source: src/molecules.cpp@ 795a54

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 795a54 was 795a54, checked in by Frederik Heber <heber@…>, 16 years ago

molecule::MinimiseConstrainedPotential(): Extension of search and bugfix

We set the DistanceIterator to the begin() of DistanceList if we have reached the end, i.e. start anew for searching possible candidates.
Trajectories were not written correctly, due to wrong if condition (step> MDSteps) instead of (steps < MaxStep)

  • Property mode set to 100644
File size: 234.5 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 Vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=num;i--;) {
24 for(int j=NDIM;j--;)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 MDSteps = 0;
50 last_atom = 0;
51 elemente = teil;
52 AtomCount = 0;
53 BondCount = 0;
54 NoNonBonds = 0;
55 NoNonHydrogen = 0;
56 NoCyclicBonds = 0;
57 ListOfBondsPerAtom = NULL;
58 NumberOfBondsPerAtom = NULL;
59 ElementCount = 0;
60 for(int i=MAX_ELEMENTS;i--;)
61 ElementsInMolecule[i] = 0;
62 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
63 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
64};
65
66/** Destructor of class molecule.
67 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
68 */
69molecule::~molecule()
70{
71 if (ListOfBondsPerAtom != NULL)
72 for(int i=AtomCount;i--;)
73 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
74 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
75 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
76 CleanupMolecule();
77 delete(first);
78 delete(last);
79 delete(end);
80 delete(start);
81};
82
83/** Adds given atom \a *pointer from molecule list.
84 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
85 * \param *pointer allocated and set atom
86 * \return true - succeeded, false - atom not found in list
87 */
88bool molecule::AddAtom(atom *pointer)
89{
90 if (pointer != NULL) {
91 pointer->sort = &pointer->nr;
92 pointer->nr = last_atom++; // increase number within molecule
93 AtomCount++;
94 if (pointer->type != NULL) {
95 if (ElementsInMolecule[pointer->type->Z] == 0)
96 ElementCount++;
97 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
98 if (pointer->type->Z != 1)
99 NoNonHydrogen++;
100 if (pointer->Name == NULL) {
101 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
102 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
103 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
104 }
105 }
106 return add(pointer, end);
107 } else
108 return false;
109};
110
111/** Adds a copy of the given atom \a *pointer from molecule list.
112 * Increases molecule::last_atom and gives last number to added atom.
113 * \param *pointer allocated and set atom
114 * \return true - succeeded, false - atom not found in list
115 */
116atom * molecule::AddCopyAtom(atom *pointer)
117{
118 if (pointer != NULL) {
119 atom *walker = new atom();
120 walker->type = pointer->type; // copy element of atom
121 walker->x.CopyVector(&pointer->x); // copy coordination
122 walker->v.CopyVector(&pointer->v); // copy velocity
123 walker->FixedIon = pointer->FixedIon;
124 walker->sort = &walker->nr;
125 walker->nr = last_atom++; // increase number within molecule
126 walker->father = pointer; //->GetTrueFather();
127 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
128 strcpy (walker->Name, pointer->Name);
129 add(walker, end);
130 if ((pointer->type != NULL) && (pointer->type->Z != 1))
131 NoNonHydrogen++;
132 AtomCount++;
133 return walker;
134 } else
135 return NULL;
136};
137
138/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
139 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
140 * a different scheme when adding \a *replacement atom for the given one.
141 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
142 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
143 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector().
144 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
145 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
146 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
147 * hydrogens forming this angle with *origin.
148 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
149 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
150 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
151 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
152 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
153 * \f]
154 * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates
155 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
156 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
157 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
158 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
159 * \f]
160 * as the coordination of all three atoms in the coordinate system of these three vectors:
161 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
162 *
163 * \param *out output stream for debugging
164 * \param *Bond pointer to bond between \a *origin and \a *replacement
165 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
166 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
167 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
168 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
169 * \param NumBond number of bonds in \a **BondList
170 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
171 * \return number of atoms added, if < bond::BondDegree then something went wrong
172 * \todo double and triple bonds splitting (always use the tetraeder angle!)
173 */
174bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
175{
176 double bondlength; // bond length of the bond to be replaced/cut
177 double bondangle; // bond angle of the bond to be replaced/cut
178 double BondRescale; // rescale value for the hydrogen bond length
179 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
180 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
181 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
184 Vector InBondvector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondvector.CopyVector(&TopReplacement->x);
191 InBondvector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondvector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondvector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198// *out << Verbose(4) << "InBondvector is: ";
199// InBondvector.Output(out);
200// *out << endl;
201 Orthovector1.Zero();
202 for (int i=NDIM;i--;) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 Orthovector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 Orthovector1.MatrixMultiplication(matrix);
210 InBondvector.SubtractVector(&Orthovector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondvector.Norm();
213// *out << Verbose(4) << "Corrected InBondvector is now: ";
214// InBondvector.Output(out);
215// *out << endl;
216 } // periodic correction finished
217
218 InBondvector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondvector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondvector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247// FirstOtherAtom->x.Output(out);
248// *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (int i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && Orthovector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 Orthovector1.GetOneNormalVector(&InBondvector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //Orthovector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 Orthovector1.MakeNormalVector(&InBondvector);
285 Orthovector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondvector ";
306// InBondvector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// Orthovector1.Output(out);
310// *out << endl;
311// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(int i=NDIM;i--;) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329// FirstOtherAtom->x.Output(out);
330// *out << endl;
331// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332// SecondOtherAtom->x.Output(out);
333// *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondvector
360 AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(&InBondvector);
361// *out << Verbose(3) << "Orthovector1: ";
362// Orthovector1.Output(out);
363// *out << endl;
364 AllWentWell = AllWentWell && Orthovector2.MakeNormalVector(&InBondvector, &Orthovector1);
365// *out << Verbose(3) << "Orthovector2: ";
366// Orthovector2.Output(out);
367// *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for Orthvector1
375 g = b/2.; // length for Orthvector2
376// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403// FirstOtherAtom->x.Output(out);
404// *out << endl;
405// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406// SecondOtherAtom->x.Output(out);
407// *out << endl;
408// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409// ThirdOtherAtom->x.Output(out);
410// *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *Walker = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 if (MDSteps == 0) // no atoms yet present
459 MDSteps++;
460 for(i=0;i<NumberOfAtoms;i++){
461 Walker = new atom;
462 getline(xyzfile,line,'\n');
463 istringstream *item = new istringstream(line);
464 //istringstream input(line);
465 //cout << Verbose(1) << "Reading: " << line << endl;
466 *item >> shorthand;
467 *item >> x[0];
468 *item >> x[1];
469 *item >> x[2];
470 Walker->type = elemente->FindElement(shorthand);
471 if (Walker->type == NULL) {
472 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
473 Walker->type = elemente->FindElement(1);
474 }
475 if (Trajectories[Walker].R.size() <= (unsigned int)MDSteps) {
476 Trajectories[Walker].R.resize(MDSteps+10);
477 Trajectories[Walker].U.resize(MDSteps+10);
478 Trajectories[Walker].F.resize(MDSteps+10);
479 }
480 for(j=NDIM;j--;) {
481 Walker->x.x[j] = x[j];
482 Trajectories[Walker].R.at(MDSteps-1).x[j] = x[j];
483 Trajectories[Walker].U.at(MDSteps-1).x[j] = 0;
484 Trajectories[Walker].F.at(MDSteps-1).x[j] = 0;
485 }
486 AddAtom(Walker); // add to molecule
487 delete(item);
488 }
489 xyzfile.close();
490 delete(input);
491 return true;
492};
493
494/** Creates a copy of this molecule.
495 * \return copy of molecule
496 */
497molecule *molecule::CopyMolecule()
498{
499 molecule *copy = new molecule(elemente);
500 atom *CurrentAtom = NULL;
501 atom *LeftAtom = NULL, *RightAtom = NULL;
502 atom *Walker = NULL;
503
504 // copy all atoms
505 Walker = start;
506 while(Walker->next != end) {
507 Walker = Walker->next;
508 CurrentAtom = copy->AddCopyAtom(Walker);
509 }
510
511 // copy all bonds
512 bond *Binder = first;
513 bond *NewBond = NULL;
514 while(Binder->next != last) {
515 Binder = Binder->next;
516 // get the pendant atoms of current bond in the copy molecule
517 LeftAtom = copy->start;
518 while (LeftAtom->next != copy->end) {
519 LeftAtom = LeftAtom->next;
520 if (LeftAtom->father == Binder->leftatom)
521 break;
522 }
523 RightAtom = copy->start;
524 while (RightAtom->next != copy->end) {
525 RightAtom = RightAtom->next;
526 if (RightAtom->father == Binder->rightatom)
527 break;
528 }
529 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
530 NewBond->Cyclic = Binder->Cyclic;
531 if (Binder->Cyclic)
532 copy->NoCyclicBonds++;
533 NewBond->Type = Binder->Type;
534 }
535 // correct fathers
536 Walker = copy->start;
537 while(Walker->next != copy->end) {
538 Walker = Walker->next;
539 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
540 Walker->father = Walker; // set father to itself (copy of a whole molecule)
541 else
542 Walker->father = Walker->father->father; // set father to original's father
543 }
544 // copy values
545 copy->CountAtoms((ofstream *)&cout);
546 copy->CountElements();
547 if (first->next != last) { // if adjaceny list is present
548 copy->BondDistance = BondDistance;
549 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
550 }
551
552 return copy;
553};
554
555/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
556 * Also updates molecule::BondCount and molecule::NoNonBonds.
557 * \param *first first atom in bond
558 * \param *second atom in bond
559 * \return pointer to bond or NULL on failure
560 */
561bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
562{
563 bond *Binder = NULL;
564 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
565 Binder = new bond(atom1, atom2, degree, BondCount++);
566 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
567 NoNonBonds++;
568 add(Binder, last);
569 } else {
570 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
571 }
572 return Binder;
573};
574
575/** Remove bond from bond chain list.
576 * \todo Function not implemented yet
577 * \param *pointer bond pointer
578 * \return true - bound found and removed, false - bond not found/removed
579 */
580bool molecule::RemoveBond(bond *pointer)
581{
582 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
583 removewithoutcheck(pointer);
584 return true;
585};
586
587/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
588 * \todo Function not implemented yet
589 * \param *BondPartner atom to be removed
590 * \return true - bounds found and removed, false - bonds not found/removed
591 */
592bool molecule::RemoveBonds(atom *BondPartner)
593{
594 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
595 return false;
596};
597
598/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
599 * \param *dim vector class
600 */
601void molecule::SetBoxDimension(Vector *dim)
602{
603 cell_size[0] = dim->x[0];
604 cell_size[1] = 0.;
605 cell_size[2] = dim->x[1];
606 cell_size[3] = 0.;
607 cell_size[4] = 0.;
608 cell_size[5] = dim->x[2];
609};
610
611/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
612 * \param *out output stream for debugging
613 * \param *BoxLengths box lengths
614 */
615bool molecule::CenterInBox(ofstream *out, Vector *BoxLengths)
616{
617 bool status = true;
618 atom *ptr = NULL;
619 Vector *min = new Vector;
620 Vector *max = new Vector;
621
622 // gather min and max for each axis
623 ptr = start->next; // start at first in list
624 if (ptr != end) { //list not empty?
625 for (int i=NDIM;i--;) {
626 max->x[i] = ptr->x.x[i];
627 min->x[i] = ptr->x.x[i];
628 }
629 while (ptr->next != end) { // continue with second if present
630 ptr = ptr->next;
631 //ptr->Output(1,1,out);
632 for (int i=NDIM;i--;) {
633 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
634 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
635 }
636 }
637 }
638 // sanity check
639 for(int i=NDIM;i--;) {
640 if (max->x[i] - min->x[i] > BoxLengths->x[i])
641 status = false;
642 }
643 // warn if check failed
644 if (!status)
645 *out << "WARNING: molecule is bigger than defined box!" << endl;
646 else { // else center in box
647 max->AddVector(min);
648 max->Scale(-1.);
649 max->AddVector(BoxLengths);
650 max->Scale(0.5);
651 Translate(max);
652 }
653
654 // free and exit
655 delete(min);
656 delete(max);
657 return status;
658};
659
660/** Centers the edge of the atoms at (0,0,0).
661 * \param *out output stream for debugging
662 * \param *max coordinates of other edge, specifying box dimensions.
663 */
664void molecule::CenterEdge(ofstream *out, Vector *max)
665{
666 Vector *min = new Vector;
667
668// *out << Verbose(3) << "Begin of CenterEdge." << endl;
669 atom *ptr = start->next; // start at first in list
670 if (ptr != end) { //list not empty?
671 for (int i=NDIM;i--;) {
672 max->x[i] = ptr->x.x[i];
673 min->x[i] = ptr->x.x[i];
674 }
675 while (ptr->next != end) { // continue with second if present
676 ptr = ptr->next;
677 //ptr->Output(1,1,out);
678 for (int i=NDIM;i--;) {
679 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
680 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
681 }
682 }
683// *out << Verbose(4) << "Maximum is ";
684// max->Output(out);
685// *out << ", Minimum is ";
686// min->Output(out);
687// *out << endl;
688 min->Scale(-1.);
689 max->AddVector(min);
690 Translate(min);
691 }
692 delete(min);
693// *out << Verbose(3) << "End of CenterEdge." << endl;
694};
695
696/** Centers the center of the atoms at (0,0,0).
697 * \param *out output stream for debugging
698 * \param *center return vector for translation vector
699 */
700void molecule::CenterOrigin(ofstream *out, Vector *center)
701{
702 int Num = 0;
703 atom *ptr = start->next; // start at first in list
704
705 for(int i=NDIM;i--;) // zero center vector
706 center->x[i] = 0.;
707
708 if (ptr != end) { //list not empty?
709 while (ptr->next != end) { // continue with second if present
710 ptr = ptr->next;
711 Num++;
712 center->AddVector(&ptr->x);
713 }
714 center->Scale(-1./Num); // divide through total number (and sign for direction)
715 Translate(center);
716 }
717};
718
719/** Returns vector pointing to center of gravity.
720 * \param *out output stream for debugging
721 * \return pointer to center of gravity vector
722 */
723Vector * molecule::DetermineCenterOfAll(ofstream *out)
724{
725 atom *ptr = start->next; // start at first in list
726 Vector *a = new Vector();
727 Vector tmp;
728 double Num = 0;
729
730 a->Zero();
731
732 if (ptr != end) { //list not empty?
733 while (ptr->next != end) { // continue with second if present
734 ptr = ptr->next;
735 Num += 1.;
736 tmp.CopyVector(&ptr->x);
737 a->AddVector(&tmp);
738 }
739 a->Scale(-1./Num); // divide through total mass (and sign for direction)
740 }
741 //cout << Verbose(1) << "Resulting center of gravity: ";
742 //a->Output(out);
743 //cout << endl;
744 return a;
745};
746
747/** Returns vector pointing to center of gravity.
748 * \param *out output stream for debugging
749 * \return pointer to center of gravity vector
750 */
751Vector * molecule::DetermineCenterOfGravity(ofstream *out)
752{
753 atom *ptr = start->next; // start at first in list
754 Vector *a = new Vector();
755 Vector tmp;
756 double Num = 0;
757
758 a->Zero();
759
760 if (ptr != end) { //list not empty?
761 while (ptr->next != end) { // continue with second if present
762 ptr = ptr->next;
763 Num += ptr->type->mass;
764 tmp.CopyVector(&ptr->x);
765 tmp.Scale(ptr->type->mass); // scale by mass
766 a->AddVector(&tmp);
767 }
768 a->Scale(-1./Num); // divide through total mass (and sign for direction)
769 }
770// *out << Verbose(1) << "Resulting center of gravity: ";
771// a->Output(out);
772// *out << endl;
773 return a;
774};
775
776/** Centers the center of gravity of the atoms at (0,0,0).
777 * \param *out output stream for debugging
778 * \param *center return vector for translation vector
779 */
780void molecule::CenterGravity(ofstream *out, Vector *center)
781{
782 if (center == NULL) {
783 DetermineCenter(*center);
784 Translate(center);
785 delete(center);
786 } else {
787 Translate(center);
788 }
789};
790
791/** Scales all atoms by \a *factor.
792 * \param *factor pointer to scaling factor
793 */
794void molecule::Scale(double **factor)
795{
796 atom *ptr = start;
797
798 while (ptr->next != end) {
799 ptr = ptr->next;
800 for (int j=0;j<MDSteps;j++)
801 Trajectories[ptr].R.at(j).Scale(factor);
802 ptr->x.Scale(factor);
803 }
804};
805
806/** Translate all atoms by given vector.
807 * \param trans[] translation vector.
808 */
809void molecule::Translate(const Vector *trans)
810{
811 atom *ptr = start;
812
813 while (ptr->next != end) {
814 ptr = ptr->next;
815 for (int j=0;j<MDSteps;j++)
816 Trajectories[ptr].R.at(j).Translate(trans);
817 ptr->x.Translate(trans);
818 }
819};
820
821/** Mirrors all atoms against a given plane.
822 * \param n[] normal vector of mirror plane.
823 */
824void molecule::Mirror(const Vector *n)
825{
826 atom *ptr = start;
827
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 for (int j=0;j<MDSteps;j++)
831 Trajectories[ptr].R.at(j).Mirror(n);
832 ptr->x.Mirror(n);
833 }
834};
835
836/** Determines center of molecule (yet not considering atom masses).
837 * \param Center reference to return vector
838 */
839void molecule::DetermineCenter(Vector &Center)
840{
841 atom *Walker = start;
842 bond *Binder = NULL;
843 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
844 double tmp;
845 bool flag;
846 Vector Testvector, Translationvector;
847
848 do {
849 Center.Zero();
850 flag = true;
851 while (Walker->next != end) {
852 Walker = Walker->next;
853#ifdef ADDHYDROGEN
854 if (Walker->type->Z != 1) {
855#endif
856 Testvector.CopyVector(&Walker->x);
857 Testvector.InverseMatrixMultiplication(matrix);
858 Translationvector.Zero();
859 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
860 Binder = ListOfBondsPerAtom[Walker->nr][i];
861 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
862 for (int j=0;j<NDIM;j++) {
863 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
864 if ((fabs(tmp)) > BondDistance) {
865 flag = false;
866 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
867 if (tmp > 0)
868 Translationvector.x[j] -= 1.;
869 else
870 Translationvector.x[j] += 1.;
871 }
872 }
873 }
874 Testvector.AddVector(&Translationvector);
875 Testvector.MatrixMultiplication(matrix);
876 Center.AddVector(&Testvector);
877 cout << Verbose(1) << "vector is: ";
878 Testvector.Output((ofstream *)&cout);
879 cout << endl;
880#ifdef ADDHYDROGEN
881 // now also change all hydrogens
882 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
883 Binder = ListOfBondsPerAtom[Walker->nr][i];
884 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
885 Testvector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
886 Testvector.InverseMatrixMultiplication(matrix);
887 Testvector.AddVector(&Translationvector);
888 Testvector.MatrixMultiplication(matrix);
889 Center.AddVector(&Testvector);
890 cout << Verbose(1) << "Hydrogen vector is: ";
891 Testvector.Output((ofstream *)&cout);
892 cout << endl;
893 }
894 }
895 }
896#endif
897 }
898 } while (!flag);
899 Free((void **)&matrix, "molecule::DetermineCenter: *matrix");
900 Center.Scale(1./(double)AtomCount);
901};
902
903/** Transforms/Rotates the given molecule into its principal axis system.
904 * \param *out output stream for debugging
905 * \param DoRotate whether to rotate (true) or only to determine the PAS.
906 */
907void molecule::PrincipalAxisSystem(ofstream *out, bool DoRotate)
908{
909 atom *ptr = start; // start at first in list
910 double InertiaTensor[NDIM*NDIM];
911 Vector *CenterOfGravity = DetermineCenterOfGravity(out);
912
913 CenterGravity(out, CenterOfGravity);
914
915 // reset inertia tensor
916 for(int i=0;i<NDIM*NDIM;i++)
917 InertiaTensor[i] = 0.;
918
919 // sum up inertia tensor
920 while (ptr->next != end) {
921 ptr = ptr->next;
922 Vector x;
923 x.CopyVector(&ptr->x);
924 //x.SubtractVector(CenterOfGravity);
925 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
926 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
927 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
928 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
929 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
930 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
931 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
932 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
933 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
934 }
935 // print InertiaTensor for debugging
936 *out << "The inertia tensor is:" << endl;
937 for(int i=0;i<NDIM;i++) {
938 for(int j=0;j<NDIM;j++)
939 *out << InertiaTensor[i*NDIM+j] << " ";
940 *out << endl;
941 }
942 *out << endl;
943
944 // diagonalize to determine principal axis system
945 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
946 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
947 gsl_vector *eval = gsl_vector_alloc(NDIM);
948 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
949 gsl_eigen_symmv(&m.matrix, eval, evec, T);
950 gsl_eigen_symmv_free(T);
951 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
952
953 for(int i=0;i<NDIM;i++) {
954 *out << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i);
955 *out << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl;
956 }
957
958 // check whether we rotate or not
959 if (DoRotate) {
960 *out << Verbose(1) << "Transforming molecule into PAS ... ";
961 // the eigenvectors specify the transformation matrix
962 ptr = start;
963 while (ptr->next != end) {
964 ptr = ptr->next;
965 for (int j=0;j<MDSteps;j++)
966 Trajectories[ptr].R.at(j).MatrixMultiplication(evec->data);
967 ptr->x.MatrixMultiplication(evec->data);
968 }
969 *out << "done." << endl;
970
971 // summing anew for debugging (resulting matrix has to be diagonal!)
