* candidate1, CandidateForTesselation* candidate2)
[ab1932]2753{
[357fba]2754 Vector BaseLineVector, OrthogonalVector, helper;
2755 if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
2756 cout << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
2757 //return false;
2758 exit(1);
2759 }
2760 // create baseline vector
2761 BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
2762 BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2763 BaseLineVector.Normalize();
2764
2765 // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
2766 helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
2767 helper.SubtractVector(candidate1->point->node);
2768 OrthogonalVector.CopyVector(&helper);
2769 helper.VectorProduct(&BaseLineVector);
2770 OrthogonalVector.SubtractVector(&helper);
2771 OrthogonalVector.Normalize();
2772
2773 // calculate both angles and correct with in-plane vector
2774 helper.CopyVector(candidate1->point->node);
2775 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2776 double phi = BaseLineVector.Angle(&helper);
2777 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
2778 phi = 2.*M_PI - phi;
2779 }
2780 helper.CopyVector(candidate2->point->node);
2781 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2782 double psi = BaseLineVector.Angle(&helper);
2783 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
2784 psi = 2.*M_PI - psi;
2785 }
2786
2787 cout << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
2788 cout << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
2789
2790 // return comparison
2791 return phi < psi;
2792};
[ab1932]2793
[5c7bf8]2794/**
2795 * Finds the point which is second closest to the provided one.
2796 *
2797 * @param Point to which to find the second closest other point
2798 * @param linked cell structure
2799 *
2800 * @return point which is second closest to the provided one
2801 */
[f1cccd]2802TesselPoint* FindSecondClosestPoint(const Vector* Point, LinkedCell* LC)
[5c7bf8]2803{
2804 LinkedNodes *List = NULL;
2805 TesselPoint* closestPoint = NULL;
2806 TesselPoint* secondClosestPoint = NULL;
2807 double distance = 1e16;
2808 double secondDistance = 1e16;
2809 Vector helper;
2810 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2811
2812 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
2813 for(int i=0;i<NDIM;i++) // store indices of this cell
2814 N[i] = LC->n[i];
2815 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2816
2817 LC->GetNeighbourBounds(Nlower, Nupper);
2818 //cout << endl;
2819 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2820 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2821 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2822 List = LC->GetCurrentCell();
2823 cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
2824 if (List != NULL) {
2825 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2826 helper.CopyVector(Point);
2827 helper.SubtractVector((*Runner)->node);
2828 double currentNorm = helper. Norm();
2829 if (currentNorm < distance) {
2830 // remember second point
2831 secondDistance = distance;
2832 secondClosestPoint = closestPoint;
2833 // mark down new closest point
2834 distance = currentNorm;
2835 closestPoint = (*Runner);
2836 cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
2837 }
2838 }
2839 } else {
2840 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
2841 << LC->n[2] << " is invalid!" << endl;
2842 }
2843 }
2844
2845 return secondClosestPoint;
2846};
2847
[ab1932]2848/**
[62bb91]2849 * Finds the point which is closest to the provided one.
[ab1932]2850 *
[62bb91]2851 * @param Point to which to find the closest other point
[5c7bf8]2852 * @param SecondPoint the second closest other point on return, NULL if none found
[ab1932]2853 * @param linked cell structure
2854 *
[5c7bf8]2855 * @return point which is closest to the provided one, NULL if none found
[ab1932]2856 */
[f1cccd]2857TesselPoint* FindClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, LinkedCell* LC)
[ab1932]2858{
2859 LinkedNodes *List = NULL;
[62bb91]2860 TesselPoint* closestPoint = NULL;
[5c7bf8]2861 SecondPoint = NULL;
[ab1932]2862 double distance = 1e16;
[5c7bf8]2863 double secondDistance = 1e16;
[ab1932]2864 Vector helper;
2865 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2866
[62bb91]2867 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
[ab1932]2868 for(int i=0;i<NDIM;i++) // store indices of this cell
2869 N[i] = LC->n[i];
[5c7bf8]2870 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
[ab1932]2871
2872 LC->GetNeighbourBounds(Nlower, Nupper);
2873 //cout << endl;
2874 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2875 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2876 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2877 List = LC->GetCurrentCell();
[5c7bf8]2878 cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
[ab1932]2879 if (List != NULL) {
2880 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[62bb91]2881 helper.CopyVector(Point);
[ab1932]2882 helper.SubtractVector((*Runner)->node);
2883 double currentNorm = helper. Norm();
2884 if (currentNorm < distance) {
[5c7bf8]2885 secondDistance = distance;
2886 SecondPoint = closestPoint;
[ab1932]2887 distance = currentNorm;
[62bb91]2888 closestPoint = (*Runner);
[5c7bf8]2889 cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
2890 } else if (currentNorm < secondDistance) {
2891 secondDistance = currentNorm;
2892 SecondPoint = (*Runner);
2893 cout << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
[ab1932]2894 }
2895 }
2896 } else {
2897 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
2898 << LC->n[2] << " is invalid!" << endl;
2899 }
2900 }
2901
[62bb91]2902 return closestPoint;
[5c7bf8]2903};
[ab1932]2904
2905/**
[62bb91]2906 * Finds triangles belonging to the three provided points.
