source: src/molecules.cpp@ b0a0c3

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since b0a0c3 was b0a0c3, checked in by Frederik Heber <heber@…>, 17 years ago

storing and comparing Adjacency outsourced into two new functions.

New functions:

ructure of the molecule

  • Property mode set to 100644
File size: 185.7 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=0;i<num;i++) {
24 for(int j=0;j<NDIM;j++)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=0;i<MAX_ELEMENTS;i++)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=0;i<AtomCount;i++)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 int i; // loop variable
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
184 vector InBondVector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188 *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondVector.CopyVector(&TopReplacement->x);
191 InBondVector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondVector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondVector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198 *out << Verbose(4) << "InBondVector is: ";
199 InBondVector.Output(out);
200 *out << endl;
201 OrthoVector1.Zero();
202 for (int i=0;i<NDIM;i++) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 OrthoVector1.MatrixMultiplication(matrix);
210 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondVector.Norm();
213 *out << Verbose(4) << "Corrected InBondVector is now: ";
214 InBondVector.Output(out);
215 *out << endl;
216 } // periodic correction finished
217
218 InBondVector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247 FirstOtherAtom->x.Output(out);
248 *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273 *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 OrthoVector1.GetOneNormalVector(&InBondVector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //OrthoVector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 OrthoVector1.MakeNormalVector(&InBondVector);
285 OrthoVector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
306// InBondVector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// OrthoVector1.Output(out);
310// *out << endl;
311 *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(i=0;i<NDIM;i++) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(i=0;i<NDIM;i++) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329 FirstOtherAtom->x.Output(out);
330 *out << endl;
331 *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332 SecondOtherAtom->x.Output(out);
333 *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondVector
360 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
361 *out << Verbose(3) << "Orthovector1: ";
362 OrthoVector1.Output(out);
363 *out << endl;
364 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
365 *out << Verbose(3) << "Orthovector2: ";
366 OrthoVector2.Output(out);
367 *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for OrthVector1
375 g = b/2.; // length for OrthVector2
376 *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377 *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403 FirstOtherAtom->x.Output(out);
404 *out << endl;
405 *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406 SecondOtherAtom->x.Output(out);
407 *out << endl;
408 *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409 ThirdOtherAtom->x.Output(out);
410 *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427 *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *first = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 for(i=0;i<NumberOfAtoms;i++){
459 first = new atom;
460 getline(xyzfile,line,'\n');
461 istringstream *item = new istringstream(line);
462 //istringstream input(line);
463 cout << Verbose(1) << "Reading: " << line << endl;
464 *item >> shorthand;
465 *item >> x[0];
466 *item >> x[1];
467 *item >> x[2];
468 first->type = elemente->FindElement(shorthand);
469 if (first->type == NULL) {
470 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
471 first->type = elemente->FindElement(1);
472 }
473 for(j=0;j<NDIM;j++)
474 first->x.x[j] = x[j];
475 AddAtom(first); // add to molecule
476 delete(item);
477 }
478 xyzfile.close();
479 delete(input);
480 return true;
481};
482
483/** Creates a copy of this molecule.
484 * \return copy of molecule
485 */
486molecule *molecule::CopyMolecule()
487{
488 molecule *copy = new molecule(elemente);
489 atom *CurrentAtom = NULL;
490 atom *LeftAtom = NULL, *RightAtom = NULL;
491 atom *Walker = NULL;
492
493 // copy all atoms
494 Walker = start;
495 while(Walker->next != end) {
496 Walker = Walker->next;
497 CurrentAtom = copy->AddCopyAtom(Walker);
498 }
499
500 // copy all bonds
501 bond *Binder = first;
502 bond *NewBond = NULL;
503 while(Binder->next != last) {
504 Binder = Binder->next;
505 // get the pendant atoms of current bond in the copy molecule
506 LeftAtom = copy->start;
507 while (LeftAtom->next != copy->end) {
508 LeftAtom = LeftAtom->next;
509 if (LeftAtom->father == Binder->leftatom)
510 break;
511 }
512 RightAtom = copy->start;
513 while (RightAtom->next != copy->end) {
514 RightAtom = RightAtom->next;
515 if (RightAtom->father == Binder->rightatom)
516 break;
517 }
518 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
519 NewBond->Cyclic = Binder->Cyclic;
520 if (Binder->Cyclic)
521 copy->NoCyclicBonds++;
522 NewBond->Type = Binder->Type;
523 }
524 // correct fathers
525 Walker = copy->start;
526 while(Walker->next != copy->end) {
527 Walker = Walker->next;
528 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
529 Walker->father = Walker; // set father to itself (copy of a whole molecule)
530 else
531 Walker->father = Walker->father->father; // set father to original's father
532 }
533 // copy values
534 copy->CountAtoms((ofstream *)&cout);
535 copy->CountElements();
536 if (first->next != last) { // if adjaceny list is present
537 copy->BondDistance = BondDistance;
538 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
539 }
540
541 return copy;
542};
543
544/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
545 * Also updates molecule::BondCount and molecule::NoNonBonds.
546 * \param *first first atom in bond
547 * \param *second atom in bond
548 * \return pointer to bond or NULL on failure
549 */
550bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
551{
552 bond *Binder = NULL;
553 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
554 Binder = new bond(atom1, atom2, degree, BondCount++);
555 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
556 NoNonBonds++;
557 add(Binder, last);
558 } else {
559 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
560 }
561 return Binder;
562};
563
564/** Remove bond from bond chain list.
565 * \todo Function not implemented yet
566 * \param *pointer bond pointer
567 * \return true - bound found and removed, false - bond not found/removed
568 */
569bool molecule::RemoveBond(bond *pointer)
570{
571 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
572 removewithoutcheck(pointer);
573 return true;
574};
575
576/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
577 * \todo Function not implemented yet
578 * \param *BondPartner atom to be removed
579 * \return true - bounds found and removed, false - bonds not found/removed
580 */
581bool molecule::RemoveBonds(atom *BondPartner)
582{
583 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
584 return false;
585};
586
587/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
588 * \param *dim vector class
589 */
590void molecule::SetBoxDimension(vector *dim)
591{
592 cell_size[0] = dim->x[0];
593 cell_size[1] = 0.;
594 cell_size[2] = dim->x[1];
595 cell_size[3] = 0.;
596 cell_size[4] = 0.;
597 cell_size[5] = dim->x[2];
598};
599
600/** Centers the edge of the atoms at (0,0,0).
601 * \param *out output stream for debugging
602 * \param *max coordinates of other edge, specifying box dimensions.
603 */
604void molecule::CenterEdge(ofstream *out, vector *max)
605{
606 vector *min = new vector;
607
608 *out << Verbose(3) << "Begin of CenterEdge." << endl;
609 atom *ptr = start->next; // start at first in list
610 if (ptr != end) { //list not empty?
611 for (int i=0;i<NDIM;i++) {
612 max->x[i] = ptr->x.x[i];
613 min->x[i] = ptr->x.x[i];
614 }
615 while (ptr->next != end) { // continue with second if present
616 ptr = ptr->next;
617 //ptr->Output(1,1,out);
618 for (int i=0;i<NDIM;i++) {
619 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
620 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
621 }
622 }
623 *out << Verbose(4) << "Maximum is ";
624 max->Output(out);
625 *out << ", Minimum is ";
626 min->Output(out);
627 *out << endl;
628
629 for (int i=0;i<NDIM;i++) {
630 min->x[i] *= -1.;
631 max->x[i] += min->x[i];
632 }
633 Translate(min);
634 }
635 delete(min);
636 *out << Verbose(3) << "End of CenterEdge." << endl;
637};
638
639/** Centers the center of the atoms at (0,0,0).
