source: src/molecules.cpp@ f714979

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since f714979 was f714979, checked in by Christian Neuen <neuen@…>, 16 years ago

Another update w.r.t. the Tesselation.
Some signs switched, but atom indices might be misused.

  • Property mode set to 100644
File size: 211.9 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 Vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=num;i--;) {
24 for(int j=NDIM;j--;)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 MDSteps = 0;
50 last_atom = 0;
51 elemente = teil;
52 AtomCount = 0;
53 BondCount = 0;
54 NoNonBonds = 0;
55 NoNonHydrogen = 0;
56 NoCyclicBonds = 0;
57 ListOfBondsPerAtom = NULL;
58 NumberOfBondsPerAtom = NULL;
59 ElementCount = 0;
60 for(int i=MAX_ELEMENTS;i--;)
61 ElementsInMolecule[i] = 0;
62 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
63 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
64};
65
66/** Destructor of class molecule.
67 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
68 */
69molecule::~molecule()
70{
71 if (ListOfBondsPerAtom != NULL)
72 for(int i=AtomCount;i--;)
73 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
74 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
75 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
76 CleanupMolecule();
77 delete(first);
78 delete(last);
79 delete(end);
80 delete(start);
81};
82
83/** Adds given atom \a *pointer from molecule list.
84 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
85 * \param *pointer allocated and set atom
86 * \return true - succeeded, false - atom not found in list
87 */
88bool molecule::AddAtom(atom *pointer)
89{
90 if (pointer != NULL) {
91 pointer->sort = &pointer->nr;
92 pointer->nr = last_atom++; // increase number within molecule
93 AtomCount++;
94 if (pointer->type != NULL) {
95 if (ElementsInMolecule[pointer->type->Z] == 0)
96 ElementCount++;
97 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
98 if (pointer->type->Z != 1)
99 NoNonHydrogen++;
100 if (pointer->Name == NULL) {
101 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
102 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
103 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
104 }
105 }
106 return add(pointer, end);
107 } else
108 return false;
109};
110
111/** Adds a copy of the given atom \a *pointer from molecule list.
112 * Increases molecule::last_atom and gives last number to added atom.
113 * \param *pointer allocated and set atom
114 * \return true - succeeded, false - atom not found in list
115 */
116atom * molecule::AddCopyAtom(atom *pointer)
117{
118 if (pointer != NULL) {
119 atom *walker = new atom();
120 walker->type = pointer->type; // copy element of atom
121 walker->x.CopyVector(&pointer->x); // copy coordination
122 walker->v.CopyVector(&pointer->v); // copy velocity
123 walker->FixedIon = pointer->FixedIon;
124 walker->sort = &walker->nr;
125 walker->nr = last_atom++; // increase number within molecule
126 walker->father = pointer; //->GetTrueFather();
127 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
128 strcpy (walker->Name, pointer->Name);
129 add(walker, end);
130 if ((pointer->type != NULL) && (pointer->type->Z != 1))
131 NoNonHydrogen++;
132 AtomCount++;
133 return walker;
134 } else
135 return NULL;
136};
137
138/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
139 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
140 * a different scheme when adding \a *replacement atom for the given one.
141 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
142 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
143 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector().
144 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
145 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
146 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
147 * hydrogens forming this angle with *origin.
148 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
149 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
150 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
151 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
152 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
153 * \f]
154 * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates
155 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
156 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
157 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
158 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
159 * \f]
160 * as the coordination of all three atoms in the coordinate system of these three vectors:
161 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
162 *
163 * \param *out output stream for debugging
164 * \param *Bond pointer to bond between \a *origin and \a *replacement
165 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
166 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
167 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
168 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
169 * \param NumBond number of bonds in \a **BondList
170 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
171 * \return number of atoms added, if < bond::BondDegree then something went wrong
172 * \todo double and triple bonds splitting (always use the tetraeder angle!)
173 */
174bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
175{
176 double bondlength; // bond length of the bond to be replaced/cut
177 double bondangle; // bond angle of the bond to be replaced/cut
178 double BondRescale; // rescale value for the hydrogen bond length
179 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
180 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
181 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
184 Vector InBondvector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondvector.CopyVector(&TopReplacement->x);
191 InBondvector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondvector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondvector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198// *out << Verbose(4) << "InBondvector is: ";
199// InBondvector.Output(out);
200// *out << endl;
201 Orthovector1.Zero();
202 for (int i=NDIM;i--;) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 Orthovector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 Orthovector1.MatrixMultiplication(matrix);
210 InBondvector.SubtractVector(&Orthovector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondvector.Norm();
213// *out << Verbose(4) << "Corrected InBondvector is now: ";
214// InBondvector.Output(out);
215// *out << endl;
216 } // periodic correction finished
217
218 InBondvector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "ERROR: There is no typical hydrogen bond distance in replacing bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 return false;
224 BondRescale = bondlength;
225 } else {
226 if (!IsAngstroem)
227 BondRescale /= (1.*AtomicLengthToAngstroem);
228 }
229
230 // discern single, double and triple bonds
231 switch(TopBond->BondDegree) {
232 case 1:
233 FirstOtherAtom = new atom(); // new atom
234 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
235 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
236 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
237 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
238 FirstOtherAtom->father = TopReplacement;
239 BondRescale = bondlength;
240 } else {
241 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
242 }
243 InBondvector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
244 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
245 FirstOtherAtom->x.AddVector(&InBondvector); // ... and add distance vector to replacement atom
246 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
247// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
248// FirstOtherAtom->x.Output(out);
249// *out << endl;
250 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
251 Binder->Cyclic = false;
252 Binder->Type = TreeEdge;
253 break;
254 case 2:
255 // determine two other bonds (warning if there are more than two other) plus valence sanity check
256 for (int i=0;i<NumBond;i++) {
257 if (BondList[i] != TopBond) {
258 if (FirstBond == NULL) {
259 FirstBond = BondList[i];
260 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
261 } else if (SecondBond == NULL) {
262 SecondBond = BondList[i];
263 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
264 } else {
265 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
266 }
267 }
268 }
269 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
270 SecondBond = TopBond;
271 SecondOtherAtom = TopReplacement;
272 }
273 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
274// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
275
276 // determine the plane of these two with the *origin
277 AllWentWell = AllWentWell && Orthovector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
278 } else {
279 Orthovector1.GetOneNormalVector(&InBondvector);
280 }
281 //*out << Verbose(3)<< "Orthovector1: ";
282 //Orthovector1.Output(out);
283 //*out << endl;
284 // orthogonal vector and bond vector between origin and replacement form the new plane
285 Orthovector1.MakeNormalVector(&InBondvector);
286 Orthovector1.Normalize();
287 //*out << Verbose(3) << "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "." << endl;
288
289 // create the two Hydrogens ...
290 FirstOtherAtom = new atom();
291 SecondOtherAtom = new atom();
292 FirstOtherAtom->type = elemente->FindElement(1);
293 SecondOtherAtom->type = elemente->FindElement(1);
294 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
295 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
296 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
297 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
298 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
300 bondangle = TopOrigin->type->HBondAngle[1];
301 if (bondangle == -1) {
302 *out << Verbose(3) << "ERROR: There is no typical hydrogen bond angle in replacing bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
303 return false;
304 bondangle = 0;
305 }
306 bondangle *= M_PI/180./2.;
307// *out << Verbose(3) << "ReScaleCheck: InBondvector ";
308// InBondvector.Output(out);
309// *out << endl;
310// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
311// Orthovector1.Output(out);
312// *out << endl;
313// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
314 FirstOtherAtom->x.Zero();
315 SecondOtherAtom->x.Zero();
316 for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
317 FirstOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (sin(bondangle));
318 SecondOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (-sin(bondangle));
319 }
320 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
321 SecondOtherAtom->x.Scale(&BondRescale);
322 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
323 for(int i=NDIM;i--;) { // and make relative to origin atom
324 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
325 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
326 }
327 // ... and add to molecule
328 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
329 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
330// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
331// FirstOtherAtom->x.Output(out);
332// *out << endl;
333// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
334// SecondOtherAtom->x.Output(out);
335// *out << endl;
336 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
337 Binder->Cyclic = false;
338 Binder->Type = TreeEdge;
339 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
340 Binder->Cyclic = false;
341 Binder->Type = TreeEdge;
342 break;
343 case 3:
344 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
345 FirstOtherAtom = new atom();
346 SecondOtherAtom = new atom();
347 ThirdOtherAtom = new atom();
348 FirstOtherAtom->type = elemente->FindElement(1);
349 SecondOtherAtom->type = elemente->FindElement(1);
350 ThirdOtherAtom->type = elemente->FindElement(1);
351 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
353 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
355 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
356 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
357 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
358 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
359 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
360
361 // we need to vectors orthonormal the InBondvector
362 AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(&InBondvector);
363// *out << Verbose(3) << "Orthovector1: ";
364// Orthovector1.Output(out);
365// *out << endl;
366 AllWentWell = AllWentWell && Orthovector2.MakeNormalVector(&InBondvector, &Orthovector1);
367// *out << Verbose(3) << "Orthovector2: ";
368// Orthovector2.Output(out);
369// *out << endl;
370
371 // create correct coordination for the three atoms
372 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
373 l = BondRescale; // desired bond length
374 b = 2.*l*sin(alpha); // base length of isosceles triangle
375 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
376 f = b/sqrt(3.); // length for Orthvector1
377 g = b/2.; // length for Orthvector2
378// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
379// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
380 factors[0] = d;
381 factors[1] = f;
382 factors[2] = 0.;
383 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
384 factors[1] = -0.5*f;
385 factors[2] = g;
386 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
387 factors[2] = -g;
388 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
389
390 // rescale each to correct BondDistance
391// FirstOtherAtom->x.Scale(&BondRescale);
392// SecondOtherAtom->x.Scale(&BondRescale);
393// ThirdOtherAtom->x.Scale(&BondRescale);
394
395 // and relative to *origin atom
396 FirstOtherAtom->x.AddVector(&TopOrigin->x);
397 SecondOtherAtom->x.AddVector(&TopOrigin->x);
398 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
399
400 // ... and add to molecule
401 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
402 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
403 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
404// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
405// FirstOtherAtom->x.Output(out);
406// *out << endl;
407// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
408// SecondOtherAtom->x.Output(out);
409// *out << endl;
410// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
411// ThirdOtherAtom->x.Output(out);
412// *out << endl;
413 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
414 Binder->Cyclic = false;
415 Binder->Type = TreeEdge;
416 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
417 Binder->Cyclic = false;
418 Binder->Type = TreeEdge;
419 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
420 Binder->Cyclic = false;
421 Binder->Type = TreeEdge;
422 break;
423 default:
424 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
425 AllWentWell = false;
426 break;
427 }
428
429// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
430 return AllWentWell;
431};
432
433/** Adds given atom \a *pointer from molecule list.
434 * Increases molecule::last_atom and gives last number to added atom.
435 * \param filename name and path of xyz file
436 * \return true - succeeded, false - file not found
437 */
438bool molecule::AddXYZFile(string filename)
439{
440 istringstream *input = NULL;
441 int NumberOfAtoms = 0; // atom number in xyz read
442 int i, j; // loop variables
443 atom *Walker = NULL; // pointer to added atom
444 char shorthand[3]; // shorthand for atom name
445 ifstream xyzfile; // xyz file
446 string line; // currently parsed line
447 double x[3]; // atom coordinates
448
449 xyzfile.open(filename.c_str());
450 if (!xyzfile)
451 return false;
452
453 getline(xyzfile,line,'\n'); // Read numer of atoms in file
454 input = new istringstream(line);
455 *input >> NumberOfAtoms;
456 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
457 getline(xyzfile,line,'\n'); // Read comment
458 cout << Verbose(1) << "Comment: " << line << endl;
459
460 if (MDSteps == 0) // no atoms yet present
461 MDSteps++;
462 for(i=0;i<NumberOfAtoms;i++){
463 Walker = new atom;
464 getline(xyzfile,line,'\n');
465 istringstream *item = new istringstream(line);
466 //istringstream input(line);
467 //cout << Verbose(1) << "Reading: " << line << endl;
468 *item >> shorthand;
469 *item >> x[0];
470 *item >> x[1];
471 *item >> x[2];
472 Walker->type = elemente->FindElement(shorthand);
473 if (Walker->type == NULL) {
474 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
475 Walker->type = elemente->FindElement(1);
476 }
477 if (Trajectories[Walker].R.size() <= (unsigned int)MDSteps) {
478 Trajectories[Walker].R.resize(MDSteps+10);
479 Trajectories[Walker].U.resize(MDSteps+10);
480 Trajectories[Walker].F.resize(MDSteps+10);
481 }
482 for(j=NDIM;j--;) {
483 Walker->x.x[j] = x[j];
484 Trajectories[Walker].R.at(MDSteps-1).x[j] = x[j];
485 Trajectories[Walker].U.at(MDSteps-1).x[j] = 0;
486 Trajectories[Walker].F.at(MDSteps-1).x[j] = 0;
487 }
488 AddAtom(Walker); // add to molecule
489 delete(item);
490 }
491 xyzfile.close();
492 delete(input);
493 return true;
494};
495
496/** Creates a copy of this molecule.
497 * \return copy of molecule
498 */
499molecule *molecule::CopyMolecule()
500{
501 molecule *copy = new molecule(elemente);
502 atom *CurrentAtom = NULL;
503 atom *LeftAtom = NULL, *RightAtom = NULL;
504 atom *Walker = NULL;
505
506 // copy all atoms
507 Walker = start;
508 while(Walker->next != end) {
509 Walker = Walker->next;
510 CurrentAtom = copy->AddCopyAtom(Walker);
511 }
512
513 // copy all bonds
514 bond *Binder = first;
515 bond *NewBond = NULL;
516 while(Binder->next != last) {
517 Binder = Binder->next;
518 // get the pendant atoms of current bond in the copy molecule
519 LeftAtom = copy->start;
520 while (LeftAtom->next != copy->end) {
521 LeftAtom = LeftAtom->next;
522 if (LeftAtom->father == Binder->leftatom)
523 break;
524 }
525 RightAtom = copy->start;
526 while (RightAtom->next != copy->end) {
527 RightAtom = RightAtom->next;
528 if (RightAtom->father == Binder->rightatom)
529 break;
530 }
531 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
532 NewBond->Cyclic = Binder->Cyclic;
533 if (Binder->Cyclic)
534 copy->NoCyclicBonds++;
535 NewBond->Type = Binder->Type;
536 }
537 // correct fathers
538 Walker = copy->start;
539 while(Walker->next != copy->end) {
540 Walker = Walker->next;
541 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
542 Walker->father = Walker; // set father to itself (copy of a whole molecule)
543 else
544 Walker->father = Walker->father->father; // set father to original's father
545 }
546 // copy values
547 copy->CountAtoms((ofstream *)&cout);
548 copy->CountElements();
549 if (first->next != last) { // if adjaceny list is present
550 copy->BondDistance = BondDistance;
551 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
552 }
553
554 return copy;
555};
556
557/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
558 * Also updates molecule::BondCount and molecule::NoNonBonds.
559 * \param *first first atom in bond
560 * \param *second atom in bond
561 * \return pointer to bond or NULL on failure
562 */
563bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
564{
565 bond *Binder = NULL;
566 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
567 Binder = new bond(atom1, atom2, degree, BondCount++);
568 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
569 NoNonBonds++;
570 add(Binder, last);
571 } else {
572 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
573 }
574 return Binder;
575};
576
577/** Remove bond from bond chain list.
578 * \todo Function not implemented yet
579 * \param *pointer bond pointer
580 * \return true - bound found and removed, false - bond not found/removed
581 */
582bool molecule::RemoveBond(bond *pointer)
583{
584 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
585 removewithoutcheck(pointer);
586 return true;
587};
588
589/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
590 * \todo Function not implemented yet
591 * \param *BondPartner atom to be removed
592 * \return true - bounds found and removed, false - bonds not found/removed
593 */
594bool molecule::RemoveBonds(atom *BondPartner)
595{
596 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
597 return false;
598};
599
600/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
601 * \param *dim vector class
602 */
603void molecule::SetBoxDimension(Vector *dim)
604{
605 cell_size[0] = dim->x[0];
606 cell_size[1] = 0.;
607 cell_size[2] = dim->x[1];
608 cell_size[3] = 0.;
609 cell_size[4] = 0.;
610 cell_size[5] = dim->x[2];
611};
612
613/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
614 * \param *out output stream for debugging
615 * \param *BoxLengths box lengths
616 */
617bool molecule::CenterInBox(ofstream *out, Vector *BoxLengths)
618{
619 bool status = true;
620 atom *ptr = NULL;
621 Vector *min = new Vector;
622 Vector *max = new Vector;
623
624 // gather min and max for each axis
625 ptr = start->next; // start at first in list
626 if (ptr != end) { //list not empty?
627 for (int i=NDIM;i--;) {
628 max->x[i] = ptr->x.x[i];
629 min->x[i] = ptr->x.x[i];
630 }
631 while (ptr->next != end) { // continue with second if present
632 ptr = ptr->next;
633 //ptr->Output(1,1,out);
634 for (int i=NDIM;i--;) {
635 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
636 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
637 }
638 }
639 }
640 // sanity check
641 for(int i=NDIM;i--;) {
642 if (max->x[i] - min->x[i] > BoxLengths->x[i])
643 status = false;
644 }
645 // warn if check failed
646 if (!status)
647 *out << "WARNING: molecule is bigger than defined box!" << endl;
648 else { // else center in box
649 max->AddVector(min);
650 max->Scale(-1.);
651 max->AddVector(BoxLengths);
652 max->Scale(0.5);
653 Translate(max);
654 }
655
656 // free and exit
657 delete(min);
658 delete(max);
659 return status;
660};
661
662/** Centers the edge of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *max coordinates of other edge, specifying box dimensions.
665 */
666void molecule::CenterEdge(ofstream *out, Vector *max)
667{
668 Vector *min = new Vector;
669
670// *out << Verbose(3) << "Begin of CenterEdge." << endl;
671 atom *ptr = start->next; // start at first in list
672 if (ptr != end) { //list not empty?
673 for (int i=NDIM;i--;) {
674 max->x[i] = ptr->x.x[i];
675 min->x[i] = ptr->x.x[i];
676 }
677 while (ptr->next != end) { // continue with second if present
678 ptr = ptr->next;
679 //ptr->Output(1,1,out);
680 for (int i=NDIM;i--;) {
681 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
682 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
683 }
684 }
685// *out << Verbose(4) << "Maximum is ";
686// max->Output(out);
687// *out << ", Minimum is ";
688// min->Output(out);
689// *out << endl;
690 min->Scale(-1.);
691 max->AddVector(min);
692 Translate(min);
693 }
694 delete(min);
695// *out << Verbose(3) << "End of CenterEdge." << endl;
696};
697
698/** Centers the center of the atoms at (0,0,0).
699 * \param *out output stream for debugging
700 * \param *center return vector for translation vector
701 */
702void molecule::CenterOrigin(ofstream *out, Vector *center)
703{
704 int Num = 0;
705 atom *ptr = start->next; // start at first in list
706
707 for(int i=NDIM;i--;) // zero center vector
708 center->x[i] = 0.;
709
710 if (ptr != end) { //list not empty?
