source: src/tesselation.cpp@ 5417c5

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 5417c5 was 29812d, checked in by Saskia Metzler <metzler@…>, 16 years ago

Ticket 11: use templates and/or traits to fix Malloc/ReAlloc-Free warnings in a clean manner

  • Property mode set to 100644
File size: 131.6 KB
RevLine 
[357fba]1/*
2 * tesselation.cpp
3 *
4 * Created on: Aug 3, 2009
5 * Author: heber
6 */
7
8#include "tesselation.hpp"
[29812d]9#include "memoryallocator.hpp"
[357fba]10
11// ======================================== Points on Boundary =================================
12
[16d866]13/** Constructor of BoundaryPointSet.
14 */
[357fba]15BoundaryPointSet::BoundaryPointSet()
16{
17 LinesCount = 0;
18 Nr = -1;
[1d9b7aa]19 value = 0.;
[16d866]20};
[357fba]21
[16d866]22/** Constructor of BoundaryPointSet with Tesselpoint.
23 * \param *Walker TesselPoint this boundary point represents
24 */
[357fba]25BoundaryPointSet::BoundaryPointSet(TesselPoint *Walker)
26{
27 node = Walker;
28 LinesCount = 0;
29 Nr = Walker->nr;
[1d9b7aa]30 value = 0.;
[16d866]31};
[357fba]32
[16d866]33/** Destructor of BoundaryPointSet.
34 * Sets node to NULL to avoid removing the original, represented TesselPoint.
35 * \note When removing point from a class Tesselation, use RemoveTesselationPoint()
36 */
[357fba]37BoundaryPointSet::~BoundaryPointSet()
38{
39 cout << Verbose(5) << "Erasing point nr. " << Nr << "." << endl;
40 if (!lines.empty())
41 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some lines." << endl;
42 node = NULL;
[16d866]43};
[357fba]44
[16d866]45/** Add a line to the LineMap of this point.
46 * \param *line line to add
47 */
[357fba]48void BoundaryPointSet::AddLine(class BoundaryLineSet *line)
49{
50 cout << Verbose(6) << "Adding " << *this << " to line " << *line << "."
51 << endl;
52 if (line->endpoints[0] == this)
53 {
54 lines.insert(LinePair(line->endpoints[1]->Nr, line));
55 }
56 else
57 {
58 lines.insert(LinePair(line->endpoints[0]->Nr, line));
59 }
60 LinesCount++;
[16d866]61};
[357fba]62
[16d866]63/** output operator for BoundaryPointSet.
64 * \param &ost output stream
65 * \param &a boundary point
66 */
67ostream & operator <<(ostream &ost, BoundaryPointSet &a)
[357fba]68{
69 ost << "[" << a.Nr << "|" << a.node->Name << "]";
70 return ost;
71}
72;
73
74// ======================================== Lines on Boundary =================================
75
[16d866]76/** Constructor of BoundaryLineSet.
77 */
[357fba]78BoundaryLineSet::BoundaryLineSet()
79{
80 for (int i = 0; i < 2; i++)
81 endpoints[i] = NULL;
82 Nr = -1;
[16d866]83};
[357fba]84
[16d866]85/** Constructor of BoundaryLineSet with two endpoints.
86 * Adds line automatically to each endpoints' LineMap
87 * \param *Point[2] array of two boundary points
88 * \param number number of the list
89 */
[357fba]90BoundaryLineSet::BoundaryLineSet(class BoundaryPointSet *Point[2], int number)
91{
92 // set number
93 Nr = number;
94 // set endpoints in ascending order
95 SetEndpointsOrdered(endpoints, Point[0], Point[1]);
96 // add this line to the hash maps of both endpoints
97 Point[0]->AddLine(this); //Taken out, to check whether we can avoid unwanted double adding.
98 Point[1]->AddLine(this); //
99 // clear triangles list
100 cout << Verbose(5) << "New Line with endpoints " << *this << "." << endl;
[16d866]101};
[357fba]102
[16d866]103/** Destructor for BoundaryLineSet.
104 * Removes itself from each endpoints' LineMap, calling RemoveTrianglePoint() when point not connected anymore.
105 * \note When removing lines from a class Tesselation, use RemoveTesselationLine()
106 */
[357fba]107BoundaryLineSet::~BoundaryLineSet()
108{
109 int Numbers[2];
[16d866]110
111 // get other endpoint number of finding copies of same line
112 if (endpoints[1] != NULL)
113 Numbers[0] = endpoints[1]->Nr;
114 else
115 Numbers[0] = -1;
116 if (endpoints[0] != NULL)
117 Numbers[1] = endpoints[0]->Nr;
118 else
119 Numbers[1] = -1;
120
[357fba]121 for (int i = 0; i < 2; i++) {
[16d866]122 if (endpoints[i] != NULL) {
123 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
124 pair<LineMap::iterator, LineMap::iterator> erasor = endpoints[i]->lines.equal_range(Numbers[i]);
125 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
126 if ((*Runner).second == this) {
127 cout << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
128 endpoints[i]->lines.erase(Runner);
129 break;
130 }
131 } else { // there's just a single line left
132 if (endpoints[i]->lines.erase(Nr))
133 cout << Verbose(5) << "Removing Line Nr. " << Nr << " in boundary point " << *endpoints[i] << "." << endl;
[357fba]134 }
[16d866]135 if (endpoints[i]->lines.empty()) {
136 cout << Verbose(5) << *endpoints[i] << " has no more lines it's attached to, erasing." << endl;
137 if (endpoints[i] != NULL) {
138 delete(endpoints[i]);
139 endpoints[i] = NULL;
140 }
141 }
142 }
[357fba]143 }
144 if (!triangles.empty())
145 cerr << "WARNING: Memory Leak! I " << *this << " am still connected to some triangles." << endl;
[16d866]146};
[357fba]147
[16d866]148/** Add triangle to TriangleMap of this boundary line.
149 * \param *triangle to add
150 */
151void BoundaryLineSet::AddTriangle(class BoundaryTriangleSet *triangle)
[357fba]152{
[1d9b7aa]153 cout << Verbose(6) << "Add " << triangle->Nr << " to line " << *this << "." << endl;
[357fba]154 triangles.insert(TrianglePair(triangle->Nr, triangle));
[16d866]155};
[357fba]156
157/** Checks whether we have a common endpoint with given \a *line.
158 * \param *line other line to test
159 * \return true - common endpoint present, false - not connected
160 */
161bool BoundaryLineSet::IsConnectedTo(class BoundaryLineSet *line)
162{
163 if ((endpoints[0] == line->endpoints[0]) || (endpoints[1] == line->endpoints[0]) || (endpoints[0] == line->endpoints[1]) || (endpoints[1] == line->endpoints[1]))
164 return true;
165 else
166 return false;
167};
168
169/** Checks whether the adjacent triangles of a baseline are convex or not.
170 * We sum the two angles of each normal vector with a ficticious normnal vector from this baselinbe pointing outwards.
171 * If greater/equal M_PI than we are convex.
172 * \param *out output stream for debugging
173 * \return true - triangles are convex, false - concave or less than two triangles connected
174 */
175bool BoundaryLineSet::CheckConvexityCriterion(ofstream *out)
176{
[5c7bf8]177 Vector BaseLineCenter, BaseLineNormal, BaseLine, helper[2], NormalCheck;
[357fba]178 // get the two triangles
[5c7bf8]179 if (triangles.size() != 2) {
180 *out << Verbose(1) << "ERROR: Baseline " << *this << " is connect to less than two triangles, Tesselation incomplete!" << endl;
[1d9b7aa]181 return true;
[357fba]182 }
[5c7bf8]183 // check normal vectors
[357fba]184 // have a normal vector on the base line pointing outwards
[1d9b7aa]185 //*out << Verbose(3) << "INFO: " << *this << " has vectors at " << *(endpoints[0]->node->node) << " and at " << *(endpoints[1]->node->node) << "." << endl;
[62bb91]186 BaseLineCenter.CopyVector(endpoints[0]->node->node);
187 BaseLineCenter.AddVector(endpoints[1]->node->node);
188 BaseLineCenter.Scale(1./2.);
189 BaseLine.CopyVector(endpoints[0]->node->node);
190 BaseLine.SubtractVector(endpoints[1]->node->node);
[1d9b7aa]191 //*out << Verbose(3) << "INFO: Baseline is " << BaseLine << " and its center is at " << BaseLineCenter << "." << endl;
[357fba]192
[62bb91]193 BaseLineNormal.Zero();
[5c7bf8]194 NormalCheck.Zero();
195 double sign = -1.;
[62bb91]196 int i=0;
197 class BoundaryPointSet *node = NULL;
198 for(TriangleMap::iterator runner = triangles.begin(); runner != triangles.end(); runner++) {
[1d9b7aa]199 //*out << Verbose(3) << "INFO: NormalVector of " << *(runner->second) << " is " << runner->second->NormalVector << "." << endl;
[5c7bf8]200 NormalCheck.AddVector(&runner->second->NormalVector);
201 NormalCheck.Scale(sign);
202 sign = -sign;
[62bb91]203 BaseLineNormal.SubtractVector(&runner->second->NormalVector); // we subtract as BaseLineNormal has to point inward in direction of [pi,2pi]
204 node = runner->second->GetThirdEndpoint(this);
205 if (node != NULL) {
[1d9b7aa]206 //*out << Verbose(3) << "INFO: Third node for triangle " << *(runner->second) << " is " << *node << " at " << *(node->node->node) << "." << endl;
[62bb91]207 helper[i].CopyVector(node->node->node);
208 helper[i].SubtractVector(&BaseLineCenter);
209 helper[i].MakeNormalVector(&BaseLine); // we want to compare the triangle's heights' angles!
[1d9b7aa]210 //*out << Verbose(4) << "INFO: Height vector with respect to baseline is " << helper[i] << "." << endl;
[62bb91]211 i++;
212 } else {
[1d9b7aa]213 //*out << Verbose(2) << "WARNING: I cannot find third node in triangle, something's wrong." << endl;
[62bb91]214 return true;
215 }
216 }
[1d9b7aa]217 //*out << Verbose(3) << "INFO: BaselineNormal is " << BaseLineNormal << "." << endl;
[5c7bf8]218 if (NormalCheck.NormSquared() < MYEPSILON) {
[1d9b7aa]219 *out << Verbose(2) << "ACCEPT: Normalvectors of both triangles are the same: convex." << endl;
[5c7bf8]220 return true;
[62bb91]221 }
[f1cccd]222 double angle = GetAngle(helper[0], helper[1], BaseLineNormal);
[1d9b7aa]223 if ((angle - M_PI) > -MYEPSILON) {
224 *out << Verbose(2) << "ACCEPT: Angle is greater than pi: convex." << endl;
[357fba]225 return true;
[1d9b7aa]226 } else {
227 *out << Verbose(2) << "REJECT: Angle is less than pi: concave." << endl;
[357fba]228 return false;
[1d9b7aa]229 }
[357fba]230}
231
232/** Checks whether point is any of the two endpoints this line contains.
233 * \param *point point to test
234 * \return true - point is of the line, false - is not
235 */
236bool BoundaryLineSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
237{
238 for(int i=0;i<2;i++)
239 if (point == endpoints[i])
240 return true;
241 return false;
242};
243
[62bb91]244/** Returns other endpoint of the line.
245 * \param *point other endpoint
246 * \return NULL - if endpoint not contained in BoundaryLineSet, or pointer to BoundaryPointSet otherwise
247 */
[08ef35]248class BoundaryPointSet *BoundaryLineSet::GetOtherEndpoint(class BoundaryPointSet *point)
[62bb91]249{
250 if (endpoints[0] == point)
251 return endpoints[1];
252 else if (endpoints[1] == point)
253 return endpoints[0];
254 else
255 return NULL;
256};
257
[16d866]258/** output operator for BoundaryLineSet.
259 * \param &ost output stream
260 * \param &a boundary line
261 */
262ostream & operator <<(ostream &ost, BoundaryLineSet &a)
[357fba]263{
264 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << "," << a.endpoints[1]->node->Name << "]";
265 return ost;
[16d866]266};
[357fba]267
268// ======================================== Triangles on Boundary =================================
269
[16d866]270/** Constructor for BoundaryTriangleSet.
271 */
[357fba]272BoundaryTriangleSet::BoundaryTriangleSet()
273{
274 for (int i = 0; i < 3; i++)
275 {
276 endpoints[i] = NULL;
277 lines[i] = NULL;
278 }
279 Nr = -1;
[16d866]280};
[357fba]281
[16d866]282/** Constructor for BoundaryTriangleSet with three lines.
283 * \param *line[3] lines that make up the triangle
284 * \param number number of triangle
285 */
[357fba]286BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet *line[3], int number)
287{
288 // set number
289 Nr = number;
290 // set lines
291 cout << Verbose(5) << "New triangle " << Nr << ":" << endl;
292 for (int i = 0; i < 3; i++)
293 {
294 lines[i] = line[i];
295 lines[i]->AddTriangle(this);
296 }
297 // get ascending order of endpoints
298 map<int, class BoundaryPointSet *> OrderMap;
299 for (int i = 0; i < 3; i++)
300 // for all three lines
301 for (int j = 0; j < 2; j++)
302 { // for both endpoints
303 OrderMap.insert(pair<int, class BoundaryPointSet *> (
304 line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
305 // and we don't care whether insertion fails
306 }
307 // set endpoints
308 int Counter = 0;
309 cout << Verbose(6) << " with end points ";
310 for (map<int, class BoundaryPointSet *>::iterator runner = OrderMap.begin(); runner
311 != OrderMap.end(); runner++)
312 {
313 endpoints[Counter] = runner->second;
314 cout << " " << *endpoints[Counter];
315 Counter++;
316 }
317 if (Counter < 3)
318 {
319 cerr << "ERROR! We have a triangle with only two distinct endpoints!"
320 << endl;
321 //exit(1);
322 }
323 cout << "." << endl;
[16d866]324};
[357fba]325
[16d866]326/** Destructor of BoundaryTriangleSet.
327 * Removes itself from each of its lines' LineMap and removes them if necessary.
328 * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
329 */
[357fba]330BoundaryTriangleSet::~BoundaryTriangleSet()
331{
332 for (int i = 0; i < 3; i++) {
[16d866]333 if (lines[i] != NULL) {
334 if (lines[i]->triangles.erase(Nr))
335 cout << Verbose(5) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
336 if (lines[i]->triangles.empty()) {
337 cout << Verbose(5) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
338 delete (lines[i]);
339 lines[i] = NULL;
340 }
341 }
[357fba]342 }
[16d866]343 cout << Verbose(5) << "Erasing triangle Nr." << Nr << " itself." << endl;
344};
[357fba]345
346/** Calculates the normal vector for this triangle.
347 * Is made unique by comparison with \a OtherVector to point in the other direction.
348 * \param &OtherVector direction vector to make normal vector unique.
349 */
350void BoundaryTriangleSet::GetNormalVector(Vector &OtherVector)
351{
352 // get normal vector
353 NormalVector.MakeNormalVector(endpoints[0]->node->node, endpoints[1]->node->node, endpoints[2]->node->node);
354
355 // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
[658efb]356 if (NormalVector.ScalarProduct(&OtherVector) > 0.)
[357fba]357 NormalVector.Scale(-1.);
358};
359
360/** Finds the point on the triangle \a *BTS the line defined by \a *MolCenter and \a *x crosses through.
361 * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
362 * This we test if it's really on the plane and whether it's inside the triangle on the plane or not.
363 * The latter is done as follows: if it's really outside, then for any endpoint of the triangle and it's opposite
364 * base line, the intersection between the line from endpoint to intersection and the base line will have a Vector::NormSquared()
365 * smaller than the first line.
366 * \param *out output stream for debugging
367 * \param *MolCenter offset vector of line
368 * \param *x second endpoint of line, minus \a *MolCenter is directional vector of line
369 * \param *Intersection intersection on plane on return
370 * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
371 */
372bool BoundaryTriangleSet::GetIntersectionInsideTriangle(ofstream *out, Vector *MolCenter, Vector *x, Vector *Intersection)
373{
374 Vector CrossPoint;
375 Vector helper;
376
[5c7bf8]377 if (!Intersection->GetIntersectionWithPlane(out, &NormalVector, endpoints[0]->node->node, MolCenter, x)) {
378 *out << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl;
[357fba]379 return false;
380 }
381
382 // Calculate cross point between one baseline and the line from the third endpoint to intersection
[5c7bf8]383 int i=0;
[357fba]384 do {
[5c7bf8]385 if (CrossPoint.GetIntersectionOfTwoLinesOnPlane(out, endpoints[i%3]->node->node, endpoints[(i+1)%3]->node->node, endpoints[(i+2)%3]->node->node, Intersection, &NormalVector)) {
386 helper.CopyVector(endpoints[(i+1)%3]->node->node);
387 helper.SubtractVector(endpoints[i%3]->node->node);
388 } else
389 i++;
390 if (i>2)
[357fba]391 break;
392 } while (CrossPoint.NormSquared() < MYEPSILON);
[5c7bf8]393 if (i==3) {
[357fba]394 *out << Verbose(1) << "ERROR: Could not find any cross points, something's utterly wrong here!" << endl;
395 exit(255);
396 }
397 CrossPoint.SubtractVector(endpoints[i%3]->node->node);
398
399 // check whether intersection is inside or not by comparing length of intersection and length of cross point
400 if ((CrossPoint.NormSquared() - helper.NormSquared()) > -MYEPSILON) { // inside
401 return true;
402 } else { // outside!
403 Intersection->Zero();
404 return false;
405 }
406};
407
408/** Checks whether lines is any of the three boundary lines this triangle contains.
409 * \param *line line to test
410 * \return true - line is of the triangle, false - is not
411 */
412bool BoundaryTriangleSet::ContainsBoundaryLine(class BoundaryLineSet *line)
413{
414 for(int i=0;i<3;i++)
415 if (line == lines[i])
416 return true;
417 return false;
418};
419
420/** Checks whether point is any of the three endpoints this triangle contains.
421 * \param *point point to test
422 * \return true - point is of the triangle, false - is not
423 */
424bool BoundaryTriangleSet::ContainsBoundaryPoint(class BoundaryPointSet *point)
425{
426 for(int i=0;i<3;i++)
427 if (point == endpoints[i])
428 return true;
429 return false;
430};
431
432/** Checks whether three given \a *Points coincide with triangle's endpoints.