[ab1932]2907 *
[62bb91]2908 * @param *Points[3] list, is expected to contain three points
[ab1932]2909 *
[62bb91]2910 * @return triangles which belong to the provided points, will be empty if there are none,
[ab1932]2911 * will usually be one, in case of degeneration, there will be two
2912 */
2913list<BoundaryTriangleSet*> *Tesselation::FindTriangles(TesselPoint* Points[3])
2914{
2915 list<BoundaryTriangleSet*> *result = new list<BoundaryTriangleSet*>;
2916 LineMap::iterator FindLine;
2917 PointMap::iterator FindPoint;
2918 TriangleMap::iterator FindTriangle;
2919 class BoundaryPointSet *TrianglePoints[3];
2920
2921 for (int i = 0; i < 3; i++) {
2922 FindPoint = PointsOnBoundary.find(Points[i]->nr);
2923 if (FindPoint != PointsOnBoundary.end()) {
2924 TrianglePoints[i] = FindPoint->second;
2925 } else {
2926 TrianglePoints[i] = NULL;
2927 }
2928 }
2929
2930 // checks lines between the points in the Points for their adjacent triangles
2931 for (int i = 0; i < 3; i++) {
2932 if (TrianglePoints[i] != NULL) {
2933 for (int j = i; j < 3; j++) {
2934 if (TrianglePoints[j] != NULL) {
2935 FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr);
2936 if (FindLine != TrianglePoints[i]->lines.end()) {
2937 for (; FindLine->first == TrianglePoints[j]->node->nr; FindLine++) {
2938 FindTriangle = FindLine->second->triangles.begin();
2939 for (; FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
2940 if ((
2941 (FindTriangle->second->endpoints[0] == TrianglePoints[0])
2942 || (FindTriangle->second->endpoints[0] == TrianglePoints[1])
2943 || (FindTriangle->second->endpoints[0] == TrianglePoints[2])
2944 ) && (
2945 (FindTriangle->second->endpoints[1] == TrianglePoints[0])
2946 || (FindTriangle->second->endpoints[1] == TrianglePoints[1])
2947 || (FindTriangle->second->endpoints[1] == TrianglePoints[2])
2948 ) && (
2949 (FindTriangle->second->endpoints[2] == TrianglePoints[0])
2950 || (FindTriangle->second->endpoints[2] == TrianglePoints[1])
2951 || (FindTriangle->second->endpoints[2] == TrianglePoints[2])
2952 )
2953 ) {
2954 result->push_back(FindTriangle->second);
2955 }
2956 }
2957 }
2958 // Is it sufficient to consider one of the triangle lines for this.
2959 return result;
2960
2961 }
2962 }
2963 }
2964 }
2965 }
2966
2967 return result;
2968}
2969
[7c14ec]2970/**
2971 * Finds all degenerated triangles within the tesselation structure.