711 while (ptr->next != end) { // continue with second if present
712 ptr = ptr->next;
713 Num++;
714 center->AddVector(&ptr->x);
715 }
716 center->Scale(-1./Num); // divide through total number (and sign for direction)
717 Translate(center);
718 }
719};
720
721/** Returns vector pointing to center of gravity.
722 * \param *out output stream for debugging
723 * \return pointer to center of gravity vector
724 */
725Vector * molecule::DetermineCenterOfAll(ofstream *out)
726{
727 atom *ptr = start->next; // start at first in list
728 Vector *a = new Vector();
729 Vector tmp;
730 double Num = 0;
731
732 a->Zero();
733
734 if (ptr != end) { //list not empty?
735 while (ptr->next != end) { // continue with second if present
736 ptr = ptr->next;
737 Num += 1.;
738 tmp.CopyVector(&ptr->x);
739 a->AddVector(&tmp);
740 }
741 a->Scale(-1./Num); // divide through total mass (and sign for direction)
742 }
743 //cout << Verbose(1) << "Resulting center of gravity: ";
744 //a->Output(out);
745 //cout << endl;
746 return a;
747};
748
749/** Returns vector pointing to center of gravity.
750 * \param *out output stream for debugging
751 * \return pointer to center of gravity vector
752 */
753Vector * molecule::DetermineCenterOfGravity(ofstream *out)
754{
755 atom *ptr = start->next; // start at first in list
756 Vector *a = new Vector();
757 Vector tmp;
758 double Num = 0;
759
760 a->Zero();
761
762 if (ptr != end) { //list not empty?
763 while (ptr->next != end) { // continue with second if present
764 ptr = ptr->next;
765 Num += ptr->type->mass;
766 tmp.CopyVector(&ptr->x);
767 tmp.Scale(ptr->type->mass); // scale by mass
768 a->AddVector(&tmp);
769 }
770 a->Scale(-1./Num); // divide through total mass (and sign for direction)
771 }
772// *out << Verbose(1) << "Resulting center of gravity: ";
773// a->Output(out);
774// *out << endl;
775 return a;
776};
777
778/** Centers the center of gravity of the atoms at (0,0,0).
779 * \param *out output stream for debugging
780 * \param *center return vector for translation vector
781 */
782void molecule::CenterGravity(ofstream *out, Vector *center)
783{
784 if (center == NULL) {
785 DetermineCenter(*center);
786 Translate(center);
787 delete(center);
788 } else {
789 Translate(center);
790 }
791};
792
793/** Scales all atoms by \a *factor.
794 * \param *factor pointer to scaling factor
795 */
796void molecule::Scale(double **factor)
797{
798 atom *ptr = start;
799
800 while (ptr->next != end) {
801 ptr = ptr->next;
802 for (int j=0;j<MDSteps;j++)
803 Trajectories[ptr].R.at(j).Scale(factor);
804 ptr->x.Scale(factor);
805 }
806};
807
808/** Translate all atoms by given vector.
809 * \param trans[] translation vector.
810 */
811void molecule::Translate(const Vector *trans)
812{
813 atom *ptr = start;
814
815 while (ptr->next != end) {
816 ptr = ptr->next;
817 for (int j=0;j<MDSteps;j++)
818 Trajectories[ptr].R.at(j).Translate(trans);
819 ptr->x.Translate(trans);
820 }
821};
822
823/** Mirrors all atoms against a given plane.
824 * \param n[] normal vector of mirror plane.
825 */
826void molecule::Mirror(const Vector *n)
827{
828 atom *ptr = start;
829
830 while (ptr->next != end) {
831 ptr = ptr->next;
832 for (int j=0;j<MDSteps;j++)
833 Trajectories[ptr].R.at(j).Mirror(n);
834 ptr->x.Mirror(n);
835 }
836};
837
838/** Determines center of molecule (yet not considering atom masses).
839 * \param Center reference to return vector
840 */
841void molecule::DetermineCenter(Vector &Center)
842{
843 atom *Walker = start;
844 bond *Binder = NULL;
845 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
846 double tmp;
847 bool flag;
848 Vector Testvector, Translationvector;
849
850 do {
851 Center.Zero();
852 flag = true;
853 while (Walker->next != end) {
854 Walker = Walker->next;
855#ifdef ADDHYDROGEN
856 if (Walker->type->Z != 1) {
857#endif
858 Testvector.CopyVector(&Walker->x);
859 Testvector.InverseMatrixMultiplication(matrix);
860 Translationvector.Zero();
861 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
862 Binder = ListOfBondsPerAtom[Walker->nr][i];
863 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
864 for (int j=0;j<NDIM;j++) {
865 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
866 if ((fabs(tmp)) > BondDistance) {
867 flag = false;
868 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
869 if (tmp > 0)
870 Translationvector.x[j] -= 1.;
871 else
872 Translationvector.x[j] += 1.;
873 }
874 }
875 }
876 Testvector.AddVector(&Translationvector);
877 Testvector.MatrixMultiplication(matrix);
878 Center.AddVector(&Testvector);
879 cout << Verbose(1) << "vector is: ";
880 Testvector.Output((ofstream *)&cout);
881 cout << endl;
882#ifdef ADDHYDROGEN
883 // now also change all hydrogens
884 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
885 Binder = ListOfBondsPerAtom[Walker->nr][i];
886 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
887 Testvector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
888 Testvector.InverseMatrixMultiplication(matrix);
889 Testvector.AddVector(&Translationvector);
890 Testvector.MatrixMultiplication(matrix);
891 Center.AddVector(&Testvector);
892 cout << Verbose(1) << "Hydrogen vector is: ";
893 Testvector.Output((ofstream *)&cout);
894 cout << endl;
895 }
896 }
897 }
898#endif
899 }
900 } while (!flag);
901 Free((void **)&matrix, "molecule::DetermineCenter: *matrix");
902 Center.Scale(1./(double)AtomCount);
903};
904
905/** Transforms/Rotates the given molecule into its principal axis system.
906 * \param *out output stream for debugging
907 * \param DoRotate whether to rotate (true) or only to determine the PAS.
908 */
909void molecule::PrincipalAxisSystem(ofstream *out, bool DoRotate)
910{
911 atom *ptr = start; // start at first in list
912 double InertiaTensor[NDIM*NDIM];
913 Vector *CenterOfGravity = DetermineCenterOfGravity(out);
914
915 CenterGravity(out, CenterOfGravity);
916
917 // reset inertia tensor
918 for(int i=0;i<NDIM*NDIM;i++)
919 InertiaTensor[i] = 0.;
920
921 // sum up inertia tensor
922 while (ptr->next != end) {
923 ptr = ptr->next;
924 Vector x;
925 x.CopyVector(&ptr->x);
926 //x.SubtractVector(CenterOfGravity);
927 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
928 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
929 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
930 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
931 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
932 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
933 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
934 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
935 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
936 }
937 // print InertiaTensor for debugging
938 *out << "The inertia tensor is:" << endl;
939 for(int i=0;i<NDIM;i++) {
940 for(int j=0;j<NDIM;j++)
941 *out << InertiaTensor[i*NDIM+j] << " ";
942 *out << endl;
943 }
944 *out << endl;
945
946 // diagonalize to determine principal axis system
947 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
948 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
949 gsl_vector *eval = gsl_vector_alloc(NDIM);
950 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
951 gsl_eigen_symmv(&m.matrix, eval, evec, T);
952 gsl_eigen_symmv_free(T);
953 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
954
955 for(int i=0;i<NDIM;i++) {
956 *out << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i);
957 *out << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl;
958 }
959
960 // check whether we rotate or not
961 if (DoRotate) {
962 *out << Verbose(1) << "Transforming molecule into PAS ... ";
963 // the eigenvectors specify the transformation matrix
964 ptr = start;
965 while (ptr->next != end) {
966 ptr = ptr->next;
967 for (int j=0;j<MDSteps;j++)
968 Trajectories[ptr].R.at(j).MatrixMultiplication(evec->data);
969 ptr->x.MatrixMultiplication(evec->data);
970 }
971 *out << "done." << endl;
972
973 // summing anew for debugging (resulting matrix has to be diagonal!)
974 // reset inertia tensor
975 for(int i=0;i<NDIM*NDIM;i++)
976 InertiaTensor[i] = 0.;
977
978 // sum up inertia tensor
979 ptr = start;
980 while (ptr->next != end) {
981 ptr = ptr->next;
982 Vector x;
983 x.CopyVector(&ptr->x);
984 //x.SubtractVector(CenterOfGravity);
985 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
986 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
987 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
988 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
989 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
990 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
991 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
992 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
993 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
994 }
995 // print InertiaTensor for debugging
996 *out << "The inertia tensor is:" << endl;
997 for(int i=0;i<NDIM;i++) {
998 for(int j=0;j<NDIM;j++)
999 *out << InertiaTensor[i*NDIM+j] << " ";
1000 *out << endl;
1001 }
1002 *out << endl;
1003 }
1004
1005 // free everything
1006 delete(CenterOfGravity);
1007 gsl_vector_free(eval);
1008 gsl_matrix_free(evec);
1009};
1010
1011/** Parses nuclear forces from file and performs Verlet integration.
1012 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
1013 * have to transform them).
1014 * This adds a new MD step to the config file.
1015 * \param *file filename
1016 * \param delta_t time step width in atomic units
1017 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
1018 * \return true - file found and parsed, false - file not found or imparsable
1019 */
1020bool molecule::VerletForceIntegration(char *file, double delta_t, bool IsAngstroem)
1021{
1022 element *runner = elemente->start;
1023 atom *walker = NULL;
1024 int AtomNo;
1025 ifstream input(file);
1026 string token;
1027 stringstream item;
1028 double a, IonMass;
1029 ForceMatrix Force;
1030 Vector tmpvector;
1031
1032 CountElements(); // make sure ElementsInMolecule is up to date
1033
1034 // check file
1035 if (input == NULL) {
1036 return false;
1037 } else {
1038 // parse file into ForceMatrix
1039 if (!Force.ParseMatrix(file, 0,0,0)) {
1040 cerr << "Could not parse Force Matrix file " << file << "." << endl;
1041 return false;
1042 }
1043 if (Force.RowCounter[0] != AtomCount) {
1044 cerr << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl;
1045 return false;
1046 }
1047 // correct Forces
1048// for(int d=0;d<NDIM;d++)
1049// tmpvector.x[d] = 0.;
1050// for(int i=0;i<AtomCount;i++)
1051// for(int d=0;d<NDIM;d++) {
1052// tmpvector.x[d] += Force.Matrix[0][i][d+5];
1053// }
1054// for(int i=0;i<AtomCount;i++)
1055// for(int d=0;d<NDIM;d++) {
1056// Force.Matrix[0][i][d+5] -= tmpvector.x[d]/(double)AtomCount;
1057// }
1058 // and perform Verlet integration for each atom with position, velocity and force vector
1059 runner = elemente->start;
1060 while (runner->next != elemente->end) { // go through every element
1061 runner = runner->next;
1062 IonMass = runner->mass;
1063 a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
1064 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1065 AtomNo = 0;
1066 walker = start;
1067 while (walker->next != end) { // go through every atom of this element
1068 walker = walker->next;
1069 if (walker->type == runner) { // if this atom fits to element
1070 // check size of vectors
1071 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) {
1072 //cout << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl;
1073 Trajectories[walker].R.resize(MDSteps+10);
1074 Trajectories[walker].U.resize(MDSteps+10);
1075 Trajectories[walker].F.resize(MDSteps+10);
1076 }
1077 // 1. calculate x(t+\delta t)
1078 for (int d=0; d<NDIM; d++) {
1079 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][AtomNo][d+5];
1080 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d];
1081 Trajectories[walker].R.at(MDSteps).x[d] += delta_t*(Trajectories[walker].U.at(MDSteps-1).x[d]);
1082 Trajectories[walker].R.at(MDSteps).x[d] += 0.5*delta_t*delta_t*(Trajectories[walker].F.at(MDSteps-1).x[d])/IonMass; // F = m * a and s = 0.5 * F/m * t^2 = F * a * t
1083 }
1084 // 2. Calculate v(t+\delta t)
1085 for (int d=0; d<NDIM; d++) {
1086 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d];
1087 Trajectories[walker].U.at(MDSteps).x[d] += 0.5*delta_t*(Trajectories[walker].F.at(MDSteps-1).x[d]+Trajectories[walker].F.at(MDSteps).x[d])/IonMass;
1088 }
1089// cout << "Integrated position&velocity of step " << (MDSteps) << ": (";
1090// for (int d=0;d<NDIM;d++)
1091// cout << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step
1092// cout << ")\t(";
1093// for (int d=0;d<NDIM;d++)
1094// cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step
1095// cout << ")" << endl;
1096 // next atom
1097 AtomNo++;
1098 }
1099 }
1100 }
1101 }
1102 }
1103// // correct velocities (rather momenta) so that center of mass remains motionless
1104// tmpvector.zero()
1105// IonMass = 0.;
1106// walker = start;
1107// while (walker->next != end) { // go through every atom
1108// walker = walker->next;
1109// IonMass += walker->type->mass; // sum up total mass
1110// for(int d=0;d<NDIM;d++) {
1111// tmpvector.x[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass;
1112// }
1113// }
1114// walker = start;
1115// while (walker->next != end) { // go through every atom of this element
1116// walker = walker->next;
1117// for(int d=0;d<NDIM;d++) {
1118// Trajectories[walker].U.at(MDSteps).x[d] -= tmpvector.x[d]*walker->type->mass/IonMass;
1119// }
1120// }
1121 MDSteps++;
1122
1123
1124 // exit
1125 return true;
1126};
1127
1128/** Align all atoms in such a manner that given vector \a *n is along z axis.
1129 * \param n[] alignment vector.
1130 */
1131void molecule::Align(Vector *n)
1132{
1133 atom *ptr = start;
1134 double alpha, tmp;
1135 Vector z_axis;
1136 z_axis.x[0] = 0.;
1137 z_axis.x[1] = 0.;
1138 z_axis.x[2] = 1.;
1139
1140 // rotate on z-x plane
1141 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
1142 alpha = atan(-n->x[0]/n->x[2]);
1143 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
1144 while (ptr->next != end) {
1145 ptr = ptr->next;
1146 tmp = ptr->x.x[0];
1147 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1148 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1149 for (int j=0;j<MDSteps;j++) {
1150 tmp = Trajectories[ptr].R.at(j).x[0];
1151 Trajectories[ptr].R.at(j).x[0] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];
1152 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];
1153 }
1154 }
1155 // rotate n vector
1156 tmp = n->x[0];
1157 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1158 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1159 cout << Verbose(1) << "alignment vector after first rotation: ";
1160 n->Output((ofstream *)&cout);
1161 cout << endl;
1162
1163 // rotate on z-y plane
1164 ptr = start;
1165 alpha = atan(-n->x[1]/n->x[2]);
1166 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
1167 while (ptr->next != end) {
1168 ptr = ptr->next;
1169 tmp = ptr->x.x[1];
1170 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1171 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1172 for (int j=0;j<MDSteps;j++) {
1173 tmp = Trajectories[ptr].R.at(j).x[1];
1174 Trajectories[ptr].R.at(j).x[1] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];
1175 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];
1176 }
1177 }
1178 // rotate n vector (for consistency check)
1179 tmp = n->x[1];
1180 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1181 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1182
1183 cout << Verbose(1) << "alignment vector after second rotation: ";
1184 n->Output((ofstream *)&cout);
1185 cout << Verbose(1) << endl;
1186 cout << Verbose(0) << "End of Aligning all atoms." << endl;
1187};
1188
1189/** Removes atom from molecule list.
1190 * \param *pointer atom to be removed
1191 * \return true - succeeded, false - atom not found in list
1192 */
1193bool molecule::RemoveAtom(atom *pointer)
1194{
1195 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
1196 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
1197 else
1198 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
1199 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
1200 ElementCount--;
1201 Trajectories.erase(pointer);
1202 return remove(pointer, start, end);
1203};
1204
1205/** Removes every atom from molecule list.
1206 * \return true - succeeded, false - atom not found in list
1207 */
1208bool molecule::CleanupMolecule()
1209{
1210 return (cleanup(start,end) && cleanup(first,last));
1211};
1212
1213/** Finds an atom specified by its continuous number.
1214 * \param Nr number of atom withim molecule
1215 * \return pointer to atom or NULL
1216 */
1217atom * molecule::FindAtom(int Nr) const{
1218 atom * walker = find(&Nr, start,end);
1219 if (walker != NULL) {
1220 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
1221 return walker;
1222 } else {
1223 cout << Verbose(0) << "Atom not found in list." << endl;
1224 return NULL;
1225 }
1226};
1227
1228/** Asks for atom number, and checks whether in list.
1229 * \param *text question before entering
1230 */
1231atom * molecule::AskAtom(string text)
1232{
1233 int No;
1234 atom *ion = NULL;
1235 do {
1236 //cout << Verbose(0) << "============Atom list==========================" << endl;
1237 //mol->Output((ofstream *)&cout);
1238 //cout << Verbose(0) << "===============================================" << endl;
1239 cout << Verbose(0) << text;
1240 cin >> No;
1241 ion = this->FindAtom(No);
1242 } while (ion == NULL);
1243 return ion;
1244};
1245
1246/** Checks if given coordinates are within cell volume.
1247 * \param *x array of coordinates
1248 * \return true - is within, false - out of cell
1249 */
1250bool molecule::CheckBounds(const Vector *x) const
1251{
1252 bool result = true;
1253 int j =-1;
1254 for (int i=0;i<NDIM;i++) {
1255 j += i+1;
1256 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
1257 }
1258 //return result;
1259 return true; /// probably not gonna use the check no more
1260};
1261
1262/** Calculates sum over least square distance to line hidden in \a *x.
1263 * \param *x offset and direction vector
1264 * \param *params pointer to lsq_params structure
1265 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
1266 */
1267double LeastSquareDistance (const gsl_vector * x, void * params)
1268{
1269 double res = 0, t;
1270 Vector a,b,c,d;
1271 struct lsq_params *par = (struct lsq_params *)params;
1272 atom *ptr = par->mol->start;
1273
1274 // initialize vectors
1275 a.x[0] = gsl_vector_get(x,0);
1276 a.x[1] = gsl_vector_get(x,1);
1277 a.x[2] = gsl_vector_get(x,2);
1278 b.x[0] = gsl_vector_get(x,3);
1279 b.x[1] = gsl_vector_get(x,4);
1280 b.x[2] = gsl_vector_get(x,5);
1281 // go through all atoms
1282 while (ptr != par->mol->end) {
1283 ptr = ptr->next;
1284 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
1285 c.CopyVector(&ptr->x); // copy vector to temporary one
1286 c.SubtractVector(&a); // subtract offset vector
1287 t = c.ScalarProduct(&b); // get direction parameter
1288 d.CopyVector(&b); // and create vector
1289 d.Scale(&t);
1290 c.SubtractVector(&d); // ... yielding distance vector
1291 res += d.ScalarProduct((const Vector *)&d); // add squared distance
1292 }
1293 }
1294 return res;
1295};
1296
1297/** By minimizing the least square distance gains alignment vector.