433 * \param *Points[3] pointer to BoundaryPointSet
434 * \return true - is the very triangle, false - is not
435 */
436bool BoundaryTriangleSet::IsPresentTupel(class BoundaryPointSet *Points[3])
437{
438 return (((endpoints[0] == Points[0])
439 || (endpoints[0] == Points[1])
440 || (endpoints[0] == Points[2])
441 ) && (
442 (endpoints[1] == Points[0])
443 || (endpoints[1] == Points[1])
444 || (endpoints[1] == Points[2])
445 ) && (
446 (endpoints[2] == Points[0])
447 || (endpoints[2] == Points[1])
448 || (endpoints[2] == Points[2])
[62bb91]449
[357fba]450 ));
451};
452
[62bb91]453/** Returns the endpoint which is not contained in the given \a *line.
454 * \param *line baseline defining two endpoints
455 * \return pointer third endpoint or NULL if line does not belong to triangle.
456 */
457class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(class BoundaryLineSet *line)
458{
459 // sanity check
460 if (!ContainsBoundaryLine(line))
461 return NULL;
462 for(int i=0;i<3;i++)
463 if (!line->ContainsBoundaryPoint(endpoints[i]))
464 return endpoints[i];
465 // actually, that' impossible :)
466 return NULL;
467};
468
469/** Calculates the center point of the triangle.
470 * Is third of the sum of all endpoints.
471 * \param *center central point on return.
472 */
473void BoundaryTriangleSet::GetCenter(Vector *center)
474{
475 center->Zero();
476 for(int i=0;i<3;i++)
477 center->AddVector(endpoints[i]->node->node);
478 center->Scale(1./3.);
479}
480
[16d866]481/** output operator for BoundaryTriangleSet.
482 * \param &ost output stream
483 * \param &a boundary triangle
484 */
485ostream &operator <<(ostream &ost, BoundaryTriangleSet &a)
[357fba]486{
487 ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << ","
488 << a.endpoints[1]->node->Name << "," << a.endpoints[2]->node->Name << "]";
489 return ost;
[16d866]490};
[357fba]491
492// =========================================================== class TESSELPOINT ===========================================
493
494/** Constructor of class TesselPoint.
495 */
496TesselPoint::TesselPoint()
497{
498 node = NULL;
499 nr = -1;
500 Name = NULL;
501};
502
503/** Destructor for class TesselPoint.
504 */
505TesselPoint::~TesselPoint()
506{
[29812d]507 Free(&Name);
[357fba]508};
509
510/** Prints LCNode to screen.
511 */
512ostream & operator << (ostream &ost, const TesselPoint &a)
513{
514 ost << "[" << (a.Name) << "|" << &a << "]";
515 return ost;
516};
517
[5c7bf8]518/** Prints LCNode to screen.
519 */
520ostream & TesselPoint::operator << (ostream &ost)
521{
522 ost << "[" << (Name) << "|" << this << "]";
523 return ost;
524};
525
[357fba]526
527// =========================================================== class POINTCLOUD ============================================
528
529/** Constructor of class PointCloud.
530 */
531PointCloud::PointCloud()
532{
533
534};
535
536/** Destructor for class PointCloud.
537 */
538PointCloud::~PointCloud()
539{
540
541};
542
543// ============================ CandidateForTesselation =============================
544
545/** Constructor of class CandidateForTesselation.
546 */
547CandidateForTesselation::CandidateForTesselation(TesselPoint *candidate, BoundaryLineSet* line, Vector OptCandidateCenter, Vector OtherOptCandidateCenter) {
548 point = candidate;
549 BaseLine = line;
550 OptCenter.CopyVector(&OptCandidateCenter);
551 OtherOptCenter.CopyVector(&OtherOptCandidateCenter);
552};
553
554/** Destructor for class CandidateForTesselation.
555 */
556CandidateForTesselation::~CandidateForTesselation() {
557 point = NULL;
558 BaseLine = NULL;
559};
560
561// =========================================================== class TESSELATION ===========================================
562
563/** Constructor of class Tesselation.
564 */
565Tesselation::Tesselation()
566{
567 PointsOnBoundaryCount = 0;
568 LinesOnBoundaryCount = 0;
569 TrianglesOnBoundaryCount = 0;
[5c7bf8]570 InternalPointer = PointsOnBoundary.begin();
[357fba]571}
572;
573
574/** Destructor of class Tesselation.
575 * We have to free all points, lines and triangles.
576 */
577Tesselation::~Tesselation()
578{
579 cout << Verbose(1) << "Free'ing TesselStruct ... " << endl;
580 for (TriangleMap::iterator runner = TrianglesOnBoundary.begin(); runner != TrianglesOnBoundary.end(); runner++) {
581 if (runner->second != NULL) {
582 delete (runner->second);
583 runner->second = NULL;
584 } else
585 cerr << "ERROR: The triangle " << runner->first << " has already been free'd." << endl;
586 }
587}
588;
589
[5c7bf8]590/** PointCloud implementation of GetCenter
591 * Uses PointsOnBoundary and STL stuff.
592 */
593Vector * Tesselation::GetCenter(ofstream *out)
594{
595 Vector *Center = new Vector(0.,0.,0.);
596 int num=0;
597 for (GoToFirst(); (!IsEnd()); GoToNext()) {
598 Center->AddVector(GetPoint()->node);
599 num++;
600 }
601 Center->Scale(1./num);
602 return Center;
603};
604
605/** PointCloud implementation of GoPoint
606 * Uses PointsOnBoundary and STL stuff.
607 */
608TesselPoint * Tesselation::GetPoint()
609{
610 return (InternalPointer->second->node);
611};
612
613/** PointCloud implementation of GetTerminalPoint.
614 * Uses PointsOnBoundary and STL stuff.
615 */
616TesselPoint * Tesselation::GetTerminalPoint()
617{
618 PointMap::iterator Runner = PointsOnBoundary.end();
619 Runner--;
620 return (Runner->second->node);
621};
622
623/** PointCloud implementation of GoToNext.
624 * Uses PointsOnBoundary and STL stuff.
625 */
626void Tesselation::GoToNext()
627{
628 if (InternalPointer != PointsOnBoundary.end())
629 InternalPointer++;
630};
631
632/** PointCloud implementation of GoToPrevious.
633 * Uses PointsOnBoundary and STL stuff.
634 */
635void Tesselation::GoToPrevious()
636{
637 if (InternalPointer != PointsOnBoundary.begin())
638 InternalPointer--;
639};
640
641/** PointCloud implementation of GoToFirst.
642 * Uses PointsOnBoundary and STL stuff.
643 */
644void Tesselation::GoToFirst()
645{
646 InternalPointer = PointsOnBoundary.begin();
647};
648
649/** PointCloud implementation of GoToLast.
650 * Uses PointsOnBoundary and STL stuff.
651 */
652void Tesselation::GoToLast()
653{
654 InternalPointer = PointsOnBoundary.end();
655 InternalPointer--;
656};
657
658/** PointCloud implementation of IsEmpty.
659 * Uses PointsOnBoundary and STL stuff.
660 */
661bool Tesselation::IsEmpty()
662{
663 return (PointsOnBoundary.empty());
664};
665
666/** PointCloud implementation of IsLast.
667 * Uses PointsOnBoundary and STL stuff.
668 */
669bool Tesselation::IsEnd()
670{
671 return (InternalPointer == PointsOnBoundary.end());
672};
673
674
[357fba]675/** Gueses first starting triangle of the convex envelope.
676 * We guess the starting triangle by taking the smallest distance between two points and looking for a fitting third.
677 * \param *out output stream for debugging
678 * \param PointsOnBoundary set of boundary points defining the convex envelope of the cluster
679 */
680void
681Tesselation::GuessStartingTriangle(ofstream *out)
682{
683 // 4b. create a starting triangle
684 // 4b1. create all distances
685 DistanceMultiMap DistanceMMap;
686 double distance, tmp;
687 Vector PlaneVector, TrialVector;
688 PointMap::iterator A, B, C; // three nodes of the first triangle
689 A = PointsOnBoundary.begin(); // the first may be chosen arbitrarily
690
691 // with A chosen, take each pair B,C and sort
692 if (A != PointsOnBoundary.end())
693 {
694 B = A;
695 B++;
696 for (; B != PointsOnBoundary.end(); B++)
697 {
698 C = B;
699 C++;
700 for (; C != PointsOnBoundary.end(); C++)
701 {
702 tmp = A->second->node->node->DistanceSquared(B->second->node->node);
703 distance = tmp * tmp;
704 tmp = A->second->node->node->DistanceSquared(C->second->node->node);
705 distance += tmp * tmp;
706 tmp = B->second->node->node->DistanceSquared(C->second->node->node);
707 distance += tmp * tmp;
708 DistanceMMap.insert(DistanceMultiMapPair(distance, pair<PointMap::iterator, PointMap::iterator> (B, C)));
709 }
710 }
711 }
712 // // listing distances
713 // *out << Verbose(1) << "Listing DistanceMMap:";
714 // for(DistanceMultiMap::iterator runner = DistanceMMap.begin(); runner != DistanceMMap.end(); runner++) {
715 // *out << " " << runner->first << "(" << *runner->second.first->second << ", " << *runner->second.second->second << ")";
716 // }
717 // *out << endl;
718 // 4b2. pick three baselines forming a triangle
719 // 1. we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
720 DistanceMultiMap::iterator baseline = DistanceMMap.begin();
721 for (; baseline != DistanceMMap.end(); baseline++)
722 {
723 // we take from the smallest sum of squared distance as the base line BC (with peak A) onward as the triangle candidate
724 // 2. next, we have to check whether all points reside on only one side of the triangle
725 // 3. construct plane vector
726 PlaneVector.MakeNormalVector(A->second->node->node,
727 baseline->second.first->second->node->node,
728 baseline->second.second->second->node->node);
729 *out << Verbose(2) << "Plane vector of candidate triangle is ";
730 PlaneVector.Output(out);
731 *out << endl;
732 // 4. loop over all points
733 double sign = 0.;
734 PointMap::iterator checker = PointsOnBoundary.begin();
735 for (; checker != PointsOnBoundary.end(); checker++)
736 {
737 // (neglecting A,B,C)
738 if ((checker == A) || (checker == baseline->second.first) || (checker
739 == baseline->second.second))
740 continue;
741 // 4a. project onto plane vector
742 TrialVector.CopyVector(checker->second->node->node);
743 TrialVector.SubtractVector(A->second->node->node);
[658efb]744 distance = TrialVector.ScalarProduct(&PlaneVector);
[357fba]745 if (fabs(distance) < 1e-4) // we need to have a small epsilon around 0 which is still ok
746 continue;
747 *out << Verbose(3) << "Projection of " << checker->second->node->Name
748 << " yields distance of " << distance << "." << endl;
749 tmp = distance / fabs(distance);
750 // 4b. Any have different sign to than before? (i.e. would lie outside convex hull with this starting triangle)
751 if ((sign != 0) && (tmp != sign))
752 {
753 // 4c. If so, break 4. loop and continue with next candidate in 1. loop
754 *out << Verbose(2) << "Current candidates: "
755 << A->second->node->Name << ","
756 << baseline->second.first->second->node->Name << ","
757 << baseline->second.second->second->node->Name << " leaves "
758 << checker->second->node->Name << " outside the convex hull."
759 << endl;
760 break;
761 }
762 else
763 { // note the sign for later
764 *out << Verbose(2) << "Current candidates: "
765 << A->second->node->Name << ","
766 << baseline->second.first->second->node->Name << ","
767 << baseline->second.second->second->node->Name << " leave "
768 << checker->second->node->Name << " inside the convex hull."
769 << endl;
770 sign = tmp;
771 }
772 // 4d. Check whether the point is inside the triangle (check distance to each node
773 tmp = checker->second->node->node->DistanceSquared(A->second->node->node);
774 int innerpoint = 0;
775 if ((tmp < A->second->node->node->DistanceSquared(
776 baseline->second.first->second->node->node)) && (tmp
777 < A->second->node->node->DistanceSquared(
778 baseline->second.second->second->node->node)))
779 innerpoint++;
780 tmp = checker->second->node->node->DistanceSquared(
781 baseline->second.first->second->node->node);
782 if ((tmp < baseline->second.first->second->node->node->DistanceSquared(
783 A->second->node->node)) && (tmp
784 < baseline->second.first->second->node->node->DistanceSquared(
785 baseline->second.second->second->node->node)))
786 innerpoint++;
787 tmp = checker->second->node->node->DistanceSquared(
788 baseline->second.second->second->node->node);
789 if ((tmp < baseline->second.second->second->node->node->DistanceSquared(
790 baseline->second.first->second->node->node)) && (tmp
791 < baseline->second.second->second->node->node->DistanceSquared(
792 A->second->node->node)))
793 innerpoint++;
794 // 4e. If so, break 4. loop and continue with next candidate in 1. loop
795 if (innerpoint == 3)
796 break;
797 }
798 // 5. come this far, all on same side? Then break 1. loop and construct triangle
799 if (checker == PointsOnBoundary.end())
800 {
801 *out << "Looks like we have a candidate!" << endl;
802 break;
803 }
804 }
805 if (baseline != DistanceMMap.end())
806 {
807 BPS[0] = baseline->second.first->second;
808 BPS[1] = baseline->second.second->second;
809 BLS[0] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
810 BPS[0] = A->second;
811 BPS[1] = baseline->second.second->second;
812 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
813 BPS[0] = baseline->second.first->second;
814 BPS[1] = A->second;
815 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
816
817 // 4b3. insert created triangle
818 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
819 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
820 TrianglesOnBoundaryCount++;
821 for (int i = 0; i < NDIM; i++)
822 {
823 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BTS->lines[i]));
824 LinesOnBoundaryCount++;
825 }
826
827 *out << Verbose(1) << "Starting triangle is " << *BTS << "." << endl;
828 }
829 else
830 {
831 *out << Verbose(1) << "No starting triangle found." << endl;
832 exit(255);
833 }
834}
835;
836
837/** Tesselates the convex envelope of a cluster from a single starting triangle.
838 * The starting triangle is made out of three baselines. Each line in the final tesselated cluster may belong to at most
839 * 2 triangles. Hence, we go through all current lines:
840 * -# if the lines contains to only one triangle
841 * -# We search all points in the boundary
842 * -# if the triangle is in forward direction of the baseline (at most 90 degrees angle between vector orthogonal to
843 * baseline in triangle plane pointing out of the triangle and normal vector of new triangle)
844 * -# if the triangle with the baseline and the current point has the smallest of angles (comparison between normal vectors)
845 * -# then we have a new triangle, whose baselines we again add (or increase their TriangleCount)
846 * \param *out output stream for debugging
847 * \param *configuration for IsAngstroem
848 * \param *cloud cluster of points
849 */
850void Tesselation::TesselateOnBoundary(ofstream *out, PointCloud *cloud)
851{
852 bool flag;
853 PointMap::iterator winner;
854 class BoundaryPointSet *peak = NULL;
855 double SmallestAngle, TempAngle;
856 Vector NormalVector, VirtualNormalVector, CenterVector, TempVector, helper, PropagationVector, *Center = NULL;
857 LineMap::iterator LineChecker[2];
858
859 Center = cloud->GetCenter(out);
860 // create a first tesselation with the given BoundaryPoints
861 do {
862 flag = false;
863 for (LineMap::iterator baseline = LinesOnBoundary.begin(); baseline != LinesOnBoundary.end(); baseline++)
[5c7bf8]864 if (baseline->second->triangles.size() == 1) {
[357fba]865 // 5a. go through each boundary point if not _both_ edges between either endpoint of the current line and this point exist (and belong to 2 triangles)
866 SmallestAngle = M_PI;
867
868 // get peak point with respect to this base line's only triangle
869 BTS = baseline->second->triangles.begin()->second; // there is only one triangle so far
870 *out << Verbose(2) << "Current baseline is between " << *(baseline->second) << "." << endl;
871 for (int i = 0; i < 3; i++)
872 if ((BTS->endpoints[i] != baseline->second->endpoints[0]) && (BTS->endpoints[i] != baseline->second->endpoints[1]))
873 peak = BTS->endpoints[i];
874 *out << Verbose(3) << " and has peak " << *peak << "." << endl;
875
876 // prepare some auxiliary vectors
877 Vector BaseLineCenter, BaseLine;
878 BaseLineCenter.CopyVector(baseline->second->endpoints[0]->node->node);
879 BaseLineCenter.AddVector(baseline->second->endpoints[1]->node->node);
880 BaseLineCenter.Scale(1. / 2.); // points now to center of base line
881 BaseLine.CopyVector(baseline->second->endpoints[0]->node->node);
882 BaseLine.SubtractVector(baseline->second->endpoints[1]->node->node);
883
884 // offset to center of triangle
885 CenterVector.Zero();
886 for (int i = 0; i < 3; i++)
887 CenterVector.AddVector(BTS->endpoints[i]->node->node);
888 CenterVector.Scale(1. / 3.);
889 *out << Verbose(4) << "CenterVector of base triangle is " << CenterVector << endl;
890
891 // normal vector of triangle
892 NormalVector.CopyVector(Center);
893 NormalVector.SubtractVector(&CenterVector);
894 BTS->GetNormalVector(NormalVector);
895 NormalVector.CopyVector(&BTS->NormalVector);
896 *out << Verbose(4) << "NormalVector of base triangle is " << NormalVector << endl;
897
898 // vector in propagation direction (out of triangle)
899 // project center vector onto triangle plane (points from intersection plane-NormalVector to plane-CenterVector intersection)
900 PropagationVector.MakeNormalVector(&BaseLine, &NormalVector);
901 TempVector.CopyVector(&CenterVector);
902 TempVector.SubtractVector(baseline->second->endpoints[0]->node->node); // TempVector is vector on triangle plane pointing from one baseline egde towards center!