972 // reset inertia tensor
973 for(int i=0;i<NDIM*NDIM;i++)
974 InertiaTensor[i] = 0.;
975
976 // sum up inertia tensor
977 ptr = start;
978 while (ptr->next != end) {
979 ptr = ptr->next;
980 Vector x;
981 x.CopyVector(&ptr->x);
982 //x.SubtractVector(CenterOfGravity);
983 InertiaTensor[0] += ptr->type->mass*(x.x[1]*x.x[1] + x.x[2]*x.x[2]);
984 InertiaTensor[1] += ptr->type->mass*(-x.x[0]*x.x[1]);
985 InertiaTensor[2] += ptr->type->mass*(-x.x[0]*x.x[2]);
986 InertiaTensor[3] += ptr->type->mass*(-x.x[1]*x.x[0]);
987 InertiaTensor[4] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[2]*x.x[2]);
988 InertiaTensor[5] += ptr->type->mass*(-x.x[1]*x.x[2]);
989 InertiaTensor[6] += ptr->type->mass*(-x.x[2]*x.x[0]);
990 InertiaTensor[7] += ptr->type->mass*(-x.x[2]*x.x[1]);
991 InertiaTensor[8] += ptr->type->mass*(x.x[0]*x.x[0] + x.x[1]*x.x[1]);
992 }
993 // print InertiaTensor for debugging
994 *out << "The inertia tensor is:" << endl;
995 for(int i=0;i<NDIM;i++) {
996 for(int j=0;j<NDIM;j++)
997 *out << InertiaTensor[i*NDIM+j] << " ";
998 *out << endl;
999 }
1000 *out << endl;
1001 }
1002
1003 // free everything
1004 delete(CenterOfGravity);
1005 gsl_vector_free(eval);
1006 gsl_matrix_free(evec);
1007};
1008
1009/** Evaluates the potential energy used for constrained molecular dynamics.
1010 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
1011 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}$ is minimum distance between
1012 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
1013 * Note that for the second term we have to solve the following linear system:
1014 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
1015 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
1016 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
1017 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
1018 * \param *out output stream for debugging
1019 * \param *PermutationMap gives target ptr for each atom, array of size molecule::AtomCount (this is "x" in \f$V^{con}(x)\f$)
1020 * \param startstep start configuration (MDStep in molecule::trajectories)
1021 * \param endstep end configuration (MDStep in molecule::trajectories)
1022 * \param *constants constant in front of each term
1023 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
1024 * \return potential energy
1025 * \note This routine is scaling quadratically which is not optimal.
1026 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
1027 */
1028double molecule::ConstrainedPotential(ofstream *out, atom **PermutationMap, int startstep, int endstep, double *constants, bool IsAngstroem)
1029{
1030 double result = 0., tmp, Norm1, Norm2;
1031 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL;
1032 Vector trajectory1, trajectory2, normal, TestVector;
1033 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
1034 gsl_vector *x = gsl_vector_alloc(NDIM);
1035
1036 // go through every atom
1037 Walker = start;
1038 while (Walker->next != end) {
1039 Walker = Walker->next;
1040 // first term: distance to target
1041 Runner = PermutationMap[Walker->nr]; // find target point
1042 tmp = (Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(endstep)));
1043 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
1044 result += constants[0] * tmp;
1045 //*out << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
1046
1047 // second term: sum of distances to other trajectories
1048 Runner = start;
1049 while (Runner->next != end) {
1050 Runner = Runner->next;
1051 if (Runner == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
1052 break;
1053 // determine normalized trajectories direction vector (n1, n2)
1054 Sprinter = PermutationMap[Walker->nr]; // find first target point
1055 trajectory1.CopyVector(&Trajectories[Sprinter].R.at(endstep));
1056 trajectory1.SubtractVector(&Trajectories[Walker].R.at(startstep));
1057 trajectory1.Normalize();
1058 Norm1 = trajectory1.Norm();
1059 Sprinter = PermutationMap[Runner->nr]; // find second target point
1060 trajectory2.CopyVector(&Trajectories[Sprinter].R.at(endstep));
1061 trajectory2.SubtractVector(&Trajectories[Runner].R.at(startstep));
1062 trajectory2.Normalize();
1063 Norm2 = trajectory1.Norm();
1064 // check whether either is zero()
1065 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
1066 tmp = Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(startstep));
1067 } else if (Norm1 < MYEPSILON) {
1068 Sprinter = PermutationMap[Walker->nr]; // find first target point
1069 trajectory1.CopyVector(&Trajectories[Sprinter].R.at(endstep)); // copy first offset
1070 trajectory1.SubtractVector(&Trajectories[Runner].R.at(startstep)); // subtract second offset
1071 trajectory2.Scale( trajectory1.ScalarProduct(&trajectory2) ); // trajectory2 is scaled to unity, hence we don't need to divide by anything
1072 trajectory1.SubtractVector(&trajectory2); // project the part in norm direction away
1073 tmp = trajectory1.Norm(); // remaining norm is distance
1074 } else if (Norm2 < MYEPSILON) {
1075 Sprinter = PermutationMap[Runner->nr]; // find second target point
1076 trajectory2.CopyVector(&Trajectories[Sprinter].R.at(endstep)); // copy second offset
1077 trajectory2.SubtractVector(&Trajectories[Walker].R.at(startstep)); // subtract first offset
1078 trajectory1.Scale( trajectory2.ScalarProduct(&trajectory1) ); // trajectory1 is scaled to unity, hence we don't need to divide by anything
1079 trajectory2.SubtractVector(&trajectory1); // project the part in norm direction away
1080 tmp = trajectory2.Norm(); // remaining norm is distance
1081 } else if ((fabs(trajectory1.ScalarProduct(&trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
1082// *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
1083// *out << trajectory1;
1084// *out << " and ";
1085// *out << trajectory2;
1086 tmp = Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(startstep));
1087// *out << " with distance " << tmp << "." << endl;
1088 } else { // determine distance by finding minimum distance
1089// *out << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear independent ";
1090// *out << endl;
1091// *out << "First Trajectory: ";
1092// *out << trajectory1 << endl;
1093// *out << "Second Trajectory: ";
1094// *out << trajectory2 << endl;
1095 // determine normal vector for both
1096 normal.MakeNormalVector(&trajectory1, &trajectory2);
1097 // print all vectors for debugging
1098// *out << "Normal vector in between: ";
1099// *out << normal << endl;
1100 // setup matrix
1101 for (int i=NDIM;i--;) {
1102 gsl_matrix_set(A, 0, i, trajectory1.x[i]);
1103 gsl_matrix_set(A, 1, i, trajectory2.x[i]);
1104 gsl_matrix_set(A, 2, i, normal.x[i]);
1105 gsl_vector_set(x,i, (Trajectories[Walker].R.at(startstep).x[i] - Trajectories[Runner].R.at(startstep).x[i]));
1106 }
1107 // solve the linear system by Householder transformations
1108 gsl_linalg_HH_svx(A, x);
1109 // distance from last component
1110 tmp = gsl_vector_get(x,2);
1111// *out << " with distance " << tmp << "." << endl;
1112 // test whether we really have the intersection (by checking on c_1 and c_2)
1113 TestVector.CopyVector(&Trajectories[Runner].R.at(startstep));
1114 trajectory2.Scale(gsl_vector_get(x,1));
1115 TestVector.AddVector(&trajectory2);
1116 normal.Scale(gsl_vector_get(x,2));
1117 TestVector.AddVector(&normal);
1118 TestVector.SubtractVector(&Trajectories[Walker].R.at(startstep));
1119 trajectory1.Scale(gsl_vector_get(x,0));
1120 TestVector.SubtractVector(&trajectory1);
1121 if (TestVector.Norm() < MYEPSILON) {
1122// *out << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
1123 } else {
1124// *out << Verbose(2) << "Test: failed.\tIntersection is off by ";
1125// *out << TestVector;
1126// *out << "." << endl;
1127 }
1128 }
1129 // add up
1130 tmp *= IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
1131 if (fabs(tmp) > MYEPSILON) {
1132 result += constants[1] * 1./tmp;
1133 //*out << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
1134 }
1135 }
1136
1137 // third term: penalty for equal targets
1138 Runner = start;
1139 while (Runner->next != end) {
1140 Runner = Runner->next;
1141 if ((PermutationMap[Walker->nr] == PermutationMap[Runner->nr]) && (Walker->nr < Runner->nr)) {
1142 Sprinter = PermutationMap[Walker->nr];
1143// *out << *Walker << " and " << *Runner << " are heading to the same target at ";
1144// *out << Trajectories[Sprinter].R.at(endstep);
1145// *out << ", penalting." << endl;
1146 result += constants[2];
1147 //*out << Verbose(4) << "Adding " << constants[2] << "." << endl;
1148 }
1149 }
1150 }
1151
1152 return result;
1153};
1154
1155void PrintPermutationMap(ofstream *out, atom **PermutationMap, int Nr)
1156{
1157 stringstream zeile1, zeile2;
1158 int *DoubleList = (int *) Malloc(Nr*sizeof(int), "PrintPermutationMap: *DoubleList");
1159 int doubles = 0;
1160 for (int i=0;i<Nr;i++)
1161 DoubleList[i] = 0;
1162 zeile1 << "PermutationMap: ";
1163 zeile2 << " ";
1164 for (int i=0;i<Nr;i++) {
1165 DoubleList[PermutationMap[i]->nr]++;
1166 zeile1 << i << " ";
1167 zeile2 << PermutationMap[i]->nr << " ";
1168 }
1169 for (int i=0;i<Nr;i++)
1170 if (DoubleList[i] > 1)
1171 doubles++;
1172 // *out << "Found " << doubles << " Doubles." << endl;
1173 Free((void **)&DoubleList, "PrintPermutationMap: *DoubleList");
1174// *out << zeile1.str() << endl << zeile2.str() << endl;
1175};
1176
1177/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
1178 * We do the following:
1179 * -# Generate a distance list from all source to all target points
1180 * -# Sort this per source point
1181 * -# Take for each source point the target point with minimum distance, use this as initial permutation
1182 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
1183 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
1184 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
1185 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
1186 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
1187 * if this decreases the conditional potential.
1188 * -# finished.
1189 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
1190 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
1191 * right direction).
1192 * -# Finally, we calculate the potential energy and return.
1193 * \param *out output stream for debugging
1194 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
1195 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
1196 * \param endstep step giving final position in constrained MD
1197 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
1198 * \sa molecule::VerletForceIntegration()
1199 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
1200 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
1201 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
1202 * \bug this all is not O(N log N) but O(N^2)
1203 */
1204double molecule::MinimiseConstrainedPotential(ofstream *out, atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
1205{
1206 double Potential, OldPotential, OlderPotential;
1207 PermutationMap = (atom **) Malloc(AtomCount*sizeof(atom *), "molecule::MinimiseConstrainedPotential: **PermutationMap");
1208 DistanceMap **DistanceList = (DistanceMap **) Malloc(AtomCount*sizeof(DistanceMap *), "molecule::MinimiseConstrainedPotential: **DistanceList");
1209 DistanceMap::iterator *DistanceIterators = (DistanceMap::iterator *) Malloc(AtomCount*sizeof(DistanceMap::iterator), "molecule::MinimiseConstrainedPotential: *DistanceIterators");
1210 int *DoubleList = (int *) Malloc(AtomCount*sizeof(int), "molecule::MinimiseConstrainedPotential: *DoubleList");
1211 DistanceMap::iterator *StepList = (DistanceMap::iterator *) Malloc(AtomCount*sizeof(DistanceMap::iterator), "molecule::MinimiseConstrainedPotential: *StepList");
1212 double constants[3];
1213 int round;
1214 atom *Walker = NULL, *Runner = NULL, *Sprinter = NULL;
1215 DistanceMap::iterator Rider, Strider;
1216
1217 /// Minimise the potential
1218 // set Lagrange multiplier constants
1219 constants[0] = 10.;
1220 constants[1] = 1.;
1221 constants[2] = 1e+7; // just a huge penalty
1222 // generate the distance list
1223 *out << Verbose(1) << "Creating the distance list ... " << endl;
1224 for (int i=AtomCount; i--;) {
1225 DoubleList[i] = 0; // stores for how many atoms in startstep this atom is a target in endstep
1226 DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
1227 DistanceList[i]->clear();
1228 }
1229 *out << Verbose(1) << "Filling the distance list ... " << endl;
1230 Walker = start;
1231 while (Walker->next != end) {
1232 Walker = Walker->next;
1233 Runner = start;
1234 while(Runner->next != end) {
1235 Runner = Runner->next;
1236 DistanceList[Walker->nr]->insert( DistancePair(Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Runner].R.at(endstep)), Runner) );
1237 }
1238 }
1239 // create the initial PermutationMap (source -> target)
1240 Walker = start;
1241 while (Walker->next != end) {
1242 Walker = Walker->next;
1243 StepList[Walker->nr] = DistanceList[Walker->nr]->begin(); // stores the step to the next iterator that could be a possible next target
1244 PermutationMap[Walker->nr] = DistanceList[Walker->nr]->begin()->second; // always pick target with the smallest distance
1245 DoubleList[DistanceList[Walker->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
1246 DistanceIterators[Walker->nr] = DistanceList[Walker->nr]->begin(); // and remember which one we picked
1247 *out << *Walker << " starts with distance " << DistanceList[Walker->nr]->begin()->first << "." << endl;
1248 }
1249 *out << Verbose(1) << "done." << endl;
1250 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
1251 *out << Verbose(1) << "Making the PermutationMap injective ... " << endl;
1252 Walker = start;
1253 DistanceMap::iterator NewBase;
1254 OldPotential = fabs(ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem));
1255 while ((OldPotential) > constants[2]) {
1256 PrintPermutationMap(out, PermutationMap, AtomCount);
1257 Walker = Walker->next;
1258 if (Walker == end) // round-robin at the end
1259 Walker = start->next;
1260 if (DoubleList[DistanceIterators[Walker->nr]->second->nr] <= 1) // no need to make those injective that aren't
1261 continue;
1262 // now, try finding a new one
1263 NewBase = DistanceIterators[Walker->nr]; // store old base
1264 do {
1265 NewBase++; // take next further distance in distance to targets list that's a target of no one
1266 } while ((DoubleList[NewBase->second->nr] != 0) && (NewBase != DistanceList[Walker->nr]->end()));
1267 if (NewBase != DistanceList[Walker->nr]->end()) {
1268 PermutationMap[Walker->nr] = NewBase->second;
1269 Potential = fabs(ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem));
1270 if (Potential > OldPotential) { // undo
1271 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second;
1272 } else { // do
1273 DoubleList[DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
1274 DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
1275 DistanceIterators[Walker->nr] = NewBase;
1276 OldPotential = Potential;
1277 *out << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl;
1278 }
1279 }
1280 }
1281 for (int i=AtomCount; i--;) // now each single entry in the DoubleList should be <=1
1282 if (DoubleList[i] > 1) {
1283 cerr << "Failed to create an injective PermutationMap!" << endl;
1284 exit(1);
1285 }
1286 *out << Verbose(1) << "done." << endl;
1287 Free((void **)&DoubleList, "molecule::MinimiseConstrainedPotential: *DoubleList");
1288 // argument minimise the constrained potential in this injective PermutationMap
1289 *out << Verbose(1) << "Argument minimising the PermutationMap, at current potential " << OldPotential << " ... " << endl;
1290 OldPotential = 1e+10;
1291 round = 0;
1292 do {
1293 *out << "Starting round " << ++round << " ... " << endl;
1294 OlderPotential = OldPotential;
1295 do {
1296 Walker = start;
1297 while (Walker->next != end) { // pick one
1298 Walker = Walker->next;
1299 PrintPermutationMap(out, PermutationMap, AtomCount);
1300 Sprinter = DistanceIterators[Walker->nr]->second; // store initial partner
1301 Strider = DistanceIterators[Walker->nr]; //remember old iterator
1302 DistanceIterators[Walker->nr] = StepList[Walker->nr];
1303 if (DistanceIterators[Walker->nr] == DistanceList[Walker->nr]->end()) {// stop, before we run through the list and still on
1304 DistanceIterators[Walker->nr] == DistanceList[Walker->nr]->begin();
1305 break;
1306 }
1307 //*out << Verbose(2) << "Current Walker: " << *Walker << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[Walker->nr]->second << "." << endl;
1308 // find source of the new target
1309 Runner = start->next;
1310 while(Runner != end) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
1311 if (PermutationMap[Runner->nr] == DistanceIterators[Walker->nr]->second) {
1312 //*out << Verbose(2) << "Found the corresponding owner " << *Runner << " to " << *PermutationMap[Runner->nr] << "." << endl;
1313 break;
1314 }
1315 Runner = Runner->next;
1316 }
1317 if (Runner != end) { // we found the other source
1318 // then look in its distance list for Sprinter
1319 Rider = DistanceList[Runner->nr]->begin();
1320 for (; Rider != DistanceList[Runner->nr]->end(); Rider++)
1321 if (Rider->second == Sprinter)
1322 break;
1323 if (Rider != DistanceList[Runner->nr]->end()) { // if we have found one
1324 //*out << Verbose(2) << "Current Other: " << *Runner << " with old/next candidate " << *PermutationMap[Runner->nr] << "/" << *Rider->second << "." << endl;
1325 // exchange both
1326 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; // put next farther distance into PermutationMap
1327 PermutationMap[Runner->nr] = Sprinter; // and hand the old target to its respective owner
1328 PrintPermutationMap(out, PermutationMap, AtomCount);
1329 // calculate the new potential
1330 //*out << Verbose(2) << "Checking new potential ..." << endl;
1331 Potential = ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem);
1332 if (Potential > OldPotential) { // we made everything worse! Undo ...