1298 * \bug this is not yet working properly it seems
1299 */
1300void molecule::GetAlignvector(struct lsq_params * par) const
1301{
1302 int np = 6;
1303
1304 const gsl_multimin_fminimizer_type *T =
1305 gsl_multimin_fminimizer_nmsimplex;
1306 gsl_multimin_fminimizer *s = NULL;
1307 gsl_vector *ss;
1308 gsl_multimin_function minex_func;
1309
1310 size_t iter = 0, i;
1311 int status;
1312 double size;
1313
1314 /* Initial vertex size vector */
1315 ss = gsl_vector_alloc (np);
1316
1317 /* Set all step sizes to 1 */
1318 gsl_vector_set_all (ss, 1.0);
1319
1320 /* Starting point */
1321 par->x = gsl_vector_alloc (np);
1322 par->mol = this;
1323
1324 gsl_vector_set (par->x, 0, 0.0); // offset
1325 gsl_vector_set (par->x, 1, 0.0);
1326 gsl_vector_set (par->x, 2, 0.0);
1327 gsl_vector_set (par->x, 3, 0.0); // direction
1328 gsl_vector_set (par->x, 4, 0.0);
1329 gsl_vector_set (par->x, 5, 1.0);
1330
1331 /* Initialize method and iterate */
1332 minex_func.f = &LeastSquareDistance;
1333 minex_func.n = np;
1334 minex_func.params = (void *)par;
1335
1336 s = gsl_multimin_fminimizer_alloc (T, np);
1337 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
1338
1339 do
1340 {
1341 iter++;
1342 status = gsl_multimin_fminimizer_iterate(s);
1343
1344 if (status)
1345 break;
1346
1347 size = gsl_multimin_fminimizer_size (s);
1348 status = gsl_multimin_test_size (size, 1e-2);
1349
1350 if (status == GSL_SUCCESS)
1351 {
1352 printf ("converged to minimum at\n");
1353 }
1354
1355 printf ("%5d ", (int)iter);
1356 for (i = 0; i < (size_t)np; i++)
1357 {
1358 printf ("%10.3e ", gsl_vector_get (s->x, i));
1359 }
1360 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1361 }
1362 while (status == GSL_CONTINUE && iter < 100);
1363
1364 for (i=0;i<(size_t)np;i++)
1365 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1366 //gsl_vector_free(par->x);
1367 gsl_vector_free(ss);
1368 gsl_multimin_fminimizer_free (s);
1369};
1370
1371/** Prints molecule to *out.
1372 * \param *out output stream
1373 */
1374bool molecule::Output(ofstream *out)
1375{
1376 element *runner;
1377 atom *walker = NULL;
1378 int ElementNo, AtomNo;
1379 CountElements();
1380
1381 if (out == NULL) {
1382 return false;
1383 } else {
1384 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1385 ElementNo = 0;
1386 runner = elemente->start;
1387 while (runner->next != elemente->end) { // go through every element
1388 runner = runner->next;
1389 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1390 ElementNo++;
1391 AtomNo = 0;
1392 walker = start;
1393 while (walker->next != end) { // go through every atom of this element
1394 walker = walker->next;
1395 if (walker->type == runner) { // if this atom fits to element
1396 AtomNo++;
1397 walker->Output(ElementNo, AtomNo, out); // removed due to trajectories
1398 }
1399 }
1400 }
1401 }
1402 return true;
1403 }
1404};
1405
1406/** Prints molecule with all atomic trajectory positions to *out.
1407 * \param *out output stream
1408 */
1409bool molecule::OutputTrajectories(ofstream *out)
1410{
1411 element *runner = NULL;
1412 atom *walker = NULL;
1413 int ElementNo, AtomNo;
1414 CountElements();
1415
1416 if (out == NULL) {
1417 return false;
1418 } else {
1419 for (int step = 0; step < MDSteps; step++) {
1420 if (step == 0) {
1421 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1422 } else {
1423 *out << "# ====== MD step " << step << " =========" << endl;
1424 }
1425 ElementNo = 0;
1426 runner = elemente->start;
1427 while (runner->next != elemente->end) { // go through every element
1428 runner = runner->next;
1429 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1430 ElementNo++;
1431 AtomNo = 0;
1432 walker = start;
1433 while (walker->next != end) { // go through every atom of this element
1434 walker = walker->next;
1435 if (walker->type == runner) { // if this atom fits to element
1436 AtomNo++;
1437 *out << "Ion_Type" << ElementNo << "_" << AtomNo << "\t" << fixed << setprecision(9) << showpoint;
1438 *out << Trajectories[walker].R.at(step).x[0] << "\t" << Trajectories[walker].R.at(step).x[1] << "\t" << Trajectories[walker].R.at(step).x[2];
1439 *out << "\t" << walker->FixedIon;
1440 if (Trajectories[walker].U.at(step).Norm() > MYEPSILON)
1441 *out << "\t" << scientific << setprecision(6) << Trajectories[walker].U.at(step).x[0] << "\t" << Trajectories[walker].U.at(step).x[1] << "\t" << Trajectories[walker].U.at(step).x[2] << "\t";
1442 if (Trajectories[walker].F.at(step).Norm() > MYEPSILON)
1443 *out << "\t" << scientific << setprecision(6) << Trajectories[walker].F.at(step).x[0] << "\t" << Trajectories[walker].F.at(step).x[1] << "\t" << Trajectories[walker].F.at(step).x[2] << "\t";
1444 *out << "\t# Number in molecule " << walker->nr << endl;
1445 }
1446 }
1447 }
1448 }
1449 }
1450 return true;
1451 }
1452};
1453
1454/** Outputs contents of molecule::ListOfBondsPerAtom.
1455 * \param *out output stream
1456 */
1457void molecule::OutputListOfBonds(ofstream *out) const
1458{
1459 *out << Verbose(2) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
1460 atom *Walker = start;
1461 while (Walker->next != end) {
1462 Walker = Walker->next;
1463#ifdef ADDHYDROGEN
1464 if (Walker->type->Z != 1) { // regard only non-hydrogen
1465#endif
1466 *out << Verbose(2) << "Atom " << Walker->Name << " has Bonds: "<<endl;
1467 for(int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
1468 *out << Verbose(3) << *(ListOfBondsPerAtom)[Walker->nr][j] << endl;
1469 }
1470#ifdef ADDHYDROGEN
1471 }
1472#endif
1473 }
1474 *out << endl;
1475};
1476
1477/** Output of element before the actual coordination list.
1478 * \param *out stream pointer
1479 */
1480bool molecule::Checkout(ofstream *out) const
1481{
1482 return elemente->Checkout(out, ElementsInMolecule);
1483};
1484
1485/** Prints molecule with all its trajectories to *out as xyz file.
1486 * \param *out output stream
1487 */
1488bool molecule::OutputTrajectoriesXYZ(ofstream *out)
1489{
1490 atom *walker = NULL;
1491 int No = 0;
1492 time_t now;
1493
1494 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1495 walker = start;
1496 while (walker->next != end) { // go through every atom and count
1497 walker = walker->next;
1498 No++;
1499 }
1500 if (out != NULL) {
1501 for (int step=0;step<MDSteps;step++) {
1502 *out << No << "\n\tCreated by molecuilder, step " << step << ", on " << ctime(&now);
1503 walker = start;
1504 while (walker->next != end) { // go through every atom of this element
1505 walker = walker->next;
1506 *out << walker->type->symbol << "\t" << Trajectories[walker].R.at(step).x[0] << "\t" << Trajectories[walker].R.at(step).x[1] << "\t" << Trajectories[walker].R.at(step).x[2] << endl;
1507 }
1508 }
1509 return true;
1510 } else
1511 return false;
1512};
1513
1514/** Prints molecule to *out as xyz file.
1515* \param *out output stream
1516 */
1517bool molecule::OutputXYZ(ofstream *out) const
1518{
1519 atom *walker = NULL;
1520 int No = 0;
1521 time_t now;
1522
1523 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1524 walker = start;
1525 while (walker->next != end) { // go through every atom and count
1526 walker = walker->next;
1527 No++;
1528 }
1529 if (out != NULL) {
1530 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1531 walker = start;
1532 while (walker->next != end) { // go through every atom of this element
1533 walker = walker->next;
1534 walker->OutputXYZLine(out);
1535 }
1536 return true;
1537 } else
1538 return false;
1539};
1540
1541/** Brings molecule::AtomCount and atom::*Name up-to-date.
1542 * \param *out output stream for debugging
1543 */
1544void molecule::CountAtoms(ofstream *out)
1545{
1546 int i = 0;
1547 atom *Walker = start;
1548 while (Walker->next != end) {
1549 Walker = Walker->next;
1550 i++;
1551 }
1552 if ((AtomCount == 0) || (i != AtomCount)) {
1553 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1554 AtomCount = i;
1555
1556 // count NonHydrogen atoms and give each atom a unique name
1557 if (AtomCount != 0) {
1558 i=0;
1559 NoNonHydrogen = 0;
1560 Walker = start;
1561 while (Walker->next != end) {
1562 Walker = Walker->next;
1563 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1564 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1565 NoNonHydrogen++;
1566 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1567 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1568 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1569 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1570 i++;
1571 }
1572 } else
1573 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1574 }
1575};
1576
1577/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1578 */
1579void molecule::CountElements()
1580{
1581 int i = 0;
1582 for(i=MAX_ELEMENTS;i--;)
1583 ElementsInMolecule[i] = 0;
1584 ElementCount = 0;
1585
1586 atom *walker = start;
1587 while (walker->next != end) {
1588 walker = walker->next;
1589 ElementsInMolecule[walker->type->Z]++;
1590 i++;
1591 }
1592 for(i=MAX_ELEMENTS;i--;)
1593 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1594};
1595
1596/** Counts all cyclic bonds and returns their number.
1597 * \note Hydrogen bonds can never by cyclic, thus no check for that
1598 * \param *out output stream for debugging
1599 * \return number opf cyclic bonds
1600 */
1601int molecule::CountCyclicBonds(ofstream *out)
1602{
1603 int No = 0;
1604 int *MinimumRingSize = NULL;
1605 MoleculeLeafClass *Subgraphs = NULL;
1606 class StackClass<bond *> *BackEdgeStack = NULL;
1607 bond *Binder = first;
1608 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1609 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1610 Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);
1611 while (Subgraphs->next != NULL) {
1612 Subgraphs = Subgraphs->next;
1613 delete(Subgraphs->previous);
1614 }
1615 delete(Subgraphs);
1616 delete[](MinimumRingSize);
1617 }
1618 while(Binder->next != last) {
1619 Binder = Binder->next;
1620 if (Binder->Cyclic)
1621 No++;
1622 }
1623 delete(BackEdgeStack);
1624 return No;
1625};
1626/** Returns Shading as a char string.
1627 * \param color the Shading
1628 * \return string of the flag
1629 */
1630string molecule::GetColor(enum Shading color)
1631{
1632 switch(color) {
1633 case white:
1634 return "white";
1635 break;
1636 case lightgray:
1637 return "lightgray";
1638 break;
1639 case darkgray:
1640 return "darkgray";
1641 break;
1642 case black:
1643 return "black";
1644 break;
1645 default:
1646 return "uncolored";
1647 break;
1648 };
1649};
1650
1651
1652/** Counts necessary number of valence electrons and returns number and SpinType.
1653 * \param configuration containing everything
1654 */
1655void molecule::CalculateOrbitals(class config &configuration)
1656{
1657 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1658 for(int i=MAX_ELEMENTS;i--;) {
1659 if (ElementsInMolecule[i] != 0) {
1660 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1661 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1662 }
1663 }
1664 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1665 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1666 configuration.MaxPsiDouble /= 2;
1667 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1668 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1669 configuration.ProcPEGamma /= 2;
1670 configuration.ProcPEPsi *= 2;
1671 } else {
1672 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1673 configuration.ProcPEPsi = 1;
1674 }
1675 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1676};
1677
1678/** Creates an adjacency list of the molecule.
1679 * We obtain an outside file with the indices of atoms which are bondmembers.
1680 */
1681void molecule::CreateAdjacencyList2(ofstream *out, ifstream *input)
1682{
1683
1684 // 1 We will parse bonds out of the dbond file created by tremolo.
1685 int atom1, atom2, temp;
1686 atom *Walker, *OtherWalker;
1687
1688 if (!input)
1689 {
1690 cout << Verbose(1) << "Opening silica failed \n";
1691 };
1692
1693 *input >> ws >> atom1;
1694 *input >> ws >> atom2;
1695 cout << Verbose(1) << "Scanning file\n";
1696 while (!input->eof()) // Check whether we read everything already
1697 {
1698 *input >> ws >> atom1;
1699 *input >> ws >> atom2;
1700 if(atom2<atom1) //Sort indices of atoms in order
1701 {
1702 temp=atom1;
1703 atom1=atom2;
1704 atom2=temp;
1705 };
1706
1707 Walker=start;
1708 while(Walker-> nr != atom1) // Find atom corresponding to first index
1709 {
1710 Walker = Walker->next;
1711 };
1712 OtherWalker = Walker->next;
1713 while(OtherWalker->nr != atom2) // Find atom corresponding to second index
1714 {
1715 OtherWalker= OtherWalker->next;
1716 };
1717 AddBond(Walker, OtherWalker); //Add the bond between the two atoms with respective indices.
1718 BondCount++; //Increase bond count of molecule
1719 }
1720
1721 CreateListOfBondsPerAtom(out);
1722
1723};
1724
1725
1726/** Creates an adjacency list of the molecule.
1727 * Generally, we use the CSD approach to bond recognition, that is the the distance
1728 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1729 * a threshold t = 0.4 Angstroem.
1730 * To make it O(N log N) the function uses the linked-cell technique as follows:
1731 * The procedure is step-wise:
1732 * -# Remove every bond in list
1733 * -# Count the atoms in the molecule with CountAtoms()
1734 * -# partition cell into smaller linked cells of size \a bonddistance
1735 * -# put each atom into its corresponding cell
1736 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1737 * -# create the list of bonds via CreateListOfBondsPerAtom()
1738 * -# correct the bond degree iteratively (single->double->triple bond)
1739 * -# finally print the bond list to \a *out if desired
1740 * \param *out out stream for printing the matrix, NULL if no output
1741 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1742 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
1743 */
1744void molecule::CreateAdjacencyList(ofstream *out, double bonddistance, bool IsAngstroem)
1745{
1746
1747 atom *Walker = NULL, *OtherWalker = NULL, *Candidate = NULL;
1748 int No, NoBonds, CandidateBondNo;
1749 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1750 molecule **CellList;
1751 double distance, MinDistance, MaxDistance;
1752 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1753 Vector x;
1754 int FalseBondDegree = 0;
1755
1756 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
1757 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1758 // remove every bond from the list
1759 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1760 cleanup(first,last);
1761 }
1762
1763 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1764 CountAtoms(out);
1765 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1766
1767 if (AtomCount != 0) {
1768 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1769 j=-1;
1770 for (int i=0;i<NDIM;i++) {
1771 j += i+1;
1772 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1773 //*out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1774 }
1775 // 2a. allocate memory for the cell list
1776 NumberCells = divisor[0]*divisor[1]*divisor[2];
1777 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1778 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1779 for (int i=NumberCells;i--;)
1780 CellList[i] = NULL;
1781
1782 // 2b. put all atoms into its corresponding list
1783 Walker = start;
1784 while(Walker->next != end) {
1785 Walker = Walker->next;
1786 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1787 //Walker->x.Output(out);
1788 //*out << "." << endl;
1789 // compute the cell by the atom's coordinates
1790 j=-1;
1791 for (int i=0;i<NDIM;i++) {
1792 j += i+1;
1793 x.CopyVector(&(Walker->x));
1794 x.KeepPeriodic(out, matrix);
1795 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1796 }
1797 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1798 //*out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1799 // add copy atom to this cell
1800 if (CellList[index] == NULL) // allocate molecule if not done
1801 CellList[index] = new molecule(elemente);
1802 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1803 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1804 }
1805 //for (int i=0;i<NumberCells;i++)
1806 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1807
1808
1809 // 3a. go through every cell
1810 for (N[0]=divisor[0];N[0]--;)
1811 for (N[1]=divisor[1];N[1]--;)
1812 for (N[2]=divisor[2];N[2]--;) {
1813 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1814 if (CellList[Index] != NULL) { // if there atoms in this cell
1815 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1816 // 3b. for every atom therein
1817 Walker = CellList[Index]->start;
1818 while (Walker->next != CellList[Index]->end) { // go through every atom
1819 Walker = Walker->next;
1820 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1821 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1822 for (n[0]=-1;n[0]<=1;n[0]++)
1823 for (n[1]=-1;n[1]<=1;n[1]++)
1824 for (n[2]=-1;n[2]<=1;n[2]++) {
1825 // compute the index of this comparison cell and make it periodic
1826 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1827 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1828 if (CellList[index] != NULL) { // if there are any atoms in this cell
1829 OtherWalker = CellList[index]->start;
1830 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1831 OtherWalker = OtherWalker->next;
1832 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1833 /// \todo periodic check is missing here!
1834 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1835 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1836 MinDistance *= (IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem;
1837 MaxDistance = MinDistance + BONDTHRESHOLD;
1838 MinDistance -= BONDTHRESHOLD;
1839 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1840 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1841 //*out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1842 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1843 BondCount++;
1844 } else {
1845 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1846 }
1847 }
1848 }
1849 }
1850 }
1851 }
1852 }
1853
1854
1855
1856 // 4. free the cell again
1857 for (int i=NumberCells;i--;)
1858 if (CellList[i] != NULL) {
1859 delete(CellList[i]);
1860 }
1861 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1862
1863 // create the adjacency list per atom
1864 CreateListOfBondsPerAtom(out);
1865
1866 // correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
1867 // iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
1868 // preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
1869 // double bonds as was expected.
1870 if (BondCount != 0) {
1871 NoCyclicBonds = 0;
1872 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
1873 do {
1874 No = 0; // No acts as breakup flag (if 1 we still continue)
1875 Walker = start;
1876 while (Walker->next != end) { // go through every atom
1877 Walker = Walker->next;
1878 // count valence of first partner
1879 NoBonds = 0;
1880 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1881 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1882 *out << Verbose(3) << "Walker " << *Walker << ": " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1883 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check all bonding partners for mismatch
1884 Candidate = NULL;
1885 CandidateBondNo = -1;
1886 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1887 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1888 // count valence of second partner
1889 NoBonds = 0;
1890 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1891 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1892 *out << Verbose(3) << "OtherWalker " << *OtherWalker << ": " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1893 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) { // check if possible candidate
1894 if ((Candidate == NULL) || (NumberOfBondsPerAtom[Candidate->nr] > NumberOfBondsPerAtom[OtherWalker->nr])) { // pick the one with fewer number of bonds first
1895 Candidate = OtherWalker;
1896 CandidateBondNo = i;
1897 *out << Verbose(3) << "New candidate is " << *Candidate << "." << endl;
1898 }
1899 }
1900 }
1901 if ((Candidate != NULL) && (CandidateBondNo != -1)) {
1902 ListOfBondsPerAtom[Walker->nr][CandidateBondNo]->BondDegree++;
1903 *out << Verbose(2) << "Increased bond degree for bond " << *ListOfBondsPerAtom[Walker->nr][CandidateBondNo] << "." << endl;
1904 } else
1905 *out << Verbose(2) << "Could not find correct degree for atom " << *Walker << "." << endl;
1906 FalseBondDegree++;
1907 }
1908 }
1909 } while (No);
1910 *out << " done." << endl;
1911 } else
1912 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1913 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << ", " << FalseBondDegree << " bonds could not be corrected." << endl;
1914
1915 // output bonds for debugging (if bond chain list was correctly installed)
1916 *out << Verbose(1) << endl << "From contents of bond chain list:";
1917 bond *Binder = first;
1918 while(Binder->next != last) {
1919 Binder = Binder->next;
1920 *out << *Binder << "\t" << endl;
1921 }
1922 *out << endl;
1923 } else
1924 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1925 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1926 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1927
1928};
1929
1930
1931
1932/** Performs a Depth-First search on this molecule.