903 //*out << Verbose(2) << "Projection of propagation onto temp: " << PropagationVector.Projection(&TempVector) << "." << endl;
[658efb]904 if (PropagationVector.ScalarProduct(&TempVector) > 0) // make sure normal propagation vector points outward from baseline
[357fba]905 PropagationVector.Scale(-1.);
906 *out << Verbose(4) << "PropagationVector of base triangle is " << PropagationVector << endl;
907 winner = PointsOnBoundary.end();
908
909 // loop over all points and calculate angle between normal vector of new and present triangle
910 for (PointMap::iterator target = PointsOnBoundary.begin(); target != PointsOnBoundary.end(); target++) {
911 if ((target->second != baseline->second->endpoints[0]) && (target->second != baseline->second->endpoints[1])) { // don't take the same endpoints
912 *out << Verbose(3) << "Target point is " << *(target->second) << ":" << endl;
913
914 // first check direction, so that triangles don't intersect
915 VirtualNormalVector.CopyVector(target->second->node->node);
916 VirtualNormalVector.SubtractVector(&BaseLineCenter); // points from center of base line to target
917 VirtualNormalVector.ProjectOntoPlane(&NormalVector);
918 TempAngle = VirtualNormalVector.Angle(&PropagationVector);
919 *out << Verbose(4) << "VirtualNormalVector is " << VirtualNormalVector << " and PropagationVector is " << PropagationVector << "." << endl;
920 if (TempAngle > (M_PI/2.)) { // no bends bigger than Pi/2 (90 degrees)
921 *out << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", bad direction!" << endl;
922 continue;
923 } else
924 *out << Verbose(4) << "Angle on triangle plane between propagation direction and base line to " << *(target->second) << " is " << TempAngle << ", good direction!" << endl;
925
926 // check first and second endpoint (if any connecting line goes to target has at least not more than 1 triangle)
927 LineChecker[0] = baseline->second->endpoints[0]->lines.find(target->first);
928 LineChecker[1] = baseline->second->endpoints[1]->lines.find(target->first);
[5c7bf8]929 if (((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[0]->second->triangles.size() == 2))) {
930 *out << Verbose(4) << *(baseline->second->endpoints[0]) << " has line " << *(LineChecker[0]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[0]->second->triangles.size() << " triangles." << endl;
[357fba]931 continue;
932 }
[5c7bf8]933 if (((LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (LineChecker[1]->second->triangles.size() == 2))) {
934 *out << Verbose(4) << *(baseline->second->endpoints[1]) << " has line " << *(LineChecker[1]->second) << " to " << *(target->second) << " as endpoint with " << LineChecker[1]->second->triangles.size() << " triangles." << endl;
[357fba]935 continue;
936 }
937
938 // check whether the envisaged triangle does not already exist (if both lines exist and have same endpoint)
939 if ((((LineChecker[0] != baseline->second->endpoints[0]->lines.end()) && (LineChecker[1] != baseline->second->endpoints[1]->lines.end()) && (GetCommonEndpoint(LineChecker[0]->second, LineChecker[1]->second) == peak)))) {
940 *out << Verbose(4) << "Current target is peak!" << endl;
941 continue;
942 }
943
944 // check for linear dependence
945 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
946 TempVector.SubtractVector(target->second->node->node);
947 helper.CopyVector(baseline->second->endpoints[1]->node->node);
948 helper.SubtractVector(target->second->node->node);
949 helper.ProjectOntoPlane(&TempVector);
950 if (fabs(helper.NormSquared()) < MYEPSILON) {
951 *out << Verbose(4) << "Chosen set of vectors is linear dependent." << endl;
952 continue;
953 }
954
955 // in case NOT both were found, create virtually this triangle, get its normal vector, calculate angle
956 flag = true;
957 VirtualNormalVector.MakeNormalVector(baseline->second->endpoints[0]->node->node, baseline->second->endpoints[1]->node->node, target->second->node->node);
958 TempVector.CopyVector(baseline->second->endpoints[0]->node->node);
959 TempVector.AddVector(baseline->second->endpoints[1]->node->node);
960 TempVector.AddVector(target->second->node->node);
961 TempVector.Scale(1./3.);
962 TempVector.SubtractVector(Center);
963 // make it always point outward
[658efb]964 if (VirtualNormalVector.ScalarProduct(&TempVector) < 0)
[357fba]965 VirtualNormalVector.Scale(-1.);
966 // calculate angle
967 TempAngle = NormalVector.Angle(&VirtualNormalVector);
968 *out << Verbose(4) << "NormalVector is " << VirtualNormalVector << " and the angle is " << TempAngle << "." << endl;
969 if ((SmallestAngle - TempAngle) > MYEPSILON) { // set to new possible winner
970 SmallestAngle = TempAngle;
971 winner = target;
972 *out << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
973 } else if (fabs(SmallestAngle - TempAngle) < MYEPSILON) { // check the angle to propagation, both possible targets are in one plane! (their normals have same angle)
974 // hence, check the angles to some normal direction from our base line but in this common plane of both targets...
975 helper.CopyVector(target->second->node->node);
976 helper.SubtractVector(&BaseLineCenter);
977 helper.ProjectOntoPlane(&BaseLine);
978 // ...the one with the smaller angle is the better candidate
979 TempVector.CopyVector(target->second->node->node);
980 TempVector.SubtractVector(&BaseLineCenter);
981 TempVector.ProjectOntoPlane(&VirtualNormalVector);
982 TempAngle = TempVector.Angle(&helper);
983 TempVector.CopyVector(winner->second->node->node);
984 TempVector.SubtractVector(&BaseLineCenter);
985 TempVector.ProjectOntoPlane(&VirtualNormalVector);
986 if (TempAngle < TempVector.Angle(&helper)) {
987 TempAngle = NormalVector.Angle(&VirtualNormalVector);
988 SmallestAngle = TempAngle;
989 winner = target;
990 *out << Verbose(4) << "New winner " << *winner->second->node << " due to smaller angle " << TempAngle << " to propagation direction." << endl;
991 } else
992 *out << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle to propagation direction." << endl;
993 } else
994 *out << Verbose(4) << "Keeping old winner " << *winner->second->node << " due to smaller angle between normal vectors." << endl;
995 }
996 } // end of loop over all boundary points
997
998 // 5b. The point of the above whose triangle has the greatest angle with the triangle the current line belongs to (it only belongs to one, remember!): New triangle
999 if (winner != PointsOnBoundary.end()) {
1000 *out << Verbose(2) << "Winning target point is " << *(winner->second) << " with angle " << SmallestAngle << "." << endl;
1001 // create the lins of not yet present
1002 BLS[0] = baseline->second;
1003 // 5c. add lines to the line set if those were new (not yet part of a triangle), delete lines that belong to two triangles)
1004 LineChecker[0] = baseline->second->endpoints[0]->lines.find(winner->first);
1005 LineChecker[1] = baseline->second->endpoints[1]->lines.find(winner->first);
1006 if (LineChecker[0] == baseline->second->endpoints[0]->lines.end()) { // create
1007 BPS[0] = baseline->second->endpoints[0];
1008 BPS[1] = winner->second;
1009 BLS[1] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1010 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[1]));
1011 LinesOnBoundaryCount++;
1012 } else
1013 BLS[1] = LineChecker[0]->second;
1014 if (LineChecker[1] == baseline->second->endpoints[1]->lines.end()) { // create
1015 BPS[0] = baseline->second->endpoints[1];
1016 BPS[1] = winner->second;
1017 BLS[2] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
1018 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[2]));
1019 LinesOnBoundaryCount++;
1020 } else
1021 BLS[2] = LineChecker[1]->second;
1022 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[62bb91]1023 BTS->GetCenter(&helper);
1024 helper.SubtractVector(Center);
1025 helper.Scale(-1);
1026 BTS->GetNormalVector(helper);
[357fba]1027 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1028 TrianglesOnBoundaryCount++;
1029 } else {
1030 *out << Verbose(1) << "I could not determine a winner for this baseline " << *(baseline->second) << "." << endl;
1031 }
1032
1033 // 5d. If the set of lines is not yet empty, go to 5. and continue
1034 } else
[5c7bf8]1035 *out << Verbose(2) << "Baseline candidate " << *(baseline->second) << " has a triangle count of " << baseline->second->triangles.size() << "." << endl;
[357fba]1036 } while (flag);
1037
1038 // exit
1039 delete(Center);
1040};
1041
[62bb91]1042/** Inserts all points outside of the tesselated surface into it by adding new triangles.
[357fba]1043 * \param *out output stream for debugging
1044 * \param *cloud cluster of points
[62bb91]1045 * \param *LC LinkedCell structure to find nearest point quickly
[357fba]1046 * \return true - all straddling points insert, false - something went wrong
1047 */
[62bb91]1048bool Tesselation::InsertStraddlingPoints(ofstream *out, PointCloud *cloud, LinkedCell *LC)
[357fba]1049{
[5c7bf8]1050 Vector Intersection, Normal;
[357fba]1051 TesselPoint *Walker = NULL;
1052 Vector *Center = cloud->GetCenter(out);
[62bb91]1053 list<BoundaryTriangleSet*> *triangles = NULL;
1054
1055 *out << Verbose(1) << "Begin of InsertStraddlingPoints" << endl;
[357fba]1056
1057 cloud->GoToFirst();
[1999d8]1058 while (!cloud->IsEnd()) { // we only have to go once through all points, as boundary can become only bigger
[5c7bf8]1059 LinkedCell BoundaryPoints(this, 5.);
[357fba]1060 Walker = cloud->GetPoint();
[62bb91]1061 *out << Verbose(2) << "Current point is " << *Walker << "." << endl;
[357fba]1062 // get the next triangle
[5c7bf8]1063 triangles = FindClosestTrianglesToPoint(out, Walker->node, &BoundaryPoints);
[62bb91]1064 if (triangles == NULL) {
1065 *out << Verbose(1) << "No triangles found, probably a tesselation point itself." << endl;
1066 cloud->GoToNext();
1067 continue;
1068 } else {
1069 BTS = triangles->front();
[357fba]1070 }
[5c7bf8]1071 *out << Verbose(2) << "Closest triangle is " << *BTS << "." << endl;
[357fba]1072 // get the intersection point
1073 if (BTS->GetIntersectionInsideTriangle(out, Center, Walker->node, &Intersection)) {
[62bb91]1074 *out << Verbose(2) << "We have an intersection at " << Intersection << "." << endl;
[357fba]1075 // we have the intersection, check whether in- or outside of boundary
1076 if ((Center->DistanceSquared(Walker->node) - Center->DistanceSquared(&Intersection)) < -MYEPSILON) {
1077 // inside, next!
[5c7bf8]1078 *out << Verbose(2) << *Walker << " is inside wrt triangle " << *BTS << "." << endl;
[357fba]1079 } else {
1080 // outside!
[5c7bf8]1081 *out << Verbose(2) << *Walker << " is outside wrt triangle " << *BTS << "." << endl;
[357fba]1082 class BoundaryLineSet *OldLines[3], *NewLines[3];
1083 class BoundaryPointSet *OldPoints[3], *NewPoint;
1084 // store the three old lines and old points
1085 for (int i=0;i<3;i++) {
1086 OldLines[i] = BTS->lines[i];
1087 OldPoints[i] = BTS->endpoints[i];
1088 }
[5c7bf8]1089 Normal.CopyVector(&BTS->NormalVector);
[357fba]1090 // add Walker to boundary points
[5c7bf8]1091 *out << Verbose(2) << "Adding " << *Walker << " to BoundaryPoints." << endl;
[16d866]1092 if (AddBoundaryPoint(Walker,0))
[357fba]1093 NewPoint = BPS[0];
1094 else
1095 continue;
1096 // remove triangle
[5c7bf8]1097 *out << Verbose(2) << "Erasing triangle " << *BTS << "." << endl;
[357fba]1098 TrianglesOnBoundary.erase(BTS->Nr);
[5c7bf8]1099 delete(BTS);
[357fba]1100 // create three new boundary lines
1101 for (int i=0;i<3;i++) {
1102 BPS[0] = NewPoint;
1103 BPS[1] = OldPoints[i];
1104 NewLines[i] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount);
[5c7bf8]1105 *out << Verbose(3) << "Creating new line " << *NewLines[i] << "." << endl;
[357fba]1106 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, NewLines[i])); // no need for check for unique insertion as BPS[0] is definitely a new one
1107 LinesOnBoundaryCount++;
1108 }
1109 // create three new triangle with new point
1110 for (int i=0;i<3;i++) { // find all baselines
1111 BLS[0] = OldLines[i];
1112 int n = 1;
1113 for (int j=0;j<3;j++) {
1114 if (NewLines[j]->IsConnectedTo(BLS[0])) {
1115 if (n>2) {
1116 *out << Verbose(1) << "ERROR: " << BLS[0] << " connects to all of the new lines?!" << endl;
1117 return false;
1118 } else
1119 BLS[n++] = NewLines[j];
1120 }
1121 }
1122 // create the triangle
1123 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[5c7bf8]1124 Normal.Scale(-1.);
1125 BTS->GetNormalVector(Normal);
1126 Normal.Scale(-1.);
1127 *out << Verbose(2) << "Created new triangle " << *BTS << "." << endl;
[357fba]1128 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1129 TrianglesOnBoundaryCount++;
1130 }
1131 }
1132 } else { // something is wrong with FindClosestTriangleToPoint!
1133 *out << Verbose(1) << "ERROR: The closest triangle did not produce an intersection!" << endl;
1134 return false;
1135 }
1136 cloud->GoToNext();
1137 }
1138
1139 // exit
1140 delete(Center);
[62bb91]1141 *out << Verbose(1) << "End of InsertStraddlingPoints" << endl;
[357fba]1142 return true;
1143};
1144
[16d866]1145/** Adds a point to the tesselation::PointsOnBoundary list.
[62bb91]1146 * \param *Walker point to add
[08ef35]1147 * \param n TesselStruct::BPS index to put pointer into
1148 * \return true - new point was added, false - point already present
[357fba]1149 */
[08ef35]1150bool
[16d866]1151Tesselation::AddBoundaryPoint(TesselPoint *Walker, int n)
[357fba]1152{
1153 PointTestPair InsertUnique;
[08ef35]1154 BPS[n] = new class BoundaryPointSet(Walker);
1155 InsertUnique = PointsOnBoundary.insert(PointPair(Walker->nr, BPS[n]));
1156 if (InsertUnique.second) { // if new point was not present before, increase counter
[357fba]1157 PointsOnBoundaryCount++;
[08ef35]1158 return true;
1159 } else {
1160 delete(BPS[n]);
1161 BPS[n] = InsertUnique.first->second;
1162 return false;
[357fba]1163 }
1164}
1165;
1166
1167/** Adds point to Tesselation::PointsOnBoundary if not yet present.
1168 * Tesselation::TPS is set to either this new BoundaryPointSet or to the existing one of not unique.
1169 * @param Candidate point to add
1170 * @param n index for this point in Tesselation::TPS array
1171 */
1172void
[16d866]1173Tesselation::AddTesselationPoint(TesselPoint* Candidate, int n)
[357fba]1174{
1175 PointTestPair InsertUnique;
1176 TPS[n] = new class BoundaryPointSet(Candidate);
1177 InsertUnique = PointsOnBoundary.insert(PointPair(Candidate->nr, TPS[n]));
1178 if (InsertUnique.second) { // if new point was not present before, increase counter
1179 PointsOnBoundaryCount++;
1180 } else {
1181 delete TPS[n];
1182 cout << Verbose(3) << "Node " << *((InsertUnique.first)->second->node) << " is already present in PointsOnBoundary." << endl;
1183 TPS[n] = (InsertUnique.first)->second;
1184 }
1185}
1186;
1187
1188/** Function tries to add line from current Points in BPS to BoundaryLineSet.
1189 * If successful it raises the line count and inserts the new line into the BLS,
1190 * if unsuccessful, it writes the line which had been present into the BLS, deleting the new constructed one.
1191 * @param *a first endpoint
1192 * @param *b second endpoint
1193 * @param n index of Tesselation::BLS giving the line with both endpoints
1194 */
[16d866]1195void Tesselation::AddTesselationLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n) {
[357fba]1196 bool insertNewLine = true;
1197
1198 if (a->lines.find(b->node->nr) != a->lines.end()) {
1199 LineMap::iterator FindLine;
1200 pair<LineMap::iterator,LineMap::iterator> FindPair;
1201 FindPair = a->lines.equal_range(b->node->nr);
1202
1203 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
1204 // If there is a line with less than two attached triangles, we don't need a new line.
[5c7bf8]1205 if (FindLine->second->triangles.size() < 2) {
[357fba]1206 insertNewLine = false;
1207 cout << Verbose(3) << "Using existing line " << *FindLine->second << endl;
1208
1209 BPS[0] = FindLine->second->endpoints[0];
1210 BPS[1] = FindLine->second->endpoints[1];
1211 BLS[n] = FindLine->second;
1212
1213 break;
1214 }
1215 }
1216 }
1217
1218 if (insertNewLine) {
[16d866]1219 AlwaysAddTesselationTriangleLine(a, b, n);
[357fba]1220 }
1221}
1222;
1223
1224/**
1225 * Adds lines from each of the current points in the BPS to BoundaryLineSet.
1226 * Raises the line count and inserts the new line into the BLS.
1227 *
1228 * @param *a first endpoint
1229 * @param *b second endpoint
1230 * @param n index of Tesselation::BLS giving the line with both endpoints
1231 */
[16d866]1232void Tesselation::AlwaysAddTesselationTriangleLine(class BoundaryPointSet *a, class BoundaryPointSet *b, int n)
[357fba]1233{
1234 cout << Verbose(3) << "Adding line between " << *(a->node) << " and " << *(b->node) << "." << endl;
1235 BPS[0] = a;
1236 BPS[1] = b;
1237 BLS[n] = new class BoundaryLineSet(BPS, LinesOnBoundaryCount); // this also adds the line to the local maps
1238 // add line to global map
1239 LinesOnBoundary.insert(LinePair(LinesOnBoundaryCount, BLS[n]));
1240 // increase counter
1241 LinesOnBoundaryCount++;
1242};
1243
1244/** Function tries to add Triangle just created to Triangle and remarks if already existent (Failure of algorithm).
1245 * Furthermore it adds the triangle to all of its lines, in order to recognize those which are saturated later.
1246 */
[16d866]1247void Tesselation::AddTesselationTriangle()
[357fba]1248{
1249 cout << Verbose(1) << "Adding triangle to global TrianglesOnBoundary map." << endl;
1250
1251 // add triangle to global map
1252 TrianglesOnBoundary.insert(TrianglePair(TrianglesOnBoundaryCount, BTS));
1253 TrianglesOnBoundaryCount++;
1254
1255 // NOTE: add triangle to local maps is done in constructor of BoundaryTriangleSet
[16d866]1256};
1257
1258/** Removes a triangle from the tesselation.
1259 * Removes itself from the TriangleMap's of its lines, calls for them RemoveTriangleLine() if they are no more connected.
1260 * Removes itself from memory.
1261 * \param *triangle to remove
1262 */
1263void Tesselation::RemoveTesselationTriangle(class BoundaryTriangleSet *triangle)
1264{
1265 if (triangle == NULL)
1266 return;
1267 for (int i = 0; i < 3; i++) {
1268 if (triangle->lines[i] != NULL) {
1269 cout << Verbose(5) << "Removing triangle Nr." << triangle->Nr << " in line " << *triangle->lines[i] << "." << endl;
1270 triangle->lines[i]->triangles.erase(triangle->Nr);
1271 if (triangle->lines[i]->triangles.empty()) {
1272 cout << Verbose(5) << *triangle->lines[i] << " is no more attached to any triangle, erasing." << endl;
1273 RemoveTesselationLine(triangle->lines[i]);
1274 triangle->lines[i] = NULL;
1275 } else
1276 cout << Verbose(5) << *triangle->lines[i] << " is still attached to another triangle." << endl;
1277 } else
1278 cerr << "ERROR: This line " << i << " has already been free'd." << endl;
1279 }
1280
1281 if (TrianglesOnBoundary.erase(triangle->Nr))
1282 cout << Verbose(5) << "Removing triangle Nr. " << triangle->Nr << "." << endl;
1283 delete(triangle);
1284};
1285
1286/** Removes a line from the tesselation.
