/** * @file discretization_poisson_fv.cpp * @author Julian Iseringhausen * @date Mon Apr 18 13:03:47 2011 * * @brief Finite volume discretization for the Poisson * equation. Absolutely equivalent to the finite * difference discretization unless you use * hierarchically coarsened grids. * */ #ifdef HAVE_CONFIG_H #include #endif #include "samples/discretization_poisson_fv.hpp" using namespace VMG; void DiscretizationPoissonFV::SetInnerBoundaryCompute(Grid& sol_f, Grid& rhs_f, Grid& sol_c) const { Index i_c, i_f; const vmg_float h2_inv = 0.5 / sol_f.MeshWidth(); const Index b1_c = sol_c.Local().AlignmentBegin(); const Index b2_c = sol_c.Local().AlignmentEnd() - 1; const Index b1_f = 0; const Index b2_f = rhs_f.Local().SizeTotal() - 1; const Index begin_f = sol_f.Local().Begin(); const Index end_f = sol_f.Local().End(); const Index begin_c = sol_c.Local().AlignmentBegin(); const vmg_float c_1_3 = 1.0 / 3.0; const vmg_float c_2_3_sp = 2.0 / 3.0 * sol_f.MeshWidth(); const vmg_float c_4_3 = 4.0 / 3.0; // // X-direction // for (i_f.Y()=begin_f.Y(), i_c.Y()=begin_c.Y(); i_f.Y()= 0 && b2_c.X() < sol_c.Local().SizeTotal().X()); assert(i_c.Y() >= 0 && i_c.Y() < sol_c.Local().SizeTotal().Y()); assert(i_c.Z() >= 0 && i_c.Z() < sol_c.Local().SizeTotal().Z()); assert(b2_f.X()-1 >= 0 && b2_f.X()-1 < sol_f.Local().SizeTotal().X()); assert(i_f.Y() >= 0 && i_f.Y() < sol_f.Local().SizeTotal().Y()); assert(i_f.Z() >= 0 && i_f.Z() < sol_f.Local().SizeTotal().Z()); rhs_f(b1_f.X(),i_f.Y(),i_f.Z()) = (sol_c(b1_c.X()-1,i_c.Y(),i_c.Z()) - sol_f(b1_f.X()+1,i_f.Y(),i_f.Z())) * h2_inv; rhs_f(b2_f.X(),i_f.Y(),i_f.Z()) = (sol_c(b2_c.X()+1,i_c.Y(),i_c.Z()) - sol_f(b2_f.X()-1,i_f.Y(),i_f.Z())) * h2_inv; } for (i_f.Y()=begin_f.Y()+1; i_f.Y()