1933 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1934 * articulations points, ...
1935 * We use the algorithm from [Even, Graph Algorithms, p.62].
1936 * \param *out output stream for debugging
1937 * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return
1938 * \return list of each disconnected subgraph as an individual molecule class structure
1939 */
1940MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, class StackClass<bond *> *&BackEdgeStack)
1941{
1942 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
1943 BackEdgeStack = new StackClass<bond *> (BondCount);
1944 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1945 MoleculeLeafClass *LeafWalker = SubGraphs;
1946 int CurrentGraphNr = 0, OldGraphNr;
1947 int ComponentNumber = 0;
1948 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1949 bond *Binder = NULL;
1950 bool BackStepping = false;
1951
1952 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1953
1954 ResetAllBondsToUnused();
1955 ResetAllAtomNumbers();
1956 InitComponentNumbers();
1957 BackEdgeStack->ClearStack();
1958 while (Root != end) { // if there any atoms at all
1959 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1960 AtomStack->ClearStack();
1961
1962 // put into new subgraph molecule and add this to list of subgraphs
1963 LeafWalker = new MoleculeLeafClass(LeafWalker);
1964 LeafWalker->Leaf = new molecule(elemente);
1965 LeafWalker->Leaf->AddCopyAtom(Root);
1966
1967 OldGraphNr = CurrentGraphNr;
1968 Walker = Root;
1969 do { // (10)
1970 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1971 if (!BackStepping) { // if we don't just return from (8)
1972 Walker->GraphNr = CurrentGraphNr;
1973 Walker->LowpointNr = CurrentGraphNr;
1974 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1975 AtomStack->Push(Walker);
1976 CurrentGraphNr++;
1977 }
1978 do { // (3) if Walker has no unused egdes, go to (5)
1979 BackStepping = false; // reset backstepping flag for (8)
1980 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1981 Binder = FindNextUnused(Walker);
1982 if (Binder == NULL)
1983 break;
1984 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1985 // (4) Mark Binder used, ...
1986 Binder->MarkUsed(black);
1987 OtherAtom = Binder->GetOtherAtom(Walker);
1988 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1989 if (OtherAtom->GraphNr != -1) {
1990 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1991 Binder->Type = BackEdge;
1992 BackEdgeStack->Push(Binder);
1993 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1994 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1995 } else {
1996 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1997 Binder->Type = TreeEdge;
1998 OtherAtom->Ancestor = Walker;
1999 Walker = OtherAtom;
2000 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
2001 break;
2002 }
2003 Binder = NULL;
2004 } while (1); // (3)
2005 if (Binder == NULL) {
2006 *out << Verbose(2) << "No more Unused Bonds." << endl;
2007 break;
2008 } else
2009 Binder = NULL;
2010 } while (1); // (2)
2011
2012 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
2013 if ((Walker == Root) && (Binder == NULL))
2014 break;
2015
2016 // (5) if Ancestor of Walker is ...
2017 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
2018 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
2019 // (6) (Ancestor of Walker is not Root)
2020 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
2021 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
2022 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
2023 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
2024 } else {
2025 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
2026 Walker->Ancestor->SeparationVertex = true;
2027 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
2028 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
2029 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
2030 SetNextComponentNumber(Walker, ComponentNumber);
2031 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
2032 do {
2033 OtherAtom = AtomStack->PopLast();
2034 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
2035 SetNextComponentNumber(OtherAtom, ComponentNumber);
2036 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
2037 } while (OtherAtom != Walker);
2038 ComponentNumber++;
2039 }
2040 // (8) Walker becomes its Ancestor, go to (3)
2041 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
2042 Walker = Walker->Ancestor;
2043 BackStepping = true;
2044 }
2045 if (!BackStepping) { // coming from (8) want to go to (3)
2046 // (9) remove all from stack till Walker (including), these and Root form a component
2047 AtomStack->Output(out);
2048 SetNextComponentNumber(Root, ComponentNumber);
2049 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
2050 SetNextComponentNumber(Walker, ComponentNumber);
2051 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
2052 do {
2053 OtherAtom = AtomStack->PopLast();
2054 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
2055 SetNextComponentNumber(OtherAtom, ComponentNumber);
2056 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
2057 } while (OtherAtom != Walker);
2058 ComponentNumber++;
2059
2060 // (11) Root is separation vertex, set Walker to Root and go to (4)
2061 Walker = Root;
2062 Binder = FindNextUnused(Walker);
2063 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
2064 if (Binder != NULL) { // Root is separation vertex
2065 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
2066 Walker->SeparationVertex = true;
2067 }
2068 }
2069 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
2070
2071 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
2072 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
2073 LeafWalker->Leaf->Output(out);
2074 *out << endl;
2075
2076 // step on to next root
2077 while ((Root != end) && (Root->GraphNr != -1)) {
2078 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
2079 if (Root->GraphNr != -1) // if already discovered, step on
2080 Root = Root->next;
2081 }
2082 }
2083 // set cyclic bond criterium on "same LP" basis
2084 Binder = first;
2085 while(Binder->next != last) {
2086 Binder = Binder->next;
2087 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
2088 Binder->Cyclic = true;
2089 NoCyclicBonds++;
2090 }
2091 }
2092
2093
2094 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
2095 Walker = start;
2096 while (Walker->next != end) {
2097 Walker = Walker->next;
2098 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
2099 OutputComponentNumber(out, Walker);
2100 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
2101 }
2102
2103 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
2104 Binder = first;
2105 while(Binder->next != last) {
2106 Binder = Binder->next;
2107 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
2108 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
2109 OutputComponentNumber(out, Binder->leftatom);
2110 *out << " === ";
2111 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
2112 OutputComponentNumber(out, Binder->rightatom);
2113 *out << ">." << endl;
2114 if (Binder->Cyclic) // cyclic ??
2115 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
2116 }
2117
2118 // free all and exit
2119 delete(AtomStack);
2120 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
2121 return SubGraphs;
2122};
2123
2124/** Analyses the cycles found and returns minimum of all cycle lengths.
2125 * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
2126 * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
2127 * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
2128 * as cyclic and print out the cycles.
2129 * \param *out output stream for debugging
2130 * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!
2131 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
2132 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
2133 */
2134void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize)
2135{
2136 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");
2137 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");
2138 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");
2139 class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring
2140 class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms (that need to be reset after BFS loop)
2141 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;
2142 bond *Binder = NULL, *BackEdge = NULL;
2143 int RingSize, NumCycles, MinRingSize = -1;
2144
2145 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2146 for (int i=AtomCount;i--;) {
2147 PredecessorList[i] = NULL;
2148 ShortestPathList[i] = -1;
2149 ColorList[i] = white;
2150 }
2151
2152 *out << Verbose(1) << "Back edge list - ";
2153 BackEdgeStack->Output(out);
2154
2155 *out << Verbose(1) << "Analysing cycles ... " << endl;
2156 NumCycles = 0;
2157 while (!BackEdgeStack->IsEmpty()) {
2158 BackEdge = BackEdgeStack->PopFirst();
2159 // this is the target
2160 Root = BackEdge->leftatom;
2161 // this is the source point
2162 Walker = BackEdge->rightatom;
2163 ShortestPathList[Walker->nr] = 0;
2164 BFSStack->ClearStack(); // start with empty BFS stack
2165 BFSStack->Push(Walker);
2166 TouchedStack->Push(Walker);
2167 *out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
2168 OtherAtom = NULL;
2169 do { // look for Root
2170 Walker = BFSStack->PopFirst();
2171 *out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
2172 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2173 Binder = ListOfBondsPerAtom[Walker->nr][i];
2174 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
2175 OtherAtom = Binder->GetOtherAtom(Walker);
2176#ifdef ADDHYDROGEN
2177 if (OtherAtom->type->Z != 1) {
2178#endif
2179 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2180 if (ColorList[OtherAtom->nr] == white) {
2181 TouchedStack->Push(OtherAtom);
2182 ColorList[OtherAtom->nr] = lightgray;
2183 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2184 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2185 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2186 //if (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
2187 *out << Verbose(3) << "Putting OtherAtom into queue." << endl;
2188 BFSStack->Push(OtherAtom);
2189 //}
2190 } else {
2191 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2192 }
2193 if (OtherAtom == Root)
2194 break;
2195#ifdef ADDHYDROGEN
2196 } else {
2197 *out << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;
2198 ColorList[OtherAtom->nr] = black;
2199 }
2200#endif
2201 } else {
2202 *out << Verbose(2) << "Bond " << *Binder << " not Visiting, is the back edge." << endl;
2203 }
2204 }
2205 ColorList[Walker->nr] = black;
2206 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2207 if (OtherAtom == Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
2208 // step through predecessor list
2209 while (OtherAtom != BackEdge->rightatom) {
2210 if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
2211 break;
2212 else
2213 OtherAtom = PredecessorList[OtherAtom->nr];
2214 }
2215 if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
2216 *out << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;\
2217 do {
2218 OtherAtom = TouchedStack->PopLast();
2219 if (PredecessorList[OtherAtom->nr] == Walker) {
2220 *out << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;
2221 PredecessorList[OtherAtom->nr] = NULL;
2222 ShortestPathList[OtherAtom->nr] = -1;
2223 ColorList[OtherAtom->nr] = white;
2224 BFSStack->RemoveItem(OtherAtom);
2225 }
2226 } while ((!TouchedStack->IsEmpty()) && (PredecessorList[OtherAtom->nr] == NULL));
2227 TouchedStack->Push(OtherAtom); // last was wrongly popped
2228 OtherAtom = BackEdge->rightatom; // set to not Root
2229 } else
2230 OtherAtom = Root;
2231 }
2232 } while ((!BFSStack->IsEmpty()) && (OtherAtom != Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
2233
2234 if (OtherAtom == Root) {
2235 // now climb back the predecessor list and thus find the cycle members
2236 NumCycles++;
2237 RingSize = 1;
2238 Root->GetTrueFather()->IsCyclic = true;
2239 *out << Verbose(1) << "Found ring contains: ";
2240 Walker = Root;
2241 while (Walker != BackEdge->rightatom) {
2242 *out << Walker->Name << " <-> ";
2243 Walker = PredecessorList[Walker->nr];
2244 Walker->GetTrueFather()->IsCyclic = true;
2245 RingSize++;
2246 }
2247 *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
2248 // walk through all and set MinimumRingSize
2249 Walker = Root;
2250 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
2251 while (Walker != BackEdge->rightatom) {
2252 Walker = PredecessorList[Walker->nr];
2253 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
2254 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
2255 }
2256 if ((RingSize < MinRingSize) || (MinRingSize == -1))
2257 MinRingSize = RingSize;
2258 } else {
2259 *out << Verbose(1) << "No ring containing " << *Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
2260 }
2261
2262 // now clean the lists
2263 while (!TouchedStack->IsEmpty()){
2264 Walker = TouchedStack->PopFirst();
2265 PredecessorList[Walker->nr] = NULL;
2266 ShortestPathList[Walker->nr] = -1;
2267 ColorList[Walker->nr] = white;
2268 }
2269 }
2270 if (MinRingSize != -1) {
2271 // go over all atoms
2272 Root = start;
2273 while(Root->next != end) {
2274 Root = Root->next;
2275
2276 if (MinimumRingSize[Root->GetTrueFather()->nr] == AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
2277 Walker = Root;
2278 ShortestPathList[Walker->nr] = 0;
2279 BFSStack->ClearStack(); // start with empty BFS stack
2280 BFSStack->Push(Walker);
2281 TouchedStack->Push(Walker);
2282 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
2283 OtherAtom = Walker;
2284 while (OtherAtom != NULL) { // look for Root
2285 Walker = BFSStack->PopFirst();
2286 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
2287 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2288 Binder = ListOfBondsPerAtom[Walker->nr][i];
2289 if ((Binder != BackEdge) || (NumberOfBondsPerAtom[Walker->nr] == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
2290 OtherAtom = Binder->GetOtherAtom(Walker);
2291 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2292 if (ColorList[OtherAtom->nr] == white) {
2293 TouchedStack->Push(OtherAtom);
2294 ColorList[OtherAtom->nr] = lightgray;
2295 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2296 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2297 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2298 if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
2299 MinimumRingSize[Root->GetTrueFather()->nr] = ShortestPathList[OtherAtom->nr]+MinimumRingSize[OtherAtom->GetTrueFather()->nr];
2300 OtherAtom = NULL; //break;
2301 break;
2302 } else
2303 BFSStack->Push(OtherAtom);
2304 } else {
2305 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
2306 }
2307 } else {
2308 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
2309 }
2310 }
2311 ColorList[Walker->nr] = black;
2312 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2313 }
2314
2315 // now clean the lists
2316 while (!TouchedStack->IsEmpty()){
2317 Walker = TouchedStack->PopFirst();
2318 PredecessorList[Walker->nr] = NULL;
2319 ShortestPathList[Walker->nr] = -1;
2320 ColorList[Walker->nr] = white;
2321 }
2322 }
2323 *out << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
2324 }
2325 *out << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
2326 } else
2327 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
2328
2329 Free((void **)&PredecessorList, "molecule::CyclicStructureAnalysis: **PredecessorList");
2330 Free((void **)&ShortestPathList, "molecule::CyclicStructureAnalysis: **ShortestPathList");
2331 Free((void **)&ColorList, "molecule::CyclicStructureAnalysis: **ColorList");
2332 delete(BFSStack);
2333};
2334
2335/** Sets the next component number.
2336 * This is O(N) as the number of bonds per atom is bound.
2337 * \param *vertex atom whose next atom::*ComponentNr is to be set
2338 * \param nr number to use
2339 */
2340void molecule::SetNextComponentNumber(atom *vertex, int nr)
2341{
2342 int i=0;
2343 if (vertex != NULL) {
2344 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
2345 if (vertex->ComponentNr[i] == -1) { // check if not yet used
2346 vertex->ComponentNr[i] = nr;
2347 break;
2348 }
2349 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
2350 break; // breaking here will not cause error!
2351 }
2352 if (i == NumberOfBondsPerAtom[vertex->nr])
2353 cerr << "Error: All Component entries are already occupied!" << endl;
2354 } else
2355 cerr << "Error: Given vertex is NULL!" << endl;
2356};
2357
2358/** Output a list of flags, stating whether the bond was visited or not.
2359 * \param *out output stream for debugging
2360 */
2361void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
2362{
2363 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2364 *out << vertex->ComponentNr[i] << " ";
2365};
2366
2367/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
2368 */
2369void molecule::InitComponentNumbers()
2370{
2371 atom *Walker = start;
2372 while(Walker->next != end) {
2373 Walker = Walker->next;
2374 if (Walker->ComponentNr != NULL)
2375 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
2376 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
2377 for (int i=NumberOfBondsPerAtom[Walker->nr];i--;)
2378 Walker->ComponentNr[i] = -1;
2379 }
2380};
2381
2382/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
2383 * \param *vertex atom to regard
2384 * \return bond class or NULL
2385 */
2386bond * molecule::FindNextUnused(atom *vertex)
2387{
2388 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2389 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
2390 return(ListOfBondsPerAtom[vertex->nr][i]);
2391 return NULL;
2392};
2393
2394/** Resets bond::Used flag of all bonds in this molecule.
2395 * \return true - success, false - -failure
2396 */
2397void molecule::ResetAllBondsToUnused()
2398{
2399 bond *Binder = first;
2400 while (Binder->next != last) {
2401 Binder = Binder->next;
2402 Binder->ResetUsed();
2403 }
2404};
2405
2406/** Resets atom::nr to -1 of all atoms in this molecule.
2407 */
2408void molecule::ResetAllAtomNumbers()
2409{
2410 atom *Walker = start;
2411 while (Walker->next != end) {
2412 Walker = Walker->next;
2413 Walker->GraphNr = -1;
2414 }
2415};
2416
2417/** Output a list of flags, stating whether the bond was visited or not.
2418 * \param *out output stream for debugging
2419 * \param *list
2420 */
2421void OutputAlreadyVisited(ofstream *out, int *list)
2422{
2423 *out << Verbose(4) << "Already Visited Bonds:\t";
2424 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
2425 *out << endl;
2426};
2427
2428/** Estimates by educated guessing (using upper limit) the expected number of fragments.
2429 * The upper limit is
2430 * \f[
2431 * n = N \cdot C^k
2432 * \f]
2433 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
2434 * \param *out output stream for debugging
2435 * \param order bond order k
2436 * \return number n of fragments
2437 */
2438int molecule::GuesstimateFragmentCount(ofstream *out, int order)
2439{
2440 int c = 0;
2441 int FragmentCount;
2442 // get maximum bond degree
2443 atom *Walker = start;
2444 while (Walker->next != end) {
2445 Walker = Walker->next;
2446 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
2447 }
2448 FragmentCount = NoNonHydrogen*(1 << (c*order));
2449 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
2450 return FragmentCount;
2451};
2452
2453/** Scans a single line for number and puts them into \a KeySet.
2454 * \param *out output stream for debugging
2455 * \param *buffer buffer to scan
2456 * \param &CurrentSet filled KeySet on return
2457 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
2458 */
2459bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
2460{
2461 stringstream line;
2462 int AtomNr;
2463 int status = 0;
2464
2465 line.str(buffer);
2466 while (!line.eof()) {
2467 line >> AtomNr;
2468 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2469 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
2470 status++;
2471 } // else it's "-1" or else and thus must not be added
2472 }
2473 *out << Verbose(1) << "The scanned KeySet is ";
2474 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
2475 *out << (*runner) << "\t";
2476 }
2477 *out << endl;
2478 return (status != 0);
2479};
2480
2481/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
2482 * Does two-pass scanning:
2483 * -# Scans the keyset file and initialises a temporary graph
2484 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
2485 * Finally, the temporary graph is inserted into the given \a FragmentList for return.