640 * \param *out output stream for debugging
641 * \param *center return vector for translation vector
642 */
643void molecule::CenterOrigin(ofstream *out, vector *center)
644{
645 int Num = 0;
646 atom *ptr = start->next; // start at first in list
647
648 for(int i=0;i<NDIM;i++) // zero center vector
649 center->x[i] = 0.;
650
651 if (ptr != end) { //list not empty?
652 while (ptr->next != end) { // continue with second if present
653 ptr = ptr->next;
654 Num++;
655 center->AddVector(&ptr->x);
656 }
657 center->Scale(-1./Num); // divide through total number (and sign for direction)
658 Translate(center);
659 }
660};
661
662/** Centers the center of gravity of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *center return vector for translation vector
665 */
666void molecule::CenterGravity(ofstream *out, vector *center)
667{
668 double Num = 0;
669 atom *ptr = start->next; // start at first in list
670 vector tmp;
671
672 for(int i=0;i<NDIM;i++) // zero center vector
673 center->x[i] = 0.;
674
675 if (ptr != end) { //list not empty?
676 while (ptr->next != end) { // continue with second if present
677 ptr = ptr->next;
678 Num += ptr->type->mass;
679 tmp.CopyVector(&ptr->x);
680 tmp.Scale(ptr->type->mass); // scale by mass
681 center->AddVector(&tmp);
682 }
683 center->Scale(-1./Num); // divide through total mass (and sign for direction)
684 Translate(center);
685 }
686};
687
688/** Scales all atoms by \a *factor.
689 * \param *factor pointer to scaling factor
690 */
691void molecule::Scale(double **factor)
692{
693 atom *ptr = start;
694
695 while (ptr->next != end) {
696 ptr = ptr->next;
697 ptr->x.Scale(factor);
698 }
699};
700
701/** Translate all atoms by given vector.
702 * \param trans[] translation vector.
703 */
704void molecule::Translate(const vector *trans)
705{
706 atom *ptr = start;
707
708 while (ptr->next != end) {
709 ptr = ptr->next;
710 ptr->x.Translate(trans);
711 }
712};
713
714/** Mirrors all atoms against a given plane.
715 * \param n[] normal vector of mirror plane.
716 */
717void molecule::Mirror(const vector *n)
718{
719 atom *ptr = start;
720
721 while (ptr->next != end) {
722 ptr = ptr->next;
723 ptr->x.Mirror(n);
724 }
725};
726
727/** Determines center of gravity (yet not considering atom masses).
728 * \param CenterOfGravity reference to return vector
729 */
730void molecule::DetermineCenterOfGravity(vector &CenterOfGravity)
731{
732 atom *Walker = start;
733 bond *Binder = NULL;
734 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
735 double tmp;
736 bool flag;
737 vector TestVector, TranslationVector;
738
739 do {
740 CenterOfGravity.Zero();
741 flag = true;
742 while (Walker->next != end) {
743 Walker = Walker->next;
744#ifdef ADDHYDROGEN
745 if (Walker->type->Z != 1) {
746#endif
747 TestVector.CopyVector(&Walker->x);
748 TestVector.InverseMatrixMultiplication(matrix);
749 TranslationVector.Zero();
750 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
751 Binder = ListOfBondsPerAtom[Walker->nr][i];
752 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
753 for (int j=0;j<NDIM;j++) {
754 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
755 if ((fabs(tmp)) > BondDistance) {
756 flag = false;
757 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
758 if (tmp > 0)
759 TranslationVector.x[j] -= 1.;
760 else
761 TranslationVector.x[j] += 1.;
762 }
763 }
764 }
765 TestVector.AddVector(&TranslationVector);
766 TestVector.MatrixMultiplication(matrix);
767 CenterOfGravity.AddVector(&TestVector);
768 cout << Verbose(1) << "Vector is: ";
769 TestVector.Output((ofstream *)&cout);
770 cout << endl;
771#ifdef ADDHYDROGEN
772 // now also change all hydrogens
773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
774 Binder = ListOfBondsPerAtom[Walker->nr][i];
775 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
776 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
777 TestVector.InverseMatrixMultiplication(matrix);
778 TestVector.AddVector(&TranslationVector);
779 TestVector.MatrixMultiplication(matrix);
780 CenterOfGravity.AddVector(&TestVector);
781 cout << Verbose(1) << "Hydrogen Vector is: ";
782 TestVector.Output((ofstream *)&cout);
783 cout << endl;
784 }
785 }
786 }
787#endif
788 }
789 } while (!flag);
790 Free((void **)&matrix, "molecule::DetermineCenterOfGravity: *matrix");
791 CenterOfGravity.Scale(1./(double)AtomCount);
792};
793
794/** Align all atoms in such a manner that given vector \a *n is along z axis.
795 * \param n[] alignment vector.
796 */
797void molecule::Align(vector *n)
798{
799 atom *ptr = start;
800 double alpha, tmp;
801 vector z_axis;
802 z_axis.x[0] = 0.;
803 z_axis.x[1] = 0.;
804 z_axis.x[2] = 1.;
805
806 // rotate on z-x plane
807 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
808 alpha = atan(-n->x[0]/n->x[2]);
809 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
810 while (ptr->next != end) {
811 ptr = ptr->next;
812 tmp = ptr->x.x[0];
813 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
814 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
815 }
816 // rotate n vector
817 tmp = n->x[0];
818 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
819 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
820 cout << Verbose(1) << "alignment vector after first rotation: ";
821 n->Output((ofstream *)&cout);
822 cout << endl;
823
824 // rotate on z-y plane
825 ptr = start;
826 alpha = atan(-n->x[1]/n->x[2]);
827 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 tmp = ptr->x.x[1];
831 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
832 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
833 }
834 // rotate n vector (for consistency check)
835 tmp = n->x[1];
836 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
837 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
838
839 cout << Verbose(1) << "alignment vector after second rotation: ";
840 n->Output((ofstream *)&cout);
841 cout << Verbose(1) << endl;
842 cout << Verbose(0) << "End of Aligning all atoms." << endl;
843};
844
845/** Removes atom from molecule list.
846 * \param *pointer atom to be removed
847 * \return true - succeeded, false - atom not found in list
848 */
849bool molecule::RemoveAtom(atom *pointer)
850{
851 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
852 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
853 else
854 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
855 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
856 ElementCount--;
857 return remove(pointer, start, end);
858};
859
860/** Removes every atom from molecule list.
861 * \return true - succeeded, false - atom not found in list
862 */
863bool molecule::CleanupMolecule()
864{
865 return (cleanup(start,end) && cleanup(first,last));
866};
867
868/** Finds an atom specified by its continuous number.
869 * \param Nr number of atom withim molecule
870 * \return pointer to atom or NULL
871 */
872atom * molecule::FindAtom(int Nr) const{
873 atom * walker = find(&Nr, start,end);
874 if (walker != NULL) {
875 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
876 return walker;
877 } else {
878 cout << Verbose(0) << "Atom not found in list." << endl;
879 return NULL;
880 }
881};
882
883/** Asks for atom number, and checks whether in list.