1287 * Removes itself from each endpoints' LineMap, then removes itself from global LinesOnBoundary list and free's the line.
1288 * \param *line line to remove
1289 */
1290void Tesselation::RemoveTesselationLine(class BoundaryLineSet *line)
1291{
1292 int Numbers[2];
1293
1294 if (line == NULL)
1295 return;
1296 // get other endpoint number of finding copies of same line
1297 if (line->endpoints[1] != NULL)
1298 Numbers[0] = line->endpoints[1]->Nr;
1299 else
1300 Numbers[0] = -1;
1301 if (line->endpoints[0] != NULL)
1302 Numbers[1] = line->endpoints[0]->Nr;
1303 else
1304 Numbers[1] = -1;
1305
1306 for (int i = 0; i < 2; i++) {
1307 if (line->endpoints[i] != NULL) {
1308 if (Numbers[i] != -1) { // as there may be multiple lines with same endpoints, we have to go through each and find in the endpoint's line list this line set
1309 pair<LineMap::iterator, LineMap::iterator> erasor = line->endpoints[i]->lines.equal_range(Numbers[i]);
1310 for (LineMap::iterator Runner = erasor.first; Runner != erasor.second; Runner++)
1311 if ((*Runner).second == line) {
1312 cout << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1313 line->endpoints[i]->lines.erase(Runner);
1314 break;
1315 }
1316 } else { // there's just a single line left
1317 if (line->endpoints[i]->lines.erase(line->Nr))
1318 cout << Verbose(5) << "Removing Line Nr. " << line->Nr << " in boundary point " << *line->endpoints[i] << "." << endl;
1319 }
1320 if (line->endpoints[i]->lines.empty()) {
1321 cout << Verbose(5) << *line->endpoints[i] << " has no more lines it's attached to, erasing." << endl;
1322 RemoveTesselationPoint(line->endpoints[i]);
1323 line->endpoints[i] = NULL;
1324 } else
1325 cout << Verbose(5) << *line->endpoints[i] << " has still lines it's attached to." << endl;
1326 } else
1327 cerr << "ERROR: Endpoint " << i << " has already been free'd." << endl;
1328 }
1329 if (!line->triangles.empty())
1330 cerr << "WARNING: Memory Leak! I " << *line << " am still connected to some triangles." << endl;
1331
1332 if (LinesOnBoundary.erase(line->Nr))
1333 cout << Verbose(5) << "Removing line Nr. " << line->Nr << "." << endl;
1334 delete(line);
1335};
1336
1337/** Removes a point from the tesselation.
1338 * Checks whether there are still lines connected, removes from global PointsOnBoundary list, then free's the point.
1339 * \note If a point should be removed, while keep the tesselated surface intact (i.e. closed), use RemovePointFromTesselatedSurface()
1340 * \param *point point to remove
1341 */
1342void Tesselation::RemoveTesselationPoint(class BoundaryPointSet *point)
1343{
1344 if (point == NULL)
1345 return;
1346 if (PointsOnBoundary.erase(point->Nr))
1347 cout << Verbose(5) << "Removing point Nr. " << point->Nr << "." << endl;
1348 delete(point);
1349};
[357fba]1350
[62bb91]1351/** Checks whether the triangle consisting of the three points is already present.
[357fba]1352 * Searches for the points in Tesselation::PointsOnBoundary and checks their
1353 * lines. If any of the three edges already has two triangles attached, false is
1354 * returned.
1355 * \param *out output stream for debugging
1356 * \param *Candidates endpoints of the triangle candidate
1357 * \return integer 0 if no triangle exists, 1 if one triangle exists, 2 if two
1358 * triangles exist which is the maximum for three points
1359 */
1360int Tesselation::CheckPresenceOfTriangle(ofstream *out, TesselPoint *Candidates[3]) {
1361 int adjacentTriangleCount = 0;
1362 class BoundaryPointSet *Points[3];
1363
1364 *out << Verbose(2) << "Begin of CheckPresenceOfTriangle" << endl;
1365 // builds a triangle point set (Points) of the end points
1366 for (int i = 0; i < 3; i++) {
1367 PointMap::iterator FindPoint = PointsOnBoundary.find(Candidates[i]->nr);
1368 if (FindPoint != PointsOnBoundary.end()) {
1369 Points[i] = FindPoint->second;
1370 } else {
1371 Points[i] = NULL;
1372 }
1373 }
1374
1375 // checks lines between the points in the Points for their adjacent triangles
1376 for (int i = 0; i < 3; i++) {
1377 if (Points[i] != NULL) {
1378 for (int j = i; j < 3; j++) {
1379 if (Points[j] != NULL) {
1380 LineMap::iterator FindLine = Points[i]->lines.find(Points[j]->node->nr);
1381 for (; (FindLine != Points[i]->lines.end()) && (FindLine->first == Points[j]->node->nr); FindLine++) {
1382 TriangleMap *triangles = &FindLine->second->triangles;
1383 *out << Verbose(3) << "Current line is " << FindLine->first << ": " << *(FindLine->second) << " with triangles " << triangles << "." << endl;
1384 for (TriangleMap::iterator FindTriangle = triangles->begin(); FindTriangle != triangles->end(); FindTriangle++) {
1385 if (FindTriangle->second->IsPresentTupel(Points)) {
1386 adjacentTriangleCount++;
1387 }
1388 }
1389 *out << Verbose(3) << "end." << endl;
1390 }
1391 // Only one of the triangle lines must be considered for the triangle count.
1392 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1393 return adjacentTriangleCount;
1394 }
1395 }
1396 }
1397 }
1398
1399 *out << Verbose(2) << "Found " << adjacentTriangleCount << " adjacent triangles for the point set." << endl;
1400 *out << Verbose(2) << "End of CheckPresenceOfTriangle" << endl;
1401 return adjacentTriangleCount;
1402};
1403
1404
[f1cccd]1405/** Finds the starting triangle for FindNonConvexBorder().
1406 * Looks at the outermost point per axis, then FindSecondPointForTesselation()
1407 * for the second and FindNextSuitablePointViaAngleOfSphere() for the third
[357fba]1408 * point are called.
1409 * \param *out output stream for debugging
1410 * \param RADIUS radius of virtual rolling sphere
1411 * \param *LC LinkedCell structure with neighbouring TesselPoint's
1412 */
[f1cccd]1413void Tesselation::FindStartingTriangle(ofstream *out, const double RADIUS, LinkedCell *LC)
[357fba]1414{
[f1cccd]1415 cout << Verbose(1) << "Begin of FindStartingTriangle\n";
[357fba]1416 int i = 0;
1417 LinkedNodes *List = NULL;
1418 TesselPoint* FirstPoint = NULL;
1419 TesselPoint* SecondPoint = NULL;
[62bb91]1420 TesselPoint* MaxPoint[NDIM];
[f1cccd]1421 double maxCoordinate[NDIM];
[357fba]1422 Vector Oben;
1423 Vector helper;
1424 Vector Chord;
1425 Vector SearchDirection;
1426
1427 Oben.Zero();
1428
1429 for (i = 0; i < 3; i++) {
[62bb91]1430 MaxPoint[i] = NULL;
[f1cccd]1431 maxCoordinate[i] = -1;
[357fba]1432 }
1433
[62bb91]1434 // 1. searching topmost point with respect to each axis
[357fba]1435 for (int i=0;i<NDIM;i++) { // each axis
1436 LC->n[i] = LC->N[i]-1; // current axis is topmost cell
1437 for (LC->n[(i+1)%NDIM]=0;LC->n[(i+1)%NDIM]<LC->N[(i+1)%NDIM];LC->n[(i+1)%NDIM]++)
1438 for (LC->n[(i+2)%NDIM]=0;LC->n[(i+2)%NDIM]<LC->N[(i+2)%NDIM];LC->n[(i+2)%NDIM]++) {
1439 List = LC->GetCurrentCell();
1440 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
1441 if (List != NULL) {
1442 for (LinkedNodes::iterator Runner = List->begin();Runner != List->end();Runner++) {
[f1cccd]1443 if ((*Runner)->node->x[i] > maxCoordinate[i]) {
[357fba]1444 cout << Verbose(2) << "New maximal for axis " << i << " node is " << *(*Runner) << " at " << *(*Runner)->node << "." << endl;
[f1cccd]1445 maxCoordinate[i] = (*Runner)->node->x[i];
[62bb91]1446 MaxPoint[i] = (*Runner);
[357fba]1447 }
1448 }
1449 } else {
1450 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << " is invalid!" << endl;
1451 }
1452 }
1453 }
1454
1455 cout << Verbose(2) << "Found maximum coordinates: ";
1456 for (int i=0;i<NDIM;i++)
[62bb91]1457 cout << i << ": " << *MaxPoint[i] << "\t";
[357fba]1458 cout << endl;
1459
1460 BTS = NULL;
[f1cccd]1461 CandidateList *OptCandidates = new CandidateList();
[357fba]1462 for (int k=0;k<NDIM;k++) {
1463 Oben.x[k] = 1.;
[62bb91]1464 FirstPoint = MaxPoint[k];
[357fba]1465 cout << Verbose(1) << "Coordinates of start node at " << *FirstPoint->node << "." << endl;
1466
1467 double ShortestAngle;
[f1cccd]1468 TesselPoint* OptCandidate = NULL;
[357fba]1469 ShortestAngle = 999999.; // This will contain the angle, which will be always positive (when looking for second point), when looking for third point this will be the quadrant.
1470
[f1cccd]1471 FindSecondPointForTesselation(FirstPoint, NULL, Oben, OptCandidate, &ShortestAngle, RADIUS, LC); // we give same point as next candidate as its bonds are looked into in find_second_...
1472 SecondPoint = OptCandidate;
[357fba]1473 if (SecondPoint == NULL) // have we found a second point?
1474 continue;
1475 else
1476 cout << Verbose(1) << "Found second point is at " << *SecondPoint->node << ".\n";
1477
1478 helper.CopyVector(FirstPoint->node);
1479 helper.SubtractVector(SecondPoint->node);
1480 helper.Normalize();
1481 Oben.ProjectOntoPlane(&helper);
1482 Oben.Normalize();
1483 helper.VectorProduct(&Oben);
1484 ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1485
1486 Chord.CopyVector(FirstPoint->node); // bring into calling function
1487 Chord.SubtractVector(SecondPoint->node);
1488 double radius = Chord.ScalarProduct(&Chord);
1489 double CircleRadius = sqrt(RADIUS*RADIUS - radius/4.);
1490 helper.CopyVector(&Oben);
1491 helper.Scale(CircleRadius);
1492 // Now, oben and helper are two orthonormalized vectors in the plane defined by Chord (not normalized)
1493
1494 // look in one direction of baseline for initial candidate
1495 SearchDirection.MakeNormalVector(&Chord, &Oben); // whether we look "left" first or "right" first is not important ...
1496
[5c7bf8]1497 // adding point 1 and point 2 and add the line between them
[16d866]1498 AddTesselationPoint(FirstPoint, 0);
1499 AddTesselationPoint(SecondPoint, 1);
1500 AddTesselationLine(TPS[0], TPS[1], 0);
[357fba]1501
1502 //cout << Verbose(2) << "INFO: OldSphereCenter is at " << helper << ".\n";
[f1cccd]1503 FindThirdPointForTesselation(
1504 Oben, SearchDirection, helper, BLS[0], NULL, *&OptCandidates, &ShortestAngle, RADIUS, LC
[357fba]1505 );
1506 cout << Verbose(1) << "List of third Points is ";
[f1cccd]1507 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1508 cout << " " << *(*it)->point;
1509 }
1510 cout << endl;
1511
[f1cccd]1512 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1513 // add third triangle point
[16d866]1514 AddTesselationPoint((*it)->point, 2);
[357fba]1515 // add the second and third line
[16d866]1516 AddTesselationLine(TPS[1], TPS[2], 1);
1517 AddTesselationLine(TPS[0], TPS[2], 2);
[357fba]1518 // ... and triangles to the Maps of the Tesselation class
1519 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1520 AddTesselationTriangle();
[357fba]1521 // ... and calculate its normal vector (with correct orientation)
1522 (*it)->OptCenter.Scale(-1.);
1523 cout << Verbose(2) << "Anti-Oben is currently " << (*it)->OptCenter << "." << endl;
1524 BTS->GetNormalVector((*it)->OptCenter); // vector to compare with should point inwards
1525 cout << Verbose(0) << "==> Found starting triangle consists of " << *FirstPoint << ", " << *SecondPoint << " and "
1526 << *(*it)->point << " with normal vector " << BTS->NormalVector << ".\n";
1527
1528 // if we do not reach the end with the next step of iteration, we need to setup a new first line
[f1cccd]1529 if (it != OptCandidates->end()--) {
[357fba]1530 FirstPoint = (*it)->BaseLine->endpoints[0]->node;
1531 SecondPoint = (*it)->point;
1532 // adding point 1 and point 2 and the line between them
[16d866]1533 AddTesselationPoint(FirstPoint, 0);
1534 AddTesselationPoint(SecondPoint, 1);
1535 AddTesselationLine(TPS[0], TPS[1], 0);
[357fba]1536 }
[658efb]1537 cout << Verbose(2) << "Projection is " << BTS->NormalVector.ScalarProduct(&Oben) << "." << endl;
[357fba]1538 }
1539 if (BTS != NULL) // we have created one starting triangle
1540 break;
1541 else {
1542 // remove all candidates from the list and then the list itself
1543 class CandidateForTesselation *remover = NULL;
[f1cccd]1544 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1545 remover = *it;
1546 delete(remover);
1547 }
[f1cccd]1548 OptCandidates->clear();
[357fba]1549 }
1550 }
1551
1552 // remove all candidates from the list and then the list itself
1553 class CandidateForTesselation *remover = NULL;
[f1cccd]1554 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1555 remover = *it;
1556 delete(remover);
1557 }
[f1cccd]1558 delete(OptCandidates);
1559 cout << Verbose(1) << "End of FindStartingTriangle\n";
[357fba]1560};
1561
1562
1563/** This function finds a triangle to a line, adjacent to an existing one.
1564 * @param out output stream for debugging
1565 * @param Line current baseline to search from
1566 * @param T current triangle which \a Line is edge of
1567 * @param RADIUS radius of the rolling ball
1568 * @param N number of found triangles
[62bb91]1569 * @param *LC LinkedCell structure with neighbouring points
[357fba]1570 */
[f1cccd]1571bool Tesselation::FindNextSuitableTriangle(ofstream *out, BoundaryLineSet &Line, BoundaryTriangleSet &T, const double& RADIUS, int N, LinkedCell *LC)
[357fba]1572{
[f1cccd]1573 cout << Verbose(0) << "Begin of FindNextSuitableTriangle\n";
[357fba]1574 bool result = true;
[f1cccd]1575 CandidateList *OptCandidates = new CandidateList();
[357fba]1576
1577 Vector CircleCenter;
1578 Vector CirclePlaneNormal;
1579 Vector OldSphereCenter;
1580 Vector SearchDirection;
1581 Vector helper;
1582 TesselPoint *ThirdNode = NULL;
1583 LineMap::iterator testline;
1584 double ShortestAngle = 2.*M_PI; // This will indicate the quadrant.
1585 double radius, CircleRadius;
1586
1587 cout << Verbose(1) << "Current baseline is " << Line << " of triangle " << T << "." << endl;
1588 for (int i=0;i<3;i++)
1589 if ((T.endpoints[i]->node != Line.endpoints[0]->node) && (T.endpoints[i]->node != Line.endpoints[1]->node))
1590 ThirdNode = T.endpoints[i]->node;
1591
1592 // construct center of circle
1593 CircleCenter.CopyVector(Line.endpoints[0]->node->node);
1594 CircleCenter.AddVector(Line.endpoints[1]->node->node);
1595 CircleCenter.Scale(0.5);
1596
1597 // construct normal vector of circle
1598 CirclePlaneNormal.CopyVector(Line.endpoints[0]->node->node);
1599 CirclePlaneNormal.SubtractVector(Line.endpoints[1]->node->node);
1600
1601 // calculate squared radius of circle
1602 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
1603 if (radius/4. < RADIUS*RADIUS) {
1604 CircleRadius = RADIUS*RADIUS - radius/4.;
1605 CirclePlaneNormal.Normalize();
1606 cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
1607
1608 // construct old center
1609 GetCenterofCircumcircle(&OldSphereCenter, T.endpoints[0]->node->node, T.endpoints[1]->node->node, T.endpoints[2]->node->node);
1610 helper.CopyVector(&T.NormalVector); // normal vector ensures that this is correct center of the two possible ones
1611 radius = Line.endpoints[0]->node->node->DistanceSquared(&OldSphereCenter);
1612 helper.Scale(sqrt(RADIUS*RADIUS - radius));
1613 OldSphereCenter.AddVector(&helper);
1614 OldSphereCenter.SubtractVector(&CircleCenter);
1615 //cout << Verbose(2) << "INFO: OldSphereCenter is at " << OldSphereCenter << "." << endl;
1616
1617 // construct SearchDirection
1618 SearchDirection.MakeNormalVector(&T.NormalVector, &CirclePlaneNormal);
1619 helper.CopyVector(Line.endpoints[0]->node->node);
1620 helper.SubtractVector(ThirdNode->node);
1621 if (helper.ScalarProduct(&SearchDirection) < -HULLEPSILON)// ohoh, SearchDirection points inwards!
1622 SearchDirection.Scale(-1.);
1623 SearchDirection.ProjectOntoPlane(&OldSphereCenter);
1624 SearchDirection.Normalize();
1625 cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
1626 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) {
1627 // rotated the wrong way!