2486 * \param *out output stream for debugging
2487 * \param *path path to file
2488 * \param *FragmentList empty, filled on return
2489 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
2490 */
2491bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList)
2492{
2493 bool status = true;
2494 ifstream InputFile;
2495 stringstream line;
2496 GraphTestPair testGraphInsert;
2497 int NumberOfFragments = 0;
2498 double TEFactor;
2499 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
2500
2501 if (FragmentList == NULL) { // check list pointer
2502 FragmentList = new Graph;
2503 }
2504
2505 // 1st pass: open file and read
2506 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;
2507 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
2508 InputFile.open(filename);
2509 if (InputFile != NULL) {
2510 // each line represents a new fragment
2511 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
2512 // 1. parse keysets and insert into temp. graph
2513 while (!InputFile.eof()) {
2514 InputFile.getline(buffer, MAXSTRINGSIZE);
2515 KeySet CurrentSet;
2516 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config
2517 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
2518 if (!testGraphInsert.second) {
2519 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;
2520 }
2521 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
2522 }
2523 }
2524 // 2. Free and done
2525 InputFile.close();
2526 InputFile.clear();
2527 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
2528 *out << Verbose(1) << "done." << endl;
2529 } else {
2530 *out << Verbose(1) << "File " << filename << " not found." << endl;
2531 status = false;
2532 }
2533
2534 // 2nd pass: open TEFactors file and read
2535 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;
2536 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
2537 InputFile.open(filename);
2538 if (InputFile != NULL) {
2539 // 3. add found TEFactors to each keyset
2540 NumberOfFragments = 0;
2541 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
2542 if (!InputFile.eof()) {
2543 InputFile >> TEFactor;
2544 (*runner).second.second = TEFactor;
2545 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;
2546 } else {
2547 status = false;
2548 break;
2549 }
2550 }
2551 // 4. Free and done
2552 InputFile.close();
2553 *out << Verbose(1) << "done." << endl;
2554 } else {
2555 *out << Verbose(1) << "File " << filename << " not found." << endl;
2556 status = false;
2557 }
2558
2559 // free memory
2560 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
2561
2562 return status;
2563};
2564
2565/** Stores keysets and TEFactors to file.
2566 * \param *out output stream for debugging
2567 * \param KeySetList Graph with Keysets and factors
2568 * \param *path path to file
2569 * \return true - file written successfully, false - writing failed
2570 */
2571bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)
2572{
2573 ofstream output;
2574 bool status = true;
2575 string line;
2576
2577 // open KeySet file
2578 line = path;
2579 line.append("/");
2580 line += FRAGMENTPREFIX;
2581 line += KEYSETFILE;
2582 output.open(line.c_str(), ios::out);
2583 *out << Verbose(1) << "Saving key sets of the total graph ... ";
2584 if(output != NULL) {
2585 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
2586 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
2587 if (sprinter != (*runner).first.begin())
2588 output << "\t";
2589 output << *sprinter;
2590 }
2591 output << endl;
2592 }
2593 *out << "done." << endl;
2594 } else {
2595 cerr << "Unable to open " << line << " for writing keysets!" << endl;
2596 status = false;
2597 }
2598 output.close();
2599 output.clear();
2600
2601 // open TEFactors file
2602 line = path;
2603 line.append("/");
2604 line += FRAGMENTPREFIX;
2605 line += TEFACTORSFILE;
2606 output.open(line.c_str(), ios::out);
2607 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";
2608 if(output != NULL) {
2609 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
2610 output << (*runner).second.second << endl;
2611 *out << Verbose(1) << "done." << endl;
2612 } else {
2613 *out << Verbose(1) << "failed to open " << line << "." << endl;
2614 status = false;
2615 }
2616 output.close();
2617
2618 return status;
2619};
2620
2621/** Storing the bond structure of a molecule to file.
2622 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
2623 * \param *out output stream for debugging
2624 * \param *path path to file
2625 * \return true - file written successfully, false - writing failed
2626 */
2627bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
2628{
2629 ofstream AdjacencyFile;
2630 atom *Walker = NULL;
2631 stringstream line;
2632 bool status = true;
2633
2634 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2635 AdjacencyFile.open(line.str().c_str(), ios::out);
2636 *out << Verbose(1) << "Saving adjacency list ... ";
2637 if (AdjacencyFile != NULL) {
2638 Walker = start;
2639 while(Walker->next != end) {
2640 Walker = Walker->next;
2641 AdjacencyFile << Walker->nr << "\t";
2642 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2643 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
2644 AdjacencyFile << endl;
2645 }
2646 AdjacencyFile.close();
2647 *out << Verbose(1) << "done." << endl;
2648 } else {
2649 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2650 status = false;
2651 }
2652
2653 return status;
2654};
2655
2656/** Checks contents of adjacency file against bond structure in structure molecule.
2657 * \param *out output stream for debugging
2658 * \param *path path to file
2659 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
2660 * \return true - structure is equal, false - not equivalence
2661 */
2662bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
2663{
2664 ifstream File;
2665 stringstream filename;
2666 bool status = true;
2667 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2668
2669 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2670 File.open(filename.str().c_str(), ios::out);
2671 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
2672 if (File != NULL) {
2673 // allocate storage structure
2674 int NonMatchNumber = 0; // will number of atoms with differing bond structure
2675 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
2676 int CurrentBondsOfAtom;
2677
2678 // Parse the file line by line and count the bonds
2679 while (!File.eof()) {
2680 File.getline(buffer, MAXSTRINGSIZE);
2681 stringstream line;
2682 line.str(buffer);
2683 int AtomNr = -1;
2684 line >> AtomNr;
2685 CurrentBondsOfAtom = -1; // we count one too far due to line end
2686 // parse into structure
2687 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2688 while (!line.eof())
2689 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2690 // compare against present bonds
2691 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2692 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2693 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2694 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2695 int j = 0;
2696 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2697 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2698 ListOfAtoms[AtomNr] = NULL;
2699 NonMatchNumber++;
2700 status = false;
2701 //out << "[" << id << "]\t";
2702 } else {
2703 //out << id << "\t";
2704 }
2705 }
2706 //out << endl;
2707 } else {
2708 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2709 status = false;
2710 }
2711 }
2712 }
2713 File.close();
2714 File.clear();
2715 if (status) { // if equal we parse the KeySetFile
2716 *out << Verbose(1) << "done: Equal." << endl;
2717 status = true;
2718 } else
2719 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
2720 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2721 } else {
2722 *out << Verbose(1) << "Adjacency file not found." << endl;
2723 status = false;
2724 }
2725 *out << endl;
2726 Free((void **)&buffer, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2727
2728 return status;
2729};
2730
2731/** Checks whether the OrderAtSite is still below \a Order at some site.
2732 * \param *out output stream for debugging
2733 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site, used to activate given number of site to increment order adaptively
2734 * \param *GlobalKeySetList list of keysets with global ids (valid in "this" molecule) needed for adaptive increase
2735 * \param Order desired Order if positive, desired exponent in threshold criteria if negative (0 is single-step)
2736 * \param *MinimumRingSize array of max. possible order to avoid loops
2737 * \param *path path to ENERGYPERFRAGMENT file (may be NULL if Order is non-negative)
2738 * \return true - needs further fragmentation, false - does not need fragmentation
2739 */
2740bool molecule::CheckOrderAtSite(ofstream *out, bool *AtomMask, Graph *GlobalKeySetList, int Order, int *MinimumRingSize, char *path)
2741{
2742 atom *Walker = start;
2743 bool status = false;
2744 ifstream InputFile;
2745
2746 // initialize mask list
2747 for(int i=AtomCount;i--;)
2748 AtomMask[i] = false;
2749
2750 if (Order < 0) { // adaptive increase of BondOrder per site
2751 if (AtomMask[AtomCount] == true) // break after one step
2752 return false;
2753 // parse the EnergyPerFragment file
2754 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckOrderAtSite: *buffer");
2755 sprintf(buffer, "%s/%s%s.dat", path, FRAGMENTPREFIX, ENERGYPERFRAGMENT);
2756 InputFile.open(buffer, ios::in);
2757 if ((InputFile != NULL) && (GlobalKeySetList != NULL)) {
2758 // transmorph graph keyset list into indexed KeySetList
2759 map<int,KeySet> IndexKeySetList;
2760 for(Graph::iterator runner = GlobalKeySetList->begin(); runner != GlobalKeySetList->end(); runner++) {
2761 IndexKeySetList.insert( pair<int,KeySet>(runner->second.first,runner->first) );
2762 }
2763 int lines = 0;
2764 // count the number of lines, i.e. the number of fragments
2765 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
2766 InputFile.getline(buffer, MAXSTRINGSIZE);
2767 while(!InputFile.eof()) {
2768 InputFile.getline(buffer, MAXSTRINGSIZE);
2769 lines++;
2770 }
2771 //*out << Verbose(2) << "Scanned " << lines-1 << " lines." << endl; // one endline too much
2772 InputFile.clear();
2773 InputFile.seekg(ios::beg);
2774 map<int, pair<double,int> > AdaptiveCriteriaList; // (Root No., (Value, Order)) !
2775 int No, FragOrder;
2776 double Value;
2777 // each line represents a fragment root (Atom::nr) id and its energy contribution
2778 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
2779 InputFile.getline(buffer, MAXSTRINGSIZE);
2780 while(!InputFile.eof()) {
2781 InputFile.getline(buffer, MAXSTRINGSIZE);
2782 if (strlen(buffer) > 2) {
2783 //*out << Verbose(2) << "Scanning: " << buffer << endl;
2784 stringstream line(buffer);
2785 line >> FragOrder;
2786 line >> ws >> No;
2787 line >> ws >> Value; // skip time entry
2788 line >> ws >> Value;
2789 No -= 1; // indices start at 1 in file, not 0
2790 //*out << Verbose(2) << " - yields (" << No << "," << Value << ", " << FragOrder << ")" << endl;
2791
2792 // clean the list of those entries that have been superceded by higher order terms already
2793 map<int,KeySet>::iterator marker = IndexKeySetList.find(No); // find keyset to Frag No.
2794 if (marker != IndexKeySetList.end()) { // if found
2795 Value *= 1 + MYEPSILON*(*((*marker).second.begin())); // in case of equal energies this makes em not equal without changing anything actually
2796 // as the smallest number in each set has always been the root (we use global id to keep the doubles away), seek smallest and insert into AtomMask
2797 pair <map<int, pair<double,int> >::iterator, bool> InsertedElement = AdaptiveCriteriaList.insert( make_pair(*((*marker).second.begin()), pair<double,int>( fabs(Value), FragOrder) ));
2798 map<int, pair<double,int> >::iterator PresentItem = InsertedElement.first;
2799 if (!InsertedElement.second) { // this root is already present
2800 if ((*PresentItem).second.second < FragOrder) // if order there is lower, update entry with higher-order term
2801 //if ((*PresentItem).second.first < (*runner).first) // as higher-order terms are not always better, we skip this part (which would always include this site into adaptive increase)
2802 { // if value is smaller, update value and order
2803 (*PresentItem).second.first = fabs(Value);
2804 (*PresentItem).second.second = FragOrder;
2805 *out << Verbose(2) << "Updated element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
2806 } else {
2807 *out << Verbose(2) << "Did not update element " << (*PresentItem).first << " as " << FragOrder << " is less than or equal to " << (*PresentItem).second.second << "." << endl;
2808 }
2809 } else {
2810 *out << Verbose(2) << "Inserted element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
2811 }
2812 } else {
2813 *out << Verbose(1) << "No Fragment under No. " << No << "found." << endl;
2814 }
2815 }
2816 }
2817 // then map back onto (Value, (Root Nr., Order)) (i.e. sorted by value to pick the highest ones)
2818 map<double, pair<int,int> > FinalRootCandidates;
2819 *out << Verbose(1) << "Root candidate list is: " << endl;
2820 for(map<int, pair<double,int> >::iterator runner = AdaptiveCriteriaList.begin(); runner != AdaptiveCriteriaList.end(); runner++) {
2821 Walker = FindAtom((*runner).first);
2822 if (Walker != NULL) {
2823 //if ((*runner).second.second >= Walker->AdaptiveOrder) { // only insert if this is an "active" root site for the current order
2824 if (!Walker->MaxOrder) {
2825 *out << Verbose(2) << "(" << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "])" << endl;
2826 FinalRootCandidates.insert( make_pair( (*runner).second.first, pair<int,int>((*runner).first, (*runner).second.second) ) );
2827 } else {
2828 *out << Verbose(2) << "Excluding (" << *Walker << ", " << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "]), as it has reached its maximum order." << endl;
2829 }
2830 } else {
2831 cerr << "Atom No. " << (*runner).second.first << " was not found in this molecule." << endl;
2832 }
2833 }
2834 // pick the ones still below threshold and mark as to be adaptively updated
2835 for(map<double, pair<int,int> >::iterator runner = FinalRootCandidates.upper_bound(pow(10.,Order)); runner != FinalRootCandidates.end(); runner++) {
2836 No = (*runner).second.first;
2837 Walker = FindAtom(No);
2838 //if (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]) {
2839 *out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", setting entry " << No << " of Atom mask to true." << endl;
2840 AtomMask[No] = true;
2841 status = true;
2842 //} else
2843 //*out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", however MinimumRingSize of " << MinimumRingSize[Walker->nr] << " does not allow further adaptive increase." << endl;
2844 }
2845 // close and done
2846 InputFile.close();
2847 InputFile.clear();
2848 } else {
2849 cerr << "Unable to parse " << buffer << " file, incrementing all." << endl;
2850 while (Walker->next != end) {
2851 Walker = Walker->next;
2852 #ifdef ADDHYDROGEN
2853 if (Walker->type->Z != 1) // skip hydrogen
2854 #endif
2855 {
2856 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
2857 status = true;
2858 }
2859 }
2860 }
2861 Free((void **)&buffer, "molecule::CheckOrderAtSite: *buffer");
2862 // pick a given number of highest values and set AtomMask
2863 } else { // global increase of Bond Order
2864 while (Walker->next != end) {
2865 Walker = Walker->next;
2866 #ifdef ADDHYDROGEN
2867 if (Walker->type->Z != 1) // skip hydrogen
2868 #endif
2869 {
2870 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
2871 if ((Order != 0) && (Walker->AdaptiveOrder < Order)) // && (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]))
2872 status = true;
2873 }
2874 }
2875 if ((Order == 0) && (AtomMask[AtomCount] == false)) // single stepping, just check
2876 status = true;
2877
2878 if (!status) {
2879 if (Order == 0)
2880 *out << Verbose(1) << "Single stepping done." << endl;
2881 else
2882 *out << Verbose(1) << "Order at every site is already equal or above desired order " << Order << "." << endl;
2883 }
2884 }
2885
2886 // print atom mask for debugging
2887 *out << " ";
2888 for(int i=0;i<AtomCount;i++)
2889 *out << (i % 10);
2890 *out << endl << "Atom mask is: ";
2891 for(int i=0;i<AtomCount;i++)
2892 *out << (AtomMask[i] ? "t" : "f");
2893 *out << endl;
2894
2895 return status;
2896};
2897
2898/** Create a SortIndex to map from atomic labels to the sequence in which the atoms are given in the config file.
2899 * \param *out output stream for debugging
2900 * \param *&SortIndex Mapping array of size molecule::AtomCount
2901 * \return true - success, false - failure of SortIndex alloc
2902 */
2903bool molecule::CreateMappingLabelsToConfigSequence(ofstream *out, int *&SortIndex)
2904{
2905 element *runner = elemente->start;
2906 int AtomNo = 0;
2907 atom *Walker = NULL;
2908
2909 if (SortIndex != NULL) {
2910 *out << Verbose(1) << "SortIndex is " << SortIndex << " and not NULL as expected." << endl;
2911 return false;
2912 }
2913 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2914 for(int i=AtomCount;i--;)
2915 SortIndex[i] = -1;
2916 while (runner->next != elemente->end) { // go through every element
2917 runner = runner->next;
2918 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2919 Walker = start;
2920 while (Walker->next != end) { // go through every atom of this element
2921 Walker = Walker->next;
2922 if (Walker->type->Z == runner->Z) // if this atom fits to element
2923 SortIndex[Walker->nr] = AtomNo++;
2924 }
2925 }
2926 }
2927 return true;
2928};
2929
2930/** Performs a many-body bond order analysis for a given bond order.
2931 * -# parses adjacency, keysets and orderatsite files
2932 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
2933 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
2934y contribution", and that's why this consciously not done in the following loop)
2935 * -# in a loop over all subgraphs
2936 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
2937 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
2938 * -# combines the generated molecule lists from all subgraphs
2939 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
2940 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets
2941 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or
2942 * subgraph in the MoleculeListClass.