884 * \param *text question before entering
885 */
886atom * molecule::AskAtom(char *text)
887{
888 int No;
889 atom *ion = NULL;
890 do {
891 //cout << Verbose(0) << "============Atom list==========================" << endl;
892 //mol->Output((ofstream *)&cout);
893 //cout << Verbose(0) << "===============================================" << endl;
894 cout << Verbose(0) << text;
895 cin >> No;
896 ion = this->FindAtom(No);
897 } while (ion == NULL);
898 return ion;
899};
900
901/** Checks if given coordinates are within cell volume.
902 * \param *x array of coordinates
903 * \return true - is within, false - out of cell
904 */
905bool molecule::CheckBounds(const vector *x) const
906{
907 bool result = true;
908 int j =-1;
909 for (int i=0;i<3;i++) {
910 j += i+1;
911 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
912 }
913 //return result;
914 return true; /// probably not gonna use the check no more
915};
916
917/** Calculates sum over least square distance to line hidden in \a *x.
918 * \param *x offset and direction vector
919 * \param *params pointer to lsq_params structure
920 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
921 */
922double LeastSquareDistance (const gsl_vector * x, void * params)
923{
924 double res = 0, t;
925 vector a,b,c,d;
926 struct lsq_params *par = (struct lsq_params *)params;
927 atom *ptr = par->mol->start;
928
929 // initialize vectors
930 a.x[0] = gsl_vector_get(x,0);
931 a.x[1] = gsl_vector_get(x,1);
932 a.x[2] = gsl_vector_get(x,2);
933 b.x[0] = gsl_vector_get(x,3);
934 b.x[1] = gsl_vector_get(x,4);
935 b.x[2] = gsl_vector_get(x,5);
936 // go through all atoms
937 while (ptr != par->mol->end) {
938 ptr = ptr->next;
939 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
940 c.CopyVector(&ptr->x); // copy vector to temporary one
941 c.SubtractVector(&a); // subtract offset vector
942 t = c.ScalarProduct(&b); // get direction parameter
943 d.CopyVector(&b); // and create vector
944 d.Scale(&t);
945 c.SubtractVector(&d); // ... yielding distance vector
946 res += d.ScalarProduct((const vector *)&d); // add squared distance
947 }
948 }
949 return res;
950};
951
952/** By minimizing the least square distance gains alignment vector.
953 * \bug this is not yet working properly it seems
954 */
955void molecule::GetAlignVector(struct lsq_params * par) const
956{
957 int np = 6;
958
959 const gsl_multimin_fminimizer_type *T =
960 gsl_multimin_fminimizer_nmsimplex;
961 gsl_multimin_fminimizer *s = NULL;
962 gsl_vector *ss;
963 gsl_multimin_function minex_func;
964
965 size_t iter = 0, i;
966 int status;
967 double size;
968
969 /* Initial vertex size vector */
970 ss = gsl_vector_alloc (np);
971
972 /* Set all step sizes to 1 */
973 gsl_vector_set_all (ss, 1.0);
974
975 /* Starting point */
976 par->x = gsl_vector_alloc (np);
977 par->mol = this;
978
979 gsl_vector_set (par->x, 0, 0.0); // offset
980 gsl_vector_set (par->x, 1, 0.0);
981 gsl_vector_set (par->x, 2, 0.0);
982 gsl_vector_set (par->x, 3, 0.0); // direction
983 gsl_vector_set (par->x, 4, 0.0);
984 gsl_vector_set (par->x, 5, 1.0);
985
986 /* Initialize method and iterate */
987 minex_func.f = &LeastSquareDistance;
988 minex_func.n = np;
989 minex_func.params = (void *)par;
990
991 s = gsl_multimin_fminimizer_alloc (T, np);
992 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
993
994 do
995 {
996 iter++;
997 status = gsl_multimin_fminimizer_iterate(s);
998
999 if (status)
1000 break;
1001
1002 size = gsl_multimin_fminimizer_size (s);
1003 status = gsl_multimin_test_size (size, 1e-2);
1004
1005 if (status == GSL_SUCCESS)
1006 {
1007 printf ("converged to minimum at\n");
1008 }
1009
1010 printf ("%5d ", (int)iter);
1011 for (i = 0; i < (size_t)np; i++)
1012 {
1013 printf ("%10.3e ", gsl_vector_get (s->x, i));
1014 }
1015 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1016 }
1017 while (status == GSL_CONTINUE && iter < 100);
1018
1019 for (i=0;i<(size_t)np;i++)
1020 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1021 //gsl_vector_free(par->x);
1022 gsl_vector_free(ss);
1023 gsl_multimin_fminimizer_free (s);
1024};
1025
1026/** Prints molecule to *out.
1027 * \param *out output stream
1028 */
1029bool molecule::Output(ofstream *out)
1030{
1031 element *runner = elemente->start;
1032 atom *walker = NULL;
1033 int ElementNo, AtomNo;
1034 CountElements();
1035
1036 if (out == NULL) {
1037 return false;
1038 } else {
1039 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1040 ElementNo = 0;
1041 while (runner->next != elemente->end) { // go through every element
1042 runner = runner->next;
1043 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1044 ElementNo++;
1045 AtomNo = 0;
1046 walker = start;
1047 while (walker->next != end) { // go through every atom of this element
1048 walker = walker->next;
1049 if (walker->type == runner) { // if this atom fits to element
1050 AtomNo++;
1051 walker->Output(ElementNo, AtomNo, out);
1052 }
1053 }
1054 }
1055 }
1056 return true;
1057 }
1058};
1059
1060/** Output of element before the actual coordination list.
1061 * \param *out stream pointer
1062 */
1063bool molecule::Checkout(ofstream *out) const
1064{
1065 return elemente->Checkout(out, ElementsInMolecule);
1066};
1067
1068/** Prints molecule to *out as xyz file.
1069 * \param *out output stream
1070 */
1071bool molecule::OutputXYZ(ofstream *out) const
1072{
1073 atom *walker = NULL;
1074 int No = 0;
1075 time_t now;
1076
1077 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1078 walker = start;
1079 while (walker->next != end) { // go through every atom and count
1080 walker = walker->next;
1081 No++;
1082 }
1083 if (out != NULL) {
1084 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1085 walker = start;
1086 while (walker->next != end) { // go through every atom of this element
1087 walker = walker->next;
1088 walker->OutputXYZLine(out);
1089 }
1090 return true;
1091 } else
1092 return false;
1093};
1094
1095/** Brings molecule::AtomCount and atom::*Name up-to-date.
1096 * \param *out output stream for debugging
1097 */
1098void molecule::CountAtoms(ofstream *out)
1099{
1100 int i = 0;
1101 atom *Walker = start;
1102 while (Walker->next != end) {
1103 Walker = Walker->next;
1104 i++;
1105 }
1106 if ((AtomCount == 0) || (i != AtomCount)) {
1107 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1108 AtomCount = i;
1109
1110 // count NonHydrogen atoms and give each atom a unique name
1111 if (AtomCount != 0) {
1112 i=0;
1113 NoNonHydrogen = 0;
1114 Walker = start;
1115 while (Walker->next != end) {
1116 Walker = Walker->next;
1117 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1118 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1119 NoNonHydrogen++;
1120 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1121 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1122 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1123 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1124 i++;
1125 }
1126 } else
1127 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1128 }
1129};
1130
1131/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1132 */
1133void molecule::CountElements()
1134{
1135 int i = 0;
1136 for(i=0;i<MAX_ELEMENTS;i++)
1137 ElementsInMolecule[i] = 0;
1138 ElementCount = 0;
1139
1140 atom *walker = start;
1141 while (walker->next != end) {
1142 walker = walker->next;
1143 ElementsInMolecule[walker->type->Z]++;
1144 i++;
1145 }
1146 for(i=0;i<MAX_ELEMENTS;i++)
1147 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1148};
1149
1150/** Counts all cyclic bonds and returns their number.