1628 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are still not orthogonal!" << endl;
1629 }
1630
1631 // add third point
[f1cccd]1632 FindThirdPointForTesselation(
1633 T.NormalVector, SearchDirection, OldSphereCenter, &Line, ThirdNode, OptCandidates,
[357fba]1634 &ShortestAngle, RADIUS, LC
1635 );
1636
1637 } else {
1638 cout << Verbose(1) << "Circumcircle for base line " << Line << " and base triangle " << T << " is too big!" << endl;
1639 }
1640
[f1cccd]1641 if (OptCandidates->begin() == OptCandidates->end()) {
[357fba]1642 cerr << "WARNING: Could not find a suitable candidate." << endl;
1643 return false;
1644 }
1645 cout << Verbose(1) << "Third Points are ";
[f1cccd]1646 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1647 cout << " " << *(*it)->point;
1648 }
1649 cout << endl;
1650
1651 BoundaryLineSet *BaseRay = &Line;
[f1cccd]1652 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1653 cout << Verbose(1) << " Third point candidate is " << *(*it)->point
1654 << " with circumsphere's center at " << (*it)->OptCenter << "." << endl;
1655 cout << Verbose(1) << " Baseline is " << *BaseRay << endl;
1656
1657 // check whether all edges of the new triangle still have space for one more triangle (i.e. TriangleCount <2)
[62bb91]1658 TesselPoint *PointCandidates[3];
1659 PointCandidates[0] = (*it)->point;
1660 PointCandidates[1] = BaseRay->endpoints[0]->node;
1661 PointCandidates[2] = BaseRay->endpoints[1]->node;
1662 int existentTrianglesCount = CheckPresenceOfTriangle(out, PointCandidates);
[357fba]1663
1664 BTS = NULL;
1665 // If there is no triangle, add it regularly.
1666 if (existentTrianglesCount == 0) {
[16d866]1667 AddTesselationPoint((*it)->point, 0);
1668 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
1669 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
[357fba]1670
[f1cccd]1671 if (CheckLineCriteriaForDegeneratedTriangle(TPS)) {
[16d866]1672 AddTesselationLine(TPS[0], TPS[1], 0);
1673 AddTesselationLine(TPS[0], TPS[2], 1);
1674 AddTesselationLine(TPS[1], TPS[2], 2);
[357fba]1675
[1953f9]1676 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1677 AddTesselationTriangle();
[1953f9]1678 (*it)->OptCenter.Scale(-1.);
1679 BTS->GetNormalVector((*it)->OptCenter);
1680 (*it)->OptCenter.Scale(-1.);
[357fba]1681
[1953f9]1682 cout << "--> New triangle with " << *BTS << " and normal vector " << BTS->NormalVector
1683 << " for this triangle ... " << endl;
[357fba]1684 //cout << Verbose(1) << "We have "<< TrianglesOnBoundaryCount << " for line " << *BaseRay << "." << endl;
[1953f9]1685 } else {
1686 cout << Verbose(1) << "WARNING: This triangle consisting of ";
1687 cout << *(*it)->point << ", ";
1688 cout << *BaseRay->endpoints[0]->node << " and ";
1689 cout << *BaseRay->endpoints[1]->node << " ";
1690 cout << "exists and is not added, as it does not seem helpful!" << endl;
1691 result = false;
1692 }
[357fba]1693 } else if (existentTrianglesCount == 1) { // If there is a planar region within the structure, we need this triangle a second time.
[16d866]1694 AddTesselationPoint((*it)->point, 0);
1695 AddTesselationPoint(BaseRay->endpoints[0]->node, 1);
1696 AddTesselationPoint(BaseRay->endpoints[1]->node, 2);
[357fba]1697
1698 // We demand that at most one new degenerate line is created and that this line also already exists (which has to be the case due to existentTrianglesCount == 1)
1699 // i.e. at least one of the three lines must be present with TriangleCount <= 1
[f1cccd]1700 if (CheckLineCriteriaForDegeneratedTriangle(TPS)) {
[16d866]1701 AddTesselationLine(TPS[0], TPS[1], 0);
1702 AddTesselationLine(TPS[0], TPS[2], 1);
1703 AddTesselationLine(TPS[1], TPS[2], 2);
[357fba]1704
1705 BTS = new class BoundaryTriangleSet(BLS, TrianglesOnBoundaryCount);
[16d866]1706 AddTesselationTriangle(); // add to global map
[357fba]1707
1708 (*it)->OtherOptCenter.Scale(-1.);
1709 BTS->GetNormalVector((*it)->OtherOptCenter);
1710 (*it)->OtherOptCenter.Scale(-1.);
1711
1712 cout << "--> WARNING: Special new triangle with " << *BTS << " and normal vector " << BTS->NormalVector
1713 << " for this triangle ... " << endl;
[5c7bf8]1714 cout << Verbose(1) << "We have "<< BaseRay->triangles.size() << " for line " << BaseRay << "." << endl;
[357fba]1715 } else {
1716 cout << Verbose(1) << "WARNING: This triangle consisting of ";
1717 cout << *(*it)->point << ", ";
1718 cout << *BaseRay->endpoints[0]->node << " and ";
1719 cout << *BaseRay->endpoints[1]->node << " ";
1720 cout << "exists and is not added, as it does not seem helpful!" << endl;
1721 result = false;
1722 }
1723 } else {
1724 cout << Verbose(1) << "This triangle consisting of ";
1725 cout << *(*it)->point << ", ";
1726 cout << *BaseRay->endpoints[0]->node << " and ";
1727 cout << *BaseRay->endpoints[1]->node << " ";
1728 cout << "is invalid!" << endl;
1729 result = false;
1730 }
1731
1732 // set baseline to new ray from ref point (here endpoints[0]->node) to current candidate (here (*it)->point))
1733 BaseRay = BLS[0];
1734 }
1735
1736 // remove all candidates from the list and then the list itself
1737 class CandidateForTesselation *remover = NULL;
[f1cccd]1738 for (CandidateList::iterator it = OptCandidates->begin(); it != OptCandidates->end(); ++it) {
[357fba]1739 remover = *it;
1740 delete(remover);
1741 }
[f1cccd]1742 delete(OptCandidates);
1743 cout << Verbose(0) << "End of FindNextSuitableTriangle\n";
[357fba]1744 return result;
1745};
1746
[16d866]1747/** Checks whether the quadragon of the two triangles connect to \a *Base is convex.
1748 * We look whether the closest point on \a *Base with respect to the other baseline is outside
1749 * of the segment formed by both endpoints (concave) or not (convex).
1750 * \param *out output stream for debugging
1751 * \param *Base line to be flipped
1752 * \return NULL - concave, otherwise endpoint that makes it concave
1753 */
1754class BoundaryPointSet *Tesselation::IsConvexRectangle(ofstream *out, class BoundaryLineSet *Base)
1755{
1756 class BoundaryPointSet *Spot = NULL;
1757 class BoundaryLineSet *OtherBase;
[0077b5]1758 Vector *ClosestPoint;
[16d866]1759
1760 int m=0;
1761 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1762 for (int j=0;j<3;j++) // all of their endpoints and baselines
1763 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1764 BPS[m++] = runner->second->endpoints[j];
1765 OtherBase = new class BoundaryLineSet(BPS,-1);
1766
1767 *out << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
1768 *out << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
1769
1770 // get the closest point on each line to the other line
[0077b5]1771 ClosestPoint = GetClosestPointBetweenLine(out, Base, OtherBase);
[16d866]1772
1773 // delete the temporary other base line
1774 delete(OtherBase);
1775
1776 // get the distance vector from Base line to OtherBase line
[0077b5]1777 Vector DistanceToIntersection[2], BaseLine;
1778 double distance[2];
[16d866]1779 BaseLine.CopyVector(Base->endpoints[1]->node->node);
1780 BaseLine.SubtractVector(Base->endpoints[0]->node->node);
[0077b5]1781 for (int i=0;i<2;i++) {
1782 DistanceToIntersection[i].CopyVector(ClosestPoint);
1783 DistanceToIntersection[i].SubtractVector(Base->endpoints[i]->node->node);
1784 distance[i] = BaseLine.ScalarProduct(&DistanceToIntersection[i]);
[16d866]1785 }
[1d9b7aa]1786 delete(ClosestPoint);
1787 if ((distance[0] * distance[1]) > 0) { // have same sign?
1788 *out << Verbose(3) << "REJECT: Both SKPs have same sign: " << distance[0] << " and " << distance[1] << ". " << *Base << "' rectangle is concave." << endl;
[0077b5]1789 if (distance[0] < distance[1]) {
1790 Spot = Base->endpoints[0];
1791 } else {
1792 Spot = Base->endpoints[1];
1793 }
[16d866]1794 return Spot;
[0077b5]1795 } else { // different sign, i.e. we are in between
1796 *out << Verbose(3) << "ACCEPT: Rectangle of triangles of base line " << *Base << " is convex." << endl;
[16d866]1797 return NULL;
1798 }
1799
1800};
1801
[0077b5]1802void Tesselation::PrintAllBoundaryPoints(ofstream *out)
1803{
1804 // print all lines
1805 *out << Verbose(1) << "Printing all boundary points for debugging:" << endl;
1806 for (PointMap::iterator PointRunner = PointsOnBoundary.begin();PointRunner != PointsOnBoundary.end(); PointRunner++)
1807 *out << Verbose(2) << *(PointRunner->second) << endl;
1808};
1809
1810void Tesselation::PrintAllBoundaryLines(ofstream *out)
1811{
1812 // print all lines
1813 *out << Verbose(1) << "Printing all boundary lines for debugging:" << endl;
1814 for (LineMap::iterator LineRunner = LinesOnBoundary.begin(); LineRunner != LinesOnBoundary.end(); LineRunner++)
1815 *out << Verbose(2) << *(LineRunner->second) << endl;
1816};
1817
1818void Tesselation::PrintAllBoundaryTriangles(ofstream *out)
1819{
1820 // print all triangles
1821 *out << Verbose(1) << "Printing all boundary triangles for debugging:" << endl;
1822 for (TriangleMap::iterator TriangleRunner = TrianglesOnBoundary.begin(); TriangleRunner != TrianglesOnBoundary.end(); TriangleRunner++)
1823 *out << Verbose(2) << *(TriangleRunner->second) << endl;
1824};
[357fba]1825
[16d866]1826/** For a given boundary line \a *Base and its two triangles, picks the central baseline that is "higher".
[357fba]1827 * \param *out output stream for debugging
[16d866]1828 * \param *Base line to be flipped
1829 * \return true - line was changed, false - same line as before
[357fba]1830 */
[16d866]1831bool Tesselation::PickFarthestofTwoBaselines(ofstream *out, class BoundaryLineSet *Base)
[357fba]1832{
[16d866]1833 class BoundaryLineSet *OtherBase;
1834 Vector *ClosestPoint[2];
1835
1836 int m=0;
1837 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1838 for (int j=0;j<3;j++) // all of their endpoints and baselines
1839 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) // and neither of its endpoints
1840 BPS[m++] = runner->second->endpoints[j];
1841 OtherBase = new class BoundaryLineSet(BPS,-1);
[62bb91]1842
[16d866]1843 *out << Verbose(3) << "INFO: Current base line is " << *Base << "." << endl;
1844 *out << Verbose(3) << "INFO: Other base line is " << *OtherBase << "." << endl;
[62bb91]1845
[16d866]1846 // get the closest point on each line to the other line
1847 ClosestPoint[0] = GetClosestPointBetweenLine(out, Base, OtherBase);
1848 ClosestPoint[1] = GetClosestPointBetweenLine(out, OtherBase, Base);
1849
1850 // get the distance vector from Base line to OtherBase line
1851 Vector Distance;
1852 Distance.CopyVector(ClosestPoint[1]);
1853 Distance.SubtractVector(ClosestPoint[0]);
1854
[0077b5]1855 // delete the temporary other base line and the closest points
1856 delete(ClosestPoint[0]);
1857 delete(ClosestPoint[1]);
[16d866]1858 delete(OtherBase);
1859
1860 if (Distance.NormSquared() < MYEPSILON) { // check for intersection
1861 *out << Verbose(3) << "REJECT: Both lines have an intersection: Nothing to do." << endl;
1862 return false;
1863 } else { // check for sign against BaseLineNormal
1864 Vector BaseLineNormal;
[5c7bf8]1865 BaseLineNormal.Zero();
1866 if (Base->triangles.size() < 2) {
1867 *out << Verbose(2) << "ERROR: Less than two triangles are attached to this baseline!" << endl;
1868 return false;
1869 }
1870 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1871 *out << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
1872 BaseLineNormal.AddVector(&(runner->second->NormalVector));
1873 }
[0077b5]1874 BaseLineNormal.Scale(1./2.);
[357fba]1875
[16d866]1876 if (Distance.ScalarProduct(&BaseLineNormal) > MYEPSILON) { // Distance points outwards, hence OtherBase higher than Base -> flip
1877 *out << Verbose(2) << "ACCEPT: Other base line would be higher: Flipping baseline." << endl;
1878 FlipBaseline(out, Base);
1879 return true;
1880 } else { // Base higher than OtherBase -> do nothing
1881 *out << Verbose(2) << "REJECT: Base line is higher: Nothing to do." << endl;
1882 return false;
1883 }
1884 }
1885};
[357fba]1886
[16d866]1887/** Returns the closest point on \a *Base with respect to \a *OtherBase.
1888 * \param *out output stream for debugging
1889 * \param *Base reference line
1890 * \param *OtherBase other base line
1891 * \return Vector on reference line that has closest distance
1892 */
1893Vector * GetClosestPointBetweenLine(ofstream *out, class BoundaryLineSet *Base, class BoundaryLineSet *OtherBase)
1894{
1895 // construct the plane of the two baselines (i.e. take both their directional vectors)
1896 Vector Normal;
[0077b5]1897 Vector Baseline, OtherBaseline;
1898 Baseline.CopyVector(Base->endpoints[1]->node->node);
1899 Baseline.SubtractVector(Base->endpoints[0]->node->node);
[16d866]1900 OtherBaseline.CopyVector(OtherBase->endpoints[1]->node->node);
1901 OtherBaseline.SubtractVector(OtherBase->endpoints[0]->node->node);
[0077b5]1902 Normal.CopyVector(&Baseline);
[16d866]1903 Normal.VectorProduct(&OtherBaseline);
1904 Normal.Normalize();
[0077b5]1905 *out << Verbose(4) << "First direction is " << Baseline << ", second direction is " << OtherBaseline << ", normal of intersection plane is " << Normal << "." << endl;
[16d866]1906
[0077b5]1907 // project one offset point of OtherBase onto this plane (and add plane offset vector)
[16d866]1908 Vector NewOffset;
1909 NewOffset.CopyVector(OtherBase->endpoints[0]->node->node);
[1d9b7aa]1910 NewOffset.SubtractVector(Base->endpoints[0]->node->node);
[16d866]1911 NewOffset.ProjectOntoPlane(&Normal);
[0077b5]1912 NewOffset.AddVector(Base->endpoints[0]->node->node);
[1d9b7aa]1913 Vector NewDirection;
1914 NewDirection.CopyVector(&NewOffset);
1915 NewDirection.AddVector(&OtherBaseline);
[16d866]1916
1917 // calculate the intersection between this projected baseline and Base
1918 Vector *Intersection = new Vector;
[1d9b7aa]1919 Intersection->GetIntersectionOfTwoLinesOnPlane(out, Base->endpoints[0]->node->node, Base->endpoints[1]->node->node, &NewOffset, &NewDirection, &Normal);
[0077b5]1920 Normal.CopyVector(Intersection);
1921 Normal.SubtractVector(Base->endpoints[0]->node->node);
1922 *out << Verbose(3) << "Found closest point on " << *Base << " at " << *Intersection << ", factor in line is " << fabs(Normal.ScalarProduct(&Baseline)/Baseline.NormSquared()) << "." << endl;
[16d866]1923
1924 return Intersection;
1925};
1926
1927/** For a given baseline and its two connected triangles, flips the baseline.
1928 * I.e. we create the new baseline between the other two endpoints of these four
1929 * endpoints and reconstruct the two triangles accordingly.
1930 * \param *out output stream for debugging
1931 * \param *Base line to be flipped
1932 * \return true - flipping successful, false - something went awry
1933 */
1934bool Tesselation::FlipBaseline(ofstream *out, class BoundaryLineSet *Base)
1935{
1936 class BoundaryLineSet *OldLines[4], *NewLine;
1937 class BoundaryPointSet *OldPoints[2];
1938 Vector BaseLineNormal;
1939 int OldTriangleNrs[2], OldBaseLineNr;
1940 int i,m;
1941
1942 *out << Verbose(1) << "Begin of FlipBaseline" << endl;
1943
1944 // calculate NormalVector for later use
1945 BaseLineNormal.Zero();
1946 if (Base->triangles.size() < 2) {
1947 *out << Verbose(2) << "ERROR: Less than two triangles are attached to this baseline!" << endl;
1948 return false;
1949 }
1950 for (TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
1951 *out << Verbose(4) << "INFO: Adding NormalVector " << runner->second->NormalVector << " of triangle " << *(runner->second) << "." << endl;
1952 BaseLineNormal.AddVector(&(runner->second->NormalVector));
1953 }
1954 BaseLineNormal.Scale(-1./2.); // has to point inside for BoundaryTriangleSet::GetNormalVector()
1955
1956 // get the two triangles
1957 // gather four endpoints and four lines
1958 for (int j=0;j<4;j++)
1959 OldLines[j] = NULL;
1960 for (int j=0;j<2;j++)
1961 OldPoints[j] = NULL;
1962 i=0;
1963 m=0;
1964 *out << Verbose(3) << "The four old lines are: ";
1965 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1966 for (int j=0;j<3;j++) // all of their endpoints and baselines
1967 if (runner->second->lines[j] != Base) { // pick not the central baseline
1968 OldLines[i++] = runner->second->lines[j];
1969 *out << *runner->second->lines[j] << "\t";
[357fba]1970 }
[16d866]1971 *out << endl;
1972 *out << Verbose(3) << "The two old points are: ";
1973 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++)
1974 for (int j=0;j<3;j++) // all of their endpoints and baselines
1975 if (!Base->ContainsBoundaryPoint(runner->second->endpoints[j])) { // and neither of its endpoints
1976 OldPoints[m++] = runner->second->endpoints[j];
1977 *out << *runner->second->endpoints[j] << "\t";
1978 }
1979 *out << endl;
1980
1981 // check whether everything is in place to create new lines and triangles
1982 if (i<4) {
1983 *out << Verbose(1) << "ERROR: We have not gathered enough baselines!" << endl;
1984 return false;
1985 }
1986 for (int j=0;j<4;j++)
1987 if (OldLines[j] == NULL) {
1988 *out << Verbose(1) << "ERROR: We have not gathered enough baselines!" << endl;
1989 return false;
1990 }
1991 for (int j=0;j<2;j++)
1992 if (OldPoints[j] == NULL) {
1993 *out << Verbose(1) << "ERROR: We have not gathered enough endpoints!" << endl;
1994 return false;
[357fba]1995 }
[16d866]1996
1997 // remove triangles and baseline removes itself
1998 *out << Verbose(3) << "INFO: Deleting baseline " << *Base << " from global list." << endl;
1999 OldBaseLineNr = Base->Nr;
2000 m=0;
2001 for(TriangleMap::iterator runner = Base->triangles.begin(); runner != Base->triangles.end(); runner++) {
2002 *out << Verbose(3) << "INFO: Deleting triangle " << *(runner->second) << "." << endl;
2003 OldTriangleNrs[m++] = runner->second->Nr;
2004 RemoveTesselationTriangle(runner->second);
2005 }
2006
2007 // construct new baseline (with same number as old one)
2008 BPS[0] = OldPoints[0];
2009 BPS[1] = OldPoints[1];
2010 NewLine = new class BoundaryLineSet(BPS, OldBaseLineNr);
2011 LinesOnBoundary.insert(LinePair(OldBaseLineNr, NewLine)); // no need for check for unique insertion as NewLine is definitely a new one
2012 *out << Verbose(3) << "INFO: Created new baseline " << *NewLine << "." << endl;
2013
2014 // construct new triangles with flipped baseline
2015 i=-1;
2016 if (OldLines[0]->IsConnectedTo(OldLines[2]))
2017 i=2;
2018 if (OldLines[0]->IsConnectedTo(OldLines[3]))
2019 i=3;
2020 if (i!=-1) {
2021 BLS[0] = OldLines[0];
2022 BLS[1] = OldLines[i];
2023 BLS[2] = NewLine;
2024 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[0]);
2025 BTS->GetNormalVector(BaseLineNormal);
2026 TrianglesOnBoundary.insert(TrianglePair(OldTriangleNrs[0], BTS));
2027 *out << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2028
2029 BLS[0] = (i==2 ? OldLines[3] : OldLines[2]);
2030 BLS[1] = OldLines[1];
2031 BLS[2] = NewLine;
2032 BTS = new class BoundaryTriangleSet(BLS, OldTriangleNrs[1]);
2033 BTS->GetNormalVector(BaseLineNormal);
2034 TrianglesOnBoundary.insert(TrianglePair(OldTriangleNrs[1], BTS));
2035 *out << Verbose(3) << "INFO: Created new triangle " << *BTS << "." << endl;
2036 } else {
2037 *out << Verbose(1) << "The four old lines do not connect, something's utterly wrong here!" << endl;
2038 return false;
[357fba]2039 }
[16d866]2040
2041 *out << Verbose(1) << "End of FlipBaseline" << endl;
[357fba]2042 return true;
2043};
2044
[16d866]2045
[357fba]2046/** Finds the second point of starting triangle.