2943 * \param *out output stream for debugging
2944 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2945 * \param *configuration configuration for writing config files for each fragment
2946 * \return 1 - continue, 2 - stop (no fragmentation occured)
2947 */
2948int molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
2949{
2950 MoleculeListClass *BondFragments = NULL;
2951 int *SortIndex = NULL;
2952 int *MinimumRingSize = new int[AtomCount];
2953 int FragmentCounter;
2954 MoleculeLeafClass *MolecularWalker = NULL;
2955 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2956 fstream File;
2957 bool FragmentationToDo = true;
2958 class StackClass<bond *> *BackEdgeStack = NULL, *LocalBackEdgeStack = NULL;
2959 bool CheckOrder = false;
2960 Graph **FragmentList = NULL;
2961 Graph *ParsedFragmentList = NULL;
2962 Graph TotalGraph; // graph with all keysets however local numbers
2963 int TotalNumberOfKeySets = 0;
2964 atom **ListOfAtoms = NULL;
2965 atom ***ListOfLocalAtoms = NULL;
2966 bool *AtomMask = NULL;
2967
2968 *out << endl;
2969#ifdef ADDHYDROGEN
2970 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2971#else
2972 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2973#endif
2974
2975 // ++++++++++++++++++++++++++++ INITIAL STUFF: Bond structure analysis, file parsing, ... ++++++++++++++++++++++++++++++++++++++++++
2976
2977 // ===== 1. Check whether bond structure is same as stored in files ====
2978
2979 // fill the adjacency list
2980 CreateListOfBondsPerAtom(out);
2981
2982 // create lookup table for Atom::nr
2983 FragmentationToDo = FragmentationToDo && CreateFatherLookupTable(out, start, end, ListOfAtoms, AtomCount);
2984
2985 // === compare it with adjacency file ===
2986 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
2987 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2988
2989 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====
2990 Subgraphs = DepthFirstSearchAnalysis(out, BackEdgeStack);
2991 // fill the bond structure of the individually stored subgraphs
2992 Subgraphs->next->FillBondStructureFromReference(out, this, (FragmentCounter = 0), ListOfLocalAtoms, false); // we want to keep the created ListOfLocalAtoms
2993 // analysis of the cycles (print rings, get minimum cycle length) for each subgraph
2994 for(int i=AtomCount;i--;)
2995 MinimumRingSize[i] = AtomCount;
2996 MolecularWalker = Subgraphs;
2997 FragmentCounter = 0;
2998 while (MolecularWalker->next != NULL) {
2999 MolecularWalker = MolecularWalker->next;
3000 LocalBackEdgeStack = new StackClass<bond *> (MolecularWalker->Leaf->BondCount);
3001// // check the list of local atoms for debugging
3002// *out << Verbose(0) << "ListOfLocalAtoms for this subgraph is:" << endl;
3003// for (int i=0;i<AtomCount;i++)
3004// if (ListOfLocalAtoms[FragmentCounter][i] == NULL)
3005// *out << "\tNULL";
3006// else
3007// *out << "\t" << ListOfLocalAtoms[FragmentCounter][i]->Name;
3008 *out << Verbose(0) << "Gathering local back edges for subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;
3009 MolecularWalker->Leaf->PickLocalBackEdges(out, ListOfLocalAtoms[FragmentCounter++], BackEdgeStack, LocalBackEdgeStack);
3010 *out << Verbose(0) << "Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;
3011 MolecularWalker->Leaf->CyclicStructureAnalysis(out, LocalBackEdgeStack, MinimumRingSize);
3012 *out << Verbose(0) << "Done with Analysing the cycles of subgraph " << MolecularWalker->Leaf << " with nr. " << FragmentCounter << "." << endl;
3013 delete(LocalBackEdgeStack);
3014 }
3015
3016 // ===== 3. if structure still valid, parse key set file and others =====
3017 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList);
3018
3019 // ===== 4. check globally whether there's something to do actually (first adaptivity check)
3020 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
3021
3022 // =================================== Begin of FRAGMENTATION ===============================
3023 // ===== 6a. assign each keyset to its respective subgraph =====
3024 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), true);
3025
3026 // ===== 6b. prepare and go into the adaptive (Order<0), single-step (Order==0) or incremental (Order>0) cycle
3027 KeyStack *RootStack = new KeyStack[Subgraphs->next->Count()];
3028 AtomMask = new bool[AtomCount+1];
3029 AtomMask[AtomCount] = false;
3030 FragmentationToDo = false; // if CheckOrderAtSite just ones recommends fragmentation, we will save fragments afterwards
3031 while ((CheckOrder = CheckOrderAtSite(out, AtomMask, ParsedFragmentList, Order, MinimumRingSize, configuration->configpath))) {
3032 FragmentationToDo = FragmentationToDo || CheckOrder;
3033 AtomMask[AtomCount] = true; // last plus one entry is used as marker that we have been through this loop once already in CheckOrderAtSite()
3034 // ===== 6b. fill RootStack for each subgraph (second adaptivity check) =====
3035 Subgraphs->next->FillRootStackForSubgraphs(out, RootStack, AtomMask, (FragmentCounter = 0));
3036
3037 // ===== 7. fill the bond fragment list =====
3038 FragmentCounter = 0;
3039 MolecularWalker = Subgraphs;
3040 while (MolecularWalker->next != NULL) {
3041 MolecularWalker = MolecularWalker->next;
3042 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
3043 //MolecularWalker->Leaf->OutputListOfBonds(out); // output ListOfBondsPerAtom for debugging
3044 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
3045 // call BOSSANOVA method
3046 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;
3047 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter], MinimumRingSize);
3048 } else {
3049 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;
3050 }
3051 FragmentCounter++; // next fragment list
3052 }
3053 }
3054 delete[](RootStack);
3055 delete[](AtomMask);
3056 delete(ParsedFragmentList);
3057 delete[](MinimumRingSize);
3058
3059
3060 // ==================================== End of FRAGMENTATION ============================================
3061
3062 // ===== 8a. translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
3063 Subgraphs->next->TranslateIndicesToGlobalIDs(out, FragmentList, (FragmentCounter = 0), TotalNumberOfKeySets, TotalGraph);
3064
3065 // free subgraph memory again
3066 FragmentCounter = 0;
3067 if (Subgraphs != NULL) {
3068 while (Subgraphs->next != NULL) {
3069 Subgraphs = Subgraphs->next;
3070 delete(FragmentList[FragmentCounter++]);
3071 delete(Subgraphs->previous);
3072 }
3073 delete(Subgraphs);
3074 }
3075 Free((void **)&FragmentList, "molecule::FragmentMolecule - **FragmentList");
3076
3077 // ===== 8b. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====
3078 //if (FragmentationToDo) { // we should always store the fragments again as coordination might have changed slightly without changing bond structure
3079 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
3080 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount);
3081 int k=0;
3082 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {
3083 KeySet test = (*runner).first;
3084 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;
3085 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
3086 k++;
3087 }
3088 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl;
3089
3090 // ===== 9. Save fragments' configuration and keyset files et al to disk ===
3091 if (BondFragments->NumberOfMolecules != 0) {
3092 // create the SortIndex from BFS labels to order in the config file
3093 CreateMappingLabelsToConfigSequence(out, SortIndex);
3094
3095 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl;
3096 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))
3097 *out << Verbose(1) << "All configs written." << endl;
3098 else
3099 *out << Verbose(1) << "Some config writing failed." << endl;
3100
3101 // store force index reference file
3102 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);
3103
3104 // store keysets file
3105 StoreKeySetFile(out, TotalGraph, configuration->configpath);
3106
3107 // store Adjacency file
3108 StoreAdjacencyToFile(out, configuration->configpath);
3109
3110 // store Hydrogen saturation correction file
3111 BondFragments->AddHydrogenCorrection(out, configuration->configpath);
3112
3113 // store adaptive orders into file
3114 StoreOrderAtSiteFile(out, configuration->configpath);
3115
3116 // restore orbital and Stop values
3117 CalculateOrbitals(*configuration);
3118
3119 // free memory for bond part
3120 *out << Verbose(1) << "Freeing bond memory" << endl;
3121 delete(FragmentList); // remove bond molecule from memory
3122 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
3123 } else
3124 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
3125 //} else
3126 // *out << Verbose(1) << "No fragments to store." << endl;
3127 *out << Verbose(0) << "End of bond fragmentation." << endl;
3128
3129 return ((int)(!FragmentationToDo)+1); // 1 - continue, 2 - stop (no fragmentation occured)
3130};
3131
3132
3133/** Picks from a global stack with all back edges the ones in the fragment.
3134 * \param *out output stream for debugging
3135 * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)
3136 * \param *ReferenceStack stack with all the back egdes
3137 * \param *LocalStack stack to be filled
3138 * \return true - everything ok, false - ReferenceStack was empty
3139 */
3140bool molecule::PickLocalBackEdges(ofstream *out, atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack)
3141{
3142 bool status = true;
3143 if (ReferenceStack->IsEmpty()) {
3144 cerr << "ReferenceStack is empty!" << endl;
3145 return false;
3146 }
3147 bond *Binder = ReferenceStack->PopFirst();
3148 bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely
3149 atom *Walker = NULL, *OtherAtom = NULL;
3150 ReferenceStack->Push(Binder);
3151
3152 do { // go through all bonds and push local ones
3153 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule
3154 if (Walker != NULL) // if this Walker exists in the subgraph ...
3155 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through the local list of bonds
3156 OtherAtom = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3157 if (OtherAtom == ListOfLocalAtoms[Binder->rightatom->nr]) { // found the bond
3158 LocalStack->Push(ListOfBondsPerAtom[Walker->nr][i]);
3159 *out << Verbose(3) << "Found local edge " << *(ListOfBondsPerAtom[Walker->nr][i]) << "." << endl;
3160 break;
3161 }
3162 }
3163 Binder = ReferenceStack->PopFirst(); // loop the stack for next item
3164 *out << Verbose(3) << "Current candidate edge " << Binder << "." << endl;
3165 ReferenceStack->Push(Binder);
3166 } while (FirstBond != Binder);
3167
3168 return status;
3169};
3170
3171/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
3172 * Atoms not present in the file get "-1".
3173 * \param *out output stream for debugging
3174 * \param *path path to file ORDERATSITEFILE
3175 * \return true - file writable, false - not writable
3176 */
3177bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
3178{
3179 stringstream line;
3180 ofstream file;
3181
3182 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
3183 file.open(line.str().c_str());
3184 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
3185 if (file != NULL) {
3186 atom *Walker = start;
3187 while (Walker->next != end) {
3188 Walker = Walker->next;
3189 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << endl;
3190 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << "." << endl;
3191 }
3192 file.close();
3193 *out << Verbose(1) << "done." << endl;
3194 return true;
3195 } else {
3196 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3197 return false;
3198 }
3199};
3200
3201/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
3202 * Atoms not present in the file get "0".
3203 * \param *out output stream for debugging
3204 * \param *path path to file ORDERATSITEFILEe
3205 * \return true - file found and scanned, false - file not found
3206 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
3207 */
3208bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
3209{
3210 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
3211 bool *MaxArray = (bool *) Malloc(sizeof(bool)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *MaxArray");
3212 bool status;
3213 int AtomNr, value;
3214 stringstream line;
3215 ifstream file;
3216
3217 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
3218 for(int i=AtomCount;i--;)
3219 OrderArray[i] = 0;
3220 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
3221 file.open(line.str().c_str());
3222 if (file != NULL) {
3223 for (int i=AtomCount;i--;) { // initialise with 0
3224 OrderArray[i] = 0;
3225 MaxArray[i] = 0;
3226 }
3227 while (!file.eof()) { // parse from file
3228 AtomNr = -1;
3229 file >> AtomNr;
3230 if (AtomNr != -1) { // test whether we really parsed something (this is necessary, otherwise last atom is set twice and to 0 on second time)
3231 file >> value;
3232 OrderArray[AtomNr] = value;
3233 file >> value;
3234 MaxArray[AtomNr] = value;
3235 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << " and max order set to " << (int)MaxArray[AtomNr] << "." << endl;
3236 }
3237 }
3238 atom *Walker = start;
3239 while (Walker->next != end) { // fill into atom classes
3240 Walker = Walker->next;
3241 Walker->AdaptiveOrder = OrderArray[Walker->nr];
3242 Walker->MaxOrder = MaxArray[Walker->nr];
3243 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << " and is " << (!Walker->MaxOrder ? "not " : " ") << "maxed." << endl;
3244 }
3245 file.close();
3246 *out << Verbose(1) << "done." << endl;
3247 status = true;
3248 } else {
3249 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3250 status = false;
3251 }
3252 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
3253 Free((void **)&MaxArray, "molecule::ParseOrderAtSiteFromFile - *MaxArray");
3254
3255 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
3256 return status;
3257};
3258
3259/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
3260 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
3261 * bond chain list, using molecule::AtomCount and molecule::BondCount.
3262 * Allocates memory, fills the array and exits
3263 * \param *out output stream for debugging
3264 */
3265void molecule::CreateListOfBondsPerAtom(ofstream *out)
3266{
3267 bond *Binder = NULL;
3268 atom *Walker = NULL;
3269 int TotalDegree;
3270 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
3271
3272 // re-allocate memory
3273 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
3274 if (ListOfBondsPerAtom != NULL) {
3275 for(int i=AtomCount;i--;)
3276 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
3277 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
3278 }
3279 if (NumberOfBondsPerAtom != NULL)
3280 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
3281 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
3282 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
3283
3284 // reset bond counts per atom
3285 for(int i=AtomCount;i--;)
3286 NumberOfBondsPerAtom[i] = 0;
3287 // count bonds per atom
3288 Binder = first;
3289 while (Binder->next != last) {
3290 Binder = Binder->next;
3291 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
3292 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
3293 }
3294 for(int i=AtomCount;i--;) {
3295 // allocate list of bonds per atom
3296 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
3297 // clear the list again, now each NumberOfBondsPerAtom marks current free field
3298 NumberOfBondsPerAtom[i] = 0;
3299 }
3300 // fill the list
3301 Binder = first;
3302 while (Binder->next != last) {
3303 Binder = Binder->next;
3304 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
3305 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
3306 }
3307
3308 // output list for debugging
3309 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
3310 Walker = start;
3311 while (Walker->next != end) {
3312 Walker = Walker->next;
3313 *out << Verbose(4) << "Atom " << Walker->Name << "/" << Walker->nr << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
3314 TotalDegree = 0;
3315 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
3316 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
3317 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
3318 }
3319 *out << " -- TotalDegree: " << TotalDegree << endl;
3320 }
3321 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
3322};
3323
3324/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
3325 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
3326 * white and putting into queue.
3327 * \param *out output stream for debugging
3328 * \param *Mol Molecule class to add atoms to
3329 * \param **AddedAtomList list with added atom pointers, index is atom father's number
3330 * \param **AddedBondList list with added bond pointers, index is bond father's number
3331 * \param *Root root vertex for BFS
3332 * \param *Bond bond not to look beyond
3333 * \param BondOrder maximum distance for vertices to add
3334 * \param IsAngstroem lengths are in angstroem or bohrradii
3335 */
3336void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
3337{
3338 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
3339 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
3340 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
3341 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
3342 atom *Walker = NULL, *OtherAtom = NULL;
3343 bond *Binder = NULL;
3344
3345 // add Root if not done yet
3346 AtomStack->ClearStack();
3347 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
3348 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
3349 AtomStack->Push(Root);
3350
3351 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
3352 for (int i=AtomCount;i--;) {
3353 PredecessorList[i] = NULL;
3354 ShortestPathList[i] = -1;
3355 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
3356 ColorList[i] = lightgray;
3357 else
3358 ColorList[i] = white;
3359 }
3360 ShortestPathList[Root->nr] = 0;
3361
3362 // and go on ... Queue always contains all lightgray vertices
3363 while (!AtomStack->IsEmpty()) {
3364 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
3365 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
3366 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
3367 // followed by n+1 till top of stack.
3368 Walker = AtomStack->PopFirst(); // pop oldest added
3369 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
3370 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3371 Binder = ListOfBondsPerAtom[Walker->nr][i];
3372 if (Binder != NULL) { // don't look at bond equal NULL
3373 OtherAtom = Binder->GetOtherAtom(Walker);
3374 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
3375 if (ColorList[OtherAtom->nr] == white) {
3376 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
3377 ColorList[OtherAtom->nr] = lightgray;
3378 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
3379 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
3380 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
3381 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
3382 *out << Verbose(3);
3383 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
3384 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
3385 *out << "Added OtherAtom " << OtherAtom->Name;
3386 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3387 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3388 AddedBondList[Binder->nr]->Type = Binder->Type;
3389 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
3390 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
3391 *out << "Not adding OtherAtom " << OtherAtom->Name;
3392 if (AddedBondList[Binder->nr] == NULL) {
3393 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3394 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3395 AddedBondList[Binder->nr]->Type = Binder->Type;
3396 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
3397 } else
3398 *out << ", not added Bond ";
3399 }
3400 *out << ", putting OtherAtom into queue." << endl;
3401 AtomStack->Push(OtherAtom);
3402 } else { // out of bond order, then replace
3403 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
3404 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
3405 if (Binder == Bond)
3406 *out << Verbose(3) << "Not Queueing, is the Root bond";
3407 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
3408 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
3409 if (!Binder->Cyclic)
3410 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
3411 if (AddedBondList[Binder->nr] == NULL) {
3412 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
3413 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3414 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3415 AddedBondList[Binder->nr]->Type = Binder->Type;
3416 } else {
3417#ifdef ADDHYDROGEN
3418 if (!Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem))
3419 exit(1);
3420#endif
3421 }
3422 }
3423 }
3424 } else {
3425 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
3426 // This has to be a cyclic bond, check whether it's present ...
3427 if (AddedBondList[Binder->nr] == NULL) {
3428 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
3429 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3430 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3431 AddedBondList[Binder->nr]->Type = Binder->Type;
3432 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
3433#ifdef ADDHYDROGEN
3434 if(!Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem))
3435 exit(1);
3436#endif
3437 }
3438 }
3439 }
3440 }
3441 }
3442 ColorList[Walker->nr] = black;
3443 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
3444 }
3445 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
3446 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
3447 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
3448 delete(AtomStack);
3449};
3450
3451/** Adds bond structure to this molecule from \a Father molecule.
3452 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
3453 * with end points present in this molecule, bond is created in this molecule.
3454 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
3455 * \param *out output stream for debugging
3456 * \param *Father father molecule
3457 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
3458 * \todo not checked, not fully working probably
3459 */
3460bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
3461{
3462 atom *Walker = NULL, *OtherAtom = NULL;
3463 bool status = true;
3464 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
3465
3466 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
3467
3468 // reset parent list
3469 *out << Verbose(3) << "Resetting ParentList." << endl;
3470 for (int i=Father->AtomCount;i--;)
3471 ParentList[i] = NULL;
3472
3473 // fill parent list with sons
3474 *out << Verbose(3) << "Filling Parent List." << endl;
3475 Walker = start;
3476 while (Walker->next != end) {
3477 Walker = Walker->next;
3478 ParentList[Walker->father->nr] = Walker;
3479 // Outputting List for debugging
3480 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
3481 }
3482
3483 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
3484 *out << Verbose(3) << "Creating bonds." << endl;
3485 Walker = Father->start;
3486 while (Walker->next != Father->end) {
3487 Walker = Walker->next;
3488 if (ParentList[Walker->nr] != NULL) {
3489 if (ParentList[Walker->nr]->father != Walker) {
3490 status = false;
3491 } else {
3492 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
3493 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3494 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
3495 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
3496 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
3497 }
3498 }
3499 }
3500 }
3501 }
3502
3503 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
3504 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
3505 return status;
3506};
3507
3508
3509/** Looks through a StackClass<atom *> and returns the likeliest removal candiate.
3510 * \param *out output stream for debugging messages
3511 * \param *&Leaf KeySet to look through
3512 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
3513 * \param index of the atom suggested for removal
3514 */
3515int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
3516{
3517 atom *Runner = NULL;
3518 int SP, Removal;
3519
3520 *out << Verbose(2) << "Looking for removal candidate." << endl;
3521 SP = -1; //0; // not -1, so that Root is never removed
3522 Removal = -1;
3523 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
3524 Runner = FindAtom((*runner));
3525 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
3526 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
3527 SP = ShortestPathList[(*runner)];
3528 Removal = (*runner);
3529 }
3530 }
3531 }
3532 return Removal;
3533};
3534
3535/** Stores a fragment from \a KeySet into \a molecule.
3536 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
3537 * molecule and adds missing hydrogen where bonds were cut.
3538 * \param *out output stream for debugging messages
3539 * \param &Leaflet pointer to KeySet structure
3540 * \param IsAngstroem whether we have Ansgtroem or bohrradius
3541 * \return pointer to constructed molecule
3542 */
3543molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
3544{
3545 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
3546 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
3547 molecule *Leaf = new molecule(elemente);
3548 bool LonelyFlag = false;
3549 int size;
3550
3551// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
3552
3553 Leaf->BondDistance = BondDistance;
3554 for(int i=NDIM*2;i--;)
3555 Leaf->cell_size[i] = cell_size[i];
3556
3557 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
3558 for(int i=AtomCount;i--;)
3559 SonList[i] = NULL;
3560
3561 // first create the minimal set of atoms from the KeySet
3562 size = 0;
3563 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
3564 FatherOfRunner = FindAtom((*runner)); // find the id
3565 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
3566 size++;
3567 }
3568
3569 // create the bonds between all: Make it an induced subgraph and add hydrogen
3570// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
3571 Runner = Leaf->start;
3572 while (Runner->next != Leaf->end) {
3573 Runner = Runner->next;
3574 LonelyFlag = true;
3575 FatherOfRunner = Runner->father;
3576 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
3577 // create all bonds
3578 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
3579 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
3580// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
3581 if (SonList[OtherFather->nr] != NULL) {
3582// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
3583 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
3584// *out << Verbose(3) << "Adding Bond: ";
3585// *out <<
3586 Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree);
3587// *out << "." << endl;
3588 //NumBonds[Runner->nr]++;
3589 } else {
3590// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
3591 }
3592 LonelyFlag = false;
3593 } else {
3594// *out << ", who has no son in this fragment molecule." << endl;
3595#ifdef ADDHYDROGEN
3596 //*out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
3597 if(!Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem))
3598 exit(1);
3599#endif
3600 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
3601 }
3602 }
3603 } else {
3604 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
3605 }
3606 if ((LonelyFlag) && (size > 1)) {
3607 *out << Verbose(0) << *Runner << "has got bonds only to hydrogens!" << endl;
3608 }
3609#ifdef ADDHYDROGEN
3610 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
3611 Runner = Runner->next;
3612#endif
3613 }
3614 Leaf->CreateListOfBondsPerAtom(out);
3615 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
3616 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
3617// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
3618 return Leaf;
3619};
3620
3621/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
3622 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
3623 * computer game, that winds through the connected graph representing the molecule. Color (white,
3624 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
3625 * creating only unique fragments and not additional ones with vertices simply in different sequence.