1151 * \note Hydrogen bonds can never by cyclic, thus no check for that
1152 * \param *out output stream for debugging
1153 * \return number opf cyclic bonds
1154 */
1155int molecule::CountCyclicBonds(ofstream *out)
1156{
1157 int No = 0;
1158 int MinimumRingSize;
1159 MoleculeLeafClass *Subgraphs = NULL;
1160 bond *Binder = first;
1161 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1162 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1163 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
1164 while (Subgraphs->next != NULL) {
1165 Subgraphs = Subgraphs->next;
1166 delete(Subgraphs->previous);
1167 }
1168 delete(Subgraphs);
1169 }
1170 while(Binder->next != last) {
1171 Binder = Binder->next;
1172 if (Binder->Cyclic)
1173 No++;
1174 }
1175 return No;
1176};
1177
1178/** Returns Shading as a char string.
1179 * \param color the Shading
1180 * \return string of the flag
1181 */
1182char * molecule::GetColor(enum Shading color)
1183{
1184 switch(color) {
1185 case white:
1186 return "white";
1187 break;
1188 case lightgray:
1189 return "lightgray";
1190 break;
1191 case darkgray:
1192 return "darkgray";
1193 break;
1194 case black:
1195 return "black";
1196 break;
1197 default:
1198 return "uncolored";
1199 break;
1200 };
1201};
1202
1203
1204/** Counts necessary number of valence electrons and returns number and SpinType.
1205 * \param configuration containing everything
1206 */
1207void molecule::CalculateOrbitals(class config &configuration)
1208{
1209 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1210 for(int i=0;i<MAX_ELEMENTS;i++) {
1211 if (ElementsInMolecule[i] != 0) {
1212 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1213 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1214 }
1215 }
1216 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1217 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1218 configuration.MaxPsiDouble /= 2;
1219 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1220 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1221 configuration.ProcPEGamma /= 2;
1222 configuration.ProcPEPsi *= 2;
1223 } else {
1224 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1225 configuration.ProcPEPsi = 1;
1226 }
1227 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1228};
1229
1230/** Creates an adjacency list of the molecule.
1231 * Generally, we use the CSD approach to bond recognition, that is the the distance
1232 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1233 * a threshold t = 0.4 Angstroem.
1234 * To make it O(N log N) the function uses the linked-cell technique as follows:
1235 * The procedure is step-wise:
1236 * -# Remove every bond in list
1237 * -# Count the atoms in the molecule with CountAtoms()
1238 * -# partition cell into smaller linked cells of size \a bonddistance
1239 * -# put each atom into its corresponding cell
1240 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1241 * -# create the list of bonds via CreateListOfBondsPerAtom()
1242 * -# correct the bond degree iteratively (single->double->triple bond)
1243 * -# finally print the bond list to \a *out if desired
1244 * \param *out out stream for printing the matrix, NULL if no output
1245 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1246 */
1247void molecule::CreateAdjacencyList(ofstream *out, double bonddistance)
1248{
1249 atom *Walker = NULL, *OtherWalker = NULL;
1250 int No, NoBonds;
1251 bond *Binder = NULL;
1252 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1253 molecule **CellList;
1254 double distance, MinDistance, MaxDistance;
1255 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1256 vector x;
1257
1258 BondDistance = bonddistance;
1259 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1260 // remove every bond from the list
1261 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1262 cleanup(first,last);
1263 }
1264
1265 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1266 CountAtoms(out);
1267 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1268
1269 if (AtomCount != 0) {
1270 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1271 j=-1;
1272 for (int i=0;i<NDIM;i++) {
1273 j += i+1;
1274 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1275 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1276 }
1277 // 2a. allocate memory for the cell list
1278 NumberCells = divisor[0]*divisor[1]*divisor[2];
1279 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1280 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1281 for (int i=0;i<NumberCells;i++)
1282 CellList[i] = NULL;
1283
1284 // 2b. put all atoms into its corresponding list
1285 Walker = start;
1286 while(Walker->next != end) {
1287 Walker = Walker->next;
1288 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1289 //Walker->x.Output(out);
1290 //*out << "." << endl;
1291 // compute the cell by the atom's coordinates
1292 j=-1;
1293 for (int i=0;i<NDIM;i++) {
1294 j += i+1;
1295 x.CopyVector(&(Walker->x));
1296 x.KeepPeriodic(out, matrix);
1297 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1298 }
1299 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1300 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1301 // add copy atom to this cell
1302 if (CellList[index] == NULL) // allocate molecule if not done
1303 CellList[index] = new molecule(elemente);
1304 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1305 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1306 }
1307 //for (int i=0;i<NumberCells;i++)
1308 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1309
1310 // 3a. go through every cell
1311 for (N[0]=0;N[0]<divisor[0];N[0]++)
1312 for (N[1]=0;N[1]<divisor[1];N[1]++)
1313 for (N[2]=0;N[2]<divisor[2];N[2]++) {
1314 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1315 if (CellList[Index] != NULL) { // if there atoms in this cell
1316 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1317 // 3b. for every atom therein
1318 Walker = CellList[Index]->start;
1319 while (Walker->next != CellList[Index]->end) { // go through every atom
1320 Walker = Walker->next;
1321 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1322 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1323 for (n[0]=-1;n[0]<=1;n[0]++)
1324 for (n[1]=-1;n[1]<=1;n[1]++)
1325 for (n[2]=-1;n[2]<=1;n[2]++) {
1326 // compute the index of this comparison cell and make it periodic
1327 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1328 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1329 if (CellList[index] != NULL) { // if there are any atoms in this cell
1330 OtherWalker = CellList[index]->start;
1331 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1332 OtherWalker = OtherWalker->next;
1333 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1334 /// \todo periodic check is missing here!
1335 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1336 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1337 MaxDistance = MinDistance + BONDTHRESHOLD;
1338 MinDistance -= BONDTHRESHOLD;
1339 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1340 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1341 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1342 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1343 } else {
1344 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1345 }
1346 }
1347 }
1348 }
1349 }
1350 }
1351 }
1352 // 4. free the cell again
1353 for (int i=0;i<NumberCells;i++)
1354 if (CellList[i] != NULL) {
1355 delete(CellList[i]);
1356 }
1357 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1358
1359 // create the adjacency list per atom
1360 CreateListOfBondsPerAtom(out);
1361
1362 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1363 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1364 // a rather symmetric distribution of higher bond degrees
1365 if (BondCount != 0) {
1366 NoCyclicBonds = 0;
1367 *out << Verbose(1) << "correct Bond degree of each bond" << endl;
1368 do {
1369 No = 0; // No acts as breakup flag (if 1 we still continue)
1370 Walker = start;
1371 while (Walker->next != end) { // go through every atom
1372 Walker = Walker->next;
1373 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1374 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1375 // count valence of first partner (updated!), might have changed during last bond partner
1376 NoBonds = 0;
1377 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1378 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1379 *out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1380 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1381 // count valence of second partner
1382 NoBonds = 0;
1383 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1384 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1385 *out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1386 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1387 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1388 }
1389 }
1390 }
1391 } while (No);
1392
1393 } else
1394 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1395 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1396
1397 // output bonds for debugging (if bond chain list was correctly installed)
1398 *out << Verbose(1) << endl << "From contents of bond chain list:";
1399 Binder = first;
1400 while(Binder->next != last) {
1401 Binder = Binder->next;
1402 *out << *Binder << "\t" << endl;
1403 }
1404 *out << endl;
1405 } else
1406 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1407 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1408 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1409};
1410
1411/** Performs a Depth-First search on this molecule.