2047 * \param *a first node
2048 * \param *Candidate pointer to candidate node on return
2049 * \param Oben vector indicating the outside
[f1cccd]2050 * \param OptCandidate reference to recommended candidate on return
[357fba]2051 * \param Storage[3] array storing angles and other candidate information
2052 * \param RADIUS radius of virtual sphere
[62bb91]2053 * \param *LC LinkedCell structure with neighbouring points
[357fba]2054 */
[f1cccd]2055void Tesselation::FindSecondPointForTesselation(TesselPoint* a, TesselPoint* Candidate, Vector Oben, TesselPoint*& OptCandidate, double Storage[3], double RADIUS, LinkedCell *LC)
[357fba]2056{
[f1cccd]2057 cout << Verbose(2) << "Begin of FindSecondPointForTesselation" << endl;
[357fba]2058 Vector AngleCheck;
2059 double norm = -1., angle;
2060 LinkedNodes *List = NULL;
2061 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2062
[62bb91]2063 if (LC->SetIndexToNode(a)) { // get cell for the starting point
[357fba]2064 for(int i=0;i<NDIM;i++) // store indices of this cell
2065 N[i] = LC->n[i];
2066 } else {
[62bb91]2067 cerr << "ERROR: Point " << *a << " is not found in cell " << LC->index << "." << endl;
[357fba]2068 return;
2069 }
[62bb91]2070 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[357fba]2071 cout << Verbose(3) << "LC Intervals from [";
2072 for (int i=0;i<NDIM;i++) {
2073 cout << " " << N[i] << "<->" << LC->N[i];
2074 }
2075 cout << "] :";
2076 for (int i=0;i<NDIM;i++) {
2077 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2078 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2079 cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2080 }
2081 cout << endl;
2082
2083
2084 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2085 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2086 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2087 List = LC->GetCurrentCell();
2088 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2089 if (List != NULL) {
2090 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2091 Candidate = (*Runner);
2092 // check if we only have one unique point yet ...
2093 if (a != Candidate) {
2094 // Calculate center of the circle with radius RADIUS through points a and Candidate
[f1cccd]2095 Vector OrthogonalizedOben, aCandidate, Center;
[357fba]2096 double distance, scaleFactor;
2097
2098 OrthogonalizedOben.CopyVector(&Oben);
[f1cccd]2099 aCandidate.CopyVector(a->node);
2100 aCandidate.SubtractVector(Candidate->node);
2101 OrthogonalizedOben.ProjectOntoPlane(&aCandidate);
[357fba]2102 OrthogonalizedOben.Normalize();
[f1cccd]2103 distance = 0.5 * aCandidate.Norm();
[357fba]2104 scaleFactor = sqrt(((RADIUS * RADIUS) - (distance * distance)));
2105 OrthogonalizedOben.Scale(scaleFactor);
2106
2107 Center.CopyVector(Candidate->node);
2108 Center.AddVector(a->node);
2109 Center.Scale(0.5);
2110 Center.AddVector(&OrthogonalizedOben);
2111
2112 AngleCheck.CopyVector(&Center);
2113 AngleCheck.SubtractVector(a->node);
[f1cccd]2114 norm = aCandidate.Norm();
[357fba]2115 // second point shall have smallest angle with respect to Oben vector
2116 if (norm < RADIUS*2.) {
2117 angle = AngleCheck.Angle(&Oben);
2118 if (angle < Storage[0]) {
2119 //cout << Verbose(3) << "Old values of Storage: %lf %lf \n", Storage[0], Storage[1]);
2120 cout << Verbose(3) << "Current candidate is " << *Candidate << ": Is a better candidate with distance " << norm << " and angle " << angle << " to oben " << Oben << ".\n";
[f1cccd]2121 OptCandidate = Candidate;
[357fba]2122 Storage[0] = angle;
2123 //cout << Verbose(3) << "Changing something in Storage: %lf %lf. \n", Storage[0], Storage[2]);
2124 } else {
[f1cccd]2125 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Looses with angle " << angle << " to a better candidate " << *OptCandidate << endl;
[357fba]2126 }
2127 } else {
2128 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Refused due to Radius " << norm << endl;
2129 }
2130 } else {
2131 //cout << Verbose(3) << "Current candidate is " << *Candidate << ": Candidate is equal to first endpoint." << *a << "." << endl;
2132 }
2133 }
2134 } else {
2135 cout << Verbose(3) << "Linked cell list is empty." << endl;
2136 }
2137 }
[f1cccd]2138 cout << Verbose(2) << "End of FindSecondPointForTesselation" << endl;
[357fba]2139};
2140
2141
2142/** This recursive function finds a third point, to form a triangle with two given ones.
2143 * Note that this function is for the starting triangle.
2144 * The idea is as follows: A sphere with fixed radius is (almost) uniquely defined in space by three points
2145 * that sit on its boundary. Hence, when two points are given and we look for the (next) third point, then
2146 * the center of the sphere is still fixed up to a single parameter. The band of possible values
2147 * describes a circle in 3D-space. The old center of the sphere for the current base triangle gives
2148 * us the "null" on this circle, the new center of the candidate point will be some way along this
2149 * circle. The shorter the way the better is the candidate. Note that the direction is clearly given
2150 * by the normal vector of the base triangle that always points outwards by construction.
2151 * Hence, we construct a Center of this circle which sits right in the middle of the current base line.
2152 * We construct the normal vector that defines the plane this circle lies in, it is just in the
2153 * direction of the baseline. And finally, we need the radius of the circle, which is given by the rest
2154 * with respect to the length of the baseline and the sphere's fixed \a RADIUS.
2155 * Note that there is one difficulty: The circumcircle is uniquely defined, but for the circumsphere's center
2156 * there are two possibilities which becomes clear from the construction as seen below. Hence, we must check
2157 * both.
2158 * Note also that the acos() function is not unique on [0, 2.*M_PI). Hence, we need an additional check
2159 * to decide for one of the two possible angles. Therefore we need a SearchDirection and to make this check
2160 * sensible we need OldSphereCenter to be orthogonal to it. Either we construct SearchDirection orthogonal
2161 * right away, or -- what we do here -- we rotate the relative sphere centers such that this orthogonality
2162 * holds. Then, the normalized projection onto the SearchDirection is either +1 or -1 and thus states whether
2163 * the angle is uniquely in either (0,M_PI] or [M_PI, 2.*M_PI).
[f1cccd]2164 * @param NormalVector normal direction of the base triangle (here the unit axis vector, \sa FindStartingTriangle())
[357fba]2165 * @param SearchDirection general direction where to search for the next point, relative to center of BaseLine
2166 * @param OldSphereCenter center of sphere for base triangle, relative to center of BaseLine, giving null angle for the parameter circle
2167 * @param BaseLine BoundaryLineSet with the current base line
[62bb91]2168 * @param ThirdNode third point to avoid in search
[357fba]2169 * @param candidates list of equally good candidates to return
[f1cccd]2170 * @param ShortestAngle the current path length on this circle band for the current OptCandidate
[357fba]2171 * @param RADIUS radius of sphere
[62bb91]2172 * @param *LC LinkedCell structure with neighbouring points
[357fba]2173 */
[f1cccd]2174void Tesselation::FindThirdPointForTesselation(Vector NormalVector, Vector SearchDirection, Vector OldSphereCenter, class BoundaryLineSet *BaseLine, class TesselPoint *ThirdNode, CandidateList* &candidates, double *ShortestAngle, const double RADIUS, LinkedCell *LC)
[357fba]2175{
2176 Vector CircleCenter; // center of the circle, i.e. of the band of sphere's centers
2177 Vector CirclePlaneNormal; // normal vector defining the plane this circle lives in
2178 Vector SphereCenter;
2179 Vector NewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, first possibility
2180 Vector OtherNewSphereCenter; // center of the sphere defined by the two points of BaseLine and the one of Candidate, second possibility
2181 Vector NewNormalVector; // normal vector of the Candidate's triangle
2182 Vector helper, OptCandidateCenter, OtherOptCandidateCenter;
2183 LinkedNodes *List = NULL;
2184 double CircleRadius; // radius of this circle
2185 double radius;
2186 double alpha, Otheralpha; // angles (i.e. parameter for the circle).
2187 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2188 TesselPoint *Candidate = NULL;
2189 CandidateForTesselation *optCandidate = NULL;
2190
[f1cccd]2191 cout << Verbose(1) << "Begin of FindThirdPointForTesselation" << endl;
[357fba]2192
2193 //cout << Verbose(2) << "INFO: NormalVector of BaseTriangle is " << NormalVector << "." << endl;
2194
2195 // construct center of circle
2196 CircleCenter.CopyVector(BaseLine->endpoints[0]->node->node);
2197 CircleCenter.AddVector(BaseLine->endpoints[1]->node->node);
2198 CircleCenter.Scale(0.5);
2199
2200 // construct normal vector of circle
2201 CirclePlaneNormal.CopyVector(BaseLine->endpoints[0]->node->node);
2202 CirclePlaneNormal.SubtractVector(BaseLine->endpoints[1]->node->node);
2203
[ab1932]2204 // calculate squared radius TesselPoint *ThirdNode,f circle
[357fba]2205 radius = CirclePlaneNormal.ScalarProduct(&CirclePlaneNormal);
2206 if (radius/4. < RADIUS*RADIUS) {
2207 CircleRadius = RADIUS*RADIUS - radius/4.;
2208 CirclePlaneNormal.Normalize();
2209 //cout << Verbose(2) << "INFO: CircleCenter is at " << CircleCenter << ", CirclePlaneNormal is " << CirclePlaneNormal << " with circle radius " << sqrt(CircleRadius) << "." << endl;
2210
2211 // test whether old center is on the band's plane
2212 if (fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) > HULLEPSILON) {
2213 cerr << "ERROR: Something's very wrong here: OldSphereCenter is not on the band's plane as desired by " << fabs(OldSphereCenter.ScalarProduct(&CirclePlaneNormal)) << "!" << endl;
2214 OldSphereCenter.ProjectOntoPlane(&CirclePlaneNormal);
2215 }
2216 radius = OldSphereCenter.ScalarProduct(&OldSphereCenter);
2217 if (fabs(radius - CircleRadius) < HULLEPSILON) {
2218
2219 // check SearchDirection
2220 //cout << Verbose(2) << "INFO: SearchDirection is " << SearchDirection << "." << endl;
2221 if (fabs(OldSphereCenter.ScalarProduct(&SearchDirection)) > HULLEPSILON) { // rotated the wrong way!
2222 cerr << "ERROR: SearchDirection and RelativeOldSphereCenter are not orthogonal!" << endl;
2223 }
2224
[62bb91]2225 // get cell for the starting point
[357fba]2226 if (LC->SetIndexToVector(&CircleCenter)) {
2227 for(int i=0;i<NDIM;i++) // store indices of this cell
2228 N[i] = LC->n[i];
2229 //cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2230 } else {
2231 cerr << "ERROR: Vector " << CircleCenter << " is outside of LinkedCell's bounding box." << endl;
2232 return;
2233 }
[62bb91]2234 // then go through the current and all neighbouring cells and check the contained points for possible candidates
[357fba]2235 //cout << Verbose(2) << "LC Intervals:";
2236 for (int i=0;i<NDIM;i++) {
2237 Nlower[i] = ((N[i]-1) >= 0) ? N[i]-1 : 0;
2238 Nupper[i] = ((N[i]+1) < LC->N[i]) ? N[i]+1 : LC->N[i]-1;
2239 //cout << " [" << Nlower[i] << "," << Nupper[i] << "] ";
2240 }
2241 //cout << endl;
2242 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2243 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2244 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2245 List = LC->GetCurrentCell();
2246 //cout << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << "." << endl;
2247 if (List != NULL) {
2248 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2249 Candidate = (*Runner);
2250
2251 // check for three unique points
[1953f9]2252 //cout << Verbose(2) << "INFO: Current Candidate is " << *Candidate << " at " << Candidate->node << "." << endl;
[357fba]2253 if ((Candidate != BaseLine->endpoints[0]->node) && (Candidate != BaseLine->endpoints[1]->node) ){
2254
2255 // construct both new centers
2256 GetCenterofCircumcircle(&NewSphereCenter, BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node);
2257 OtherNewSphereCenter.CopyVector(&NewSphereCenter);
2258
2259 if ((NewNormalVector.MakeNormalVector(BaseLine->endpoints[0]->node->node, BaseLine->endpoints[1]->node->node, Candidate->node))
2260 && (fabs(NewNormalVector.ScalarProduct(&NewNormalVector)) > HULLEPSILON)
2261 ) {
2262 helper.CopyVector(&NewNormalVector);
2263 //cout << Verbose(2) << "INFO: NewNormalVector is " << NewNormalVector << "." << endl;
2264 radius = BaseLine->endpoints[0]->node->node->DistanceSquared(&NewSphereCenter);
2265 if (radius < RADIUS*RADIUS) {
2266 helper.Scale(sqrt(RADIUS*RADIUS - radius));
2267 //cout << Verbose(2) << "INFO: Distance of NewCircleCenter to NewSphereCenter is " << helper.Norm() << " with sphere radius " << RADIUS << "." << endl;
2268 NewSphereCenter.AddVector(&helper);
2269 NewSphereCenter.SubtractVector(&CircleCenter);
2270 //cout << Verbose(2) << "INFO: NewSphereCenter is at " << NewSphereCenter << "." << endl;
2271
2272 // OtherNewSphereCenter is created by the same vector just in the other direction
2273 helper.Scale(-1.);
2274 OtherNewSphereCenter.AddVector(&helper);
2275 OtherNewSphereCenter.SubtractVector(&CircleCenter);
2276 //cout << Verbose(2) << "INFO: OtherNewSphereCenter is at " << OtherNewSphereCenter << "." << endl;
2277
2278 alpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, NewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2279 Otheralpha = GetPathLengthonCircumCircle(CircleCenter, CirclePlaneNormal, CircleRadius, OtherNewSphereCenter, OldSphereCenter, NormalVector, SearchDirection);
2280 alpha = min(alpha, Otheralpha);
2281 // if there is a better candidate, drop the current list and add the new candidate
2282 // otherwise ignore the new candidate and keep the list
2283 if (*ShortestAngle > (alpha - HULLEPSILON)) {
2284 optCandidate = new CandidateForTesselation(Candidate, BaseLine, OptCandidateCenter, OtherOptCandidateCenter);
2285 if (fabs(alpha - Otheralpha) > MYEPSILON) {
2286 optCandidate->OptCenter.CopyVector(&NewSphereCenter);
2287 optCandidate->OtherOptCenter.CopyVector(&OtherNewSphereCenter);
2288 } else {
2289 optCandidate->OptCenter.CopyVector(&OtherNewSphereCenter);
2290 optCandidate->OtherOptCenter.CopyVector(&NewSphereCenter);
2291 }
2292 // if there is an equal candidate, add it to the list without clearing the list
2293 if ((*ShortestAngle - HULLEPSILON) < alpha) {
2294 candidates->push_back(optCandidate);
2295 cout << Verbose(2) << "ACCEPT: We have found an equally good candidate: " << *(optCandidate->point) << " with "
2296 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2297 } else {
2298 // remove all candidates from the list and then the list itself
2299 class CandidateForTesselation *remover = NULL;
2300 for (CandidateList::iterator it = candidates->begin(); it != candidates->end(); ++it) {
2301 remover = *it;
2302 delete(remover);
2303 }
2304 candidates->clear();
2305 candidates->push_back(optCandidate);
2306 cout << Verbose(2) << "ACCEPT: We have found a better candidate: " << *(optCandidate->point) << " with "
2307 << alpha << " and circumsphere's center at " << optCandidate->OptCenter << "." << endl;
2308 }
2309 *ShortestAngle = alpha;
2310 //cout << Verbose(2) << "INFO: There are " << candidates->size() << " candidates in the list now." << endl;
2311 } else {
2312 if ((optCandidate != NULL) && (optCandidate->point != NULL)) {
[1953f9]2313 //cout << Verbose(2) << "REJECT: Old candidate " << *(optCandidate->point) << " with " << *ShortestAngle << " is better than new one " << *Candidate << " with " << alpha << " ." << endl;
[357fba]2314 } else {
2315 //cout << Verbose(2) << "REJECT: Candidate " << *Candidate << " with " << alpha << " was rejected." << endl;
2316 }
2317 }
2318
2319 } else {
[1953f9]2320 //cout << Verbose(2) << "REJECT: NewSphereCenter " << NewSphereCenter << " for " << *Candidate << " is too far away: " << radius << "." << endl;
[357fba]2321 }
2322 } else {
2323 //cout << Verbose(2) << "REJECT: Three points from " << *BaseLine << " and Candidate " << *Candidate << " are linear-dependent." << endl;
2324 }
2325 } else {
2326 if (ThirdNode != NULL) {
2327 //cout << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " and " << *ThirdNode << " contains Candidate " << *Candidate << "." << endl;
2328 } else {
2329 //cout << Verbose(2) << "REJECT: Base triangle " << *BaseLine << " contains Candidate " << *Candidate << "." << endl;
2330 }
2331 }
2332 }
2333 }
2334 }
2335 } else {
2336 cerr << Verbose(2) << "ERROR: The projected center of the old sphere has radius " << radius << " instead of " << CircleRadius << "." << endl;
2337 }
2338 } else {
2339 if (ThirdNode != NULL)
2340 cout << Verbose(2) << "Circumcircle for base line " << *BaseLine << " and third node " << *ThirdNode << " is too big!" << endl;
2341 else
2342 cout << Verbose(2) << "Circumcircle for base line " << *BaseLine << " is too big!" << endl;
2343 }
2344
2345 //cout << Verbose(2) << "INFO: Sorting candidate list ..." << endl;
2346 if (candidates->size() > 1) {
2347 candidates->unique();
[f1cccd]2348 candidates->sort(SortCandidates);
[357fba]2349 }
2350
[f1cccd]2351 cout << Verbose(1) << "End of FindThirdPointForTesselation" << endl;
[357fba]2352};
2353
2354/** Finds the endpoint two lines are sharing.