3626 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
3627 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
3628 * stepping.
3629 * \param *out output stream for debugging
3630 * \param Order number of atoms in each fragment
3631 * \param *configuration configuration for writing config files for each fragment
3632 * \return List of all unique fragments with \a Order atoms
3633 */
3634/*
3635MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
3636{
3637 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3638 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3639 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3640 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3641 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
3642 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount);
3643 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
3644 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack!
3645 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
3646 MoleculeListClass *FragmentList = NULL;
3647 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
3648 bond *Binder = NULL;
3649 int RunningIndex = 0, FragmentCounter = 0;
3650
3651 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
3652
3653 // reset parent list
3654 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
3655 for (int i=0;i<AtomCount;i++) { // reset all atom labels
3656 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
3657 Labels[i] = -1;
3658 SonList[i] = NULL;
3659 PredecessorList[i] = NULL;
3660 ColorVertexList[i] = white;
3661 ShortestPathList[i] = -1;
3662 }
3663 for (int i=0;i<BondCount;i++)
3664 ColorEdgeList[i] = white;
3665 RootStack->ClearStack(); // clearstack and push first atom if exists
3666 TouchedStack->ClearStack();
3667 Walker = start->next;
3668 while ((Walker != end)
3669#ifdef ADDHYDROGEN
3670 && (Walker->type->Z == 1)
3671#endif
3672 ) { // search for first non-hydrogen atom
3673 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
3674 Walker = Walker->next;
3675 }
3676 if (Walker != end)
3677 RootStack->Push(Walker);
3678 else
3679 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
3680 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
3681
3682 ///// OUTER LOOP ////////////
3683 while (!RootStack->IsEmpty()) {
3684 // get new root vertex from atom stack
3685 Root = RootStack->PopFirst();
3686 ShortestPathList[Root->nr] = 0;
3687 if (Labels[Root->nr] == -1)
3688 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
3689 PredecessorList[Root->nr] = Root;
3690 TouchedStack->Push(Root);
3691 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
3692
3693 // clear snake stack
3694 SnakeStack->ClearStack();
3695 //SnakeStack->TestImplementation(out, start->next);
3696
3697 ///// INNER LOOP ////////////
3698 // Problems:
3699 // - what about cyclic bonds?
3700 Walker = Root;
3701 do {
3702 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
3703 // initial setting of the new Walker: label, color, shortest path and put on stacks
3704 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
3705 Labels[Walker->nr] = RunningIndex++;
3706 RootStack->Push(Walker);
3707 }
3708 *out << ", has label " << Labels[Walker->nr];
3709 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
3710 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
3711 // Binder ought to be set still from last neighbour search
3712 *out << ", coloring bond " << *Binder << " black";
3713 ColorEdgeList[Binder->nr] = black; // mark this bond as used
3714 }
3715 if (ShortestPathList[Walker->nr] == -1) {
3716 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
3717 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
3718 }
3719 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
3720 SnakeStack->Push(Walker);
3721 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
3722 }
3723 }
3724 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
3725
3726 // then check the stack for a newly stumbled upon fragment
3727 if (SnakeStack->ItemCount() == Order) { // is stack full?
3728 // store the fragment if it is one and get a removal candidate
3729 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
3730 // remove the candidate if one was found
3731 if (Removal != NULL) {
3732 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
3733 SnakeStack->RemoveItem(Removal);
3734 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
3735 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
3736 Walker = PredecessorList[Removal->nr];
3737 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
3738 }
3739 }
3740 } else
3741 Removal = NULL;
3742
3743 // finally, look for a white neighbour as the next Walker
3744 Binder = NULL;
3745 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
3746 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
3747 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
3748 if (ShortestPathList[Walker->nr] < Order) {
3749 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3750 Binder = ListOfBondsPerAtom[Walker->nr][i];
3751 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
3752 OtherAtom = Binder->GetOtherAtom(Walker);
3753 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
3754 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
3755 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
3756 } else { // otherwise check its colour and element
3757 if (
3758#ifdef ADDHYDROGEN
3759 (OtherAtom->type->Z != 1) &&
3760#endif
3761 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
3762 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
3763 // i find it currently rather sensible to always set the predecessor in order to find one's way back
3764 //if (PredecessorList[OtherAtom->nr] == NULL) {
3765 PredecessorList[OtherAtom->nr] = Walker;
3766 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3767 //} else {
3768 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3769 //}
3770 Walker = OtherAtom;
3771 break;
3772 } else {
3773 if (OtherAtom->type->Z == 1)
3774 *out << "Links to a hydrogen atom." << endl;
3775 else
3776 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
3777 }
3778 }
3779 }
3780 } else { // means we have stepped beyond the horizon: Return!
3781 Walker = PredecessorList[Walker->nr];
3782 OtherAtom = Walker;
3783 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
3784 }
3785 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
3786 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
3787 ColorVertexList[Walker->nr] = black;
3788 Walker = PredecessorList[Walker->nr];
3789 }
3790 }
3791 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
3792 *out << Verbose(2) << "Inner Looping is finished." << endl;
3793
3794 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
3795 *out << Verbose(2) << "Resetting lists." << endl;
3796 Walker = NULL;
3797 Binder = NULL;
3798 while (!TouchedStack->IsEmpty()) {
3799 Walker = TouchedStack->PopLast();
3800 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
3801 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
3802 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
3803 PredecessorList[Walker->nr] = NULL;
3804 ColorVertexList[Walker->nr] = white;
3805 ShortestPathList[Walker->nr] = -1;
3806 }
3807 }
3808 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
3809
3810 // copy together
3811 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
3812 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
3813 RunningIndex = 0;
3814 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
3815 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
3816 Leaflet->Leaf = NULL; // prevent molecule from being removed
3817 TempLeaf = Leaflet;
3818 Leaflet = Leaflet->previous;
3819 delete(TempLeaf);
3820 };
3821
3822 // free memory and exit
3823 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3824 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3825 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3826 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3827 delete(RootStack);
3828 delete(TouchedStack);
3829 delete(SnakeStack);
3830
3831 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3832 return FragmentList;
3833};
3834*/
3835
3836/** Structure containing all values in power set combination generation.
3837 */
3838struct UniqueFragments {
3839 config *configuration;
3840 atom *Root;
3841 Graph *Leaflet;
3842 KeySet *FragmentSet;
3843 int ANOVAOrder;
3844 int FragmentCounter;
3845 int CurrentIndex;
3846 double TEFactor;
3847 int *ShortestPathList;
3848 bool **UsedList;
3849 bond **BondsPerSPList;
3850 int *BondsPerSPCount;
3851};
3852
3853/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3854 * -# loops over every possible combination (2^dimension of edge set)
3855 * -# inserts current set, if there's still space left
3856 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
3857ance+1
3858 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
3859 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
3860distance) and current set
3861 * \param *out output stream for debugging
3862 * \param FragmentSearch UniqueFragments structure with all values needed
3863 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3864 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3865 * \param SubOrder remaining number of allowed vertices to add
3866 */
3867void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3868{
3869 atom *OtherWalker = NULL;
3870 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3871 int NumCombinations;
3872 bool bit;
3873 int bits, TouchedIndex, SubSetDimension, SP, Added;
3874 int Removal;
3875 int SpaceLeft;
3876 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3877 bond *Binder = NULL;
3878 bond **BondsList = NULL;
3879 KeySetTestPair TestKeySetInsert;
3880
3881 NumCombinations = 1 << SetDimension;
3882
3883 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3884 // von Endstuecken (aus den Bonds) hinzugefᅵᅵgt werden und fᅵᅵr verbleibende ANOVAOrder
3885 // rekursiv GraphCrawler in der nᅵᅵchsten Ebene aufgerufen werden
3886
3887 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3888 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3889
3890 // initialised touched list (stores added atoms on this level)
3891 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3892 for (TouchedIndex=SubOrder+1;TouchedIndex--;) // empty touched list
3893 TouchedList[TouchedIndex] = -1;
3894 TouchedIndex = 0;
3895
3896 // create every possible combination of the endpieces
3897 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3898 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3899 // count the set bit of i
3900 bits = 0;
3901 for (int j=SetDimension;j--;)
3902 bits += (i & (1 << j)) >> j;
3903
3904 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3905 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3906 // --1-- add this set of the power set of bond partners to the snake stack
3907 Added = 0;
3908 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3909 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3910 if (bit) { // if bit is set, we add this bond partner
3911 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3912 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3913 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
3914 TestKeySetInsert = FragmentSearch->FragmentSet->insert(OtherWalker->nr);
3915 if (TestKeySetInsert.second) {
3916 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3917 Added++;
3918 } else {
3919 *out << Verbose(2+verbosity) << "This was item was already present in the keyset." << endl;
3920 }
3921 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3922 //}
3923 } else {
3924 *out << Verbose(2+verbosity) << "Not adding." << endl;
3925 }
3926 }
3927
3928 SpaceLeft = SubOrder - Added ;// SubOrder - bits; // due to item's maybe being already present, this does not work anymore
3929 if (SpaceLeft > 0) {
3930 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << SpaceLeft << "." << endl;
3931 if (SubOrder > 1) { // Due to Added above we have to check extra whether we're not already reaching beyond the desired Order
3932 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3933 SP = RootDistance+1; // this is the next level
3934 // first count the members in the subset
3935 SubSetDimension = 0;
3936 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3937 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3938 Binder = Binder->next;
3939 for (int k=TouchedIndex;k--;) {
3940 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3941 SubSetDimension++;
3942 }
3943 }
3944 // then allocate and fill the list
3945 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3946 SubSetDimension = 0;
3947 Binder = FragmentSearch->BondsPerSPList[2*SP];
3948 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3949 Binder = Binder->next;
3950 for (int k=0;k<TouchedIndex;k++) {
3951 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3952 BondsList[SubSetDimension++] = Binder;
3953 }
3954 }
3955 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3956 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3957 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3958 }
3959 } else {
3960 // --2-- otherwise store the complete fragment
3961 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3962 // store fragment as a KeySet
3963 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
3964 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3965 *out << (*runner) << " ";
3966 *out << endl;
3967 //if (!CheckForConnectedSubgraph(out, FragmentSearch->FragmentSet))
3968 //*out << Verbose(0) << "ERROR: The found fragment is not a connected subgraph!" << endl;
3969 InsertFragmentIntoGraph(out, FragmentSearch);
3970 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3971 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3972 }
3973
3974 // --3-- remove all added items in this level from snake stack
3975 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3976 for(int j=0;j<TouchedIndex;j++) {
3977 Removal = TouchedList[j];
3978 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
3979 FragmentSearch->FragmentSet->erase(Removal);
3980 TouchedList[j] = -1;
3981 }
3982 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
3983 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3984 *out << (*runner) << " ";
3985 *out << endl;
3986 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3987 } else {
3988 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3989 }
3990 }
3991 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3992 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3993};
3994
3995/** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
3996 * \param *out output stream for debugging
3997 * \param *Fragment Keyset of fragment's vertices
3998 * \return true - connected, false - disconnected
3999 * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
4000 */
4001bool molecule::CheckForConnectedSubgraph(ofstream *out, KeySet *Fragment)
4002{
4003 atom *Walker = NULL, *Walker2 = NULL;
4004 bool BondStatus = false;
4005 int size;
4006
4007 *out << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;
4008 *out << Verbose(2) << "Disconnected atom: ";
4009
4010 // count number of atoms in graph
4011 size = 0;
4012 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
4013 size++;
4014 if (size > 1)
4015 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
4016 Walker = FindAtom(*runner);
4017 BondStatus = false;
4018 for(KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
4019 Walker2 = FindAtom(*runners);
4020 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
4021 if (ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker) == Walker2) {
4022 BondStatus = true;
4023 break;
4024 }
4025 if (BondStatus)
4026 break;
4027 }
4028 }
4029 if (!BondStatus) {
4030 *out << (*Walker) << endl;
4031 return false;
4032 }
4033 }
4034 else {
4035 *out << "none." << endl;
4036 return true;
4037 }
4038 *out << "none." << endl;
4039
4040 *out << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;
4041
4042 return true;
4043}
4044
4045/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
4046 * -# initialises UniqueFragments structure
4047 * -# fills edge list via BFS
4048 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
4049 root distance, the edge set, its dimension and the current suborder
4050 * -# Free'ing structure
4051 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
4052 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
4053 * \param *out output stream for debugging
4054 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
4055 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on
4056 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
4057 * \return number of inserted fragments
4058 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
4059 */
4060int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)
4061{
4062 int SP, AtomKeyNr;
4063 atom *Walker = NULL, *OtherWalker = NULL, *Predecessor = NULL;
4064 bond *Binder = NULL;
4065 bond *CurrentEdge = NULL;
4066 bond **BondsList = NULL;
4067 int RootKeyNr = FragmentSearch.Root->GetTrueFather()->nr;
4068 int Counter = FragmentSearch.FragmentCounter;
4069 int RemainingWalkers;
4070
4071 *out << endl;
4072 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
4073
4074 // prepare Label and SP arrays of the BFS search
4075 FragmentSearch.ShortestPathList[FragmentSearch.Root->nr] = 0;
4076
4077 // prepare root level (SP = 0) and a loop bond denoting Root
4078 for (int i=1;i<Order;i++)
4079 FragmentSearch.BondsPerSPCount[i] = 0;
4080 FragmentSearch.BondsPerSPCount[0] = 1;
4081 Binder = new bond(FragmentSearch.Root, FragmentSearch.Root);
4082 add(Binder, FragmentSearch.BondsPerSPList[1]);
4083
4084 // do a BFS search to fill the SP lists and label the found vertices
4085 // Actually, we should construct a spanning tree vom the root atom and select all edges therefrom and put them into
4086 // according shortest path lists. However, we don't. Rather we fill these lists right away, as they do form a spanning
4087 // tree already sorted into various SP levels. That's why we just do loops over the depth (CurrentSP) and breadth
4088 // (EdgeinSPLevel) of this tree ...
4089 // In another picture, the bonds always contain a direction by rightatom being the one more distant from root and hence
4090 // naturally leftatom forming its predecessor, preventing the BFS"seeker" from continuing in the wrong direction.
4091 *out << endl;
4092 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
4093 for (SP = 0; SP < (Order-1); SP++) {
4094 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with " << FragmentSearch.BondsPerSPCount[SP] << " item(s)";
4095 if (SP > 0) {
4096 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
4097 FragmentSearch.BondsPerSPCount[SP] = 0;
4098 } else
4099 *out << "." << endl;
4100
4101 RemainingWalkers = FragmentSearch.BondsPerSPCount[SP];
4102 CurrentEdge = FragmentSearch.BondsPerSPList[2*SP]; /// start of this SP level's list
4103 while (CurrentEdge->next != FragmentSearch.BondsPerSPList[2*SP+1]) { /// end of this SP level's list
4104 CurrentEdge = CurrentEdge->next;
4105 RemainingWalkers--;
4106 Walker = CurrentEdge->rightatom; // rightatom is always the one more distant
4107 Predecessor = CurrentEdge->leftatom; // ... and leftatom is predecessor
4108 AtomKeyNr = Walker->nr;
4109 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and SP of " << SP << ", with " << RemainingWalkers << " remaining walkers on this level." << endl;
4110 // check for new sp level
4111 // go through all its bonds
4112 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
4113 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
4114 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
4115 OtherWalker = Binder->GetOtherAtom(Walker);
4116 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
4117 #ifdef ADDHYDROGEN
4118 && (OtherWalker->type->Z != 1)
4119 #endif
4120 ) { // skip hydrogens and restrict to fragment
4121 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
4122 // set the label if not set (and push on root stack as well)
4123 if ((OtherWalker != Predecessor) && (OtherWalker->GetTrueFather()->nr > RootKeyNr)) { // only pass through those with label bigger than Root's
4124 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
4125 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
4126 // add the bond in between to the SP list
4127 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
4128 add(Binder, FragmentSearch.BondsPerSPList[2*(SP+1)+1]);
4129 FragmentSearch.BondsPerSPCount[SP+1]++;
4130 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP+1] << " item(s)." << endl;
4131 } else {
4132 if (OtherWalker != Predecessor)
4133 *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->GetTrueFather()->nr << " is smaller than that of Root " << RootKeyNr << "." << endl;
4134 else
4135 *out << Verbose(3) << "This is my predecessor " << *Predecessor << "." << endl;
4136 }
4137 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
4138 }
4139 }
4140 }
4141
4142 // outputting all list for debugging
4143 *out << Verbose(0) << "Printing all found lists." << endl;
4144 for(int i=1;i<Order;i++) { // skip the root edge in the printing
4145 Binder = FragmentSearch.BondsPerSPList[2*i];
4146 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
4147 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4148 Binder = Binder->next;
4149 *out << Verbose(2) << *Binder << endl;
4150 }
4151 }
4152
4153 // creating fragments with the found edge sets (may be done in reverse order, faster)
4154 SP = -1; // the Root <-> Root edge must be subtracted!
4155 for(int i=Order;i--;) { // sum up all found edges
4156 Binder = FragmentSearch.BondsPerSPList[2*i];
4157 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4158 Binder = Binder->next;
4159 SP ++;
4160 }
4161 }
4162 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
4163 if (SP >= (Order-1)) {
4164 // start with root (push on fragment stack)
4165 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
4166 FragmentSearch.FragmentSet->clear();
4167 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
4168 // prepare the subset and call the generator
4169 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
4170 BondsList[0] = FragmentSearch.BondsPerSPList[0]->next; // on SP level 0 there's only the root bond
4171
4172 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order);
4173
4174 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
4175 } else {
4176 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
4177 }
4178
4179 // as FragmentSearch structure is used only once, we don't have to clean it anymore
4180 // remove root from stack
4181 *out << Verbose(0) << "Removing root again from stack." << endl;
4182 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
4183
4184 // free'ing the bonds lists
4185 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
4186 for(int i=Order;i--;) {
4187 *out << Verbose(1) << "Current SP level is " << i << ": ";
4188 Binder = FragmentSearch.BondsPerSPList[2*i];
4189 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4190 Binder = Binder->next;
4191 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
4192 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
4193 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
4194 }
4195 // delete added bonds
4196 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
4197 // also start and end node
4198 *out << "cleaned." << endl;
4199 }
4200
4201 // return list
4202 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
4203 return (FragmentSearch.FragmentCounter - Counter);
4204};
4205
4206/** Corrects the nuclei position if the fragment was created over the cell borders.
4207 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
4208 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
4209 * and re-add the bond. Looping on the distance check.