1333 //*out << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
1334 //*out << Verbose(3) << "Setting " << *Runner << "'s source to " << *DistanceIterators[Runner->nr]->second << "." << endl;
1335 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
1336 PermutationMap[Runner->nr] = DistanceIterators[Runner->nr]->second;
1337 // Undo for Walker
1338 DistanceIterators[Walker->nr] = Strider; // take next farther distance target
1339 //*out << Verbose(3) << "Setting " << *Walker << "'s source to " << *DistanceIterators[Walker->nr]->second << "." << endl;
1340 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second;
1341 } else {
1342 DistanceIterators[Runner->nr] = Rider; // if successful also move the pointer in the iterator list
1343 *out << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl;
1344 OldPotential = Potential;
1345 }
1346 if (Potential > constants[2]) {
1347 cerr << "ERROR: The two-step permutation procedure did not maintain injectivity!" << endl;
1348 exit(255);
1349 }
1350 //*out << endl;
1351 } else {
1352 cerr << "ERROR: " << *Runner << " was not the owner of " << *Sprinter << "!" << endl;
1353 exit(255);
1354 }
1355 } else {
1356 PermutationMap[Walker->nr] = DistanceIterators[Walker->nr]->second; // new target has no source!
1357 }
1358 StepList[Walker->nr]++; // take next farther distance target
1359 }
1360 } while (Walker->next != end);
1361 } while ((OlderPotential - OldPotential) > 1e-3);
1362 *out << Verbose(1) << "done." << endl;
1363
1364
1365 /// free memory and return with evaluated potential
1366 for (int i=AtomCount; i--;)
1367 DistanceList[i]->clear();
1368 Free((void **)&DistanceList, "molecule::MinimiseConstrainedPotential: **DistanceList");
1369 Free((void **)&DistanceIterators, "molecule::MinimiseConstrainedPotential: *DistanceIterators");
1370 return ConstrainedPotential(out, PermutationMap, startstep, endstep, constants, IsAngstroem);
1371};
1372
1373/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
1374 * \param *out output stream for debugging
1375 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
1376 * \param endstep step giving final position in constrained MD
1377 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
1378 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
1379 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
1380 */
1381void molecule::EvaluateConstrainedForces(ofstream *out, int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
1382{
1383 double constant = 10.;
1384 atom *Walker = NULL, *Sprinter = NULL;
1385
1386 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
1387 *out << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl;
1388 Walker = start;
1389 while (Walker->next != NULL) {
1390 Walker = Walker->next;
1391 Sprinter = PermutationMap[Walker->nr];
1392 // set forces
1393 for (int i=NDIM;i++;)
1394 Force->Matrix[0][Walker->nr][5+i] += 2.*constant*sqrt(Trajectories[Walker].R.at(startstep).Distance(&Trajectories[Sprinter].R.at(endstep)));
1395 }
1396 *out << Verbose(1) << "done." << endl;
1397};
1398
1399/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
1400 * Note, step number is config::MaxOuterStep
1401 * \param *out output stream for debugging
1402 * \param startstep stating initial configuration in molecule::Trajectories
1403 * \param endstep stating final configuration in molecule::Trajectories
1404 * \param &config configuration structure
1405 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
1406 */
1407bool molecule::LinearInterpolationBetweenConfiguration(ofstream *out, int startstep, int endstep, const char *prefix, config &configuration)
1408{
1409 bool status = true;
1410 int MaxSteps = configuration.MaxOuterStep;
1411 MoleculeListClass *MoleculePerStep = new MoleculeListClass(MaxSteps+1, AtomCount);
1412 // Get the Permutation Map by MinimiseConstrainedPotential
1413 atom **PermutationMap = NULL;
1414 atom *Walker = NULL, *Sprinter = NULL;
1415 MinimiseConstrainedPotential(out, PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
1416
1417 // check whether we have sufficient space in Trajectories for each atom
1418 Walker = start;
1419 while (Walker->next != end) {
1420 Walker = Walker->next;
1421 if (Trajectories[Walker].R.size() <= (unsigned int)(MaxSteps)) {
1422 //cout << "Increasing size for trajectory array of " << keyword << " to " << (MaxSteps+1) << "." << endl;
1423 Trajectories[Walker].R.resize(MaxSteps+1);
1424 Trajectories[Walker].U.resize(MaxSteps+1);
1425 Trajectories[Walker].F.resize(MaxSteps+1);
1426 }
1427 }
1428 // push endstep to last one
1429 Walker = start;
1430 while (Walker->next != end) { // remove the endstep (is now the very last one)
1431 Walker = Walker->next;
1432 for (int n=NDIM;n--;) {
1433 Trajectories[Walker].R.at(MaxSteps).x[n] = Trajectories[Walker].R.at(endstep).x[n];
1434 Trajectories[Walker].U.at(MaxSteps).x[n] = Trajectories[Walker].U.at(endstep).x[n];
1435 Trajectories[Walker].F.at(MaxSteps).x[n] = Trajectories[Walker].F.at(endstep).x[n];
1436 }
1437 }
1438 endstep = MaxSteps;
1439
1440 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
1441 *out << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl;
1442 for (int step = 0; step <= MaxSteps; step++) {
1443 MoleculePerStep->ListOfMolecules[step] = new molecule(elemente);
1444 Walker = start;
1445 while (Walker->next != end) {
1446 Walker = Walker->next;
1447 // add to molecule list
1448 Sprinter = MoleculePerStep->ListOfMolecules[step]->AddCopyAtom(Walker);
1449 for (int n=NDIM;n--;) {
1450 Sprinter->x.x[n] = Trajectories[Walker].R.at(startstep).x[n] + (Trajectories[PermutationMap[Walker->nr]].R.at(endstep).x[n] - Trajectories[Walker].R.at(startstep).x[n])*((double)step/(double)MaxSteps);
1451 // add to Trajectories
1452 //*out << Verbose(3) << step << ">=" << MDSteps-1 << endl;
1453 if (step < MaxSteps) {
1454 Trajectories[Walker].R.at(step).x[n] = Trajectories[Walker].R.at(startstep).x[n] + (Trajectories[PermutationMap[Walker->nr]].R.at(endstep).x[n] - Trajectories[Walker].R.at(startstep).x[n])*((double)step/(double)MaxSteps);
1455 Trajectories[Walker].U.at(step).x[n] = 0.;
1456 Trajectories[Walker].F.at(step).x[n] = 0.;
1457 }
1458 }
1459 }
1460 }
1461 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
1462
1463 // store the list to single step files
1464 int *SortIndex = (int *) Malloc(AtomCount*sizeof(int), "molecule::LinearInterpolationBetweenConfiguration: *SortIndex");
1465 for (int i=AtomCount; i--; )
1466 SortIndex[i] = i;
1467 status = MoleculePerStep->OutputConfigForListOfFragments(out, "ConstrainedStep", &configuration, SortIndex, false, false);
1468
1469 // free and return
1470 Free((void **)&PermutationMap, "molecule::MinimiseConstrainedPotential: *PermutationMap");
1471 delete(MoleculePerStep);
1472 return status;
1473};
1474
1475/** Parses nuclear forces from file and performs Verlet integration.
1476 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
1477 * have to transform them).
1478 * This adds a new MD step to the config file.
1479 * \param *out output stream for debugging
1480 * \param *file filename
1481 * \param delta_t time step width in atomic units
1482 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
1483 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()
1484 * \return true - file found and parsed, false - file not found or imparsable
1485 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
1486 */
1487bool molecule::VerletForceIntegration(ofstream *out, char *file, double delta_t, bool IsAngstroem, int DoConstrained)
1488{
1489 element *runner = elemente->start;
1490 atom *walker = NULL;
1491 int AtomNo;
1492 ifstream input(file);
1493 string token;
1494 stringstream item;
1495 double a, IonMass, Vector[NDIM], ConstrainedPotentialEnergy;
1496 ForceMatrix Force;
1497
1498 CountElements(); // make sure ElementsInMolecule is up to date
1499
1500 // check file
1501 if (input == NULL) {
1502 return false;
1503 } else {
1504 // parse file into ForceMatrix
1505 if (!Force.ParseMatrix(file, 0,0,0)) {
1506 cerr << "Could not parse Force Matrix file " << file << "." << endl;
1507 return false;
1508 }
1509 if (Force.RowCounter[0] != AtomCount) {
1510 cerr << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << AtomCount << "." << endl;
1511 return false;
1512 }
1513 // correct Forces
1514 for(int d=0;d<NDIM;d++)
1515 Vector[d] = 0.;
1516 for(int i=0;i<AtomCount;i++)
1517 for(int d=0;d<NDIM;d++) {
1518 Vector[d] += Force.Matrix[0][i][d+5];
1519 }
1520 for(int i=0;i<AtomCount;i++)
1521 for(int d=0;d<NDIM;d++) {
1522 Force.Matrix[0][i][d+5] -= Vector[d]/(double)AtomCount;
1523 }
1524 // solve a constrained potential if we are meant to
1525 if (DoConstrained) {
1526 // calculate forces and potential
1527 atom **PermutationMap = NULL;
1528 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(out, PermutationMap, DoConstrained, 0, IsAngstroem);
1529 EvaluateConstrainedForces(out, DoConstrained, 0, PermutationMap, &Force);
1530 Free((void **)&PermutationMap, "molecule::MinimiseConstrainedPotential: *PermutationMap");
1531 }
1532
1533 // and perform Verlet integration for each atom with position, velocity and force vector
1534 runner = elemente->start;
1535 while (runner->next != elemente->end) { // go through every element
1536 runner = runner->next;
1537 IonMass = runner->mass;
1538 a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
1539 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1540 AtomNo = 0;
1541 walker = start;
1542 while (walker->next != end) { // go through every atom of this element
1543 walker = walker->next;
1544 if (walker->type == runner) { // if this atom fits to element
1545 // check size of vectors
1546 if (Trajectories[walker].R.size() <= (unsigned int)(MDSteps)) {
1547 //out << "Increasing size for trajectory array of " << *walker << " to " << (size+10) << "." << endl;
1548 Trajectories[walker].R.resize(MDSteps+10);
1549 Trajectories[walker].U.resize(MDSteps+10);
1550 Trajectories[walker].F.resize(MDSteps+10);
1551 }
1552
1553 // Update R (and F)
1554 for (int d=0; d<NDIM; d++) {
1555 Trajectories[walker].F.at(MDSteps).x[d] = -Force.Matrix[0][AtomNo][d+5]*(IsAngstroem ? AtomicLengthToAngstroem : 1.);
1556 Trajectories[walker].R.at(MDSteps).x[d] = Trajectories[walker].R.at(MDSteps-1).x[d];
1557 Trajectories[walker].R.at(MDSteps).x[d] += delta_t*(Trajectories[walker].U.at(MDSteps-1).x[d]);
1558 Trajectories[walker].R.at(MDSteps).x[d] += delta_t*a*(Trajectories[walker].F.at(MDSteps).x[d]); // F = m * a and s = 0.5 * F/m * t^2 = F * a * t
1559 }
1560 // Update U
1561 for (int d=0; d<NDIM; d++) {
1562 Trajectories[walker].U.at(MDSteps).x[d] = Trajectories[walker].U.at(MDSteps-1).x[d];
1563 Trajectories[walker].U.at(MDSteps).x[d] += a * (Trajectories[walker].F.at(MDSteps).x[d]+Trajectories[walker].F.at(MDSteps-1).x[d]);
1564 }
1565// out << "Integrated position&velocity of step " << (MDSteps) << ": (";
1566// for (int d=0;d<NDIM;d++)
1567// out << Trajectories[walker].R.at(MDSteps).x[d] << " "; // next step
1568// out << ")\t(";
1569// for (int d=0;d<NDIM;d++)
1570// cout << Trajectories[walker].U.at(MDSteps).x[d] << " "; // next step
1571// out << ")" << endl;
1572 // next atom
1573 AtomNo++;
1574 }
1575 }
1576 }
1577 }
1578 }
1579// // correct velocities (rather momenta) so that center of mass remains motionless
1580// for(int d=0;d<NDIM;d++)
1581// Vector[d] = 0.;
1582// IonMass = 0.;
1583// walker = start;
1584// while (walker->next != end) { // go through every atom
1585// walker = walker->next;
1586// IonMass += walker->type->mass; // sum up total mass
1587// for(int d=0;d<NDIM;d++) {
1588// Vector[d] += Trajectories[walker].U.at(MDSteps).x[d]*walker->type->mass;
1589// }
1590// }
1591// walker = start;
1592// while (walker->next != end) { // go through every atom of this element
1593// walker = walker->next;
1594// for(int d=0;d<NDIM;d++) {
1595// Trajectories[walker].U.at(MDSteps).x[d] -= Vector[d]*walker->type->mass/IonMass;
1596// }
1597// }
1598 MDSteps++;
1599
1600
1601 // exit
1602 return true;
1603};
1604
1605/** Align all atoms in such a manner that given vector \a *n is along z axis.
1606 * \param n[] alignment vector.
1607 */
1608void molecule::Align(Vector *n)
1609{
1610 atom *ptr = start;
1611 double alpha, tmp;
1612 Vector z_axis;
1613 z_axis.x[0] = 0.;
1614 z_axis.x[1] = 0.;
1615 z_axis.x[2] = 1.;
1616
1617 // rotate on z-x plane
1618 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
1619 alpha = atan(-n->x[0]/n->x[2]);
1620 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
1621 while (ptr->next != end) {
1622 ptr = ptr->next;
1623 tmp = ptr->x.x[0];
1624 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1625 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1626 for (int j=0;j<MDSteps;j++) {
1627 tmp = Trajectories[ptr].R.at(j).x[0];
1628 Trajectories[ptr].R.at(j).x[0] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];
1629 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];
1630 }
1631 }
1632 // rotate n vector
1633 tmp = n->x[0];
1634 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1635 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1636 cout << Verbose(1) << "alignment vector after first rotation: ";
1637 n->Output((ofstream *)&cout);
1638 cout << endl;
1639
1640 // rotate on z-y plane
1641 ptr = start;
1642 alpha = atan(-n->x[1]/n->x[2]);
1643 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
1644 while (ptr->next != end) {
1645 ptr = ptr->next;
1646 tmp = ptr->x.x[1];
1647 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
1648 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
1649 for (int j=0;j<MDSteps;j++) {
1650 tmp = Trajectories[ptr].R.at(j).x[1];
1651 Trajectories[ptr].R.at(j).x[1] = cos(alpha) * tmp + sin(alpha) * Trajectories[ptr].R.at(j).x[2];
1652 Trajectories[ptr].R.at(j).x[2] = -sin(alpha) * tmp + cos(alpha) * Trajectories[ptr].R.at(j).x[2];
1653 }
1654 }
1655 // rotate n vector (for consistency check)
1656 tmp = n->x[1];
1657 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
1658 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
1659
1660 cout << Verbose(1) << "alignment vector after second rotation: ";
1661 n->Output((ofstream *)&cout);
1662 cout << Verbose(1) << endl;
1663 cout << Verbose(0) << "End of Aligning all atoms." << endl;
1664};
1665
1666/** Removes atom from molecule list.
1667 * \param *pointer atom to be removed
1668 * \return true - succeeded, false - atom not found in list
1669 */
1670bool molecule::RemoveAtom(atom *pointer)
1671{
1672 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
1673 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
1674 else
1675 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
1676 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
1677 ElementCount--;
1678 Trajectories.erase(pointer);
1679 return remove(pointer, start, end);
1680};
1681
1682/** Removes every atom from molecule list.
1683 * \return true - succeeded, false - atom not found in list
1684 */
1685bool molecule::CleanupMolecule()
1686{
1687 return (cleanup(start,end) && cleanup(first,last));
1688};
1689
1690/** Finds an atom specified by its continuous number.
1691 * \param Nr number of atom withim molecule
1692 * \return pointer to atom or NULL
1693 */
1694atom * molecule::FindAtom(int Nr) const{
1695 atom * walker = find(&Nr, start,end);
1696 if (walker != NULL) {
1697 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
1698 return walker;
1699 } else {
1700 cout << Verbose(0) << "Atom not found in list." << endl;
1701 return NULL;
1702 }
1703};
1704
1705/** Asks for atom number, and checks whether in list.
1706 * \param *text question before entering
1707 */
1708atom * molecule::AskAtom(string text)
1709{
1710 int No;
1711 atom *ion = NULL;
1712 do {
1713 //cout << Verbose(0) << "============Atom list==========================" << endl;
1714 //mol->Output((ofstream *)&cout);
1715 //cout << Verbose(0) << "===============================================" << endl;
1716 cout << Verbose(0) << text;
1717 cin >> No;
1718 ion = this->FindAtom(No);
1719 } while (ion == NULL);
1720 return ion;
1721};
1722
1723/** Checks if given coordinates are within cell volume.
1724 * \param *x array of coordinates
1725 * \return true - is within, false - out of cell
1726 */
1727bool molecule::CheckBounds(const Vector *x) const
1728{
1729 bool result = true;
1730 int j =-1;
1731 for (int i=0;i<NDIM;i++) {
1732 j += i+1;
1733 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
1734 }
1735 //return result;
1736 return true; /// probably not gonna use the check no more
1737};
1738
1739/** Calculates sum over least square distance to line hidden in \a *x.
1740 * \param *x offset and direction vector
1741 * \param *params pointer to lsq_params structure
1742 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
1743 */
1744double LeastSquareDistance (const gsl_vector * x, void * params)
1745{
1746 double res = 0, t;
1747 Vector a,b,c,d;
1748 struct lsq_params *par = (struct lsq_params *)params;
1749 atom *ptr = par->mol->start;
1750
1751 // initialize vectors
1752 a.x[0] = gsl_vector_get(x,0);
1753 a.x[1] = gsl_vector_get(x,1);
1754 a.x[2] = gsl_vector_get(x,2);
1755 b.x[0] = gsl_vector_get(x,3);
1756 b.x[1] = gsl_vector_get(x,4);
1757 b.x[2] = gsl_vector_get(x,5);
1758 // go through all atoms
1759 while (ptr != par->mol->end) {
1760 ptr = ptr->next;
1761 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
1762 c.CopyVector(&ptr->x); // copy vector to temporary one
1763 c.SubtractVector(&a); // subtract offset vector
1764 t = c.ScalarProduct(&b); // get direction parameter
1765 d.CopyVector(&b); // and create vector
1766 d.Scale(&t);
1767 c.SubtractVector(&d); // ... yielding distance vector
1768 res += d.ScalarProduct((const Vector *)&d); // add squared distance
1769 }
1770 }
1771 return res;
1772};
1773
1774/** By minimizing the least square distance gains alignment vector.
1775 * \bug this is not yet working properly it seems
1776 */
1777void molecule::GetAlignvector(struct lsq_params * par) const
1778{
1779 int np = 6;
1780
1781 const gsl_multimin_fminimizer_type *T =
1782 gsl_multimin_fminimizer_nmsimplex;
1783 gsl_multimin_fminimizer *s = NULL;
1784 gsl_vector *ss;
1785 gsl_multimin_function minex_func;
1786
1787 size_t iter = 0, i;
1788 int status;
1789 double size;
1790
1791 /* Initial vertex size vector */
1792 ss = gsl_vector_alloc (np);
1793
1794 /* Set all step sizes to 1 */
1795 gsl_vector_set_all (ss, 1.0);
1796
1797 /* Starting point */
1798 par->x = gsl_vector_alloc (np);
1799 par->mol = this;
1800
1801 gsl_vector_set (par->x, 0, 0.0); // offset
1802 gsl_vector_set (par->x, 1, 0.0);
1803 gsl_vector_set (par->x, 2, 0.0);
1804 gsl_vector_set (par->x, 3, 0.0); // direction
1805 gsl_vector_set (par->x, 4, 0.0);
1806 gsl_vector_set (par->x, 5, 1.0);
1807
1808 /* Initialize method and iterate */
1809 minex_func.f = &LeastSquareDistance;
1810 minex_func.n = np;
1811 minex_func.params = (void *)par;
1812
1813 s = gsl_multimin_fminimizer_alloc (T, np);
1814 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
1815
1816 do
1817 {
1818 iter++;
1819 status = gsl_multimin_fminimizer_iterate(s);
1820
1821 if (status)
1822 break;
1823
1824 size = gsl_multimin_fminimizer_size (s);
1825 status = gsl_multimin_test_size (size, 1e-2);
1826
1827 if (status == GSL_SUCCESS)
1828 {
1829 printf ("converged to minimum at\n");
1830 }
1831
1832 printf ("%5d ", (int)iter);
1833 for (i = 0; i < (size_t)np; i++)
1834 {
1835 printf ("%10.3e ", gsl_vector_get (s->x, i));
1836 }
1837 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1838 }
1839 while (status == GSL_CONTINUE && iter < 100);
1840
1841 for (i=0;i<(size_t)np;i++)
1842 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1843 //gsl_vector_free(par->x);
1844 gsl_vector_free(ss);
1845 gsl_multimin_fminimizer_free (s);
1846};
1847
1848/** Prints molecule to *out.
1849 * \param *out output stream
1850 */
1851bool molecule::Output(ofstream *out)
1852{
1853 element *runner;
1854 atom *walker = NULL;
1855 int ElementNo, AtomNo;
1856 CountElements();
1857
1858 if (out == NULL) {
1859 return false;
1860 } else {
1861 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1862 ElementNo = 0;
1863 runner = elemente->start;
1864 while (runner->next != elemente->end) { // go through every element
1865 runner = runner->next;
1866 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1867 ElementNo++;
1868 AtomNo = 0;
1869 walker = start;
1870 while (walker->next != end) { // go through every atom of this element
1871 walker = walker->next;
1872 if (walker->type == runner) { // if this atom fits to element
1873 AtomNo++;
1874 walker->Output(ElementNo, AtomNo, out); // removed due to trajectories
1875 }
1876 }
1877 }
1878 }
1879 return true;
1880 }
1881};
1882
1883/** Prints molecule with all atomic trajectory positions to *out.
1884 * \param *out output stream
1885 */
1886bool molecule::OutputTrajectories(ofstream *out)
1887{
1888 element *runner = NULL;
1889 atom *walker = NULL;
1890 int ElementNo, AtomNo;
1891 CountElements();
1892
1893 if (out == NULL) {
1894 return false;
1895 } else {
1896 for (int step = 0; step < MDSteps; step++) {
1897 if (step == 0) {
1898 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1899 } else {
1900 *out << "# ====== MD step " << step << " =========" << endl;
1901 }
1902 ElementNo = 0;
1903 runner = elemente->start;
1904 while (runner->next != elemente->end) { // go through every element
1905 runner = runner->next;
1906 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1907 ElementNo++;
1908 AtomNo = 0;
1909 walker = start;
1910 while (walker->next != end) { // go through every atom of this element
1911 walker = walker->next;
1912 if (walker->type == runner) { // if this atom fits to element
1913 AtomNo++;
1914 *out << "Ion_Type" << ElementNo << "_" << AtomNo << "\t" << fixed << setprecision(9) << showpoint;
1915 *out << Trajectories[walker].R.at(step).x[0] << "\t" << Trajectories[walker].R.at(step).x[1] << "\t" << Trajectories[walker].R.at(step).x[2];
1916 *out << "\t" << walker->FixedIon;
1917 if (Trajectories[walker].U.at(step).Norm() > MYEPSILON)
1918 *out << "\t" << scientific << setprecision(6) << Trajectories[walker].U.at(step).x[0] << "\t" << Trajectories[walker].U.at(step).x[1] << "\t" << Trajectories[walker].U.at(step).x[2] << "\t";
1919 if (Trajectories[walker].F.at(step).Norm() > MYEPSILON)
1920 *out << "\t" << scientific << setprecision(6) << Trajectories[walker].F.at(step).x[0] << "\t" << Trajectories[walker].F.at(step).x[1] << "\t" << Trajectories[walker].F.at(step).x[2] << "\t";
1921 *out << "\t# Number in molecule " << walker->nr << endl;
1922 }
1923 }
1924 }
1925 }
1926 }
1927 return true;
1928 }
1929};
1930
1931/** Outputs contents of molecule::ListOfBondsPerAtom.