2355 * \param *line1 first line
2356 * \param *line2 second line
2357 * \return point which is shared or NULL if none
2358 */
2359class BoundaryPointSet *Tesselation::GetCommonEndpoint(class BoundaryLineSet * line1, class BoundaryLineSet * line2)
2360{
2361 class BoundaryLineSet * lines[2] =
2362 { line1, line2 };
2363 class BoundaryPointSet *node = NULL;
2364 map<int, class BoundaryPointSet *> OrderMap;
2365 pair<map<int, class BoundaryPointSet *>::iterator, bool> OrderTest;
2366 for (int i = 0; i < 2; i++)
2367 // for both lines
2368 for (int j = 0; j < 2; j++)
2369 { // for both endpoints
2370 OrderTest = OrderMap.insert(pair<int, class BoundaryPointSet *> (
2371 lines[i]->endpoints[j]->Nr, lines[i]->endpoints[j]));
2372 if (!OrderTest.second)
2373 { // if insertion fails, we have common endpoint
2374 node = OrderTest.first->second;
2375 cout << Verbose(5) << "Common endpoint of lines " << *line1
2376 << " and " << *line2 << " is: " << *node << "." << endl;
2377 j = 2;
2378 i = 2;
2379 break;
2380 }
2381 }
2382 return node;
2383};
2384
[62bb91]2385/** Finds the triangle that is closest to a given Vector \a *x.
2386 * \param *out output stream for debugging
2387 * \param *x Vector to look from
2388 * \return list of BoundaryTriangleSet of nearest triangles or NULL in degenerate case.
2389 */
2390list<BoundaryTriangleSet*> * Tesselation::FindClosestTrianglesToPoint(ofstream *out, Vector *x, LinkedCell* LC)
2391{
[5c7bf8]2392 TesselPoint *trianglePoints[3];
2393 TesselPoint *SecondPoint = NULL;
[62bb91]2394
2395 if (LinesOnBoundary.empty()) {
[5c7bf8]2396 *out << Verbose(0) << "Error: There is no tesselation structure to compare the point with, please create one first.";
[62bb91]2397 return NULL;
2398 }
2399
[f1cccd]2400 trianglePoints[0] = FindClosestPoint(x, SecondPoint, LC);
[5c7bf8]2401
[62bb91]2402 // check whether closest point is "too close" :), then it's inside
[5c7bf8]2403 if (trianglePoints[0] == NULL) {
2404 *out << Verbose(1) << "Is the only point, no one else is closeby." << endl;
2405 return NULL;
2406 }
[62bb91]2407 if (trianglePoints[0]->node->DistanceSquared(x) < MYEPSILON) {
2408 *out << Verbose(1) << "Point is right on a tesselation point, no nearest triangle." << endl;
2409 return NULL;
2410 }
[f1cccd]2411 list<TesselPoint*> *connectedPoints = GetCircleOfConnectedPoints(out, trianglePoints[0]);
2412 list<TesselPoint*> *connectedClosestPoints = GetNeighboursOnCircleOfConnectedPoints(out, connectedPoints, trianglePoints[0], x);
[16d866]2413 delete(connectedPoints);
[62bb91]2414 trianglePoints[1] = connectedClosestPoints->front();
2415 trianglePoints[2] = connectedClosestPoints->back();
2416 for (int i=0;i<3;i++) {
2417 if (trianglePoints[i] == NULL) {
2418 *out << Verbose(1) << "IsInnerPoint encounters serious error, point " << i << " not found." << endl;
2419 }
[5c7bf8]2420 //*out << Verbose(1) << "List of possible points:" << endl;
2421 //*out << Verbose(2) << *trianglePoints[i] << endl;
[62bb91]2422 }
2423
2424 list<BoundaryTriangleSet*> *triangles = FindTriangles(trianglePoints);
2425
[5c7bf8]2426 delete(connectedClosestPoints);
2427
[62bb91]2428 if (triangles->empty()) {
2429 *out << Verbose(0) << "Error: There is no nearest triangle. Please check the tesselation structure.";
2430 return NULL;
2431 } else
2432 return triangles;
2433};
2434
2435/** Finds closest triangle to a point.
2436 * This basically just takes care of the degenerate case, which is not handled in FindClosestTrianglesToPoint().
2437 * \param *out output stream for debugging
2438 * \param *x Vector to look from
2439 * \return list of BoundaryTriangleSet of nearest triangles or NULL.
2440 */
2441class BoundaryTriangleSet * Tesselation::FindClosestTriangleToPoint(ofstream *out, Vector *x, LinkedCell* LC)
2442{
2443 class BoundaryTriangleSet *result = NULL;
2444 list<BoundaryTriangleSet*> *triangles = FindClosestTrianglesToPoint(out, x, LC);
2445
2446 if (triangles == NULL)
2447 return NULL;
2448
2449 if (x->ScalarProduct(&triangles->front()->NormalVector) < 0)
2450 result = triangles->back();
2451 else
2452 result = triangles->front();
2453
2454 delete(triangles);
2455 return result;
2456};
2457
2458/** Checks whether the provided Vector is within the tesselation structure.
2459 *
2460 * @param point of which to check the position
2461 * @param *LC LinkedCell structure
2462 *
2463 * @return true if the point is inside the tesselation structure, false otherwise
2464 */
2465bool Tesselation::IsInnerPoint(ofstream *out, Vector Point, LinkedCell* LC)
2466{
2467 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(out, &Point, LC);
2468 if (result == NULL)
2469 return true;
2470 if (Point.ScalarProduct(&result->NormalVector) < 0)
2471 return true;
2472 else
2473 return false;
2474}
2475
2476/** Checks whether the provided TesselPoint is within the tesselation structure.
2477 *
2478 * @param *Point of which to check the position
2479 * @param *LC Linked Cell structure
2480 *
2481 * @return true if the point is inside the tesselation structure, false otherwise
2482 */
2483bool Tesselation::IsInnerPoint(ofstream *out, TesselPoint *Point, LinkedCell* LC)
2484{
2485 class BoundaryTriangleSet *result = FindClosestTriangleToPoint(out, Point->node, LC);
2486 if (result == NULL)
2487 return true;
2488 if (Point->node->ScalarProduct(&result->NormalVector) < 0)
2489 return true;
2490 else
2491 return false;
2492}
2493
2494/** Gets all points connected to the provided point by triangulation lines.
2495 *
2496 * @param *Point of which get all connected points
2497 *
[16d866]2498 * @return list of the all points linked to the provided one
[62bb91]2499 */
[f1cccd]2500list<TesselPoint*> * Tesselation::GetCircleOfConnectedPoints(ofstream *out, TesselPoint* Point)
[62bb91]2501{
[16d866]2502 list<TesselPoint*> *connectedPoints = new list<TesselPoint*>;
[5c7bf8]2503 class BoundaryPointSet *ReferencePoint = NULL;
[62bb91]2504 TesselPoint* current;
2505 bool takePoint = false;
2506
[5c7bf8]2507 // find the respective boundary point
2508 PointMap::iterator PointRunner = PointsOnBoundary.find(Point->nr);
2509 if (PointRunner != PointsOnBoundary.end()) {
2510 ReferencePoint = PointRunner->second;
2511 } else {
2512 *out << Verbose(2) << "getCircleOfConnectedPoints() could not find the BoundaryPoint belonging to " << *Point << "." << endl;
2513 ReferencePoint = NULL;
2514 }
[62bb91]2515
[5c7bf8]2516 // little trick so that we look just through lines connect to the BoundaryPoint
2517 // OR fall-back to look through all lines if there is no such BoundaryPoint
2518 LineMap *Lines = &LinesOnBoundary;
2519 if (ReferencePoint != NULL)
2520 Lines = &(ReferencePoint->lines);
2521 LineMap::iterator findLines = Lines->begin();
2522 while (findLines != Lines->end()) {
[62bb91]2523 takePoint = false;
2524
2525 if (findLines->second->endpoints[0]->Nr == Point->nr) {
2526 takePoint = true;
2527 current = findLines->second->endpoints[1]->node;
2528 } else if (findLines->second->endpoints[1]->Nr == Point->nr) {
2529 takePoint = true;
2530 current = findLines->second->endpoints[0]->node;
2531 }
[5c7bf8]2532
[62bb91]2533 if (takePoint) {
[5c7bf8]2534 *out << Verbose(3) << "INFO: Endpoint " << *current << " of line " << *(findLines->second) << " is taken into the circle." << endl;
[16d866]2535 connectedPoints->push_back(current);
[62bb91]2536 }
2537
2538 findLines++;
2539 }
2540
[16d866]2541 if (connectedPoints->size() == 0) { // if have not found any points
2542 *out << Verbose(1) << "ERROR: We have not found any connected points to " << *Point<< "." << endl;
2543 return NULL;
2544 }
2545 return connectedPoints;
2546}
2547
2548/** Gets the two neighbouring points with respect to a reference line to the provided point.
2549 * Maps them down onto the plane designated by the axis \a *Point and \a *Reference. The center of all points
2550 * connected in the tesselation to \a *Point is mapped to spherical coordinates with the zero angle being given
2551 * by the mapped down \a *Reference. Hence, the biggest and the smallest angles are those of the two shanks of the
2552 * triangle we are looking for.
2553 *
2554 * @param *out output stream for debugging
2555 * @param *connectedPoints list of connected points to the central \a *Point
2556 * @param *Point of which get all connected points
2557 * @param *Reference Vector to be checked whether it is an inner point
2558 *
2559 * @return list of the two points linked to the provided one and closest to the point to be checked,
2560 */
[f1cccd]2561list<TesselPoint*> * Tesselation::GetNeighboursOnCircleOfConnectedPoints(ofstream *out, list<TesselPoint*> *connectedPoints, TesselPoint* Point, Vector* Reference)
[16d866]2562{
2563 map<double, TesselPoint*> anglesOfPoints;
2564 map<double, TesselPoint*>::iterator runner;
2565 ;
2566 Vector center, PlaneNormal, OrthogonalVector, helper, AngleZero;
[62bb91]2567
[16d866]2568 if (connectedPoints->size() == 0) { // if have not found any points
[5c7bf8]2569 *out << Verbose(1) << "ERROR: We have not found any connected points to " << *Point<< "." << endl;
2570 return NULL;
2571 }
[62bb91]2572
[16d866]2573 // calculate central point
2574 for (list<TesselPoint*>::iterator TesselRunner = connectedPoints->begin(); TesselRunner != connectedPoints->end(); TesselRunner++)
2575 center.AddVector((*TesselRunner)->node);
2576 //*out << "Summed vectors " << center << "; number of points " << connectedPoints.size()
2577 // << "; scale factor " << 1.0/connectedPoints.size();
2578 center.Scale(1.0/connectedPoints->size());
[5c7bf8]2579 *out << Verbose(4) << "INFO: Calculated center of all circle points is " << center << "." << endl;
2580
2581 // projection plane of the circle is at the closes Point and normal is pointing away from center of all circle points
2582 PlaneNormal.CopyVector(Point->node);
2583 PlaneNormal.SubtractVector(&center);
2584 PlaneNormal.Normalize();
2585 *out << Verbose(4) << "INFO: Calculated plane normal of circle is " << PlaneNormal << "." << endl;
[62bb91]2586
2587 // construct one orthogonal vector
[5c7bf8]2588 AngleZero.CopyVector(Reference);
2589 AngleZero.SubtractVector(Point->node);
2590 AngleZero.ProjectOntoPlane(&PlaneNormal);
2591 *out << Verbose(4) << "INFO: Reference vector on this plane representing angle 0 is " << AngleZero << "." << endl;
2592 OrthogonalVector.MakeNormalVector(&PlaneNormal, &AngleZero);
2593 *out << Verbose(4) << "INFO: OrthogonalVector on plane is " << OrthogonalVector << "." << endl;
[16d866]2594
[5c7bf8]2595 // go through all connected points and calculate angle
[16d866]2596 for (list<TesselPoint*>::iterator listRunner = connectedPoints->begin(); listRunner != connectedPoints->end(); listRunner++) {
[5c7bf8]2597 helper.CopyVector((*listRunner)->node);
2598 helper.SubtractVector(Point->node);
2599 helper.ProjectOntoPlane(&PlaneNormal);
[f1cccd]2600 double angle = GetAngle(helper, AngleZero, OrthogonalVector);
[5c7bf8]2601 *out << Verbose(2) << "INFO: Calculated angle is " << angle << " for point " << **listRunner << "." << endl;
[62bb91]2602 anglesOfPoints.insert(pair<double, TesselPoint*>(angle, (*listRunner)));
2603 }
2604
2605 list<TesselPoint*> *result = new list<TesselPoint*>;
2606 runner = anglesOfPoints.begin();
2607 result->push_back(runner->second);
2608 runner = anglesOfPoints.end();
2609 runner--;
2610 result->push_back(runner->second);
2611
[5c7bf8]2612 *out << Verbose(2) << "List of closest points has " << result->size() << " elements, which are "
[62bb91]2613 << *(result->front()) << " and " << *(result->back()) << endl;
2614
2615 return result;
2616}
2617
[16d866]2618/** Removes a boundary point from the envelope while keeping it closed.
2619 * We create new triangles and remove the old ones connected to the point.
2620 * \param *out output stream for debugging
2621 * \param *point point to be removed
2622 * \return volume added to the volume inside the tesselated surface by the removal
2623 */
2624double Tesselation::RemovePointFromTesselatedSurface(ofstream *out, class BoundaryPointSet *point) {
2625 class BoundaryLineSet *line = NULL;
2626 class BoundaryTriangleSet *triangle = NULL;
2627 Vector OldPoint, TetraederVector[3];
2628 double volume = 0;
2629 int *numbers = NULL;
2630 int count = 0;
2631 int i;
2632
[1d9b7aa]2633 if (point == NULL) {
2634 *out << Verbose(1) << "ERROR: Cannot remove the point " << point << ", it's NULL!" << endl;
2635 return 0.;
2636 } else
2637 *out << Verbose(2) << "Removing point " << *point << " from tesselated boundary ..." << endl;
2638
[16d866]2639 // copy old location for the volume
2640 OldPoint.CopyVector(point->node->node);
2641
2642 // get list of connected points
2643 if (point->lines.empty()) {
2644 *out << Verbose(1) << "ERROR: Cannot remove the point " << *point << ", it's connected to no lines!" << endl;
2645 return 0.;
2646 }
[f1cccd]2647 list<TesselPoint*> *CircleofPoints = GetCircleOfConnectedPoints(out, point->node);
[16d866]2648
2649 // remove all triangles
2650 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++)
2651 count+=LineRunner->second->triangles.size();
2652 numbers = new int[count];
[1d9b7aa]2653 class BoundaryTriangleSet **Candidates = new BoundaryTriangleSet*[count];
[16d866]2654 i=0;
2655 for (LineMap::iterator LineRunner = point->lines.begin(); (point != NULL) && (LineRunner != point->lines.end()); LineRunner++) {
2656 line = LineRunner->second;
2657 for (TriangleMap::iterator TriangleRunner = line->triangles.begin(); TriangleRunner != line->triangles.end(); TriangleRunner++) {
2658 triangle = TriangleRunner->second;
[1d9b7aa]2659 Candidates[i] = triangle;
[16d866]2660 numbers[i++] = triangle->Nr;
2661 }
2662 }
[1d9b7aa]2663 for (int j=0;j<i;j++) {
2664 RemoveTesselationTriangle(Candidates[j]);
2665 }
2666 delete[](Candidates);
[16d866]2667 *out << Verbose(1) << i << " triangles were removed." << endl;
2668
2669 // re-create all triangles by going through connected points list
2670 list<TesselPoint*>::iterator CircleRunner = CircleofPoints->begin();
2671 list<TesselPoint*>::iterator OtherCircleRunner = CircleofPoints->begin();
2672 class TesselPoint *CentralNode = *CircleRunner;
2673 // advance two with CircleRunner and one with OtherCircleRunner
2674 CircleRunner++;
2675 CircleRunner++;
2676 OtherCircleRunner++;
2677 i=0;
2678 cout << Verbose(2) << "INFO: CentralNode is " << *CentralNode << "." << endl;
2679 for (; (OtherCircleRunner != CircleofPoints->end()) && (CircleRunner != CircleofPoints->end()); (CircleRunner++), (OtherCircleRunner++)) {
2680 cout << Verbose(3) << "INFO: CircleRunner's node is " << **CircleRunner << "." << endl;
2681 cout << Verbose(3) << "INFO: OtherCircleRunner's node is " << **OtherCircleRunner << "." << endl;
2682 *out << Verbose(4) << "Adding new triangle points."<< endl;
2683 AddTesselationPoint(CentralNode, 0);
2684 AddTesselationPoint(*OtherCircleRunner, 1);
2685 AddTesselationPoint(*CircleRunner, 2);
2686 *out << Verbose(4) << "Adding new triangle lines."<< endl;
2687 AddTesselationLine(TPS[0], TPS[1], 0);
2688 AddTesselationLine(TPS[0], TPS[2], 1);
2689 AddTesselationLine(TPS[1], TPS[2], 2);
2690 BTS = new class BoundaryTriangleSet(BLS, numbers[i]);
2691 TrianglesOnBoundary.insert(TrianglePair(numbers[i], BTS));
2692 *out << Verbose(4) << "Created triangle " << *BTS << "." << endl;
2693 // calculate volume summand as a general tetraeder
2694 for (int j=0;j<3;j++) {
2695 TetraederVector[j].CopyVector(TPS[j]->node->node);
2696 TetraederVector[j].SubtractVector(&OldPoint);
2697 }
2698 OldPoint.CopyVector(&TetraederVector[0]);
2699 OldPoint.VectorProduct(&TetraederVector[1]);
2700 volume += 1./6. * fabs(OldPoint.ScalarProduct(&TetraederVector[2]));
2701 // advance number
2702 i++;
2703 if (i >= count)
2704 *out << Verbose(2) << "WARNING: Maximum of numbers reached!" << endl;
2705 }
2706 *out << Verbose(1) << i << " triangles were created." << endl;
2707
2708 delete[](numbers);
2709
2710 return volume;
2711};
2712
[357fba]2713/** Checks for a new special triangle whether one of its edges is already present with one one triangle connected.