1412 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1413 * articulations points, ...
1414 * We use the algorithm from [Even, Graph Algorithms, p.62].
1415 * \param *out output stream for debugging
1416 * \param ReturnStack true - return pointer to atom stack of separable components, false - return NULL
1417 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1418 * \return list of each disconnected subgraph as an individual molecule class structure
1419 */
1420MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, bool ReturnStack, int &MinimumRingSize)
1421{
1422 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1423 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1424 MoleculeLeafClass *LeafWalker = SubGraphs;
1425 int CurrentGraphNr = 0, OldGraphNr;
1426 int CyclicBonds;
1427 int ComponentNumber = 0;
1428 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1429 bond *Binder = NULL;
1430 bool BackStepping = false;
1431
1432 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1433
1434 ResetAllBondsToUnused();
1435 ResetAllAtomNumbers();
1436 InitComponentNumbers();
1437 while (Root != end) { // if there any atoms at all
1438 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1439 AtomStack->ClearStack();
1440
1441 // put into new subgraph molecule and add this to list of subgraphs
1442 LeafWalker = new MoleculeLeafClass(LeafWalker);
1443 LeafWalker->Leaf = new molecule(elemente);
1444 LeafWalker->Leaf->AddCopyAtom(Root);
1445
1446 OldGraphNr = CurrentGraphNr;
1447 Walker = Root;
1448 do { // (10)
1449 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1450 if (!BackStepping) { // if we don't just return from (8)
1451 Walker->GraphNr = CurrentGraphNr;
1452 Walker->LowpointNr = CurrentGraphNr;
1453 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1454 AtomStack->Push(Walker);
1455 CurrentGraphNr++;
1456 }
1457 do { // (3) if Walker has no unused egdes, go to (5)
1458 BackStepping = false; // reset backstepping flag for (8)
1459 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1460 Binder = FindNextUnused(Walker);
1461 if (Binder == NULL)
1462 break;
1463 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1464 // (4) Mark Binder used, ...
1465 Binder->MarkUsed(black);
1466 OtherAtom = Binder->GetOtherAtom(Walker);
1467 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1468 if (OtherAtom->GraphNr != -1) {
1469 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1470 Binder->Type = BackEdge;
1471 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1472 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1473 } else {
1474 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1475 Binder->Type = TreeEdge;
1476 OtherAtom->Ancestor = Walker;
1477 Walker = OtherAtom;
1478 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1479 break;
1480 }
1481 Binder = NULL;
1482 } while (1); // (3)
1483 if (Binder == NULL) {
1484 *out << Verbose(2) << "No more Unused Bonds." << endl;
1485 break;
1486 } else
1487 Binder = NULL;
1488 } while (1); // (2)
1489
1490 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1491 if ((Walker == Root) && (Binder == NULL))
1492 break;
1493
1494 // (5) if Ancestor of Walker is ...
1495 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1496 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1497 // (6) (Ancestor of Walker is not Root)
1498 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1499 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1500 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1501 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1502 } else {
1503 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1504 Walker->Ancestor->SeparationVertex = true;
1505 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1506 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1507 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1508 SetNextComponentNumber(Walker, ComponentNumber);
1509 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1510 do {
1511 OtherAtom = AtomStack->PopLast();
1512 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1513 SetNextComponentNumber(OtherAtom, ComponentNumber);
1514 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1515 } while (OtherAtom != Walker);
1516 ComponentNumber++;
1517 }
1518 // (8) Walker becomes its Ancestor, go to (3)
1519 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1520 Walker = Walker->Ancestor;
1521 BackStepping = true;
1522 }
1523 if (!BackStepping) { // coming from (8) want to go to (3)
1524 // (9) remove all from stack till Walker (including), these and Root form a component
1525 AtomStack->Output(out);
1526 SetNextComponentNumber(Root, ComponentNumber);
1527 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1528 SetNextComponentNumber(Walker, ComponentNumber);
1529 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1530 do {
1531 OtherAtom = AtomStack->PopLast();
1532 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1533 SetNextComponentNumber(OtherAtom, ComponentNumber);
1534 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1535 } while (OtherAtom != Walker);
1536 ComponentNumber++;
1537
1538 // (11) Root is separation vertex, set Walker to Root and go to (4)
1539 Walker = Root;
1540 Binder = FindNextUnused(Walker);
1541 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1542 if (Binder != NULL) { // Root is separation vertex
1543 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1544 Walker->SeparationVertex = true;
1545 }
1546 }
1547 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1548
1549 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1550 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1551 LeafWalker->Leaf->Output(out);
1552 *out << endl;
1553
1554 // step on to next root
1555 while ((Root != end) && (Root->GraphNr != -1)) {
1556 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1557 if (Root->GraphNr != -1) // if already discovered, step on
1558 Root = Root->next;
1559 }
1560 }
1561 // set cyclic bond criterium on "same LP" basis
1562 Binder = first;
1563 while(Binder->next != last) {
1564 Binder = Binder->next;
1565 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1566 Binder->Cyclic = true;
1567 NoCyclicBonds++;
1568 }
1569 }
1570
1571 // correct cyclic bonds that are not included in "same LP" argument
1572 Binder = first;
1573 while (Binder->next != last) {
1574 Binder = Binder->next;
1575 Walker = Binder->leftatom;
1576 OtherAtom = Binder->rightatom;
1577 // now check whether both have a cyclic bond in their list
1578 CyclicBonds = 0; // counts cyclic bonds;
1579 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1580 if ((CyclicBonds == 0) && (ListOfBondsPerAtom[Walker->nr][i]->Cyclic))
1581 CyclicBonds = 1;
1582 for(int i=0;i<NumberOfBondsPerAtom[OtherAtom->nr];i++)
1583 if ((CyclicBonds == 1) && (ListOfBondsPerAtom[OtherAtom->nr][i]->Cyclic))
1584 CyclicBonds = 2;
1585 Binder->Cyclic = (Binder->Cyclic) || (CyclicBonds == 2); // set the Cyclic criterium either or ...
1586 }
1587
1588 // further analysis of the found cycles (print rings, get minimum cycle length)
1589 CyclicStructureAnalysis(out, MinimumRingSize);
1590 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1591 Walker = start;
1592 while (Walker->next != end) {
1593 Walker = Walker->next;
1594 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1595 OutputComponentNumber(out, Walker);
1596 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1597 }
1598
1599 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1600 Binder = first;
1601 while(Binder->next != last) {
1602 Binder = Binder->next;
1603 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1604 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1605 OutputComponentNumber(out, Binder->leftatom);
1606 *out << " === ";
1607 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1608 OutputComponentNumber(out, Binder->rightatom);
1609 *out << ">." << endl;
1610 if (Binder->Cyclic) // cyclic ??
1611 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1612 }
1613
1614 // further analysis of the found cycles (print rings, get minimum cycle length)
1615 CyclicStructureAnalysis(out, MinimumRingSize);
1616
1617 // free all and exit
1618 delete(AtomStack);
1619 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1620 return SubGraphs;
1621};
1622
1623/** Analyses the cycles found and returns minimum of all cycle lengths.