1932 * \param *out output stream
1933 */
1934void molecule::OutputListOfBonds(ofstream *out) const
1935{
1936 *out << Verbose(2) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
1937 atom *Walker = start;
1938 while (Walker->next != end) {
1939 Walker = Walker->next;
1940#ifdef ADDHYDROGEN
1941 if (Walker->type->Z != 1) { // regard only non-hydrogen
1942#endif
1943 *out << Verbose(2) << "Atom " << Walker->Name << " has Bonds: "<<endl;
1944 for(int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
1945 *out << Verbose(3) << *(ListOfBondsPerAtom)[Walker->nr][j] << endl;
1946 }
1947#ifdef ADDHYDROGEN
1948 }
1949#endif
1950 }
1951 *out << endl;
1952};
1953
1954/** Output of element before the actual coordination list.
1955 * \param *out stream pointer
1956 */
1957bool molecule::Checkout(ofstream *out) const
1958{
1959 return elemente->Checkout(out, ElementsInMolecule);
1960};
1961
1962/** Prints molecule with all its trajectories to *out as xyz file.
1963 * \param *out output stream
1964 */
1965bool molecule::OutputTrajectoriesXYZ(ofstream *out)
1966{
1967 atom *walker = NULL;
1968 int No = 0;
1969 time_t now;
1970
1971 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1972 walker = start;
1973 while (walker->next != end) { // go through every atom and count
1974 walker = walker->next;
1975 No++;
1976 }
1977 if (out != NULL) {
1978 for (int step=0;step<MDSteps;step++) {
1979 *out << No << "\n\tCreated by molecuilder, step " << step << ", on " << ctime(&now);
1980 walker = start;
1981 while (walker->next != end) { // go through every atom of this element
1982 walker = walker->next;
1983 *out << walker->type->symbol << "\t" << Trajectories[walker].R.at(step).x[0] << "\t" << Trajectories[walker].R.at(step).x[1] << "\t" << Trajectories[walker].R.at(step).x[2] << endl;
1984 }
1985 }
1986 return true;
1987 } else
1988 return false;
1989};
1990
1991/** Prints molecule to *out as xyz file.
1992* \param *out output stream
1993 */
1994bool molecule::OutputXYZ(ofstream *out) const
1995{
1996 atom *walker = NULL;
1997 int No = 0;
1998 time_t now;
1999
2000 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
2001 walker = start;
2002 while (walker->next != end) { // go through every atom and count
2003 walker = walker->next;
2004 No++;
2005 }
2006 if (out != NULL) {
2007 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
2008 walker = start;
2009 while (walker->next != end) { // go through every atom of this element
2010 walker = walker->next;
2011 walker->OutputXYZLine(out);
2012 }
2013 return true;
2014 } else
2015 return false;
2016};
2017
2018/** Brings molecule::AtomCount and atom::*Name up-to-date.
2019 * \param *out output stream for debugging
2020 */
2021void molecule::CountAtoms(ofstream *out)
2022{
2023 int i = 0;
2024 atom *Walker = start;
2025 while (Walker->next != end) {
2026 Walker = Walker->next;
2027 i++;
2028 }
2029 if ((AtomCount == 0) || (i != AtomCount)) {
2030 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
2031 AtomCount = i;
2032
2033 // count NonHydrogen atoms and give each atom a unique name
2034 if (AtomCount != 0) {
2035 i=0;
2036 NoNonHydrogen = 0;
2037 Walker = start;
2038 while (Walker->next != end) {
2039 Walker = Walker->next;
2040 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
2041 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
2042 NoNonHydrogen++;
2043 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
2044 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
2045 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
2046 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
2047 i++;
2048 }
2049 } else
2050 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
2051 }
2052};
2053
2054/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
2055 */
2056void molecule::CountElements()
2057{
2058 int i = 0;
2059 for(i=MAX_ELEMENTS;i--;)
2060 ElementsInMolecule[i] = 0;
2061 ElementCount = 0;
2062
2063 atom *walker = start;
2064 while (walker->next != end) {
2065 walker = walker->next;
2066 ElementsInMolecule[walker->type->Z]++;
2067 i++;
2068 }
2069 for(i=MAX_ELEMENTS;i--;)
2070 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
2071};
2072
2073/** Counts all cyclic bonds and returns their number.
2074 * \note Hydrogen bonds can never by cyclic, thus no check for that
2075 * \param *out output stream for debugging
2076 * \return number opf cyclic bonds
2077 */
2078int molecule::CountCyclicBonds(ofstream *out)
2079{
2080 int No = 0;
2081 int *MinimumRingSize = NULL;
2082 MoleculeLeafClass *Subgraphs = NULL;
2083 bond *Binder = first;
2084 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
2085 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
2086 Subgraphs = DepthFirstSearchAnalysis(out, MinimumRingSize);
2087 while (Subgraphs->next != NULL) {
2088 Subgraphs = Subgraphs->next;
2089 delete(Subgraphs->previous);
2090 }
2091 delete(Subgraphs);
2092 delete[](MinimumRingSize);
2093 }
2094 while(Binder->next != last) {
2095 Binder = Binder->next;
2096 if (Binder->Cyclic)
2097 No++;
2098 }
2099 return No;
2100};
2101/** Returns Shading as a char string.
2102 * \param color the Shading
2103 * \return string of the flag
2104 */
2105string molecule::GetColor(enum Shading color)
2106{
2107 switch(color) {
2108 case white:
2109 return "white";
2110 break;
2111 case lightgray:
2112 return "lightgray";
2113 break;
2114 case darkgray:
2115 return "darkgray";
2116 break;
2117 case black:
2118 return "black";
2119 break;
2120 default:
2121 return "uncolored";
2122 break;
2123 };
2124};
2125
2126
2127/** Counts necessary number of valence electrons and returns number and SpinType.
2128 * \param configuration containing everything
2129 */
2130void molecule::CalculateOrbitals(class config &configuration)
2131{
2132 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
2133 for(int i=MAX_ELEMENTS;i--;) {
2134 if (ElementsInMolecule[i] != 0) {
2135 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
2136 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
2137 }
2138 }
2139 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
2140 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
2141 configuration.MaxPsiDouble /= 2;
2142 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
2143 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
2144 configuration.ProcPEGamma /= 2;
2145 configuration.ProcPEPsi *= 2;
2146 } else {
2147 configuration.ProcPEGamma *= configuration.ProcPEPsi;
2148 configuration.ProcPEPsi = 1;
2149 }
2150 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
2151};
2152
2153/** Creates an adjacency list of the molecule.
2154 * Generally, we use the CSD approach to bond recognition, that is the the distance
2155 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
2156 * a threshold t = 0.4 Angstroem.
2157 * To make it O(N log N) the function uses the linked-cell technique as follows:
2158 * The procedure is step-wise:
2159 * -# Remove every bond in list
2160 * -# Count the atoms in the molecule with CountAtoms()
2161 * -# partition cell into smaller linked cells of size \a bonddistance
2162 * -# put each atom into its corresponding cell
2163 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
2164 * -# create the list of bonds via CreateListOfBondsPerAtom()
2165 * -# correct the bond degree iteratively (single->double->triple bond)
2166 * -# finally print the bond list to \a *out if desired
2167 * \param *out out stream for printing the matrix, NULL if no output
2168 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
2169 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
2170 */
2171void molecule::CreateAdjacencyList(ofstream *out, double bonddistance, bool IsAngstroem)
2172{
2173 atom *Walker = NULL, *OtherWalker = NULL, *Candidate = NULL;
2174 int No, NoBonds, CandidateBondNo;
2175 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
2176 molecule **CellList;
2177 double distance, MinDistance, MaxDistance;
2178 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
2179 Vector x;
2180
2181 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
2182 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
2183 // remove every bond from the list
2184 if ((first->next != last) && (last->previous != first)) { // there are bonds present
2185 cleanup(first,last);
2186 }
2187
2188 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
2189 CountAtoms(out);
2190 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
2191
2192 if (AtomCount != 0) {
2193 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
2194 j=-1;
2195 for (int i=0;i<NDIM;i++) {
2196 j += i+1;
2197 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
2198 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
2199 }
2200 // 2a. allocate memory for the cell list
2201 NumberCells = divisor[0]*divisor[1]*divisor[2];
2202 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
2203 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
2204 for (int i=NumberCells;i--;)
2205 CellList[i] = NULL;
2206
2207 // 2b. put all atoms into its corresponding list
2208 Walker = start;
2209 while(Walker->next != end) {
2210 Walker = Walker->next;
2211 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
2212 //Walker->x.Output(out);
2213 //*out << "." << endl;
2214 // compute the cell by the atom's coordinates
2215 j=-1;
2216 for (int i=0;i<NDIM;i++) {
2217 j += i+1;
2218 x.CopyVector(&(Walker->x));
2219 x.KeepPeriodic(out, matrix);
2220 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
2221 }
2222 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
2223 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
2224 // add copy atom to this cell
2225 if (CellList[index] == NULL) // allocate molecule if not done
2226 CellList[index] = new molecule(elemente);
2227 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
2228 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
2229 }
2230 //for (int i=0;i<NumberCells;i++)
2231 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
2232
2233 // 3a. go through every cell
2234 for (N[0]=divisor[0];N[0]--;)
2235 for (N[1]=divisor[1];N[1]--;)
2236 for (N[2]=divisor[2];N[2]--;) {
2237 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
2238 if (CellList[Index] != NULL) { // if there atoms in this cell
2239 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
2240 // 3b. for every atom therein
2241 Walker = CellList[Index]->start;
2242 while (Walker->next != CellList[Index]->end) { // go through every atom
2243 Walker = Walker->next;
2244 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
2245 // 3c. check for possible bond between each atom in this and every one in the 27 cells
2246 for (n[0]=-1;n[0]<=1;n[0]++)
2247 for (n[1]=-1;n[1]<=1;n[1]++)
2248 for (n[2]=-1;n[2]<=1;n[2]++) {
2249 // compute the index of this comparison cell and make it periodic
2250 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
2251 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
2252 if (CellList[index] != NULL) { // if there are any atoms in this cell
2253 OtherWalker = CellList[index]->start;
2254 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
2255 OtherWalker = OtherWalker->next;
2256 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
2257 /// \todo periodic check is missing here!
2258 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
2259 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
2260 MinDistance *= (IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem;
2261 MaxDistance = MinDistance + BONDTHRESHOLD;
2262 MinDistance -= BONDTHRESHOLD;
2263 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
2264 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
2265 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
2266 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
2267 BondCount++;
2268 } else {
2269 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
2270 }
2271 }
2272 }
2273 }
2274 }
2275 }
2276 }
2277 // 4. free the cell again
2278 for (int i=NumberCells;i--;)
2279 if (CellList[i] != NULL) {
2280 delete(CellList[i]);
2281 }
2282 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
2283
2284 // create the adjacency list per atom
2285 CreateListOfBondsPerAtom(out);
2286
2287 // correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
2288 // iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
2289 // preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
2290 // double bonds as was expected.
2291 if (BondCount != 0) {
2292 NoCyclicBonds = 0;
2293 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
2294 do {
2295 No = 0; // No acts as breakup flag (if 1 we still continue)
2296 Walker = start;
2297 while (Walker->next != end) { // go through every atom
2298 Walker = Walker->next;
2299 // count valence of first partner
2300 NoBonds = 0;
2301 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
2302 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2303 *out << Verbose(3) << "Walker " << *Walker << ": " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
2304 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check all bonding partners for mismatch
2305 Candidate = NULL;
2306 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
2307 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2308 // count valence of second partner
2309 NoBonds = 0;
2310 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
2311 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
2312 *out << Verbose(3) << "OtherWalker " << *OtherWalker << ": " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
2313 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) { // check if possible candidate
2314 if ((Candidate == NULL) || (NumberOfBondsPerAtom[Candidate->nr] > NumberOfBondsPerAtom[OtherWalker->nr])) { // pick the one with fewer number of bonds first
2315 Candidate = OtherWalker;
2316 CandidateBondNo = i;
2317 *out << Verbose(3) << "New candidate is " << *Candidate << "." << endl;
2318 }
2319 }
2320 }
2321 if (Candidate != NULL) {
2322 ListOfBondsPerAtom[Walker->nr][CandidateBondNo]->BondDegree++;
2323 *out << Verbose(2) << "Increased bond degree for bond " << *ListOfBondsPerAtom[Walker->nr][CandidateBondNo] << "." << endl;
2324 }
2325 }
2326 }
2327 } while (No);
2328 *out << " done." << endl;
2329 } else
2330 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
2331 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
2332
2333 // output bonds for debugging (if bond chain list was correctly installed)
2334 *out << Verbose(1) << endl << "From contents of bond chain list:";
2335 bond *Binder = first;
2336 while(Binder->next != last) {
2337 Binder = Binder->next;
2338 *out << *Binder << "\t" << endl;
2339 }
2340 *out << endl;
2341 } else
2342 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
2343 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
2344 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
2345};
2346
2347/** Performs a Depth-First search on this molecule.
2348 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
2349 * articulations points, ...
2350 * We use the algorithm from [Even, Graph Algorithms, p.62].
2351 * \param *out output stream for debugging
2352 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
2353 * \return list of each disconnected subgraph as an individual molecule class structure
2354 */
2355MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, int *&MinimumRingSize)
2356{
2357 class StackClass<atom *> *AtomStack;
2358 AtomStack = new StackClass<atom *>(AtomCount);
2359 class StackClass<bond *> *BackEdgeStack = new StackClass<bond *> (BondCount);
2360 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
2361 MoleculeLeafClass *LeafWalker = SubGraphs;
2362 int CurrentGraphNr = 0, OldGraphNr;
2363 int ComponentNumber = 0;
2364 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
2365 bond *Binder = NULL;
2366 bool BackStepping = false;
2367
2368 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
2369
2370 ResetAllBondsToUnused();
2371 ResetAllAtomNumbers();
2372 InitComponentNumbers();
2373 BackEdgeStack->ClearStack();
2374 while (Root != end) { // if there any atoms at all
2375 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
2376 AtomStack->ClearStack();
2377
2378 // put into new subgraph molecule and add this to list of subgraphs
2379 LeafWalker = new MoleculeLeafClass(LeafWalker);
2380 LeafWalker->Leaf = new molecule(elemente);
2381 LeafWalker->Leaf->AddCopyAtom(Root);
2382
2383 OldGraphNr = CurrentGraphNr;
2384 Walker = Root;
2385 do { // (10)
2386 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
2387 if (!BackStepping) { // if we don't just return from (8)
2388 Walker->GraphNr = CurrentGraphNr;
2389 Walker->LowpointNr = CurrentGraphNr;
2390 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
2391 AtomStack->Push(Walker);
2392 CurrentGraphNr++;
2393 }
2394 do { // (3) if Walker has no unused egdes, go to (5)
2395 BackStepping = false; // reset backstepping flag for (8)
2396 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
2397 Binder = FindNextUnused(Walker);
2398 if (Binder == NULL)
2399 break;
2400 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
2401 // (4) Mark Binder used, ...
2402 Binder->MarkUsed(black);
2403 OtherAtom = Binder->GetOtherAtom(Walker);
2404 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
2405 if (OtherAtom->GraphNr != -1) {
2406 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
2407 Binder->Type = BackEdge;
2408 BackEdgeStack->Push(Binder);
2409 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
2410 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
2411 } else {
2412 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
2413 Binder->Type = TreeEdge;
2414 OtherAtom->Ancestor = Walker;
2415 Walker = OtherAtom;
2416 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
2417 break;
2418 }
2419 Binder = NULL;
2420 } while (1); // (3)
2421 if (Binder == NULL) {
2422 *out << Verbose(2) << "No more Unused Bonds." << endl;
2423 break;
2424 } else
2425 Binder = NULL;
2426 } while (1); // (2)
2427
2428 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
2429 if ((Walker == Root) && (Binder == NULL))
2430 break;
2431
2432 // (5) if Ancestor of Walker is ...
2433 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
2434 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
2435 // (6) (Ancestor of Walker is not Root)
2436 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
2437 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
2438 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
2439 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
2440 } else {
2441 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
2442 Walker->Ancestor->SeparationVertex = true;
2443 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
2444 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
2445 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
2446 SetNextComponentNumber(Walker, ComponentNumber);
2447 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
2448 do {
2449 OtherAtom = AtomStack->PopLast();
2450 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
2451 SetNextComponentNumber(OtherAtom, ComponentNumber);
2452 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
2453 } while (OtherAtom != Walker);
2454 ComponentNumber++;
2455 }
2456 // (8) Walker becomes its Ancestor, go to (3)
2457 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
2458 Walker = Walker->Ancestor;
2459 BackStepping = true;
2460 }
2461 if (!BackStepping) { // coming from (8) want to go to (3)
2462 // (9) remove all from stack till Walker (including), these and Root form a component
2463 AtomStack->Output(out);
2464 SetNextComponentNumber(Root, ComponentNumber);
2465 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
2466 SetNextComponentNumber(Walker, ComponentNumber);
2467 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
2468 do {
2469 OtherAtom = AtomStack->PopLast();
2470 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
2471 SetNextComponentNumber(OtherAtom, ComponentNumber);
2472 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
2473 } while (OtherAtom != Walker);
2474 ComponentNumber++;
2475
2476 // (11) Root is separation vertex, set Walker to Root and go to (4)
2477 Walker = Root;
2478 Binder = FindNextUnused(Walker);
2479 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
2480 if (Binder != NULL) { // Root is separation vertex
2481 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
2482 Walker->SeparationVertex = true;
2483 }
2484 }
2485 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
2486
2487 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
2488 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
2489 LeafWalker->Leaf->Output(out);
2490 *out << endl;
2491
2492 // step on to next root
2493 while ((Root != end) && (Root->GraphNr != -1)) {
2494 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
2495 if (Root->GraphNr != -1) // if already discovered, step on
2496 Root = Root->next;
2497 }
2498 }
2499 // set cyclic bond criterium on "same LP" basis
2500 Binder = first;
2501 while(Binder->next != last) {
2502 Binder = Binder->next;
2503 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
2504 Binder->Cyclic = true;
2505 NoCyclicBonds++;
2506 }
2507 }
2508
2509 // analysis of the cycles (print rings, get minimum cycle length)
2510 CyclicStructureAnalysis(out, BackEdgeStack, MinimumRingSize);
2511
2512 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
2513 Walker = start;
2514 while (Walker->next != end) {
2515 Walker = Walker->next;
2516 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
2517 OutputComponentNumber(out, Walker);
2518 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
2519 }
2520
2521 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
2522 Binder = first;
2523 while(Binder->next != last) {
2524 Binder = Binder->next;
2525 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
2526 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
2527 OutputComponentNumber(out, Binder->leftatom);
2528 *out << " === ";
2529 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
2530 OutputComponentNumber(out, Binder->rightatom);
2531 *out << ">." << endl;
2532 if (Binder->Cyclic) // cyclic ??
2533 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
2534 }
2535
2536 // free all and exit
2537 delete(AtomStack);
2538 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
2539 return SubGraphs;
2540};
2541
2542/** Analyses the cycles found and returns minimum of all cycle lengths.
2543 * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
2544 * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
2545 * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
2546 * as cyclic and print out the cycles.