2972 *
2973 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
2974 * in the list, once as key and once as value
2975 */
2976map<int, int> Tesselation::FindAllDegeneratedTriangles()
2977{
2978 map<int, int> DegeneratedTriangles;
2979
2980 // sanity check
2981 if (LinesOnBoundary.empty()) {
2982 cout << Verbose(1) << "Warning: FindAllDegeneratedTriangles() was called without any tesselation structure.";
2983 return DegeneratedTriangles;
2984 }
2985
2986 LineMap::iterator LineRunner1, LineRunner2;
2987
2988 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
2989 for (LineRunner2 = LinesOnBoundary.begin(); LineRunner2 != LinesOnBoundary.end(); ++LineRunner2) {
2990 if ((LineRunner1->second != LineRunner2->second)
2991 && (LineRunner1->second->endpoints[0] == LineRunner2->second->endpoints[0])
2992 && (LineRunner1->second->endpoints[1] == LineRunner2->second->endpoints[1])
2993 ) {
2994 TriangleMap::iterator TriangleRunner1 = LineRunner1->second->triangles.begin(),
2995 TriangleRunner2 = LineRunner2->second->triangles.begin();
2996
2997 for (; TriangleRunner1 != LineRunner1->second->triangles.end(); ++TriangleRunner1) {
2998 for (; TriangleRunner2 != LineRunner2->second->triangles.end(); ++TriangleRunner2) {
2999 if ((TriangleRunner1->second != TriangleRunner2->second)
3000 && (TriangleRunner1->second->endpoints[0] == TriangleRunner2->second->endpoints[0])
3001 && (TriangleRunner1->second->endpoints[1] == TriangleRunner2->second->endpoints[1])
3002 && (TriangleRunner1->second->endpoints[2] == TriangleRunner2->second->endpoints[2])
3003 ) {
3004 DegeneratedTriangles[TriangleRunner1->second->Nr] = TriangleRunner2->second->Nr;
3005 DegeneratedTriangles[TriangleRunner2->second->Nr] = TriangleRunner1->second->Nr;
3006 }
3007 }
3008 }
3009 }
3010 }
3011 }
3012
3013 cout << Verbose(1) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles.size() << " triangles." << endl;
3014 map<int,int>::iterator it;
3015 for (it = DegeneratedTriangles.begin(); it != DegeneratedTriangles.end(); it++)
3016 cout << Verbose(2) << (*it).first << " => " << (*it).second << endl;
3017
3018 return DegeneratedTriangles;
3019}
3020
3021/**
3022 * Purges degenerated triangles from the tesselation structure if they are not
3023 * necessary to keep a single point within the structure.
3024 */
3025void Tesselation::RemoveDegeneratedTriangles()
3026{
3027 map<int, int> DegeneratedTriangles = FindAllDegeneratedTriangles();
3028
3029 for (map<int, int>::iterator TriangleKeyRunner = DegeneratedTriangles.begin();
3030 TriangleKeyRunner != DegeneratedTriangles.end(); ++TriangleKeyRunner
3031 ) {
3032 BoundaryTriangleSet *triangle = TrianglesOnBoundary.find(TriangleKeyRunner->first)->second,
3033 *partnerTriangle = TrianglesOnBoundary.find(TriangleKeyRunner->second)->second;
3034
3035 bool trianglesShareLine = false;
3036 for (int i = 0; i < 3; ++i)
3037 for (int j = 0; j < 3; ++j)
3038 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
3039
3040 if (trianglesShareLine
3041 && (triangle->endpoints[1]->LinesCount > 2)
3042 && (triangle->endpoints[2]->LinesCount > 2)
3043 && (triangle->endpoints[0]->LinesCount > 2)
3044 ) {
3045 cout << Verbose(1) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl;
3046 RemoveTesselationTriangle(triangle);
3047 cout << Verbose(1) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl;
3048 RemoveTesselationTriangle(partnerTriangle);
3049 DegeneratedTriangles.erase(DegeneratedTriangles.find(partnerTriangle->Nr));
3050 } else {
3051 cout << Verbose(1) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle
3052 << " and its partner " << *partnerTriangle << " because it is essential for at"
3053 << " least one of the endpoints to be kept in the tesselation structure." << endl;
3054 }
3055 }
3056}
3057
[62bb91]3058/** Gets the angle between a point and a reference relative to the provided center.
[5c7bf8]3059 * We have two shanks point and reference between which the angle is calculated
[62bb91]3060 * and by scalar product with OrthogonalVector we decide the interval.
[ab1932]3061 * @param point to calculate the angle for
3062 * @param reference to which to calculate the angle
[62bb91]3063 * @param OrthogonalVector points in direction of [pi,2pi] interval
[ab1932]3064 *
3065 * @return angle between point and reference
3066 */
[f1cccd]3067double GetAngle(const Vector &point, const Vector &reference, const Vector OrthogonalVector)
[ab1932]3068{
[0077b5]3069 if (reference.IsZero())
[ab1932]3070 return M_PI;
3071
3072 // calculate both angles and correct with in-plane vector
[0077b5]3073 if (point.IsZero())
[ab1932]3074 return M_PI;
[5c7bf8]3075 double phi = point.Angle(&reference);
3076 if (OrthogonalVector.ScalarProduct(&point) > 0) {
[ab1932]3077 phi = 2.*M_PI - phi;
3078 }
3079
[5c7bf8]3080 cout << Verbose(3) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
[ab1932]3081
3082 return phi;
3083}
3084
Note: See TracBrowser for help on using the repository browser.