2714 * This enforces that special triangles (i.e. degenerated ones) should at last close the open-edge frontier and not
2715 * make it bigger (i.e. closing one (the baseline) and opening two new ones).
2716 * \param TPS[3] nodes of the triangle
2717 * \return true - there is such a line (i.e. creation of degenerated triangle is valid), false - no such line (don't create)
2718 */
[f1cccd]2719bool CheckLineCriteriaForDegeneratedTriangle(class BoundaryPointSet *nodes[3])
[357fba]2720{
2721 bool result = false;
2722 int counter = 0;
2723
2724 // check all three points
2725 for (int i=0;i<3;i++)
2726 for (int j=i+1; j<3; j++) {
2727 if (nodes[i]->lines.find(nodes[j]->node->nr) != nodes[i]->lines.end()) { // there already is a line
2728 LineMap::iterator FindLine;
2729 pair<LineMap::iterator,LineMap::iterator> FindPair;
2730 FindPair = nodes[i]->lines.equal_range(nodes[j]->node->nr);
2731 for (FindLine = FindPair.first; FindLine != FindPair.second; ++FindLine) {
2732 // If there is a line with less than two attached triangles, we don't need a new line.
[5c7bf8]2733 if (FindLine->second->triangles.size() < 2) {
[357fba]2734 counter++;
2735 break; // increase counter only once per edge
2736 }
2737 }
2738 } else { // no line
[5c7bf8]2739 cout << Verbose(1) << "The line between " << nodes[i] << " and " << nodes[j] << " is not yet present, hence no need for a degenerate triangle." << endl;
[357fba]2740 result = true;
2741 }
2742 }
2743 if (counter > 1) {
2744 cout << Verbose(2) << "INFO: Degenerate triangle is ok, at least two, here " << counter << ", existing lines are used." << endl;
2745 result = true;
2746 }
2747 return result;
2748};
2749
2750
2751/** Sort function for the candidate list.
2752 */
[f1cccd]2753bool SortCandidates(CandidateForTesselation* candidate1, CandidateForTesselation* candidate2)
[ab1932]2754{
[357fba]2755 Vector BaseLineVector, OrthogonalVector, helper;
2756 if (candidate1->BaseLine != candidate2->BaseLine) { // sanity check
2757 cout << Verbose(0) << "ERROR: sortCandidates was called for two different baselines: " << candidate1->BaseLine << " and " << candidate2->BaseLine << "." << endl;
2758 //return false;
2759 exit(1);
2760 }
2761 // create baseline vector
2762 BaseLineVector.CopyVector(candidate1->BaseLine->endpoints[1]->node->node);
2763 BaseLineVector.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2764 BaseLineVector.Normalize();
2765
2766 // create normal in-plane vector to cope with acos() non-uniqueness on [0,2pi] (note that is pointing in the "right" direction already, hence ">0" test!)
2767 helper.CopyVector(candidate1->BaseLine->endpoints[0]->node->node);
2768 helper.SubtractVector(candidate1->point->node);
2769 OrthogonalVector.CopyVector(&helper);
2770 helper.VectorProduct(&BaseLineVector);
2771 OrthogonalVector.SubtractVector(&helper);
2772 OrthogonalVector.Normalize();
2773
2774 // calculate both angles and correct with in-plane vector
2775 helper.CopyVector(candidate1->point->node);
2776 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2777 double phi = BaseLineVector.Angle(&helper);
2778 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
2779 phi = 2.*M_PI - phi;
2780 }
2781 helper.CopyVector(candidate2->point->node);
2782 helper.SubtractVector(candidate1->BaseLine->endpoints[0]->node->node);
2783 double psi = BaseLineVector.Angle(&helper);
2784 if (OrthogonalVector.ScalarProduct(&helper) > 0) {
2785 psi = 2.*M_PI - psi;
2786 }
2787
2788 cout << Verbose(2) << *candidate1->point << " has angle " << phi << endl;
2789 cout << Verbose(2) << *candidate2->point << " has angle " << psi << endl;
2790
2791 // return comparison
2792 return phi < psi;
2793};
[ab1932]2794
[5c7bf8]2795/**
2796 * Finds the point which is second closest to the provided one.
2797 *
2798 * @param Point to which to find the second closest other point
2799 * @param linked cell structure
2800 *
2801 * @return point which is second closest to the provided one
2802 */
[f1cccd]2803TesselPoint* FindSecondClosestPoint(const Vector* Point, LinkedCell* LC)
[5c7bf8]2804{
2805 LinkedNodes *List = NULL;
2806 TesselPoint* closestPoint = NULL;
2807 TesselPoint* secondClosestPoint = NULL;
2808 double distance = 1e16;
2809 double secondDistance = 1e16;
2810 Vector helper;
2811 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2812
2813 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
2814 for(int i=0;i<NDIM;i++) // store indices of this cell
2815 N[i] = LC->n[i];
2816 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
2817
2818 LC->GetNeighbourBounds(Nlower, Nupper);
2819 //cout << endl;
2820 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2821 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2822 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2823 List = LC->GetCurrentCell();
2824 cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
2825 if (List != NULL) {
2826 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
2827 helper.CopyVector(Point);
2828 helper.SubtractVector((*Runner)->node);
2829 double currentNorm = helper. Norm();
2830 if (currentNorm < distance) {
2831 // remember second point
2832 secondDistance = distance;
2833 secondClosestPoint = closestPoint;
2834 // mark down new closest point
2835 distance = currentNorm;
2836 closestPoint = (*Runner);
2837 cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
2838 }
2839 }
2840 } else {
2841 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
2842 << LC->n[2] << " is invalid!" << endl;
2843 }
2844 }
2845
2846 return secondClosestPoint;
2847};
2848
[ab1932]2849/**
[62bb91]2850 * Finds the point which is closest to the provided one.
[ab1932]2851 *
[62bb91]2852 * @param Point to which to find the closest other point
[5c7bf8]2853 * @param SecondPoint the second closest other point on return, NULL if none found
[ab1932]2854 * @param linked cell structure
2855 *
[5c7bf8]2856 * @return point which is closest to the provided one, NULL if none found
[ab1932]2857 */
[f1cccd]2858TesselPoint* FindClosestPoint(const Vector* Point, TesselPoint *&SecondPoint, LinkedCell* LC)
[ab1932]2859{
2860 LinkedNodes *List = NULL;
[62bb91]2861 TesselPoint* closestPoint = NULL;
[5c7bf8]2862 SecondPoint = NULL;
[ab1932]2863 double distance = 1e16;
[5c7bf8]2864 double secondDistance = 1e16;
[ab1932]2865 Vector helper;
2866 int N[NDIM], Nlower[NDIM], Nupper[NDIM];
2867
[62bb91]2868 LC->SetIndexToVector(Point); // ignore status as we calculate bounds below sensibly
[ab1932]2869 for(int i=0;i<NDIM;i++) // store indices of this cell
2870 N[i] = LC->n[i];
[5c7bf8]2871 cout << Verbose(2) << "INFO: Center cell is " << N[0] << ", " << N[1] << ", " << N[2] << " with No. " << LC->index << "." << endl;
[ab1932]2872
2873 LC->GetNeighbourBounds(Nlower, Nupper);
2874 //cout << endl;
2875 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
2876 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
2877 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
2878 List = LC->GetCurrentCell();
[5c7bf8]2879 cout << Verbose(3) << "The current cell " << LC->n[0] << "," << LC->n[1] << "," << LC->n[2] << endl;
[ab1932]2880 if (List != NULL) {
2881 for (LinkedNodes::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[62bb91]2882 helper.CopyVector(Point);
[ab1932]2883 helper.SubtractVector((*Runner)->node);
2884 double currentNorm = helper. Norm();
2885 if (currentNorm < distance) {
[5c7bf8]2886 secondDistance = distance;
2887 SecondPoint = closestPoint;
[ab1932]2888 distance = currentNorm;
[62bb91]2889 closestPoint = (*Runner);
[5c7bf8]2890 cout << Verbose(2) << "INFO: New Nearest Neighbour is " << *closestPoint << "." << endl;
2891 } else if (currentNorm < secondDistance) {
2892 secondDistance = currentNorm;
2893 SecondPoint = (*Runner);
2894 cout << Verbose(2) << "INFO: New Second Nearest Neighbour is " << *SecondPoint << "." << endl;
[ab1932]2895 }
2896 }
2897 } else {
2898 cerr << "ERROR: The current cell " << LC->n[0] << "," << LC->n[1] << ","
2899 << LC->n[2] << " is invalid!" << endl;
2900 }
2901 }
2902
[62bb91]2903 return closestPoint;
[5c7bf8]2904};
[ab1932]2905
2906/**
[62bb91]2907 * Finds triangles belonging to the three provided points.
[ab1932]2908 *
[62bb91]2909 * @param *Points[3] list, is expected to contain three points
[ab1932]2910 *
[62bb91]2911 * @return triangles which belong to the provided points, will be empty if there are none,
[ab1932]2912 * will usually be one, in case of degeneration, there will be two
2913 */
2914list<BoundaryTriangleSet*> *Tesselation::FindTriangles(TesselPoint* Points[3])
2915{
2916 list<BoundaryTriangleSet*> *result = new list<BoundaryTriangleSet*>;
2917 LineMap::iterator FindLine;
2918 PointMap::iterator FindPoint;
2919 TriangleMap::iterator FindTriangle;
2920 class BoundaryPointSet *TrianglePoints[3];
2921
2922 for (int i = 0; i < 3; i++) {
2923 FindPoint = PointsOnBoundary.find(Points[i]->nr);
2924 if (FindPoint != PointsOnBoundary.end()) {
2925 TrianglePoints[i] = FindPoint->second;
2926 } else {
2927 TrianglePoints[i] = NULL;
2928 }
2929 }
2930
2931 // checks lines between the points in the Points for their adjacent triangles
2932 for (int i = 0; i < 3; i++) {
2933 if (TrianglePoints[i] != NULL) {
2934 for (int j = i; j < 3; j++) {
2935 if (TrianglePoints[j] != NULL) {
2936 FindLine = TrianglePoints[i]->lines.find(TrianglePoints[j]->node->nr);
2937 if (FindLine != TrianglePoints[i]->lines.end()) {
2938 for (; FindLine->first == TrianglePoints[j]->node->nr; FindLine++) {
2939 FindTriangle = FindLine->second->triangles.begin();
2940 for (; FindTriangle != FindLine->second->triangles.end(); FindTriangle++) {
2941 if ((
2942 (FindTriangle->second->endpoints[0] == TrianglePoints[0])
2943 || (FindTriangle->second->endpoints[0] == TrianglePoints[1])
2944 || (FindTriangle->second->endpoints[0] == TrianglePoints[2])
2945 ) && (
2946 (FindTriangle->second->endpoints[1] == TrianglePoints[0])
2947 || (FindTriangle->second->endpoints[1] == TrianglePoints[1])
2948 || (FindTriangle->second->endpoints[1] == TrianglePoints[2])
2949 ) && (
2950 (FindTriangle->second->endpoints[2] == TrianglePoints[0])
2951 || (FindTriangle->second->endpoints[2] == TrianglePoints[1])
2952 || (FindTriangle->second->endpoints[2] == TrianglePoints[2])
2953 )
2954 ) {
2955 result->push_back(FindTriangle->second);
2956 }
2957 }
2958 }
2959 // Is it sufficient to consider one of the triangle lines for this.
2960 return result;
2961
2962 }
2963 }
2964 }
2965 }
2966 }
2967
2968 return result;
2969}
2970
[7c14ec]2971/**
2972 * Finds all degenerated triangles within the tesselation structure.
2973 *
2974 * @return map of keys of degenerated triangle pairs, each triangle occurs twice
2975 * in the list, once as key and once as value
2976 */
2977map<int, int> Tesselation::FindAllDegeneratedTriangles()
2978{
2979 map<int, int> DegeneratedTriangles;
2980
2981 // sanity check
2982 if (LinesOnBoundary.empty()) {
2983 cout << Verbose(1) << "Warning: FindAllDegeneratedTriangles() was called without any tesselation structure.";
2984 return DegeneratedTriangles;
2985 }
2986
2987 LineMap::iterator LineRunner1, LineRunner2;
2988
2989 for (LineRunner1 = LinesOnBoundary.begin(); LineRunner1 != LinesOnBoundary.end(); ++LineRunner1) {
2990 for (LineRunner2 = LinesOnBoundary.begin(); LineRunner2 != LinesOnBoundary.end(); ++LineRunner2) {
2991 if ((LineRunner1->second != LineRunner2->second)
2992 && (LineRunner1->second->endpoints[0] == LineRunner2->second->endpoints[0])
2993 && (LineRunner1->second->endpoints[1] == LineRunner2->second->endpoints[1])
2994 ) {
2995 TriangleMap::iterator TriangleRunner1 = LineRunner1->second->triangles.begin(),
2996 TriangleRunner2 = LineRunner2->second->triangles.begin();
2997
2998 for (; TriangleRunner1 != LineRunner1->second->triangles.end(); ++TriangleRunner1) {
2999 for (; TriangleRunner2 != LineRunner2->second->triangles.end(); ++TriangleRunner2) {
3000 if ((TriangleRunner1->second != TriangleRunner2->second)
3001 && (TriangleRunner1->second->endpoints[0] == TriangleRunner2->second->endpoints[0])
3002 && (TriangleRunner1->second->endpoints[1] == TriangleRunner2->second->endpoints[1])
3003 && (TriangleRunner1->second->endpoints[2] == TriangleRunner2->second->endpoints[2])
3004 ) {
3005 DegeneratedTriangles[TriangleRunner1->second->Nr] = TriangleRunner2->second->Nr;
3006 DegeneratedTriangles[TriangleRunner2->second->Nr] = TriangleRunner1->second->Nr;
3007 }
3008 }
3009 }
3010 }
3011 }
3012 }
3013
3014 cout << Verbose(1) << "FindAllDegeneratedTriangles() found " << DegeneratedTriangles.size() << " triangles." << endl;
3015 map<int,int>::iterator it;
3016 for (it = DegeneratedTriangles.begin(); it != DegeneratedTriangles.end(); it++)
3017 cout << Verbose(2) << (*it).first << " => " << (*it).second << endl;
3018
3019 return DegeneratedTriangles;
3020}
3021
3022/**
3023 * Purges degenerated triangles from the tesselation structure if they are not
3024 * necessary to keep a single point within the structure.
3025 */
3026void Tesselation::RemoveDegeneratedTriangles()
3027{
3028 map<int, int> DegeneratedTriangles = FindAllDegeneratedTriangles();
3029
3030 for (map<int, int>::iterator TriangleKeyRunner = DegeneratedTriangles.begin();
3031 TriangleKeyRunner != DegeneratedTriangles.end(); ++TriangleKeyRunner
3032 ) {
3033 BoundaryTriangleSet *triangle = TrianglesOnBoundary.find(TriangleKeyRunner->first)->second,
3034 *partnerTriangle = TrianglesOnBoundary.find(TriangleKeyRunner->second)->second;
3035
3036 bool trianglesShareLine = false;
3037 for (int i = 0; i < 3; ++i)
3038 for (int j = 0; j < 3; ++j)
3039 trianglesShareLine = trianglesShareLine || triangle->lines[i] == partnerTriangle->lines[j];
3040
3041 if (trianglesShareLine
3042 && (triangle->endpoints[1]->LinesCount > 2)
3043 && (triangle->endpoints[2]->LinesCount > 2)
3044 && (triangle->endpoints[0]->LinesCount > 2)
3045 ) {
3046 cout << Verbose(1) << "RemoveDegeneratedTriangles() removes triangle " << *triangle << "." << endl;
3047 RemoveTesselationTriangle(triangle);
3048 cout << Verbose(1) << "RemoveDegeneratedTriangles() removes triangle " << *partnerTriangle << "." << endl;
3049 RemoveTesselationTriangle(partnerTriangle);
3050 DegeneratedTriangles.erase(DegeneratedTriangles.find(partnerTriangle->Nr));
3051 } else {
3052 cout << Verbose(1) << "RemoveDegeneratedTriangles() does not remove triangle " << *triangle
3053 << " and its partner " << *partnerTriangle << " because it is essential for at"
3054 << " least one of the endpoints to be kept in the tesselation structure." << endl;
3055 }
3056 }
3057}
3058
[62bb91]3059/** Gets the angle between a point and a reference relative to the provided center.
[5c7bf8]3060 * We have two shanks point and reference between which the angle is calculated
[62bb91]3061 * and by scalar product with OrthogonalVector we decide the interval.
[ab1932]3062 * @param point to calculate the angle for
3063 * @param reference to which to calculate the angle
[62bb91]3064 * @param OrthogonalVector points in direction of [pi,2pi] interval
[ab1932]3065 *
3066 * @return angle between point and reference
3067 */
[f1cccd]3068double GetAngle(const Vector &point, const Vector &reference, const Vector OrthogonalVector)
[ab1932]3069{
[0077b5]3070 if (reference.IsZero())
[ab1932]3071 return M_PI;
3072
3073 // calculate both angles and correct with in-plane vector
[0077b5]3074 if (point.IsZero())
[ab1932]3075 return M_PI;
[5c7bf8]3076 double phi = point.Angle(&reference);
3077 if (OrthogonalVector.ScalarProduct(&point) > 0) {
[ab1932]3078 phi = 2.*M_PI - phi;
3079 }
3080
[5c7bf8]3081 cout << Verbose(3) << "INFO: " << point << " has angle " << phi << " with respect to reference " << reference << "." << endl;
[ab1932]3082
3083 return phi;
3084}
3085
Note: See TracBrowser for help on using the repository browser.