2547 * \param *out output stream for debugging
2548 * \param *BackEdgeStack stack with all back edges found during DFS scan
2549 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
2550 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
2551 */
2552void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize)
2553{
2554 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");
2555 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");
2556 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");
2557 class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring
2558 class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms (that need to be reset after BFS loop)
2559 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;
2560 bond *Binder = NULL, *BackEdge = NULL;
2561 int RingSize, NumCycles, MinRingSize = -1;
2562
2563 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2564 for (int i=AtomCount;i--;) {
2565 PredecessorList[i] = NULL;
2566 ShortestPathList[i] = -1;
2567 ColorList[i] = white;
2568 }
2569 MinimumRingSize = new int[AtomCount];
2570 for(int i=AtomCount;i--;)
2571 MinimumRingSize[i] = AtomCount;
2572
2573
2574 *out << Verbose(1) << "Back edge list - ";
2575 BackEdgeStack->Output(out);
2576
2577 *out << Verbose(1) << "Analysing cycles ... " << endl;
2578 NumCycles = 0;
2579 while (!BackEdgeStack->IsEmpty()) {
2580 BackEdge = BackEdgeStack->PopFirst();
2581 // this is the target
2582 Root = BackEdge->leftatom;
2583 // this is the source point
2584 Walker = BackEdge->rightatom;
2585 ShortestPathList[Walker->nr] = 0;
2586 BFSStack->ClearStack(); // start with empty BFS stack
2587 BFSStack->Push(Walker);
2588 TouchedStack->Push(Walker);
2589 *out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
2590 OtherAtom = NULL;
2591 do { // look for Root
2592 Walker = BFSStack->PopFirst();
2593 *out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
2594 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2595 Binder = ListOfBondsPerAtom[Walker->nr][i];
2596 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
2597 OtherAtom = Binder->GetOtherAtom(Walker);
2598#ifdef ADDHYDROGEN
2599 if (OtherAtom->type->Z != 1) {
2600#endif
2601 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2602 if (ColorList[OtherAtom->nr] == white) {
2603 TouchedStack->Push(OtherAtom);
2604 ColorList[OtherAtom->nr] = lightgray;
2605 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2606 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2607 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2608 //if (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
2609 *out << Verbose(3) << "Putting OtherAtom into queue." << endl;
2610 BFSStack->Push(OtherAtom);
2611 //}
2612 } else {
2613 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2614 }
2615 if (OtherAtom == Root)
2616 break;
2617#ifdef ADDHYDROGEN
2618 } else {
2619 *out << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;
2620 ColorList[OtherAtom->nr] = black;
2621 }
2622#endif
2623 } else {
2624 *out << Verbose(2) << "Bond " << *Binder << " not Visiting, is the back edge." << endl;
2625 }
2626 }
2627 ColorList[Walker->nr] = black;
2628 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2629 if (OtherAtom == Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
2630 // step through predecessor list
2631 while (OtherAtom != BackEdge->rightatom) {
2632 if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
2633 break;
2634 else
2635 OtherAtom = PredecessorList[OtherAtom->nr];
2636 }
2637 if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
2638 *out << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;\
2639 do {
2640 OtherAtom = TouchedStack->PopLast();
2641 if (PredecessorList[OtherAtom->nr] == Walker) {
2642 *out << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;
2643 PredecessorList[OtherAtom->nr] = NULL;
2644 ShortestPathList[OtherAtom->nr] = -1;
2645 ColorList[OtherAtom->nr] = white;
2646 BFSStack->RemoveItem(OtherAtom);
2647 }
2648 } while ((!TouchedStack->IsEmpty()) && (PredecessorList[OtherAtom->nr] == NULL));
2649 TouchedStack->Push(OtherAtom); // last was wrongly popped
2650 OtherAtom = BackEdge->rightatom; // set to not Root
2651 } else
2652 OtherAtom = Root;
2653 }
2654 } while ((!BFSStack->IsEmpty()) && (OtherAtom != Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
2655
2656 if (OtherAtom == Root) {
2657 // now climb back the predecessor list and thus find the cycle members
2658 NumCycles++;
2659 RingSize = 1;
2660 Root->GetTrueFather()->IsCyclic = true;
2661 *out << Verbose(1) << "Found ring contains: ";
2662 Walker = Root;
2663 while (Walker != BackEdge->rightatom) {
2664 *out << Walker->Name << " <-> ";
2665 Walker = PredecessorList[Walker->nr];
2666 Walker->GetTrueFather()->IsCyclic = true;
2667 RingSize++;
2668 }
2669 *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
2670 // walk through all and set MinimumRingSize
2671 Walker = Root;
2672 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
2673 while (Walker != BackEdge->rightatom) {
2674 Walker = PredecessorList[Walker->nr];
2675 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
2676 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
2677 }
2678 if ((RingSize < MinRingSize) || (MinRingSize == -1))
2679 MinRingSize = RingSize;
2680 } else {
2681 *out << Verbose(1) << "No ring containing " << *Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
2682 }
2683
2684 // now clean the lists
2685 while (!TouchedStack->IsEmpty()){
2686 Walker = TouchedStack->PopFirst();
2687 PredecessorList[Walker->nr] = NULL;
2688 ShortestPathList[Walker->nr] = -1;
2689 ColorList[Walker->nr] = white;
2690 }
2691 }
2692 if (MinRingSize != -1) {
2693 // go over all atoms
2694 Root = start;
2695 while(Root->next != end) {
2696 Root = Root->next;
2697
2698 if (MinimumRingSize[Root->GetTrueFather()->nr] == AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
2699 Walker = Root;
2700 ShortestPathList[Walker->nr] = 0;
2701 BFSStack->ClearStack(); // start with empty BFS stack
2702 BFSStack->Push(Walker);
2703 TouchedStack->Push(Walker);
2704 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
2705 OtherAtom = Walker;
2706 while (OtherAtom != NULL) { // look for Root
2707 Walker = BFSStack->PopFirst();
2708 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
2709 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2710 Binder = ListOfBondsPerAtom[Walker->nr][i];
2711 if ((Binder != BackEdge) || (NumberOfBondsPerAtom[Walker->nr] == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
2712 OtherAtom = Binder->GetOtherAtom(Walker);
2713 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2714 if (ColorList[OtherAtom->nr] == white) {
2715 TouchedStack->Push(OtherAtom);
2716 ColorList[OtherAtom->nr] = lightgray;
2717 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2718 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2719 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2720 if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
2721 MinimumRingSize[Root->GetTrueFather()->nr] = ShortestPathList[OtherAtom->nr]+MinimumRingSize[OtherAtom->GetTrueFather()->nr];
2722 OtherAtom = NULL; //break;
2723 break;
2724 } else
2725 BFSStack->Push(OtherAtom);
2726 } else {
2727 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
2728 }
2729 } else {
2730 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
2731 }
2732 }
2733 ColorList[Walker->nr] = black;
2734 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2735 }
2736
2737 // now clean the lists
2738 while (!TouchedStack->IsEmpty()){
2739 Walker = TouchedStack->PopFirst();
2740 PredecessorList[Walker->nr] = NULL;
2741 ShortestPathList[Walker->nr] = -1;
2742 ColorList[Walker->nr] = white;
2743 }
2744 }
2745 *out << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
2746 }
2747 *out << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
2748 } else
2749 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
2750
2751 Free((void **)&PredecessorList, "molecule::CyclicStructureAnalysis: **PredecessorList");
2752 Free((void **)&ShortestPathList, "molecule::CyclicStructureAnalysis: **ShortestPathList");
2753 Free((void **)&ColorList, "molecule::CyclicStructureAnalysis: **ColorList");
2754 delete(BFSStack);
2755};
2756
2757/** Sets the next component number.
2758 * This is O(N) as the number of bonds per atom is bound.
2759 * \param *vertex atom whose next atom::*ComponentNr is to be set
2760 * \param nr number to use
2761 */
2762void molecule::SetNextComponentNumber(atom *vertex, int nr)
2763{
2764 int i=0;
2765 if (vertex != NULL) {
2766 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
2767 if (vertex->ComponentNr[i] == -1) { // check if not yet used
2768 vertex->ComponentNr[i] = nr;
2769 break;
2770 }
2771 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
2772 break; // breaking here will not cause error!
2773 }
2774 if (i == NumberOfBondsPerAtom[vertex->nr])
2775 cerr << "Error: All Component entries are already occupied!" << endl;
2776 } else
2777 cerr << "Error: Given vertex is NULL!" << endl;
2778};
2779
2780/** Output a list of flags, stating whether the bond was visited or not.
2781 * \param *out output stream for debugging
2782 */
2783void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
2784{
2785 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2786 *out << vertex->ComponentNr[i] << " ";
2787};
2788
2789/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
2790 */
2791void molecule::InitComponentNumbers()
2792{
2793 atom *Walker = start;
2794 while(Walker->next != end) {
2795 Walker = Walker->next;
2796 if (Walker->ComponentNr != NULL)
2797 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
2798 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
2799 for (int i=NumberOfBondsPerAtom[Walker->nr];i--;)
2800 Walker->ComponentNr[i] = -1;
2801 }
2802};
2803
2804/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
2805 * \param *vertex atom to regard
2806 * \return bond class or NULL
2807 */
2808bond * molecule::FindNextUnused(atom *vertex)
2809{
2810 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
2811 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
2812 return(ListOfBondsPerAtom[vertex->nr][i]);
2813 return NULL;
2814};
2815
2816/** Resets bond::Used flag of all bonds in this molecule.
2817 * \return true - success, false - -failure
2818 */
2819void molecule::ResetAllBondsToUnused()
2820{
2821 bond *Binder = first;
2822 while (Binder->next != last) {
2823 Binder = Binder->next;
2824 Binder->ResetUsed();
2825 }
2826};
2827
2828/** Resets atom::nr to -1 of all atoms in this molecule.
2829 */
2830void molecule::ResetAllAtomNumbers()
2831{
2832 atom *Walker = start;
2833 while (Walker->next != end) {
2834 Walker = Walker->next;
2835 Walker->GraphNr = -1;
2836 }
2837};
2838
2839/** Output a list of flags, stating whether the bond was visited or not.
2840 * \param *out output stream for debugging
2841 * \param *list
2842 */
2843void OutputAlreadyVisited(ofstream *out, int *list)
2844{
2845 *out << Verbose(4) << "Already Visited Bonds:\t";
2846 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
2847 *out << endl;
2848};
2849
2850/** Estimates by educated guessing (using upper limit) the expected number of fragments.
2851 * The upper limit is
2852 * \f[
2853 * n = N \cdot C^k
2854 * \f]
2855 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
2856 * \param *out output stream for debugging
2857 * \param order bond order k
2858 * \return number n of fragments
2859 */
2860int molecule::GuesstimateFragmentCount(ofstream *out, int order)
2861{
2862 int c = 0;
2863 int FragmentCount;
2864 // get maximum bond degree
2865 atom *Walker = start;
2866 while (Walker->next != end) {
2867 Walker = Walker->next;
2868 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
2869 }
2870 FragmentCount = NoNonHydrogen*(1 << (c*order));
2871 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
2872 return FragmentCount;
2873};
2874
2875/** Scans a single line for number and puts them into \a KeySet.
2876 * \param *out output stream for debugging
2877 * \param *buffer buffer to scan
2878 * \param &CurrentSet filled KeySet on return
2879 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
2880 */
2881bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
2882{
2883 stringstream line;
2884 int AtomNr;
2885 int status = 0;
2886
2887 line.str(buffer);
2888 while (!line.eof()) {
2889 line >> AtomNr;
2890 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2891 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
2892 status++;
2893 } // else it's "-1" or else and thus must not be added
2894 }
2895 *out << Verbose(1) << "The scanned KeySet is ";
2896 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
2897 *out << (*runner) << "\t";
2898 }
2899 *out << endl;
2900 return (status != 0);
2901};
2902
2903/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
2904 * Does two-pass scanning:
2905 * -# Scans the keyset file and initialises a temporary graph
2906 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
2907 * Finally, the temporary graph is inserted into the given \a FragmentList for return.
2908 * \param *out output stream for debugging
2909 * \param *path path to file
2910 * \param *FragmentList empty, filled on return
2911 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
2912 */
2913bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList)
2914{
2915 bool status = true;
2916 ifstream InputFile;
2917 stringstream line;
2918 GraphTestPair testGraphInsert;
2919 int NumberOfFragments = 0;
2920 double TEFactor;
2921 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
2922
2923 if (FragmentList == NULL) { // check list pointer
2924 FragmentList = new Graph;
2925 }
2926
2927 // 1st pass: open file and read
2928 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;
2929 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
2930 InputFile.open(filename);
2931 if (InputFile != NULL) {
2932 // each line represents a new fragment
2933 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
2934 // 1. parse keysets and insert into temp. graph
2935 while (!InputFile.eof()) {
2936 InputFile.getline(buffer, MAXSTRINGSIZE);
2937 KeySet CurrentSet;
2938 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config
2939 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
2940 if (!testGraphInsert.second) {
2941 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;
2942 }
2943 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
2944 }
2945 }
2946 // 2. Free and done
2947 InputFile.close();
2948 InputFile.clear();
2949 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
2950 *out << Verbose(1) << "done." << endl;
2951 } else {
2952 *out << Verbose(1) << "File " << filename << " not found." << endl;
2953 status = false;
2954 }
2955
2956 // 2nd pass: open TEFactors file and read
2957 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;
2958 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
2959 InputFile.open(filename);
2960 if (InputFile != NULL) {
2961 // 3. add found TEFactors to each keyset
2962 NumberOfFragments = 0;
2963 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
2964 if (!InputFile.eof()) {
2965 InputFile >> TEFactor;
2966 (*runner).second.second = TEFactor;
2967 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;
2968 } else {
2969 status = false;
2970 break;
2971 }
2972 }
2973 // 4. Free and done
2974 InputFile.close();
2975 *out << Verbose(1) << "done." << endl;
2976 } else {
2977 *out << Verbose(1) << "File " << filename << " not found." << endl;
2978 status = false;
2979 }
2980
2981 // free memory
2982 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
2983
2984 return status;
2985};
2986
2987/** Stores keysets and TEFactors to file.
2988 * \param *out output stream for debugging
2989 * \param KeySetList Graph with Keysets and factors
2990 * \param *path path to file
2991 * \return true - file written successfully, false - writing failed
2992 */
2993bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)
2994{
2995 ofstream output;
2996 bool status = true;
2997 string line;
2998
2999 // open KeySet file
3000 line = path;
3001 line.append("/");
3002 line += FRAGMENTPREFIX;
3003 line += KEYSETFILE;
3004 output.open(line.c_str(), ios::out);
3005 *out << Verbose(1) << "Saving key sets of the total graph ... ";
3006 if(output != NULL) {
3007 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
3008 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
3009 if (sprinter != (*runner).first.begin())
3010 output << "\t";
3011 output << *sprinter;
3012 }
3013 output << endl;
3014 }
3015 *out << "done." << endl;
3016 } else {
3017 cerr << "Unable to open " << line << " for writing keysets!" << endl;
3018 status = false;
3019 }
3020 output.close();
3021 output.clear();
3022
3023 // open TEFactors file
3024 line = path;
3025 line.append("/");
3026 line += FRAGMENTPREFIX;
3027 line += TEFACTORSFILE;
3028 output.open(line.c_str(), ios::out);
3029 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";
3030 if(output != NULL) {
3031 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
3032 output << (*runner).second.second << endl;
3033 *out << Verbose(1) << "done." << endl;
3034 } else {
3035 *out << Verbose(1) << "failed to open " << line << "." << endl;
3036 status = false;
3037 }
3038 output.close();
3039
3040 return status;
3041};
3042
3043/** Storing the bond structure of a molecule to file.
3044 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
3045 * \param *out output stream for debugging
3046 * \param *path path to file
3047 * \return true - file written successfully, false - writing failed
3048 */
3049bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
3050{
3051 ofstream AdjacencyFile;
3052 atom *Walker = NULL;
3053 stringstream line;
3054 bool status = true;
3055
3056 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
3057 AdjacencyFile.open(line.str().c_str(), ios::out);
3058 *out << Verbose(1) << "Saving adjacency list ... ";
3059 if (AdjacencyFile != NULL) {
3060 Walker = start;
3061 while(Walker->next != end) {
3062 Walker = Walker->next;
3063 AdjacencyFile << Walker->nr << "\t";
3064 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
3065 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
3066 AdjacencyFile << endl;
3067 }
3068 AdjacencyFile.close();
3069 *out << Verbose(1) << "done." << endl;
3070 } else {
3071 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3072 status = false;
3073 }
3074
3075 return status;
3076};
3077
3078/** Checks contents of adjacency file against bond structure in structure molecule.
3079 * \param *out output stream for debugging
3080 * \param *path path to file
3081 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
3082 * \return true - structure is equal, false - not equivalence
3083 */
3084bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
3085{
3086 ifstream File;
3087 stringstream filename;
3088 bool status = true;
3089 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
3090
3091 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
3092 File.open(filename.str().c_str(), ios::out);
3093 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
3094 if (File != NULL) {
3095 // allocate storage structure
3096 int NonMatchNumber = 0; // will number of atoms with differing bond structure
3097 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
3098 int CurrentBondsOfAtom;
3099
3100 // Parse the file line by line and count the bonds
3101 while (!File.eof()) {
3102 File.getline(buffer, MAXSTRINGSIZE);
3103 stringstream line;
3104 line.str(buffer);
3105 int AtomNr = -1;
3106 line >> AtomNr;
3107 CurrentBondsOfAtom = -1; // we count one too far due to line end
3108 // parse into structure
3109 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
3110 while (!line.eof())
3111 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
3112 // compare against present bonds
3113 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
3114 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
3115 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
3116 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
3117 int j = 0;
3118 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
3119 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
3120 ListOfAtoms[AtomNr] = NULL;
3121 NonMatchNumber++;
3122 status = false;
3123 //out << "[" << id << "]\t";
3124 } else {
3125 //out << id << "\t";
3126 }
3127 }
3128 //out << endl;
3129 } else {
3130 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
3131 status = false;
3132 }
3133 }
3134 }
3135 File.close();
3136 File.clear();
3137 if (status) { // if equal we parse the KeySetFile
3138 *out << Verbose(1) << "done: Equal." << endl;
3139 status = true;
3140 } else
3141 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
3142 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
3143 } else {
3144 *out << Verbose(1) << "Adjacency file not found." << endl;
3145 status = false;
3146 }
3147 *out << endl;
3148 Free((void **)&buffer, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
3149
3150 return status;
3151};
3152
3153/** Checks whether the OrderAtSite is still below \a Order at some site.
3154 * \param *out output stream for debugging
3155 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site, used to activate given number of site to increment order adaptively
3156 * \param *GlobalKeySetList list of keysets with global ids (valid in "this" molecule) needed for adaptive increase
3157 * \param Order desired Order if positive, desired exponent in threshold criteria if negative (0 is single-step)
3158 * \param *MinimumRingSize array of max. possible order to avoid loops
3159 * \param *path path to ENERGYPERFRAGMENT file (may be NULL if Order is non-negative)
3160 * \return true - needs further fragmentation, false - does not need fragmentation
3161 */
3162bool molecule::CheckOrderAtSite(ofstream *out, bool *AtomMask, Graph *GlobalKeySetList, int Order, int *MinimumRingSize, char *path)
3163{
3164 atom *Walker = start;
3165 bool status = false;
3166 ifstream InputFile;
3167
3168 // initialize mask list
3169 for(int i=AtomCount;i--;)
3170 AtomMask[i] = false;
3171
3172 if (Order < 0) { // adaptive increase of BondOrder per site
3173 if (AtomMask[AtomCount] == true) // break after one step
3174 return false;
3175 // parse the EnergyPerFragment file
3176 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckOrderAtSite: *buffer");
3177 sprintf(buffer, "%s/%s%s.dat", path, FRAGMENTPREFIX, ENERGYPERFRAGMENT);
3178 InputFile.open(buffer, ios::in);
3179 if ((InputFile != NULL) && (GlobalKeySetList != NULL)) {
3180 // transmorph graph keyset list into indexed KeySetList
3181 map<int,KeySet> IndexKeySetList;
3182 for(Graph::iterator runner = GlobalKeySetList->begin(); runner != GlobalKeySetList->end(); runner++) {
3183 IndexKeySetList.insert( pair<int,KeySet>(runner->second.first,runner->first) );
3184 }
3185 int lines = 0;
3186 // count the number of lines, i.e. the number of fragments
3187 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
3188 InputFile.getline(buffer, MAXSTRINGSIZE);
3189 while(!InputFile.eof()) {
3190 InputFile.getline(buffer, MAXSTRINGSIZE);
3191 lines++;
3192 }
3193 //*out << Verbose(2) << "Scanned " << lines-1 << " lines." << endl; // one endline too much
3194 InputFile.clear();
3195 InputFile.seekg(ios::beg);
3196 map<int, pair<double,int> > AdaptiveCriteriaList; // (Root No., (Value, Order)) !
3197 int No, FragOrder;
3198 double Value;
3199 // each line represents a fragment root (Atom::nr) id and its energy contribution
3200 InputFile.getline(buffer, MAXSTRINGSIZE); // skip comment lines
3201 InputFile.getline(buffer, MAXSTRINGSIZE);
3202 while(!InputFile.eof()) {
3203 InputFile.getline(buffer, MAXSTRINGSIZE);
3204 if (strlen(buffer) > 2) {
3205 //*out << Verbose(2) << "Scanning: " << buffer << endl;
3206 stringstream line(buffer);
3207 line >> FragOrder;
3208 line >> ws >> No;
3209 line >> ws >> Value; // skip time entry
3210 line >> ws >> Value;
3211 No -= 1; // indices start at 1 in file, not 0
3212 //*out << Verbose(2) << " - yields (" << No << "," << Value << ", " << FragOrder << ")" << endl;
3213
3214 // clean the list of those entries that have been superceded by higher order terms already
3215 map<int,KeySet>::iterator marker = IndexKeySetList.find(No); // find keyset to Frag No.