1624 * \param *out output stream for debugging
1625 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1626 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1627 */
1628void molecule::CyclicStructureAnalysis(ofstream *out, int &MinimumRingSize)
1629{
1630 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1631 int LP;
1632 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Runner = NULL;
1633 bond *Binder = NULL;
1634 int RingSize, NumCycles;
1635
1636 // go through every atom
1637 AtomStack->ClearStack();
1638 int *NoCyclicBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1639 Walker = start;
1640 while (Walker->next != end) {
1641 Walker = Walker->next;
1642 NoCyclicBondsPerAtom[Walker->nr] = 0;
1643 // check whether it's connected to cyclic bonds and count per atom
1644 // 0 means not part of a cycle, 2 means in a cycle, 3 or more means interconnection site of cycles
1645 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
1646 Binder = ListOfBondsPerAtom[Walker->nr][i];
1647 NoCyclicBondsPerAtom[Walker->nr] += (int) Binder->Cyclic;
1648 if (NoCyclicBondsPerAtom[Walker->nr] == 3) //push all intersections
1649 AtomStack->Push(Walker);
1650 }
1651 }
1652 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1653 for(int i=0;i<AtomCount;i++) {
1654 *out << NoCyclicBondsPerAtom[i] << " ";
1655 }
1656 *out << endl;
1657 *out << Verbose(1) << "Analysing cycles ... " << endl;
1658 MinimumRingSize = -1;
1659 NumCycles = 0;
1660 while (!AtomStack->IsEmpty()) {
1661 Walker = AtomStack->PopFirst();
1662 if (NoCyclicBondsPerAtom[Walker->nr] > 1) {
1663 NoCyclicBondsPerAtom[Walker->nr]--; // remove one for being intersection
1664 RingSize = 0;
1665 *out << Verbose(2) << "Current intersection is " << *Walker << ", expect to find " << NoCyclicBondsPerAtom[Walker->nr] << " cycles." << endl;
1666 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1667 Binder = ListOfBondsPerAtom[Walker->nr][i];
1668 OtherAtom = Binder->GetOtherAtom(Walker);
1669 // note down the LowPoint number of this cycle
1670 if (NoCyclicBondsPerAtom[OtherAtom->nr] > 1) {
1671 LP = OtherAtom->LowpointNr;
1672 NoCyclicBondsPerAtom[Walker->nr]--; // walker is start of cycle
1673 if (LP != Walker->LowpointNr)
1674 *out << Verbose(2) << "Tributary cycle: ... <-> " << Walker->Name;
1675 else
1676 *out << Verbose(2) << "Main cycle: ... <-> " << Walker->Name;
1677 Root = Walker; // root acts as predecessor marker so that we don't step back accidentally
1678 RingSize = 1;
1679 do {
1680 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++) { // search among its bonds for next in cycle (same lowpoint nr)
1681 Runner = ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom);
1682 if (((Runner->LowpointNr == LP) || (Runner->LowpointNr == Walker->LowpointNr)) && (Runner != Root)) {
1683 // first check is to stay in the cycle
1684 // middle check is allow for getting back into main cycle briefly from tributary cycle (just one step, then while further down stops)
1685 // last check is not step back
1686 *out << " <-> " << OtherAtom->Name;
1687 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1688 Root = OtherAtom;
1689 OtherAtom = Runner;
1690 NoCyclicBondsPerAtom[Root->nr]--;
1691 RingSize++;
1692 break;
1693 }
1694 }
1695 } while ((OtherAtom->LowpointNr == LP) && (Walker != OtherAtom) && (Root->LowpointNr == OtherAtom->LowpointNr));
1696 // now check if the LP is different from Walker's, as then there is one more bond to follow
1697 if (LP != Walker->LowpointNr) {
1698 // find last bond to home base
1699 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++)
1700 if (ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom) == Root) {
1701 *out << " <-> " << OtherAtom->Name;
1702 RingSize++;
1703 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1704 }
1705 } else {
1706 // we have made the complete cycle
1707 }
1708 *out << " <-> ... with cycle length of " << RingSize << "." << endl;
1709 NumCycles++;
1710 if ((RingSize < MinimumRingSize) || (MinimumRingSize == -1))
1711 MinimumRingSize = RingSize;
1712 }
1713 }
1714 }
1715 }
1716
1717 // print NoCyclicBondsPerAtom to visually check of all are zero
1718 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1719 for(int i=0;i<AtomCount;i++) {
1720 if (NoCyclicBondsPerAtom[i] > 0)
1721 cerr << "There was an error in molecule::CyclicStructureAnalysis!" << endl;
1722 *out << NoCyclicBondsPerAtom[i] << " ";
1723 }
1724 *out << endl;
1725
1726 if (MinimumRingSize != -1)
1727 *out << Verbose(1) << "Minimum ring size is " << MinimumRingSize << ", over " << NumCycles << " cycles total." << endl;
1728 else
1729 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1730
1731 Free((void **)&NoCyclicBondsPerAtom, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1732 delete(AtomStack);
1733};
1734
1735/** Sets the next component number.
1736 * This is O(N) as the number of bonds per atom is bound.
1737 * \param *vertex atom whose next atom::*ComponentNr is to be set
1738 * \param nr number to use
1739 */
1740void molecule::SetNextComponentNumber(atom *vertex, int nr)
1741{
1742 int i=0;
1743 if (vertex != NULL) {
1744 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1745 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1746 vertex->ComponentNr[i] = nr;
1747 break;
1748 }
1749 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1750 break; // breaking here will not cause error!
1751 }
1752 if (i == NumberOfBondsPerAtom[vertex->nr])
1753 cerr << "Error: All Component entries are already occupied!" << endl;
1754 } else
1755 cerr << "Error: Given vertex is NULL!" << endl;
1756};
1757
1758/** Output a list of flags, stating whether the bond was visited or not.
1759 * \param *out output stream for debugging
1760 */
1761void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
1762{
1763 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1764 *out << vertex->ComponentNr[i] << " ";
1765};
1766
1767/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
1768 */
1769void molecule::InitComponentNumbers()
1770{
1771 atom *Walker = start;
1772 while(Walker->next != end) {
1773 Walker = Walker->next;
1774 if (Walker->ComponentNr != NULL)
1775 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
1776 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
1777 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1778 Walker->ComponentNr[i] = -1;
1779 }
1780};
1781
1782/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
1783 * \param *vertex atom to regard
1784 * \return bond class or NULL
1785 */
1786bond * molecule::FindNextUnused(atom *vertex)
1787{
1788 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1789 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
1790 return(ListOfBondsPerAtom[vertex->nr][i]);
1791 return NULL;
1792};
1793
1794/** Resets bond::Used flag of all bonds in this molecule.
1795 * \return true - success, false - -failure
1796 */
1797void molecule::ResetAllBondsToUnused()
1798{
1799 bond *Binder = first;
1800 while (Binder->next != last) {
1801 Binder = Binder->next;
1802 Binder->ResetUsed();
1803 }
1804};
1805
1806/** Resets atom::nr to -1 of all atoms in this molecule.
1807 */
1808void molecule::ResetAllAtomNumbers()
1809{
1810 atom *Walker = start;
1811 while (Walker->next != end) {
1812 Walker = Walker->next;
1813 Walker->GraphNr = -1;
1814 }
1815};
1816
1817/** Output a list of flags, stating whether the bond was visited or not.