4210 * \param *out ofstream for debugging messages
4211 */
4212void molecule::ScanForPeriodicCorrection(ofstream *out)
4213{
4214 bond *Binder = NULL;
4215 bond *OtherBinder = NULL;
4216 atom *Walker = NULL;
4217 atom *OtherWalker = NULL;
4218 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
4219 enum Shading *ColorList = NULL;
4220 double tmp;
4221 Vector Translationvector;
4222 //class StackClass<atom *> *CompStack = NULL;
4223 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
4224 bool flag = true;
4225
4226 *out << Verbose(2) << "Begin of ScanForPeriodicCorrection." << endl;
4227
4228 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
4229 while (flag) {
4230 // remove bonds that are beyond bonddistance
4231 for(int i=NDIM;i--;)
4232 Translationvector.x[i] = 0.;
4233 // scan all bonds
4234 Binder = first;
4235 flag = false;
4236 while ((!flag) && (Binder->next != last)) {
4237 Binder = Binder->next;
4238 for (int i=NDIM;i--;) {
4239 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
4240 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
4241 if (tmp > BondDistance) {
4242 OtherBinder = Binder->next; // note down binding partner for later re-insertion
4243 unlink(Binder); // unlink bond
4244 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
4245 flag = true;
4246 break;
4247 }
4248 }
4249 }
4250 if (flag) {
4251 // create translation vector from their periodically modified distance
4252 for (int i=NDIM;i--;) {
4253 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
4254 if (fabs(tmp) > BondDistance)
4255 Translationvector.x[i] = (tmp < 0) ? +1. : -1.;
4256 }
4257 Translationvector.MatrixMultiplication(matrix);
4258 //*out << Verbose(3) << "Translation vector is ";
4259 Translationvector.Output(out);
4260 *out << endl;
4261 // apply to all atoms of first component via BFS
4262 for (int i=AtomCount;i--;)
4263 ColorList[i] = white;
4264 AtomStack->Push(Binder->leftatom);
4265 while (!AtomStack->IsEmpty()) {
4266 Walker = AtomStack->PopFirst();
4267 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
4268 ColorList[Walker->nr] = black; // mark as explored
4269 Walker->x.AddVector(&Translationvector); // translate
4270 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
4271 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
4272 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
4273 if (ColorList[OtherWalker->nr] == white) {
4274 AtomStack->Push(OtherWalker); // push if yet unexplored
4275 }
4276 }
4277 }
4278 }
4279 // re-add bond
4280 link(Binder, OtherBinder);
4281 } else {
4282 *out << Verbose(3) << "No corrections for this fragment." << endl;
4283 }
4284 //delete(CompStack);
4285 }
4286
4287 // free allocated space from ReturnFullMatrixforSymmetric()
4288 delete(AtomStack);
4289 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
4290 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
4291 *out << Verbose(2) << "End of ScanForPeriodicCorrection." << endl;
4292};
4293
4294/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
4295 * \param *symm 6-dim array of unique symmetric matrix components
4296 * \return allocated NDIM*NDIM array with the symmetric matrix
4297 */
4298double * molecule::ReturnFullMatrixforSymmetric(double *symm)
4299{
4300 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
4301 matrix[0] = symm[0];
4302 matrix[1] = symm[1];
4303 matrix[2] = symm[3];
4304 matrix[3] = symm[1];
4305 matrix[4] = symm[2];
4306 matrix[5] = symm[4];
4307 matrix[6] = symm[3];
4308 matrix[7] = symm[4];
4309 matrix[8] = symm[5];
4310 return matrix;
4311};
4312
4313bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
4314{
4315 //cout << "my check is used." << endl;
4316 if (SubgraphA.size() < SubgraphB.size()) {
4317 return true;
4318 } else {
4319 if (SubgraphA.size() > SubgraphB.size()) {
4320 return false;
4321 } else {
4322 KeySet::iterator IteratorA = SubgraphA.begin();
4323 KeySet::iterator IteratorB = SubgraphB.begin();
4324 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
4325 if ((*IteratorA) < (*IteratorB))
4326 return true;
4327 else if ((*IteratorA) > (*IteratorB)) {
4328 return false;
4329 } // else, go on to next index
4330 IteratorA++;
4331 IteratorB++;
4332 } // end of while loop
4333 }// end of check in case of equal sizes
4334 }
4335 return false; // if we reach this point, they are equal
4336};
4337
4338//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
4339//{
4340// return KeyCompare(SubgraphA, SubgraphB);
4341//};
4342
4343/** Checking whether KeySet is not already present in Graph, if so just adds factor.
4344 * \param *out output stream for debugging
4345 * \param &set KeySet to insert
4346 * \param &graph Graph to insert into
4347 * \param *counter pointer to unique fragment count
4348 * \param factor energy factor for the fragment
4349 */
4350inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
4351{
4352 GraphTestPair testGraphInsert;
4353
4354 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
4355 if (testGraphInsert.second) {
4356 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
4357 Fragment->FragmentCounter++;
4358 } else {
4359 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
4360 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter
4361 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
4362 }
4363};
4364//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
4365//{
4366// // copy stack contents to set and call overloaded function again
4367// KeySet set;
4368// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
4369// set.insert((*runner));
4370// InsertIntoGraph(out, set, graph, counter, factor);
4371//};
4372
4373/** Inserts each KeySet in \a graph2 into \a graph1.
4374 * \param *out output stream for debugging
4375 * \param graph1 first (dest) graph
4376 * \param graph2 second (source) graph
4377 * \param *counter keyset counter that gets increased
4378 */
4379inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
4380{
4381 GraphTestPair testGraphInsert;
4382
4383 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
4384 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
4385 if (testGraphInsert.second) {
4386 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
4387 } else {
4388 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
4389 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
4390 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
4391 }
4392 }
4393};
4394
4395
4396/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
4397 * -# constructs a complete keyset of the molecule
4398 * -# In a loop over all possible roots from the given rootstack
4399 * -# increases order of root site
4400 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
4401 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
4402as the restricted one and each site in the set as the root)
4403 * -# these are merged into a fragment list of keysets
4404 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
4405 * Important only is that we create all fragments, it is not important if we create them more than once
4406 * as these copies are filtered out via use of the hash table (KeySet).
4407 * \param *out output stream for debugging
4408 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list
4409 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
4410 * \param *MinimumRingSize minimum ring size for each atom (molecule::Atomcount)
4411 * \return pointer to Graph list
4412 */
4413void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack, int *MinimumRingSize)
4414{
4415 Graph ***FragmentLowerOrdersList = NULL;
4416 int NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
4417 int counter = 0, Order;
4418 int UpgradeCount = RootStack.size();
4419 KeyStack FragmentRootStack;
4420 int RootKeyNr, RootNr;
4421 struct UniqueFragments FragmentSearch;
4422
4423 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
4424
4425 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
4426 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
4427 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4428 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4429
4430 // initialise the fragments structure
4431 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
4432 FragmentSearch.FragmentCounter = 0;
4433 FragmentSearch.FragmentSet = new KeySet;
4434 FragmentSearch.Root = FindAtom(RootKeyNr);
4435 for (int i=AtomCount;i--;) {
4436 FragmentSearch.ShortestPathList[i] = -1;
4437 }
4438
4439 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
4440 atom *Walker = start;
4441 KeySet CompleteMolecule;
4442 while (Walker->next != end) {
4443 Walker = Walker->next;
4444 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
4445 }
4446
4447 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
4448 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
4449 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
4450 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
4451 RootNr = 0; // counts through the roots in RootStack
4452 while ((RootNr < UpgradeCount) && (!RootStack.empty())) {
4453 RootKeyNr = RootStack.front();
4454 RootStack.pop_front();
4455 Walker = FindAtom(RootKeyNr);
4456 // check cyclic lengths
4457 //if ((MinimumRingSize[Walker->GetTrueFather()->nr] != -1) && (Walker->GetTrueFather()->AdaptiveOrder+1 > MinimumRingSize[Walker->GetTrueFather()->nr])) {
4458 // *out << Verbose(0) << "Bond order " << Walker->GetTrueFather()->AdaptiveOrder << " of Root " << *Walker << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
4459 //} else
4460 {
4461 // increase adaptive order by one
4462 Walker->GetTrueFather()->AdaptiveOrder++;
4463 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
4464
4465 // initialise Order-dependent entries of UniqueFragments structure
4466 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
4467 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
4468 for (int i=Order;i--;) {
4469 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
4470 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
4471 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
4472 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
4473 FragmentSearch.BondsPerSPCount[i] = 0;
4474 }
4475
4476 // allocate memory for all lower level orders in this 1D-array of ptrs
4477 NumLevels = 1 << (Order-1); // (int)pow(2,Order);
4478 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4479 for (int i=0;i<NumLevels;i++)
4480 FragmentLowerOrdersList[RootNr][i] = NULL;
4481
4482 // create top order where nothing is reduced
4483 *out << Verbose(0) << "==============================================================================================================" << endl;
4484 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", " << (RootStack.size()-RootNr) << " Roots remaining." << endl; // , NumLevels is " << NumLevels << "
4485
4486 // Create list of Graphs of current Bond Order (i.e. F_{ij})
4487 FragmentLowerOrdersList[RootNr][0] = new Graph;
4488 FragmentSearch.TEFactor = 1.;
4489 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph
4490 FragmentSearch.Root = Walker;
4491 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);
4492 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4493 if (NumMoleculesOfOrder[RootNr] != 0) {
4494 NumMolecules = 0;
4495
4496 // we don't have to dive into suborders! These keysets are all already created on lower orders!
4497 // this was all ancient stuff, when we still depended on the TEFactors (and for those the suborders were needed)
4498
4499// if ((NumLevels >> 1) > 0) {
4500// // create lower order fragments
4501// *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
4502// Order = Walker->AdaptiveOrder;
4503// for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
4504// // step down to next order at (virtual) boundary of powers of 2 in array
4505// while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
4506// Order--;
4507// *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
4508// for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {
4509// int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));
4510// *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
4511// *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;
4512//
4513// // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
4514// //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
4515// //NumMolecules = 0;
4516// FragmentLowerOrdersList[RootNr][dest] = new Graph;
4517// for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
4518// for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
4519// Graph TempFragmentList;
4520// FragmentSearch.TEFactor = -(*runner).second.second;
4521// FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph
4522// FragmentSearch.Root = FindAtom(*sprinter);
4523// NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);
4524// // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
4525// *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
4526// InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);
4527// }
4528// }
4529// *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
4530// }
4531// }
4532// }
4533 } else {
4534 Walker->GetTrueFather()->MaxOrder = true;
4535// *out << Verbose(1) << "Hence, we don't dive into SubOrders ... " << endl;
4536 }
4537 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
4538 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
4539 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
4540// *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4541 RootStack.push_back(RootKeyNr); // put back on stack
4542 RootNr++;
4543
4544 // free Order-dependent entries of UniqueFragments structure for next loop cycle
4545 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
4546 for (int i=Order;i--;) {
4547 delete(FragmentSearch.BondsPerSPList[2*i]);
4548 delete(FragmentSearch.BondsPerSPList[2*i+1]);
4549 }
4550 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
4551 }
4552 }
4553 *out << Verbose(0) << "==============================================================================================================" << endl;
4554 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
4555 *out << Verbose(0) << "==============================================================================================================" << endl;
4556
4557 // cleanup FragmentSearch structure
4558 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
4559 delete(FragmentSearch.FragmentSet);
4560
4561 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
4562 // 5433222211111111
4563 // 43221111
4564 // 3211
4565 // 21
4566 // 1
4567
4568 // Subsequently, we combine all into a single list (FragmentList)
4569
4570 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
4571 if (FragmentList == NULL) {
4572 FragmentList = new Graph;
4573 counter = 0;
4574 } else {
4575 counter = FragmentList->size();
4576 }
4577 RootNr = 0;
4578 while (!RootStack.empty()) {
4579 RootKeyNr = RootStack.front();
4580 RootStack.pop_front();
4581 Walker = FindAtom(RootKeyNr);
4582 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
4583 for(int i=0;i<NumLevels;i++) {
4584 if (FragmentLowerOrdersList[RootNr][i] != NULL) {
4585 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
4586 delete(FragmentLowerOrdersList[RootNr][i]);
4587 }
4588 }
4589 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4590 RootNr++;
4591 }
4592 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4593 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4594
4595 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
4596};
4597
4598/** Comparison function for GSL heapsort on distances in two molecules.
4599 * \param *a
4600 * \param *b
4601 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
4602 */
4603inline int CompareDoubles (const void * a, const void * b)
4604{
4605 if (*(double *)a > *(double *)b)
4606 return -1;
4607 else if (*(double *)a < *(double *)b)
4608 return 1;
4609 else
4610 return 0;
4611};
4612
4613/** Determines whether two molecules actually contain the same atoms and coordination.
4614 * \param *out output stream for debugging
4615 * \param *OtherMolecule the molecule to compare this one to
4616 * \param threshold upper limit of difference when comparing the coordination.
4617 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
4618 */
4619int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
4620{
4621 int flag;
4622 double *Distances = NULL, *OtherDistances = NULL;
4623 Vector CenterOfGravity, OtherCenterOfGravity;
4624 size_t *PermMap = NULL, *OtherPermMap = NULL;
4625 int *PermutationMap = NULL;
4626 atom *Walker = NULL;
4627 bool result = true; // status of comparison
4628
4629 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
4630 /// first count both their atoms and elements and update lists thereby ...
4631 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
4632 CountAtoms(out);
4633 OtherMolecule->CountAtoms(out);
4634 CountElements();
4635 OtherMolecule->CountElements();
4636
4637 /// ... and compare:
4638 /// -# AtomCount
4639 if (result) {
4640 if (AtomCount != OtherMolecule->AtomCount) {
4641 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
4642 result = false;
4643 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
4644 }
4645 /// -# ElementCount
4646 if (result) {
4647 if (ElementCount != OtherMolecule->ElementCount) {
4648 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
4649 result = false;
4650 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
4651 }
4652 /// -# ElementsInMolecule
4653 if (result) {
4654 for (flag=MAX_ELEMENTS;flag--;) {
4655 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
4656 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
4657 break;
4658 }
4659 if (flag < MAX_ELEMENTS) {
4660 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
4661 result = false;
4662 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
4663 }
4664 /// then determine and compare center of gravity for each molecule ...
4665 if (result) {
4666 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
4667 DetermineCenter(CenterOfGravity);
4668 OtherMolecule->DetermineCenter(OtherCenterOfGravity);
4669 *out << Verbose(5) << "Center of Gravity: ";
4670 CenterOfGravity.Output(out);
4671 *out << endl << Verbose(5) << "Other Center of Gravity: ";
4672 OtherCenterOfGravity.Output(out);
4673 *out << endl;
4674 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
4675 *out << Verbose(4) << "Centers of gravity don't match." << endl;
4676 result = false;
4677 }
4678 }
4679
4680 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
4681 if (result) {
4682 *out << Verbose(5) << "Calculating distances" << endl;
4683 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
4684 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
4685 Walker = start;
4686 while (Walker->next != end) {
4687 Walker = Walker->next;
4688 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
4689 }
4690 Walker = OtherMolecule->start;
4691 while (Walker->next != OtherMolecule->end) {
4692 Walker = Walker->next;
4693 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
4694 }
4695
4696 /// ... sort each list (using heapsort (o(N log N)) from GSL)
4697 *out << Verbose(5) << "Sorting distances" << endl;
4698 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
4699 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4700 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
4701 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
4702 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4703 *out << Verbose(5) << "Combining Permutation Maps" << endl;
4704 for(int i=AtomCount;i--;)
4705 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
4706
4707 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
4708 *out << Verbose(4) << "Comparing distances" << endl;
4709 flag = 0;
4710 for (int i=0;i<AtomCount;i++) {
4711 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
4712 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
4713 flag = 1;
4714 }
4715 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
4716 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4717
4718 /// free memory
4719 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
4720 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
4721 if (flag) { // if not equal
4722 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4723 result = false;
4724 }
4725 }
4726 /// return pointer to map if all distances were below \a threshold
4727 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
4728 if (result) {
4729 *out << Verbose(3) << "Result: Equal." << endl;
4730 return PermutationMap;
4731 } else {
4732 *out << Verbose(3) << "Result: Not equal." << endl;
4733 return NULL;
4734 }
4735};
4736
4737/** Returns an index map for two father-son-molecules.
4738 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
4739 * \param *out output stream for debugging
4740 * \param *OtherMolecule corresponding molecule with fathers
4741 * \return allocated map of size molecule::AtomCount with map
4742 * \todo make this with a good sort O(n), not O(n^2)
4743 */
4744int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
4745{
4746 atom *Walker = NULL, *OtherWalker = NULL;
4747 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
4748 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
4749 for (int i=AtomCount;i--;)
4750 AtomicMap[i] = -1;
4751 if (OtherMolecule == this) { // same molecule
4752 for (int i=AtomCount;i--;) // no need as -1 means already that there is trivial correspondence
4753 AtomicMap[i] = i;
4754 *out << Verbose(4) << "Map is trivial." << endl;
4755 } else {
4756 *out << Verbose(4) << "Map is ";
4757 Walker = start;
4758 while (Walker->next != end) {
4759 Walker = Walker->next;
4760 if (Walker->father == NULL) {
4761 AtomicMap[Walker->nr] = -2;
4762 } else {
4763 OtherWalker = OtherMolecule->start;
4764 while (OtherWalker->next != OtherMolecule->end) {
4765 OtherWalker = OtherWalker->next;
4766 //for (int i=0;i<AtomCount;i++) { // search atom
4767 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
4768 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
4769 if (Walker->father == OtherWalker)
4770 AtomicMap[Walker->nr] = OtherWalker->nr;
4771 }
4772 }
4773 *out << AtomicMap[Walker->nr] << "\t";
4774 }
4775 *out << endl;
4776 }
4777 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
4778 return AtomicMap;
4779};
4780
4781/** Stores the temperature evaluated from velocities in molecule::Trajectories.
4782 * We simply use the formula equivaleting temperature and kinetic energy:
4783 * \f$k_B T = \sum_i m_i v_i^2\f$
4784 * \param *out output stream for debugging
4785 * \param startstep first MD step in molecule::Trajectories
4786 * \param endstep last plus one MD step in molecule::Trajectories
4787 * \param *output output stream of temperature file
4788 * \return file written (true), failure on writing file (false)
4789 */
4790bool molecule::OutputTemperatureFromTrajectories(ofstream *out, int startstep, int endstep, ofstream *output)
4791{
4792 double temperature;
4793 atom *Walker = NULL;
4794 // test stream
4795 if (output == NULL)
4796 return false;
4797 else
4798 *output << "# Step Temperature [K] Temperature [a.u.]" << endl;
4799 for (int step=startstep;step < endstep; step++) { // loop over all time steps
4800 temperature = 0.;
4801 Walker = start;
4802 while (Walker->next != end) {
4803 Walker = Walker->next;
4804 for (int i=NDIM;i--;)
4805 temperature += Walker->type->mass * Trajectories[Walker].U.at(step).x[i]* Trajectories[Walker].U.at(step).x[i];
4806 }
4807 *output << step << "\t" << temperature*AtomicEnergyToKelvin << "\t" << temperature << endl;
4808 }
4809 return true;
4810};
Note: See TracBrowser for help on using the repository browser.