3216 if (marker != IndexKeySetList.end()) { // if found
3217 Value *= 1 + MYEPSILON*(*((*marker).second.begin())); // in case of equal energies this makes em not equal without changing anything actually
3218 // as the smallest number in each set has always been the root (we use global id to keep the doubles away), seek smallest and insert into AtomMask
3219 pair <map<int, pair<double,int> >::iterator, bool> InsertedElement = AdaptiveCriteriaList.insert( make_pair(*((*marker).second.begin()), pair<double,int>( fabs(Value), FragOrder) ));
3220 map<int, pair<double,int> >::iterator PresentItem = InsertedElement.first;
3221 if (!InsertedElement.second) { // this root is already present
3222 if ((*PresentItem).second.second < FragOrder) // if order there is lower, update entry with higher-order term
3223 //if ((*PresentItem).second.first < (*runner).first) // as higher-order terms are not always better, we skip this part (which would always include this site into adaptive increase)
3224 { // if value is smaller, update value and order
3225 (*PresentItem).second.first = fabs(Value);
3226 (*PresentItem).second.second = FragOrder;
3227 *out << Verbose(2) << "Updated element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
3228 } else {
3229 *out << Verbose(2) << "Did not update element " << (*PresentItem).first << " as " << FragOrder << " is less than or equal to " << (*PresentItem).second.second << "." << endl;
3230 }
3231 } else {
3232 *out << Verbose(2) << "Inserted element (" << (*PresentItem).first << ",[" << (*PresentItem).second.first << "," << (*PresentItem).second.second << "])." << endl;
3233 }
3234 } else {
3235 *out << Verbose(1) << "No Fragment under No. " << No << "found." << endl;
3236 }
3237 }
3238 }
3239 // then map back onto (Value, (Root Nr., Order)) (i.e. sorted by value to pick the highest ones)
3240 map<double, pair<int,int> > FinalRootCandidates;
3241 *out << Verbose(1) << "Root candidate list is: " << endl;
3242 for(map<int, pair<double,int> >::iterator runner = AdaptiveCriteriaList.begin(); runner != AdaptiveCriteriaList.end(); runner++) {
3243 Walker = FindAtom((*runner).first);
3244 if (Walker != NULL) {
3245 //if ((*runner).second.second >= Walker->AdaptiveOrder) { // only insert if this is an "active" root site for the current order
3246 if (!Walker->MaxOrder) {
3247 *out << Verbose(2) << "(" << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "])" << endl;
3248 FinalRootCandidates.insert( make_pair( (*runner).second.first, pair<int,int>((*runner).first, (*runner).second.second) ) );
3249 } else {
3250 *out << Verbose(2) << "Excluding (" << *Walker << ", " << (*runner).first << ",[" << (*runner).second.first << "," << (*runner).second.second << "]), as it has reached its maximum order." << endl;
3251 }
3252 } else {
3253 cerr << "Atom No. " << (*runner).second.first << " was not found in this molecule." << endl;
3254 }
3255 }
3256 // pick the ones still below threshold and mark as to be adaptively updated
3257 for(map<double, pair<int,int> >::iterator runner = FinalRootCandidates.upper_bound(pow(10.,Order)); runner != FinalRootCandidates.end(); runner++) {
3258 No = (*runner).second.first;
3259 Walker = FindAtom(No);
3260 //if (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]) {
3261 *out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", setting entry " << No << " of Atom mask to true." << endl;
3262 AtomMask[No] = true;
3263 status = true;
3264 //} else
3265 //*out << Verbose(2) << "Root " << No << " is still above threshold (10^{" << Order <<"}: " << runner->first << ", however MinimumRingSize of " << MinimumRingSize[Walker->nr] << " does not allow further adaptive increase." << endl;
3266 }
3267 // close and done
3268 InputFile.close();
3269 InputFile.clear();
3270 } else {
3271 cerr << "Unable to parse " << buffer << " file, incrementing all." << endl;
3272 while (Walker->next != end) {
3273 Walker = Walker->next;
3274 #ifdef ADDHYDROGEN
3275 if (Walker->type->Z != 1) // skip hydrogen
3276 #endif
3277 {
3278 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
3279 status = true;
3280 }
3281 }
3282 }
3283 Free((void **)&buffer, "molecule::CheckOrderAtSite: *buffer");
3284 // pick a given number of highest values and set AtomMask
3285 } else { // global increase of Bond Order
3286 while (Walker->next != end) {
3287 Walker = Walker->next;
3288 #ifdef ADDHYDROGEN
3289 if (Walker->type->Z != 1) // skip hydrogen
3290 #endif
3291 {
3292 AtomMask[Walker->nr] = true; // include all (non-hydrogen) atoms
3293 if ((Order != 0) && (Walker->AdaptiveOrder < Order)) // && (Walker->AdaptiveOrder < MinimumRingSize[Walker->nr]))
3294 status = true;
3295 }
3296 }
3297 if ((Order == 0) && (AtomMask[AtomCount] == false)) // single stepping, just check
3298 status = true;
3299
3300 if (!status) {
3301 if (Order == 0)
3302 *out << Verbose(1) << "Single stepping done." << endl;
3303 else
3304 *out << Verbose(1) << "Order at every site is already equal or above desired order " << Order << "." << endl;
3305 }
3306 }
3307
3308 // print atom mask for debugging
3309 *out << " ";
3310 for(int i=0;i<AtomCount;i++)
3311 *out << (i % 10);
3312 *out << endl << "Atom mask is: ";
3313 for(int i=0;i<AtomCount;i++)
3314 *out << (AtomMask[i] ? "t" : "f");
3315 *out << endl;
3316
3317 return status;
3318};
3319
3320/** Create a SortIndex to map from atomic labels to the sequence in which the atoms are given in the config file.
3321 * \param *out output stream for debugging
3322 * \param *&SortIndex Mapping array of size molecule::AtomCount
3323 * \return true - success, false - failure of SortIndex alloc
3324 */
3325bool molecule::CreateMappingLabelsToConfigSequence(ofstream *out, int *&SortIndex)
3326{
3327 element *runner = elemente->start;
3328 int AtomNo = 0;
3329 atom *Walker = NULL;
3330
3331 if (SortIndex != NULL) {
3332 *out << Verbose(1) << "SortIndex is " << SortIndex << " and not NULL as expected." << endl;
3333 return false;
3334 }
3335 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
3336 for(int i=AtomCount;i--;)
3337 SortIndex[i] = -1;
3338 while (runner->next != elemente->end) { // go through every element
3339 runner = runner->next;
3340 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
3341 Walker = start;
3342 while (Walker->next != end) { // go through every atom of this element
3343 Walker = Walker->next;
3344 if (Walker->type->Z == runner->Z) // if this atom fits to element
3345 SortIndex[Walker->nr] = AtomNo++;
3346 }
3347 }
3348 }
3349 return true;
3350};
3351
3352/** Performs a many-body bond order analysis for a given bond order.
3353 * -# parses adjacency, keysets and orderatsite files
3354 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
3355 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
3356y contribution", and that's why this consciously not done in the following loop)
3357 * -# in a loop over all subgraphs
3358 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
3359 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
3360 * -# combines the generated molecule lists from all subgraphs
3361 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
3362 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets
3363 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or
3364 * subgraph in the MoleculeListClass.
3365 * \param *out output stream for debugging
3366 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
3367 * \param *configuration configuration for writing config files for each fragment
3368 * \return 1 - continue, 2 - stop (no fragmentation occured)
3369 */
3370int molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
3371{
3372 MoleculeListClass *BondFragments = NULL;
3373 int *SortIndex = NULL;
3374 int *MinimumRingSize = NULL;
3375 int FragmentCounter;
3376 MoleculeLeafClass *MolecularWalker = NULL;
3377 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
3378 fstream File;
3379 bool FragmentationToDo = true;
3380 bool CheckOrder = false;
3381 Graph **FragmentList = NULL;
3382 Graph *ParsedFragmentList = NULL;
3383 Graph TotalGraph; // graph with all keysets however local numbers
3384 int TotalNumberOfKeySets = 0;
3385 atom **ListOfAtoms = NULL;
3386 atom ***ListOfLocalAtoms = NULL;
3387 bool *AtomMask = NULL;
3388
3389 *out << endl;
3390#ifdef ADDHYDROGEN
3391 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
3392#else
3393 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
3394#endif
3395
3396 // ++++++++++++++++++++++++++++ INITIAL STUFF: Bond structure analysis, file parsing, ... ++++++++++++++++++++++++++++++++++++++++++
3397
3398 // ===== 1. Check whether bond structure is same as stored in files ====
3399
3400 // fill the adjacency list
3401 CreateListOfBondsPerAtom(out);
3402
3403 // create lookup table for Atom::nr
3404 FragmentationToDo = FragmentationToDo && CreateFatherLookupTable(out, start, end, ListOfAtoms, AtomCount);
3405
3406 // === compare it with adjacency file ===
3407 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
3408 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
3409
3410 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====
3411 Subgraphs = DepthFirstSearchAnalysis(out, MinimumRingSize);
3412 // fill the bond structure of the individually stored subgraphs
3413 Subgraphs->next->FillBondStructureFromReference(out, this, (FragmentCounter = 0), ListOfLocalAtoms, false); // we want to keep the created ListOfLocalAtoms
3414
3415 // ===== 3. if structure still valid, parse key set file and others =====
3416 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList);
3417
3418 // ===== 4. check globally whether there's something to do actually (first adaptivity check)
3419 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
3420
3421 // =================================== Begin of FRAGMENTATION ===============================
3422 // ===== 6a. assign each keyset to its respective subgraph =====
3423 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), false);
3424
3425 // ===== 6b. prepare and go into the adaptive (Order<0), single-step (Order==0) or incremental (Order>0) cycle
3426 KeyStack *RootStack = new KeyStack[Subgraphs->next->Count()];
3427 AtomMask = new bool[AtomCount+1];
3428 AtomMask[AtomCount] = false;
3429 FragmentationToDo = false; // if CheckOrderAtSite just ones recommends fragmentation, we will save fragments afterwards
3430 while ((CheckOrder = CheckOrderAtSite(out, AtomMask, ParsedFragmentList, Order, MinimumRingSize, configuration->configpath))) {
3431 FragmentationToDo = FragmentationToDo || CheckOrder;
3432 AtomMask[AtomCount] = true; // last plus one entry is used as marker that we have been through this loop once already in CheckOrderAtSite()
3433 // ===== 6b. fill RootStack for each subgraph (second adaptivity check) =====
3434 Subgraphs->next->FillRootStackForSubgraphs(out, RootStack, AtomMask, (FragmentCounter = 0));
3435
3436 // ===== 7. fill the bond fragment list =====
3437 FragmentCounter = 0;
3438 MolecularWalker = Subgraphs;
3439 while (MolecularWalker->next != NULL) {
3440 MolecularWalker = MolecularWalker->next;
3441 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
3442 // output ListOfBondsPerAtom for debugging
3443 MolecularWalker->Leaf->OutputListOfBonds(out);
3444 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
3445
3446 // call BOSSANOVA method
3447 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;
3448 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter], MinimumRingSize);
3449 } else {
3450 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;
3451 }
3452 FragmentCounter++; // next fragment list
3453 }
3454 }
3455 delete[](RootStack);
3456 delete[](AtomMask);
3457 delete(ParsedFragmentList);
3458 delete[](MinimumRingSize);
3459
3460 // free the index lookup list
3461 for (int i=FragmentCounter;i--;)
3462 Free((void **)&ListOfLocalAtoms[i], "molecule::FragmentMolecule - *ListOfLocalAtoms[]");
3463 Free((void **)&ListOfLocalAtoms, "molecule::FragmentMolecule - **ListOfLocalAtoms");
3464
3465 // ==================================== End of FRAGMENTATION ============================================
3466
3467 // ===== 8a. translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
3468 Subgraphs->next->TranslateIndicesToGlobalIDs(out, FragmentList, (FragmentCounter = 0), TotalNumberOfKeySets, TotalGraph);
3469
3470 // free subgraph memory again
3471 FragmentCounter = 0;
3472 if (Subgraphs != NULL) {
3473 while (Subgraphs->next != NULL) {
3474 Subgraphs = Subgraphs->next;
3475 delete(FragmentList[FragmentCounter++]);
3476 delete(Subgraphs->previous);
3477 }
3478 delete(Subgraphs);
3479 }
3480 Free((void **)&FragmentList, "molecule::FragmentMolecule - **FragmentList");
3481
3482 // ===== 8b. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====
3483 //if (FragmentationToDo) { // we should always store the fragments again as coordination might have changed slightly without changing bond structure
3484 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
3485 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount);
3486 int k=0;
3487 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {
3488 KeySet test = (*runner).first;
3489 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;
3490 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
3491 k++;
3492 }
3493 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl;
3494
3495 // ===== 9. Save fragments' configuration and keyset files et al to disk ===
3496 if (BondFragments->NumberOfMolecules != 0) {
3497 // create the SortIndex from BFS labels to order in the config file
3498 CreateMappingLabelsToConfigSequence(out, SortIndex);
3499
3500 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl;
3501 if (BondFragments->OutputConfigForListOfFragments(out, FRAGMENTPREFIX, configuration, SortIndex, true, true))
3502 *out << Verbose(1) << "All configs written." << endl;
3503 else
3504 *out << Verbose(1) << "Some config writing failed." << endl;
3505
3506 // store force index reference file
3507 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);
3508
3509 // store keysets file
3510 StoreKeySetFile(out, TotalGraph, configuration->configpath);
3511
3512 // store Adjacency file
3513 StoreAdjacencyToFile(out, configuration->configpath);
3514
3515 // store Hydrogen saturation correction file
3516 BondFragments->AddHydrogenCorrection(out, configuration->configpath);
3517
3518 // store adaptive orders into file
3519 StoreOrderAtSiteFile(out, configuration->configpath);
3520
3521 // restore orbital and Stop values
3522 CalculateOrbitals(*configuration);
3523
3524 // free memory for bond part
3525 *out << Verbose(1) << "Freeing bond memory" << endl;
3526 delete(FragmentList); // remove bond molecule from memory
3527 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
3528 } else
3529 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
3530 //} else
3531 // *out << Verbose(1) << "No fragments to store." << endl;
3532 *out << Verbose(0) << "End of bond fragmentation." << endl;
3533
3534 return ((int)(!FragmentationToDo)+1); // 1 - continue, 2 - stop (no fragmentation occured)
3535};
3536
3537/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
3538 * Atoms not present in the file get "-1".
3539 * \param *out output stream for debugging
3540 * \param *path path to file ORDERATSITEFILE
3541 * \return true - file writable, false - not writable
3542 */
3543bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
3544{
3545 stringstream line;
3546 ofstream file;
3547
3548 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
3549 file.open(line.str().c_str());
3550 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
3551 if (file != NULL) {
3552 atom *Walker = start;
3553 while (Walker->next != end) {
3554 Walker = Walker->next;
3555 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << endl;
3556 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "\t" << (int)Walker->MaxOrder << "." << endl;
3557 }
3558 file.close();
3559 *out << Verbose(1) << "done." << endl;
3560 return true;
3561 } else {
3562 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3563 return false;
3564 }
3565};
3566
3567/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
3568 * Atoms not present in the file get "0".
3569 * \param *out output stream for debugging
3570 * \param *path path to file ORDERATSITEFILEe
3571 * \return true - file found and scanned, false - file not found
3572 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
3573 */
3574bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
3575{
3576 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
3577 bool *MaxArray = (bool *) Malloc(sizeof(bool)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *MaxArray");
3578 bool status;
3579 int AtomNr, value;
3580 stringstream line;
3581 ifstream file;
3582
3583 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
3584 for(int i=AtomCount;i--;)
3585 OrderArray[i] = 0;
3586 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
3587 file.open(line.str().c_str());
3588 if (file != NULL) {
3589 for (int i=AtomCount;i--;) { // initialise with 0
3590 OrderArray[i] = 0;
3591 MaxArray[i] = 0;
3592 }
3593 while (!file.eof()) { // parse from file
3594 AtomNr = -1;
3595 file >> AtomNr;
3596 if (AtomNr != -1) { // test whether we really parsed something (this is necessary, otherwise last atom is set twice and to 0 on second time)
3597 file >> value;
3598 OrderArray[AtomNr] = value;
3599 file >> value;
3600 MaxArray[AtomNr] = value;
3601 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << " and max order set to " << (int)MaxArray[AtomNr] << "." << endl;
3602 }
3603 }
3604 atom *Walker = start;
3605 while (Walker->next != end) { // fill into atom classes
3606 Walker = Walker->next;
3607 Walker->AdaptiveOrder = OrderArray[Walker->nr];
3608 Walker->MaxOrder = MaxArray[Walker->nr];
3609 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << " and is " << (!Walker->MaxOrder ? "not " : " ") << "maxed." << endl;
3610 }
3611 file.close();
3612 *out << Verbose(1) << "done." << endl;
3613 status = true;
3614 } else {
3615 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
3616 status = false;
3617 }
3618 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
3619 Free((void **)&MaxArray, "molecule::ParseOrderAtSiteFromFile - *MaxArray");
3620
3621 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
3622 return status;
3623};
3624
3625/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
3626 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
3627 * bond chain list, using molecule::AtomCount and molecule::BondCount.
3628 * Allocates memory, fills the array and exits
3629 * \param *out output stream for debugging
3630 */
3631void molecule::CreateListOfBondsPerAtom(ofstream *out)
3632{
3633 bond *Binder = NULL;
3634 atom *Walker = NULL;
3635 int TotalDegree;
3636 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
3637
3638 // re-allocate memory
3639 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
3640 if (ListOfBondsPerAtom != NULL) {
3641 for(int i=AtomCount;i--;)
3642 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
3643 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
3644 }
3645 if (NumberOfBondsPerAtom != NULL)
3646 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
3647 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
3648 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
3649
3650 // reset bond counts per atom
3651 for(int i=AtomCount;i--;)
3652 NumberOfBondsPerAtom[i] = 0;
3653 // count bonds per atom
3654 Binder = first;
3655 while (Binder->next != last) {
3656 Binder = Binder->next;
3657 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
3658 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
3659 }
3660 for(int i=AtomCount;i--;) {
3661 // allocate list of bonds per atom
3662 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
3663 // clear the list again, now each NumberOfBondsPerAtom marks current free field
3664 NumberOfBondsPerAtom[i] = 0;
3665 }
3666 // fill the list
3667 Binder = first;
3668 while (Binder->next != last) {
3669 Binder = Binder->next;
3670 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
3671 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
3672 }
3673
3674 // output list for debugging
3675 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
3676 Walker = start;
3677 while (Walker->next != end) {
3678 Walker = Walker->next;
3679 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
3680 TotalDegree = 0;
3681 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
3682 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
3683 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
3684 }
3685 *out << " -- TotalDegree: " << TotalDegree << endl;
3686 }
3687 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
3688};
3689
3690/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
3691 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
3692 * white and putting into queue.
3693 * \param *out output stream for debugging
3694 * \param *Mol Molecule class to add atoms to
3695 * \param **AddedAtomList list with added atom pointers, index is atom father's number
3696 * \param **AddedBondList list with added bond pointers, index is bond father's number
3697 * \param *Root root vertex for BFS
3698 * \param *Bond bond not to look beyond
3699 * \param BondOrder maximum distance for vertices to add
3700 * \param IsAngstroem lengths are in angstroem or bohrradii
3701 */
3702void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
3703{
3704 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
3705 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
3706 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
3707 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
3708 atom *Walker = NULL, *OtherAtom = NULL;
3709 bond *Binder = NULL;
3710
3711 // add Root if not done yet
3712 AtomStack->ClearStack();
3713 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
3714 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
3715 AtomStack->Push(Root);
3716
3717 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
3718 for (int i=AtomCount;i--;) {
3719 PredecessorList[i] = NULL;
3720 ShortestPathList[i] = -1;
3721 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
3722 ColorList[i] = lightgray;
3723 else
3724 ColorList[i] = white;
3725 }
3726 ShortestPathList[Root->nr] = 0;
3727
3728 // and go on ... Queue always contains all lightgray vertices
3729 while (!AtomStack->IsEmpty()) {
3730 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
3731 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
3732 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
3733 // followed by n+1 till top of stack.
3734 Walker = AtomStack->PopFirst(); // pop oldest added
3735 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
3736 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3737 Binder = ListOfBondsPerAtom[Walker->nr][i];
3738 if (Binder != NULL) { // don't look at bond equal NULL
3739 OtherAtom = Binder->GetOtherAtom(Walker);
3740 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
3741 if (ColorList[OtherAtom->nr] == white) {
3742 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
3743 ColorList[OtherAtom->nr] = lightgray;
3744 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
3745 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
3746 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
3747 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
3748 *out << Verbose(3);
3749 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
3750 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
3751 *out << "Added OtherAtom " << OtherAtom->Name;
3752 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3753 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3754 AddedBondList[Binder->nr]->Type = Binder->Type;
3755 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
3756 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
3757 *out << "Not adding OtherAtom " << OtherAtom->Name;
3758 if (AddedBondList[Binder->nr] == NULL) {
3759 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3760 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3761 AddedBondList[Binder->nr]->Type = Binder->Type;
3762 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
3763 } else
3764 *out << ", not added Bond ";
3765 }
3766 *out << ", putting OtherAtom into queue." << endl;
3767 AtomStack->Push(OtherAtom);
3768 } else { // out of bond order, then replace
3769 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
3770 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
3771 if (Binder == Bond)
3772 *out << Verbose(3) << "Not Queueing, is the Root bond";
3773 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
3774 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
3775 if (!Binder->Cyclic)
3776 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
3777 if (AddedBondList[Binder->nr] == NULL) {
3778 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
3779 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3780 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3781 AddedBondList[Binder->nr]->Type = Binder->Type;
3782 } else {
3783#ifdef ADDHYDROGEN
3784 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
3785#endif
3786 }
3787 }
3788 }
3789 } else {
3790 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
3791 // This has to be a cyclic bond, check whether it's present ...
3792 if (AddedBondList[Binder->nr] == NULL) {
3793 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
3794 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
3795 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
3796 AddedBondList[Binder->nr]->Type = Binder->Type;
3797 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
3798#ifdef ADDHYDROGEN
3799 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
3800#endif
3801 }
3802 }
3803 }
3804 }
3805 }
3806 ColorList[Walker->nr] = black;
3807 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
3808 }
3809 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
3810 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
3811 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
3812 delete(AtomStack);
3813};
3814
3815/** Adds bond structure to this molecule from \a Father molecule.
3816 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
3817 * with end points present in this molecule, bond is created in this molecule.