1818 * \param *out output stream for debugging
1819 * \param *list
1820 */
1821void OutputAlreadyVisited(ofstream *out, int *list)
1822{
1823 *out << Verbose(4) << "Already Visited Bonds:\t";
1824 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
1825 *out << endl;
1826};
1827
1828/** Estimates by educated guessing (using upper limit) the expected number of fragments.
1829 * The upper limit is
1830 * \f[
1831 * n = N \cdot C^k
1832 * \f]
1833 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
1834 * \param *out output stream for debugging
1835 * \param order bond order k
1836 * \return number n of fragments
1837 */
1838int molecule::GuesstimateFragmentCount(ofstream *out, int order)
1839{
1840 int c = 0;
1841 int FragmentCount;
1842 // get maximum bond degree
1843 atom *Walker = start;
1844 while (Walker->next != end) {
1845 Walker = Walker->next;
1846 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
1847 }
1848 FragmentCount = NoNonHydrogen*(1 << (c*order));
1849 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
1850 return FragmentCount;
1851};
1852
1853/** Scans a single line for number and puts them into \a KeySet.
1854 * \param *out output stream for debugging
1855 * \param *buffer buffer to scan
1856 * \param &CurrentSet filled KeySet on return
1857 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
1858 */
1859bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
1860{
1861 stringstream line;
1862 int AtomNr;
1863 int status = 0;
1864
1865 line.str(buffer);
1866 while (!line.eof()) {
1867 line >> AtomNr;
1868 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1869 CurrentSet.insert(AtomNr);
1870 status++;
1871 } // else it's "-1" or else and thus must not be added
1872 }
1873 return (status != 0);
1874};
1875
1876/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
1877 * \param *out output stream for debugging
1878 * \param *path path to file
1879 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1880 * \param *FragmentList NULL, filled on return
1881 * \param IsAngstroem whether we have Ansgtroem or bohrradius
1882 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
1883 */
1884bool molecule::ParseKeySetFile(ofstream *out, char *path, atom **ListOfAtoms, MoleculeListClass *&FragmentList, bool IsAngstroem)
1885{
1886 bool status = true;
1887 ifstream KeySetFile;
1888 stringstream line;
1889 char *filename = (char *) Malloc(sizeof(char)*255, "molecule::ParseKeySetFile - filename");
1890
1891 if (FragmentList != NULL) { // check list pointer
1892 cerr << "Error: FragmentList was not NULL as supposed to be, already atoms present therein?" << endl;
1893 return false;
1894 }
1895 cout << Verbose(1) << "Parsing the KeySet file ... ";
1896 // open file and read
1897 sprintf(filename, "%s/%s%s", path, "BondFragment", "KeySets.dat");
1898 KeySetFile.open(filename);
1899 if (KeySetFile != NULL) {
1900 // each line represents a new fragment
1901 int NumberOfFragments = 0;
1902 char *buffer = (char *) Malloc(sizeof(char)*255, "molecule::ParseKeySetFile - *buffer");
1903 // 1. scan through file to know number of fragments
1904 while (!KeySetFile.eof()) {
1905 KeySetFile.getline(buffer, 255);
1906 if (strlen(buffer) > 0) // there is at least on possible number on the parsed line
1907 NumberOfFragments++;
1908 }
1909 // 2. allocate the MoleculeListClass accordingly
1910 FragmentList = new MoleculeListClass(NumberOfFragments, AtomCount);
1911 // 3. Clear File, go to beginning and parse again, now adding found ids to each keyset and converting into molecules
1912 KeySetFile.clear();
1913 KeySetFile.seekg(ios::beg);
1914 NumberOfFragments = 0;
1915 while ((!KeySetFile.eof()) && (FragmentList->NumberOfMolecules > NumberOfFragments)) {
1916 KeySetFile.getline(buffer, 255);
1917 KeySet CurrentSet;
1918 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) // if at least one valid atom was added, write config
1919 FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
1920 }
1921 // 4. Free and done
1922 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
1923 cout << "done." << endl;
1924 } else {
1925 cout << "File not found." << endl;
1926 status = false;
1927 }
1928 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
1929
1930 return status;
1931};
1932
1933/** Storing the bond structure of a molecule to file.
1934 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
1935 * \param *out output stream for debugging
1936 * \param *path path to file
1937 * \return true - file written successfully, false - writing failed
1938 */
1939bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
1940{
1941 ofstream AdjacencyFile;
1942 atom *Walker = NULL;
1943 char *filename = (char *) Malloc(sizeof(char)*255, "molecule::StoreAdjacencyToFile - filename");
1944 bool status = true;
1945
1946 sprintf(filename, "%s/%s%s", path, "BondFragment", "Adjacency.dat");
1947 AdjacencyFile.open(filename);
1948 cout << Verbose(1) << "Saving adjacency list ... ";
1949 if (AdjacencyFile != NULL) {
1950 Walker = start;
1951 while(Walker->next != end) {
1952 Walker = Walker->next;
1953 AdjacencyFile << Walker->nr << "\t";
1954 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1955 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
1956 AdjacencyFile << endl;
1957 }
1958 AdjacencyFile.close();
1959 cout << "done." << endl;
1960 } else {
1961 cout << "failed." << endl;
1962 status = false;
1963 }
1964 Free((void **)&filename, "molecule::StoreAdjacencyToFile - filename");
1965
1966 return status;
1967};
1968
1969/** Checks contents of adjacency file against bond structure in structure molecule.
1970 * \param *out output stream for debugging
1971 * \param *path path to file
1972 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1973 * \return true - structure is equal, false - not equivalence
1974 */
1975bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
1976{
1977 char *filename = (char *) Malloc(sizeof(char)*255, "molecule::CheckAdjacencyFileAgainstMolecule - filename");
1978 ifstream File;
1979 bool status = true;
1980
1981 sprintf(filename, "%s/%s%s", path, "BondFragment", "Adjacency.dat");
1982 File.open(filename);
1983 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ...";
1984 if (File != NULL) {
1985 // allocate storage structure
1986 int NonMatchNumber = 0; // will number of atoms with differing bond structure
1987 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
1988 int CurrentBondsOfAtom;
1989 // Parse the file line by line and count the bonds
1990 while (!File.eof()) {
1991 File.getline(filename, 255);
1992 stringstream line;
1993 line.str(filename);
1994 int AtomNr = -1;
1995 line >> AtomNr;
1996 CurrentBondsOfAtom = -1; // we count one too far due to line end
1997 // parse into structure
1998 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1999 while (!line.eof())
2000 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2001 // compare against present bonds
2002 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2003 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2004 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2005 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2006 int j = 0;
2007 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2008 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2009 ListOfAtoms[AtomNr] = NULL;
2010 NonMatchNumber++;
2011 status = false;
2012 //out << "[" << id << "]\t";
2013 } else {
2014 //out << id << "\t";
2015 }
2016 }
2017 //out << endl;
2018 } else {
2019 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2020 status = false;
2021 }
2022 }
2023 }
2024 File.close();
2025 File.clear();
2026 if (status) { // if equal we parse the KeySetFile
2027 *out << " done: Equal." << endl;
2028 status = true;
2029 } else
2030 *out << " done: Not equal by " << NonMatchNumber << " atoms." << endl;
2031 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2032 } else {
2033 *out << " Adjacency file not found." << endl;
2034 status = false;
2035 }
2036 Free((void **)&filename, "molecule::CheckAdjacencyFileAgainstMolecule - filename");
2037
2038 return status;
2039};
2040
2041/** Performs a many-body bond order analysis for a given bond order.