3818 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
3819 * \param *out output stream for debugging
3820 * \param *Father father molecule
3821 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
3822 * \todo not checked, not fully working probably
3823 */
3824bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
3825{
3826 atom *Walker = NULL, *OtherAtom = NULL;
3827 bool status = true;
3828 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
3829
3830 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
3831
3832 // reset parent list
3833 *out << Verbose(3) << "Resetting ParentList." << endl;
3834 for (int i=Father->AtomCount;i--;)
3835 ParentList[i] = NULL;
3836
3837 // fill parent list with sons
3838 *out << Verbose(3) << "Filling Parent List." << endl;
3839 Walker = start;
3840 while (Walker->next != end) {
3841 Walker = Walker->next;
3842 ParentList[Walker->father->nr] = Walker;
3843 // Outputting List for debugging
3844 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
3845 }
3846
3847 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
3848 *out << Verbose(3) << "Creating bonds." << endl;
3849 Walker = Father->start;
3850 while (Walker->next != Father->end) {
3851 Walker = Walker->next;
3852 if (ParentList[Walker->nr] != NULL) {
3853 if (ParentList[Walker->nr]->father != Walker) {
3854 status = false;
3855 } else {
3856 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
3857 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3858 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
3859 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
3860 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
3861 }
3862 }
3863 }
3864 }
3865 }
3866
3867 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
3868 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
3869 return status;
3870};
3871
3872
3873/** Looks through a StackClass<atom *> and returns the likeliest removal candiate.
3874 * \param *out output stream for debugging messages
3875 * \param *&Leaf KeySet to look through
3876 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
3877 * \param index of the atom suggested for removal
3878 */
3879int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
3880{
3881 atom *Runner = NULL;
3882 int SP, Removal;
3883
3884 *out << Verbose(2) << "Looking for removal candidate." << endl;
3885 SP = -1; //0; // not -1, so that Root is never removed
3886 Removal = -1;
3887 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
3888 Runner = FindAtom((*runner));
3889 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
3890 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
3891 SP = ShortestPathList[(*runner)];
3892 Removal = (*runner);
3893 }
3894 }
3895 }
3896 return Removal;
3897};
3898
3899/** Stores a fragment from \a KeySet into \a molecule.
3900 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
3901 * molecule and adds missing hydrogen where bonds were cut.
3902 * \param *out output stream for debugging messages
3903 * \param &Leaflet pointer to KeySet structure
3904 * \param IsAngstroem whether we have Ansgtroem or bohrradius
3905 * \return pointer to constructed molecule
3906 */
3907molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
3908{
3909 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
3910 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
3911 molecule *Leaf = new molecule(elemente);
3912 bool LonelyFlag = false;
3913 int size;
3914
3915// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
3916
3917 Leaf->BondDistance = BondDistance;
3918 for(int i=NDIM*2;i--;)
3919 Leaf->cell_size[i] = cell_size[i];
3920
3921 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
3922 for(int i=AtomCount;i--;)
3923 SonList[i] = NULL;
3924
3925 // first create the minimal set of atoms from the KeySet
3926 size = 0;
3927 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
3928 FatherOfRunner = FindAtom((*runner)); // find the id
3929 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
3930 size++;
3931 }
3932
3933 // create the bonds between all: Make it an induced subgraph and add hydrogen
3934// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
3935 Runner = Leaf->start;
3936 while (Runner->next != Leaf->end) {
3937 Runner = Runner->next;
3938 LonelyFlag = true;
3939 FatherOfRunner = Runner->father;
3940 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
3941 // create all bonds
3942 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
3943 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
3944// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
3945 if (SonList[OtherFather->nr] != NULL) {
3946// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
3947 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
3948// *out << Verbose(3) << "Adding Bond: ";
3949// *out <<
3950 Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree);
3951// *out << "." << endl;
3952 //NumBonds[Runner->nr]++;
3953 } else {
3954// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
3955 }
3956 LonelyFlag = false;
3957 } else {
3958// *out << ", who has no son in this fragment molecule." << endl;
3959#ifdef ADDHYDROGEN
3960 //*out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
3961 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
3962#endif
3963 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
3964 }
3965 }
3966 } else {
3967 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
3968 }
3969 if ((LonelyFlag) && (size > 1)) {
3970 *out << Verbose(0) << *Runner << "has got bonds only to hydrogens!" << endl;
3971 }
3972#ifdef ADDHYDROGEN
3973 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
3974 Runner = Runner->next;
3975#endif
3976 }
3977 Leaf->CreateListOfBondsPerAtom(out);
3978 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
3979 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
3980// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
3981 return Leaf;
3982};
3983
3984/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
3985 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
3986 * computer game, that winds through the connected graph representing the molecule. Color (white,
3987 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
3988 * creating only unique fragments and not additional ones with vertices simply in different sequence.
3989 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
3990 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
3991 * stepping.
3992 * \param *out output stream for debugging
3993 * \param Order number of atoms in each fragment
3994 * \param *configuration configuration for writing config files for each fragment
3995 * \return List of all unique fragments with \a Order atoms
3996 */
3997/*
3998MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
3999{
4000 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
4001 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
4002 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
4003 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
4004 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
4005 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount);
4006 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
4007 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack!
4008 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
4009 MoleculeListClass *FragmentList = NULL;
4010 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
4011 bond *Binder = NULL;
4012 int RunningIndex = 0, FragmentCounter = 0;
4013
4014 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
4015
4016 // reset parent list
4017 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
4018 for (int i=0;i<AtomCount;i++) { // reset all atom labels
4019 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
4020 Labels[i] = -1;
4021 SonList[i] = NULL;
4022 PredecessorList[i] = NULL;
4023 ColorVertexList[i] = white;
4024 ShortestPathList[i] = -1;
4025 }
4026 for (int i=0;i<BondCount;i++)
4027 ColorEdgeList[i] = white;
4028 RootStack->ClearStack(); // clearstack and push first atom if exists
4029 TouchedStack->ClearStack();
4030 Walker = start->next;
4031 while ((Walker != end)
4032#ifdef ADDHYDROGEN
4033 && (Walker->type->Z == 1)
4034#endif
4035 ) { // search for first non-hydrogen atom
4036 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
4037 Walker = Walker->next;
4038 }
4039 if (Walker != end)
4040 RootStack->Push(Walker);
4041 else
4042 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
4043 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
4044
4045 ///// OUTER LOOP ////////////
4046 while (!RootStack->IsEmpty()) {
4047 // get new root vertex from atom stack
4048 Root = RootStack->PopFirst();
4049 ShortestPathList[Root->nr] = 0;
4050 if (Labels[Root->nr] == -1)
4051 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
4052 PredecessorList[Root->nr] = Root;
4053 TouchedStack->Push(Root);
4054 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
4055
4056 // clear snake stack
4057 SnakeStack->ClearStack();
4058 //SnakeStack->TestImplementation(out, start->next);
4059
4060 ///// INNER LOOP ////////////
4061 // Problems:
4062 // - what about cyclic bonds?
4063 Walker = Root;
4064 do {
4065 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
4066 // initial setting of the new Walker: label, color, shortest path and put on stacks
4067 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
4068 Labels[Walker->nr] = RunningIndex++;
4069 RootStack->Push(Walker);
4070 }
4071 *out << ", has label " << Labels[Walker->nr];
4072 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
4073 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
4074 // Binder ought to be set still from last neighbour search
4075 *out << ", coloring bond " << *Binder << " black";
4076 ColorEdgeList[Binder->nr] = black; // mark this bond as used
4077 }
4078 if (ShortestPathList[Walker->nr] == -1) {
4079 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
4080 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
4081 }
4082 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
4083 SnakeStack->Push(Walker);
4084 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
4085 }
4086 }
4087 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
4088
4089 // then check the stack for a newly stumbled upon fragment
4090 if (SnakeStack->ItemCount() == Order) { // is stack full?
4091 // store the fragment if it is one and get a removal candidate
4092 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
4093 // remove the candidate if one was found
4094 if (Removal != NULL) {
4095 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
4096 SnakeStack->RemoveItem(Removal);
4097 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
4098 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
4099 Walker = PredecessorList[Removal->nr];
4100 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
4101 }
4102 }
4103 } else
4104 Removal = NULL;
4105
4106 // finally, look for a white neighbour as the next Walker
4107 Binder = NULL;
4108 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
4109 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
4110 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
4111 if (ShortestPathList[Walker->nr] < Order) {
4112 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
4113 Binder = ListOfBondsPerAtom[Walker->nr][i];
4114 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
4115 OtherAtom = Binder->GetOtherAtom(Walker);
4116 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
4117 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
4118 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
4119 } else { // otherwise check its colour and element
4120 if (
4121#ifdef ADDHYDROGEN
4122 (OtherAtom->type->Z != 1) &&
4123#endif
4124 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
4125 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
4126 // i find it currently rather sensible to always set the predecessor in order to find one's way back
4127 //if (PredecessorList[OtherAtom->nr] == NULL) {
4128 PredecessorList[OtherAtom->nr] = Walker;
4129 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
4130 //} else {
4131 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
4132 //}
4133 Walker = OtherAtom;
4134 break;
4135 } else {
4136 if (OtherAtom->type->Z == 1)
4137 *out << "Links to a hydrogen atom." << endl;
4138 else
4139 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
4140 }
4141 }
4142 }
4143 } else { // means we have stepped beyond the horizon: Return!
4144 Walker = PredecessorList[Walker->nr];
4145 OtherAtom = Walker;
4146 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
4147 }
4148 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
4149 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
4150 ColorVertexList[Walker->nr] = black;
4151 Walker = PredecessorList[Walker->nr];
4152 }
4153 }
4154 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
4155 *out << Verbose(2) << "Inner Looping is finished." << endl;
4156
4157 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
4158 *out << Verbose(2) << "Resetting lists." << endl;
4159 Walker = NULL;
4160 Binder = NULL;
4161 while (!TouchedStack->IsEmpty()) {
4162 Walker = TouchedStack->PopLast();
4163 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
4164 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
4165 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
4166 PredecessorList[Walker->nr] = NULL;
4167 ColorVertexList[Walker->nr] = white;
4168 ShortestPathList[Walker->nr] = -1;
4169 }
4170 }
4171 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
4172
4173 // copy together
4174 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
4175 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
4176 RunningIndex = 0;
4177 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
4178 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
4179 Leaflet->Leaf = NULL; // prevent molecule from being removed
4180 TempLeaf = Leaflet;
4181 Leaflet = Leaflet->previous;
4182 delete(TempLeaf);
4183 };
4184
4185 // free memory and exit
4186 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
4187 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
4188 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
4189 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
4190 delete(RootStack);
4191 delete(TouchedStack);
4192 delete(SnakeStack);
4193
4194 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
4195 return FragmentList;
4196};
4197*/
4198
4199/** Structure containing all values in power set combination generation.
4200 */
4201struct UniqueFragments {
4202 config *configuration;
4203 atom *Root;
4204 Graph *Leaflet;
4205 KeySet *FragmentSet;
4206 int ANOVAOrder;
4207 int FragmentCounter;
4208 int CurrentIndex;
4209 double TEFactor;
4210 int *ShortestPathList;
4211 bool **UsedList;
4212 bond **BondsPerSPList;
4213 int *BondsPerSPCount;
4214};
4215
4216/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
4217 * -# loops over every possible combination (2^dimension of edge set)
4218 * -# inserts current set, if there's still space left
4219 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
4220ance+1
4221 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
4222 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
4223distance) and current set
4224 * \param *out output stream for debugging
4225 * \param FragmentSearch UniqueFragments structure with all values needed
4226 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
4227 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
4228 * \param SubOrder remaining number of allowed vertices to add
4229 */
4230void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
4231{
4232 atom *OtherWalker = NULL;
4233 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
4234 int NumCombinations;
4235 bool bit;
4236 int bits, TouchedIndex, SubSetDimension, SP, Added;
4237 int Removal;
4238 int SpaceLeft;
4239 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
4240 bond *Binder = NULL;
4241 bond **BondsList = NULL;
4242 KeySetTestPair TestKeySetInsert;
4243
4244 NumCombinations = 1 << SetDimension;
4245
4246 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
4247 // von Endstuecken (aus den Bonds) hinzugefᅵᅵgt werden und fᅵᅵr verbleibende ANOVAOrder
4248 // rekursiv GraphCrawler in der nᅵᅵchsten Ebene aufgerufen werden
4249
4250 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
4251 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
4252
4253 // initialised touched list (stores added atoms on this level)
4254 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
4255 for (TouchedIndex=SubOrder+1;TouchedIndex--;) // empty touched list
4256 TouchedList[TouchedIndex] = -1;
4257 TouchedIndex = 0;
4258
4259 // create every possible combination of the endpieces
4260 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
4261 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
4262 // count the set bit of i
4263 bits = 0;
4264 for (int j=SetDimension;j--;)
4265 bits += (i & (1 << j)) >> j;
4266
4267 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
4268 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
4269 // --1-- add this set of the power set of bond partners to the snake stack
4270 Added = 0;
4271 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
4272 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
4273 if (bit) { // if bit is set, we add this bond partner
4274 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
4275 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
4276 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
4277 TestKeySetInsert = FragmentSearch->FragmentSet->insert(OtherWalker->nr);
4278 if (TestKeySetInsert.second) {
4279 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
4280 Added++;
4281 } else {
4282 *out << Verbose(2+verbosity) << "This was item was already present in the keyset." << endl;
4283 }
4284 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
4285 //}
4286 } else {
4287 *out << Verbose(2+verbosity) << "Not adding." << endl;
4288 }
4289 }
4290
4291 SpaceLeft = SubOrder - Added ;// SubOrder - bits; // due to item's maybe being already present, this does not work anymore
4292 if (SpaceLeft > 0) {
4293 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << SpaceLeft << "." << endl;
4294 if (SubOrder > 1) { // Due to Added above we have to check extra whether we're not already reaching beyond the desired Order
4295 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
4296 SP = RootDistance+1; // this is the next level
4297 // first count the members in the subset
4298 SubSetDimension = 0;
4299 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
4300 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
4301 Binder = Binder->next;
4302 for (int k=TouchedIndex;k--;) {
4303 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
4304 SubSetDimension++;
4305 }
4306 }
4307 // then allocate and fill the list
4308 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
4309 SubSetDimension = 0;
4310 Binder = FragmentSearch->BondsPerSPList[2*SP];
4311 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
4312 Binder = Binder->next;
4313 for (int k=0;k<TouchedIndex;k++) {
4314 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
4315 BondsList[SubSetDimension++] = Binder;
4316 }
4317 }
4318 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
4319 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
4320 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
4321 }
4322 } else {
4323 // --2-- otherwise store the complete fragment
4324 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
4325 // store fragment as a KeySet
4326 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
4327 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
4328 *out << (*runner) << " ";
4329 *out << endl;
4330 //if (!CheckForConnectedSubgraph(out, FragmentSearch->FragmentSet))
4331 //*out << Verbose(0) << "ERROR: The found fragment is not a connected subgraph!" << endl;
4332 InsertFragmentIntoGraph(out, FragmentSearch);
4333 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
4334 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
4335 }
4336
4337 // --3-- remove all added items in this level from snake stack
4338 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
4339 for(int j=0;j<TouchedIndex;j++) {
4340 Removal = TouchedList[j];
4341 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
4342 FragmentSearch->FragmentSet->erase(Removal);
4343 TouchedList[j] = -1;
4344 }
4345 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
4346 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
4347 *out << (*runner) << " ";
4348 *out << endl;
4349 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
4350 } else {
4351 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
4352 }
4353 }
4354 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
4355 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
4356};
4357
4358/** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
4359 * \param *out output stream for debugging
4360 * \param *Fragment Keyset of fragment's vertices
4361 * \return true - connected, false - disconnected
4362 * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
4363 */
4364bool molecule::CheckForConnectedSubgraph(ofstream *out, KeySet *Fragment)
4365{
4366 atom *Walker = NULL, *Walker2 = NULL;
4367 bool BondStatus = false;
4368 int size;
4369
4370 *out << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;
4371 *out << Verbose(2) << "Disconnected atom: ";
4372
4373 // count number of atoms in graph
4374 size = 0;
4375 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
4376 size++;
4377 if (size > 1)
4378 for(KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
4379 Walker = FindAtom(*runner);
4380 BondStatus = false;
4381 for(KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
4382 Walker2 = FindAtom(*runners);
4383 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
4384 if (ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker) == Walker2) {
4385 BondStatus = true;
4386 break;
4387 }
4388 if (BondStatus)
4389 break;
4390 }
4391 }
4392 if (!BondStatus) {
4393 *out << (*Walker) << endl;
4394 return false;
4395 }
4396 }
4397 else {
4398 *out << "none." << endl;
4399 return true;
4400 }
4401 *out << "none." << endl;
4402
4403 *out << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;
4404
4405 return true;
4406}
4407
4408/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
4409 * -# initialises UniqueFragments structure
4410 * -# fills edge list via BFS
4411 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
4412 root distance, the edge set, its dimension and the current suborder
4413 * -# Free'ing structure
4414 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
4415 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
4416 * \param *out output stream for debugging
4417 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
4418 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on
4419 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
4420 * \return number of inserted fragments
4421 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
4422 */
4423int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)
4424{
4425 int SP, AtomKeyNr;
4426 atom *Walker = NULL, *OtherWalker = NULL, *Predecessor = NULL;
4427 bond *Binder = NULL;
4428 bond *CurrentEdge = NULL;
4429 bond **BondsList = NULL;
4430 int RootKeyNr = FragmentSearch.Root->GetTrueFather()->nr;
4431 int Counter = FragmentSearch.FragmentCounter;
4432 int RemainingWalkers;
4433
4434 *out << endl;
4435 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
4436
4437 // prepare Label and SP arrays of the BFS search
4438 FragmentSearch.ShortestPathList[FragmentSearch.Root->nr] = 0;
4439
4440 // prepare root level (SP = 0) and a loop bond denoting Root
4441 for (int i=1;i<Order;i++)
4442 FragmentSearch.BondsPerSPCount[i] = 0;
4443 FragmentSearch.BondsPerSPCount[0] = 1;
4444 Binder = new bond(FragmentSearch.Root, FragmentSearch.Root);
4445 add(Binder, FragmentSearch.BondsPerSPList[1]);
4446
4447 // do a BFS search to fill the SP lists and label the found vertices
4448 // Actually, we should construct a spanning tree vom the root atom and select all edges therefrom and put them into
4449 // according shortest path lists. However, we don't. Rather we fill these lists right away, as they do form a spanning
4450 // tree already sorted into various SP levels. That's why we just do loops over the depth (CurrentSP) and breadth
4451 // (EdgeinSPLevel) of this tree ...
4452 // In another picture, the bonds always contain a direction by rightatom being the one more distant from root and hence
4453 // naturally leftatom forming its predecessor, preventing the BFS"seeker" from continuing in the wrong direction.
4454 *out << endl;
4455 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
4456 for (SP = 0; SP < (Order-1); SP++) {
4457 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with " << FragmentSearch.BondsPerSPCount[SP] << " item(s)";
4458 if (SP > 0) {
4459 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
4460 FragmentSearch.BondsPerSPCount[SP] = 0;
4461 } else
4462 *out << "." << endl;
4463
4464 RemainingWalkers = FragmentSearch.BondsPerSPCount[SP];
4465 CurrentEdge = FragmentSearch.BondsPerSPList[2*SP]; /// start of this SP level's list
4466 while (CurrentEdge->next != FragmentSearch.BondsPerSPList[2*SP+1]) { /// end of this SP level's list
4467 CurrentEdge = CurrentEdge->next;
4468 RemainingWalkers--;
4469 Walker = CurrentEdge->rightatom; // rightatom is always the one more distant
4470 Predecessor = CurrentEdge->leftatom; // ... and leftatom is predecessor
4471 AtomKeyNr = Walker->nr;
4472 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and SP of " << SP << ", with " << RemainingWalkers << " remaining walkers on this level." << endl;
4473 // check for new sp level
4474 // go through all its bonds
4475 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
4476 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
4477 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
4478 OtherWalker = Binder->GetOtherAtom(Walker);
4479 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
4480 #ifdef ADDHYDROGEN
4481 && (OtherWalker->type->Z != 1)
4482 #endif
4483 ) { // skip hydrogens and restrict to fragment
4484 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
4485 // set the label if not set (and push on root stack as well)
4486 if ((OtherWalker != Predecessor) && (OtherWalker->GetTrueFather()->nr > RootKeyNr)) { // only pass through those with label bigger than Root's
4487 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
4488 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
4489 // add the bond in between to the SP list
4490 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
4491 add(Binder, FragmentSearch.BondsPerSPList[2*(SP+1)+1]);
4492 FragmentSearch.BondsPerSPCount[SP+1]++;
4493 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP+1] << " item(s)." << endl;
4494 } else {
4495 if (OtherWalker != Predecessor)
4496 *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->GetTrueFather()->nr << " is smaller than that of Root " << RootKeyNr << "." << endl;
4497 else
4498 *out << Verbose(3) << "This is my predecessor " << *Predecessor << "." << endl;
4499 }
4500 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
4501 }
4502 }
4503 }
4504
4505 // outputting all list for debugging
4506 *out << Verbose(0) << "Printing all found lists." << endl;
4507 for(int i=1;i<Order;i++) { // skip the root edge in the printing
4508 Binder = FragmentSearch.BondsPerSPList[2*i];
4509 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
4510 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4511 Binder = Binder->next;
4512 *out << Verbose(2) << *Binder << endl;
4513 }
4514 }
4515
4516 // creating fragments with the found edge sets (may be done in reverse order, faster)
4517 SP = -1; // the Root <-> Root edge must be subtracted!
4518 for(int i=Order;i--;) { // sum up all found edges
4519 Binder = FragmentSearch.BondsPerSPList[2*i];
4520 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4521 Binder = Binder->next;
4522 SP ++;
4523 }
4524 }
4525 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
4526 if (SP >= (Order-1)) {
4527 // start with root (push on fragment stack)
4528 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
4529 FragmentSearch.FragmentSet->clear();
4530 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
4531 // prepare the subset and call the generator
4532 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
4533 BondsList[0] = FragmentSearch.BondsPerSPList[0]->next; // on SP level 0 there's only the root bond
4534
4535 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order);
4536
4537 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
4538 } else {
4539 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
4540 }
4541
4542 // as FragmentSearch structure is used only once, we don't have to clean it anymore
4543 // remove root from stack
4544 *out << Verbose(0) << "Removing root again from stack." << endl;
4545 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
4546
4547 // free'ing the bonds lists
4548 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
4549 for(int i=Order;i--;) {
4550 *out << Verbose(1) << "Current SP level is " << i << ": ";
4551 Binder = FragmentSearch.BondsPerSPList[2*i];
4552 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
4553 Binder = Binder->next;
4554 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
4555 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
4556 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
4557 }
4558 // delete added bonds
4559 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
4560 // also start and end node
4561 *out << "cleaned." << endl;
4562 }
4563
4564 // return list
4565 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
4566 return (FragmentSearch.FragmentCounter - Counter);
4567};
4568
4569/** Corrects the nuclei position if the fragment was created over the cell borders.
4570 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
4571 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
4572 * and re-add the bond. Looping on the distance check.
4573 * \param *out ofstream for debugging messages
4574 */
4575void molecule::ScanForPeriodicCorrection(ofstream *out)
4576{
4577 bond *Binder = NULL;
4578 bond *OtherBinder = NULL;
4579 atom *Walker = NULL;
4580 atom *OtherWalker = NULL;
4581 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
4582 enum Shading *ColorList = NULL;
4583 double tmp;
4584 Vector Translationvector;
4585 //class StackClass<atom *> *CompStack = NULL;
4586 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
4587 bool flag = true;
4588
4589 *out << Verbose(2) << "Begin of ScanForPeriodicCorrection." << endl;
4590
4591 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
4592 while (flag) {
4593 // remove bonds that are beyond bonddistance
4594 for(int i=NDIM;i--;)
4595 Translationvector.x[i] = 0.;
4596 // scan all bonds
4597 Binder = first;
4598 flag = false;
4599 while ((!flag) && (Binder->next != last)) {
4600 Binder = Binder->next;
4601 for (int i=NDIM;i--;) {
4602 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
4603 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
4604 if (tmp > BondDistance) {
4605 OtherBinder = Binder->next; // note down binding partner for later re-insertion
4606 unlink(Binder); // unlink bond
4607 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
4608 flag = true;
4609 break;
4610 }
4611 }
4612 }
4613 if (flag) {
4614 // create translation vector from their periodically modified distance
4615 for (int i=NDIM;i--;) {
4616 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
4617 if (fabs(tmp) > BondDistance)
4618 Translationvector.x[i] = (tmp < 0) ? +1. : -1.;
4619 }
4620 Translationvector.MatrixMultiplication(matrix);
4621 //*out << Verbose(3) << "Translation vector is ";
4622 Translationvector.Output(out);
4623 *out << endl;
4624 // apply to all atoms of first component via BFS
4625 for (int i=AtomCount;i--;)
4626 ColorList[i] = white;
4627 AtomStack->Push(Binder->leftatom);
4628 while (!AtomStack->IsEmpty()) {
4629 Walker = AtomStack->PopFirst();
4630 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
4631 ColorList[Walker->nr] = black; // mark as explored
4632 Walker->x.AddVector(&Translationvector); // translate
4633 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
4634 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
4635 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
4636 if (ColorList[OtherWalker->nr] == white) {
4637 AtomStack->Push(OtherWalker); // push if yet unexplored
4638 }
4639 }
4640 }
4641 }
4642 // re-add bond
4643 link(Binder, OtherBinder);
4644 } else {
4645 *out << Verbose(3) << "No corrections for this fragment." << endl;
4646 }
4647 //delete(CompStack);
4648 }
4649
4650 // free allocated space from ReturnFullMatrixforSymmetric()
4651 delete(AtomStack);
4652 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
4653 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
4654 *out << Verbose(2) << "End of ScanForPeriodicCorrection." << endl;
4655};
4656
4657/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
4658 * \param *symm 6-dim array of unique symmetric matrix components
4659 * \return allocated NDIM*NDIM array with the symmetric matrix
4660 */
4661double * molecule::ReturnFullMatrixforSymmetric(double *symm)
4662{
4663 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
4664 matrix[0] = symm[0];
4665 matrix[1] = symm[1];
4666 matrix[2] = symm[3];
4667 matrix[3] = symm[1];
4668 matrix[4] = symm[2];
4669 matrix[5] = symm[4];
4670 matrix[6] = symm[3];
4671 matrix[7] = symm[4];
4672 matrix[8] = symm[5];
4673 return matrix;
4674};
4675
4676bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
4677{
4678 //cout << "my check is used." << endl;
4679 if (SubgraphA.size() < SubgraphB.size()) {
4680 return true;
4681 } else {
4682 if (SubgraphA.size() > SubgraphB.size()) {
4683 return false;
4684 } else {
4685 KeySet::iterator IteratorA = SubgraphA.begin();
4686 KeySet::iterator IteratorB = SubgraphB.begin();
4687 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
4688 if ((*IteratorA) < (*IteratorB))
4689 return true;
4690 else if ((*IteratorA) > (*IteratorB)) {
4691 return false;
4692 } // else, go on to next index
4693 IteratorA++;
4694 IteratorB++;
4695 } // end of while loop
4696 }// end of check in case of equal sizes
4697 }
4698 return false; // if we reach this point, they are equal
4699};
4700
4701//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
4702//{
4703// return KeyCompare(SubgraphA, SubgraphB);
4704//};
4705
4706/** Checking whether KeySet is not already present in Graph, if so just adds factor.
4707 * \param *out output stream for debugging
4708 * \param &set KeySet to insert
4709 * \param &graph Graph to insert into
4710 * \param *counter pointer to unique fragment count
4711 * \param factor energy factor for the fragment
4712 */
4713inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
4714{
4715 GraphTestPair testGraphInsert;
4716
4717 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
4718 if (testGraphInsert.second) {
4719 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
4720 Fragment->FragmentCounter++;
4721 } else {
4722 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
4723 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter
4724 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
4725 }
4726};
4727//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
4728//{
4729// // copy stack contents to set and call overloaded function again
4730// KeySet set;
4731// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
4732// set.insert((*runner));
4733// InsertIntoGraph(out, set, graph, counter, factor);
4734//};
4735
4736/** Inserts each KeySet in \a graph2 into \a graph1.
4737 * \param *out output stream for debugging
4738 * \param graph1 first (dest) graph
4739 * \param graph2 second (source) graph
4740 * \param *counter keyset counter that gets increased
4741 */
4742inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
4743{
4744 GraphTestPair testGraphInsert;
4745
4746 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
4747 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
4748 if (testGraphInsert.second) {
4749 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
4750 } else {
4751 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
4752 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
4753 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
4754 }
4755 }
4756};
4757
4758
4759/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
4760 * -# constructs a complete keyset of the molecule
4761 * -# In a loop over all possible roots from the given rootstack
4762 * -# increases order of root site
4763 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
4764 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
4765as the restricted one and each site in the set as the root)
4766 * -# these are merged into a fragment list of keysets
4767 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
4768 * Important only is that we create all fragments, it is not important if we create them more than once
4769 * as these copies are filtered out via use of the hash table (KeySet).
4770 * \param *out output stream for debugging
4771 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list
4772 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
4773 * \param *MinimumRingSize minimum ring size for each atom (molecule::Atomcount)
4774 * \return pointer to Graph list
4775 */
4776void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack, int *MinimumRingSize)
4777{
4778 Graph ***FragmentLowerOrdersList = NULL;
4779 int NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
4780 int counter = 0, Order;
4781 int UpgradeCount = RootStack.size();
4782 KeyStack FragmentRootStack;
4783 int RootKeyNr, RootNr;
4784 struct UniqueFragments FragmentSearch;
4785
4786 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
4787
4788 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
4789 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
4790 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4791 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4792
4793 // initialise the fragments structure
4794 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
4795 FragmentSearch.FragmentCounter = 0;
4796 FragmentSearch.FragmentSet = new KeySet;
4797 FragmentSearch.Root = FindAtom(RootKeyNr);
4798 for (int i=AtomCount;i--;) {
4799 FragmentSearch.ShortestPathList[i] = -1;
4800 }
4801
4802 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
4803 atom *Walker = start;
4804 KeySet CompleteMolecule;
4805 while (Walker->next != end) {
4806 Walker = Walker->next;
4807 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
4808 }
4809
4810 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
4811 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
4812 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
4813 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
4814 RootNr = 0; // counts through the roots in RootStack
4815 while ((RootNr < UpgradeCount) && (!RootStack.empty())) {
4816 RootKeyNr = RootStack.front();
4817 RootStack.pop_front();
4818 Walker = FindAtom(RootKeyNr);
4819 // check cyclic lengths
4820 //if ((MinimumRingSize[Walker->GetTrueFather()->nr] != -1) && (Walker->GetTrueFather()->AdaptiveOrder+1 > MinimumRingSize[Walker->GetTrueFather()->nr])) {
4821 // *out << Verbose(0) << "Bond order " << Walker->GetTrueFather()->AdaptiveOrder << " of Root " << *Walker << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
4822 //} else
4823 {
4824 // increase adaptive order by one
4825 Walker->GetTrueFather()->AdaptiveOrder++;
4826 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
4827
4828 // initialise Order-dependent entries of UniqueFragments structure
4829 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
4830 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
4831 for (int i=Order;i--;) {
4832 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
4833 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
4834 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
4835 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
4836 FragmentSearch.BondsPerSPCount[i] = 0;
4837 }
4838
4839 // allocate memory for all lower level orders in this 1D-array of ptrs
4840 NumLevels = 1 << (Order-1); // (int)pow(2,Order);
4841 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4842 for (int i=0;i<NumLevels;i++)
4843 FragmentLowerOrdersList[RootNr][i] = NULL;
4844
4845 // create top order where nothing is reduced
4846 *out << Verbose(0) << "==============================================================================================================" << endl;
4847 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", " << (RootStack.size()-RootNr) << " Roots remaining." << endl; // , NumLevels is " << NumLevels << "
4848
4849 // Create list of Graphs of current Bond Order (i.e. F_{ij})
4850 FragmentLowerOrdersList[RootNr][0] = new Graph;
4851 FragmentSearch.TEFactor = 1.;
4852 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph
4853 FragmentSearch.Root = Walker;
4854 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);
4855 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4856 if (NumMoleculesOfOrder[RootNr] != 0) {
4857 NumMolecules = 0;
4858
4859 // we don't have to dive into suborders! These keysets are all already created on lower orders!
4860 // this was all ancient stuff, when we still depended on the TEFactors (and for those the suborders were needed)
4861
4862// if ((NumLevels >> 1) > 0) {
4863// // create lower order fragments
4864// *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
4865// Order = Walker->AdaptiveOrder;
4866// for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
4867// // step down to next order at (virtual) boundary of powers of 2 in array
4868// while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
4869// Order--;
4870// *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
4871// for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {
4872// int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));
4873// *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
4874// *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;
4875//
4876// // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
4877// //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
4878// //NumMolecules = 0;
4879// FragmentLowerOrdersList[RootNr][dest] = new Graph;
4880// for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
4881// for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
4882// Graph TempFragmentList;
4883// FragmentSearch.TEFactor = -(*runner).second.second;
4884// FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph
4885// FragmentSearch.Root = FindAtom(*sprinter);
4886// NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);
4887// // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
4888// *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
4889// InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);
4890// }
4891// }
4892// *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
4893// }
4894// }
4895// }
4896 } else {
4897 Walker->GetTrueFather()->MaxOrder = true;
4898// *out << Verbose(1) << "Hence, we don't dive into SubOrders ... " << endl;
4899 }
4900 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
4901 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
4902 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
4903// *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
4904 RootStack.push_back(RootKeyNr); // put back on stack
4905 RootNr++;
4906
4907 // free Order-dependent entries of UniqueFragments structure for next loop cycle
4908 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
4909 for (int i=Order;i--;) {
4910 delete(FragmentSearch.BondsPerSPList[2*i]);
4911 delete(FragmentSearch.BondsPerSPList[2*i+1]);
4912 }
4913 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
4914 }
4915 }
4916 *out << Verbose(0) << "==============================================================================================================" << endl;
4917 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
4918 *out << Verbose(0) << "==============================================================================================================" << endl;
4919
4920 // cleanup FragmentSearch structure
4921 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
4922 delete(FragmentSearch.FragmentSet);
4923
4924 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
4925 // 5433222211111111
4926 // 43221111
4927 // 3211
4928 // 21
4929 // 1
4930
4931 // Subsequently, we combine all into a single list (FragmentList)
4932
4933 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
4934 if (FragmentList == NULL) {
4935 FragmentList = new Graph;
4936 counter = 0;
4937 } else {
4938 counter = FragmentList->size();
4939 }
4940 RootNr = 0;
4941 while (!RootStack.empty()) {
4942 RootKeyNr = RootStack.front();
4943 RootStack.pop_front();
4944 Walker = FindAtom(RootKeyNr);
4945 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
4946 for(int i=0;i<NumLevels;i++) {
4947 if (FragmentLowerOrdersList[RootNr][i] != NULL) {
4948 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
4949 delete(FragmentLowerOrdersList[RootNr][i]);
4950 }
4951 }
4952 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
4953 RootNr++;
4954 }
4955 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
4956 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
4957
4958 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
4959};
4960
4961/** Comparison function for GSL heapsort on distances in two molecules.
4962 * \param *a
4963 * \param *b
4964 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
4965 */
4966inline int CompareDoubles (const void * a, const void * b)
4967{
4968 if (*(double *)a > *(double *)b)
4969 return -1;
4970 else if (*(double *)a < *(double *)b)
4971 return 1;
4972 else
4973 return 0;
4974};
4975
4976/** Determines whether two molecules actually contain the same atoms and coordination.
4977 * \param *out output stream for debugging
4978 * \param *OtherMolecule the molecule to compare this one to
4979 * \param threshold upper limit of difference when comparing the coordination.
4980 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
4981 */
4982int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
4983{
4984 int flag;
4985 double *Distances = NULL, *OtherDistances = NULL;
4986 Vector CenterOfGravity, OtherCenterOfGravity;
4987 size_t *PermMap = NULL, *OtherPermMap = NULL;
4988 int *PermutationMap = NULL;
4989 atom *Walker = NULL;
4990 bool result = true; // status of comparison
4991
4992 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
4993 /// first count both their atoms and elements and update lists thereby ...
4994 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
4995 CountAtoms(out);
4996 OtherMolecule->CountAtoms(out);
4997 CountElements();
4998 OtherMolecule->CountElements();
4999
5000 /// ... and compare:
5001 /// -# AtomCount
5002 if (result) {
5003 if (AtomCount != OtherMolecule->AtomCount) {
5004 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
5005 result = false;
5006 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
5007 }
5008 /// -# ElementCount
5009 if (result) {
5010 if (ElementCount != OtherMolecule->ElementCount) {
5011 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
5012 result = false;
5013 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
5014 }
5015 /// -# ElementsInMolecule
5016 if (result) {
5017 for (flag=MAX_ELEMENTS;flag--;) {
5018 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
5019 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
5020 break;
5021 }
5022 if (flag < MAX_ELEMENTS) {
5023 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
5024 result = false;
5025 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
5026 }
5027 /// then determine and compare center of gravity for each molecule ...
5028 if (result) {
5029 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
5030 DetermineCenter(CenterOfGravity);
5031 OtherMolecule->DetermineCenter(OtherCenterOfGravity);
5032 *out << Verbose(5) << "Center of Gravity: ";
5033 CenterOfGravity.Output(out);
5034 *out << endl << Verbose(5) << "Other Center of Gravity: ";
5035 OtherCenterOfGravity.Output(out);
5036 *out << endl;
5037 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
5038 *out << Verbose(4) << "Centers of gravity don't match." << endl;
5039 result = false;
5040 }
5041 }
5042
5043 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
5044 if (result) {
5045 *out << Verbose(5) << "Calculating distances" << endl;
5046 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
5047 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
5048 Walker = start;
5049 while (Walker->next != end) {
5050 Walker = Walker->next;
5051 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
5052 }
5053 Walker = OtherMolecule->start;
5054 while (Walker->next != OtherMolecule->end) {
5055 Walker = Walker->next;
5056 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
5057 }
5058
5059 /// ... sort each list (using heapsort (o(N log N)) from GSL)
5060 *out << Verbose(5) << "Sorting distances" << endl;
5061 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
5062 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
5063 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
5064 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
5065 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
5066 *out << Verbose(5) << "Combining Permutation Maps" << endl;
5067 for(int i=AtomCount;i--;)
5068 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
5069
5070 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
5071 *out << Verbose(4) << "Comparing distances" << endl;
5072 flag = 0;
5073 for (int i=0;i<AtomCount;i++) {
5074 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
5075 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
5076 flag = 1;
5077 }
5078 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
5079 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
5080
5081 /// free memory
5082 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
5083 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
5084 if (flag) { // if not equal
5085 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
5086 result = false;
5087 }
5088 }
5089 /// return pointer to map if all distances were below \a threshold
5090 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
5091 if (result) {
5092 *out << Verbose(3) << "Result: Equal." << endl;
5093 return PermutationMap;
5094 } else {
5095 *out << Verbose(3) << "Result: Not equal." << endl;
5096 return NULL;
5097 }
5098};
5099
5100/** Returns an index map for two father-son-molecules.
5101 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
5102 * \param *out output stream for debugging
5103 * \param *OtherMolecule corresponding molecule with fathers
5104 * \return allocated map of size molecule::AtomCount with map
5105 * \todo make this with a good sort O(n), not O(n^2)
5106 */
5107int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
5108{
5109 atom *Walker = NULL, *OtherWalker = NULL;
5110 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
5111 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
5112 for (int i=AtomCount;i--;)
5113 AtomicMap[i] = -1;
5114 if (OtherMolecule == this) { // same molecule
5115 for (int i=AtomCount;i--;) // no need as -1 means already that there is trivial correspondence
5116 AtomicMap[i] = i;
5117 *out << Verbose(4) << "Map is trivial." << endl;
5118 } else {
5119 *out << Verbose(4) << "Map is ";
5120 Walker = start;
5121 while (Walker->next != end) {
5122 Walker = Walker->next;
5123 if (Walker->father == NULL) {
5124 AtomicMap[Walker->nr] = -2;
5125 } else {
5126 OtherWalker = OtherMolecule->start;
5127 while (OtherWalker->next != OtherMolecule->end) {
5128 OtherWalker = OtherWalker->next;
5129 //for (int i=0;i<AtomCount;i++) { // search atom
5130 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
5131 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
5132 if (Walker->father == OtherWalker)
5133 AtomicMap[Walker->nr] = OtherWalker->nr;
5134 }
5135 }
5136 *out << AtomicMap[Walker->nr] << "\t";
5137 }
5138 *out << endl;
5139 }
5140 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
5141 return AtomicMap;
5142};
5143
5144/** Stores the temperature evaluated from velocities in molecule::Trajectories.
5145 * We simply use the formula equivaleting temperature and kinetic energy:
5146 * \f$k_B T = \sum_i m_i v_i^2\f$
5147 * \param *out output stream for debugging
5148 * \param startstep first MD step in molecule::Trajectories
5149 * \param endstep last plus one MD step in molecule::Trajectories
5150 * \param *output output stream of temperature file
5151 * \return file written (true), failure on writing file (false)
5152 */
5153bool molecule::OutputTemperatureFromTrajectories(ofstream *out, int startstep, int endstep, ofstream *output)
5154{
5155 double temperature;
5156 atom *Walker = NULL;
5157 // test stream
5158 if (output == NULL)
5159 return false;
5160 else
5161 *output << "# Step Temperature [K] Temperature [a.u.]" << endl;
5162 for (int step=startstep;step < endstep; step++) { // loop over all time steps
5163 temperature = 0.;
5164 Walker = start;
5165 while (Walker->next != end) {
5166 Walker = Walker->next;
5167 for (int i=NDIM;i--;)
5168 temperature += Walker->type->mass * Trajectories[Walker].U.at(step).x[i]* Trajectories[Walker].U.at(step).x[i];
5169 }
5170 *output << step << "\t" << temperature*AtomicEnergyToKelvin << "\t" << temperature << endl;
5171 }
5172 return true;
5173};
Note: See TracBrowser for help on using the repository browser.