2042 * Writes for each fragment a config file.
2043 * \param *out output stream for debugging
2044 * \param BottomUpOrder up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2045 * \param TopDownOrder up to how many neighbouring bonds a fragment contains in BondOrderScheme::TopDown scheme
2046 * \param Scheme which BondOrderScheme to use for the fragmentation
2047 * \param *configuration configuration for writing config files for each fragment
2048 * \param CutCyclic whether to add cut cyclic bond or to saturate
2049 */
2050void molecule::FragmentMolecule(ofstream *out, int BottomUpOrder, int TopDownOrder, enum BondOrderScheme Scheme, config *configuration, enum CutCyclicBond CutCyclic)
2051{
2052 MoleculeListClass **BondFragments = NULL;
2053 MoleculeListClass *FragmentList = NULL;
2054 atom *Walker = NULL;
2055 int *SortIndex = NULL;
2056 element *runner = NULL;
2057 int AtomNo;
2058 int MinimumRingSize;
2059 int TotalFragmentCounter = 0;
2060 int FragmentCounter = 0;
2061 MoleculeLeafClass *MolecularWalker = NULL;
2062 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2063 fstream File;
2064 bool status = true;
2065
2066 cout << endl;
2067#ifdef ADDHYDROGEN
2068 cout << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2069#else
2070 cout << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2071#endif
2072
2073 // fill the adjacency list
2074 CreateListOfBondsPerAtom(out);
2075
2076 // === compare it with adjacency file ===
2077 atom **ListOfAtoms = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMolecule - **ListOfAtoms");
2078 Walker = start;
2079 while (Walker->next != end) { // create a lookup table (Atom::nr -> atom) used as a marker table lateron
2080 Walker = Walker->next;
2081 if ((Walker->nr >= 0) && (Walker->nr < AtomCount)) {
2082 ListOfAtoms[Walker->nr] = Walker;
2083 } else
2084 break;
2085 }
2086 if (Walker->next != end) { // everything went alright
2087 *out << " range of nuclear ids exceeded [0, AtomCount)." << endl;
2088 status = false;
2089 }
2090 if (CheckAdjacencyFileAgainstMolecule(out, configuration->GetDefaultPath(), ListOfAtoms)) { // NULL entries in ListOfAtoms contain NonMatches
2091 status = ParseKeySetFile(out, configuration->GetDefaultPath(), ListOfAtoms, FragmentList, configuration->GetIsAngstroem());
2092 }
2093 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2094
2095 // =================================== Begin of FRAGMENTATION ===============================
2096 if (!status) {
2097 // === store Adjacency file ===
2098 StoreAdjacencyToFile(out, configuration->GetDefaultPath());
2099
2100 // === first perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs ===
2101 Subgraphs = DepthFirstSearchAnalysis((ofstream *)&cout, false, MinimumRingSize);
2102 MolecularWalker = Subgraphs;
2103 // fill the bond structure of the individually stored subgraphs
2104 while (MolecularWalker->next != NULL) {
2105 MolecularWalker = MolecularWalker->next;
2106 cout << Verbose(1) << "Creating adjacency list for subgraph " << MolecularWalker << "." << endl;
2107 MolecularWalker->Leaf->CreateAdjacencyList((ofstream *)&cout, BondDistance);
2108 MolecularWalker->Leaf->CreateListOfBondsPerAtom((ofstream *)&cout);
2109 }
2110
2111 // === fragment all subgraphs ===
2112 if ((MinimumRingSize != -1) && ((BottomUpOrder >= MinimumRingSize) || (TopDownOrder >= MinimumRingSize))) {
2113 cout << Verbose(0) << "Bond order greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
2114 } else {
2115 FragmentCounter = 0;
2116 MolecularWalker = Subgraphs;
2117 // count subgraphs
2118 while (MolecularWalker->next != NULL) {
2119 MolecularWalker = MolecularWalker->next;
2120 FragmentCounter++;
2121 }
2122 BondFragments = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*FragmentCounter, "molecule::FragmentMolecule - **BondFragments");
2123 // fill the bond fragment list
2124 FragmentCounter = 0;
2125 MolecularWalker = Subgraphs;
2126 while (MolecularWalker->next != NULL) {
2127 MolecularWalker = MolecularWalker->next;
2128 cout << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2129 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2130 // output ListOfBondsPerAtom for debugging
2131 *out << Verbose(0) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
2132 Walker = MolecularWalker->Leaf->start;
2133 while (Walker->next != MolecularWalker->Leaf->end) {
2134 Walker = Walker->next;
2135 #ifdef ADDHYDROGEN
2136 if (Walker->type->Z != 1) { // regard only non-hydrogen
2137 #endif
2138 *out << Verbose(0) << "Atom " << Walker->Name << " has Bonds: "<<endl;
2139 for(int j=0;j<MolecularWalker->Leaf->NumberOfBondsPerAtom[Walker->nr];j++) {
2140 *out << Verbose(1) << *(MolecularWalker->Leaf->ListOfBondsPerAtom)[Walker->nr][j] << endl;
2141 }
2142 #ifdef ADDHYDROGEN
2143 }
2144 #endif
2145 }
2146 *out << endl;
2147
2148 *out << Verbose(0) << endl << " ========== BOND ENERGY ========================= " << endl;
2149 *out << Verbose(0) << "Begin of bond fragmentation." << endl;
2150 BondFragments[FragmentCounter] = NULL;
2151 if (Scheme == ANOVA) {
2152 BondFragments[FragmentCounter] = MolecularWalker->Leaf->FragmentBOSSANOVA(out,BottomUpOrder,configuration);
2153 }
2154 if ((Scheme == BottomUp) || (Scheme == Combined)) { // get overlapping subgraphs
2155 BondFragments[FragmentCounter] = FragmentList = MolecularWalker->Leaf->FragmentBottomUp(out, BottomUpOrder, configuration, CutCyclic);
2156 }
2157 if (Scheme == TopDown) { // initialise top level with whole molecule
2158 *out << Verbose(2) << "Initial memory allocating and initialising for whole molecule." << endl;
2159 FragmentList = new MoleculeListClass(1, MolecularWalker->Leaf->AtomCount);
2160 FragmentList->ListOfMolecules[0] = MolecularWalker->Leaf->CopyMolecule();
2161 FragmentList->TEList[0] = 1.;
2162 }
2163 if ((Scheme == Combined) || (Scheme == TopDown)) {
2164 *out << Verbose(1) << "Calling TopDown." << endl;
2165 BondFragments[FragmentCounter] = FragmentList->FragmentTopDown(out, TopDownOrder, BondDistance, configuration, CutCyclic);
2166 // remove this molecule from list again and free wrapper list
2167 delete(FragmentList);
2168 FragmentList = NULL;
2169 }
2170 } else {
2171 cout << Verbose(0) << "Connection matrix has not yet been generated!" << endl;
2172 }
2173 TotalFragmentCounter += BondFragments[FragmentCounter]->NumberOfMolecules;
2174 FragmentCounter++; // next fragment list
2175 }
2176 }
2177
2178 // === combine bond fragments list into a single one ===
2179 FragmentList = new MoleculeListClass(TotalFragmentCounter, AtomCount);
2180 TotalFragmentCounter = 0;
2181 for (int i=0;i<FragmentCounter;i++) {
2182 for(int j=0;j<BondFragments[i]->NumberOfMolecules;j++) {
2183 FragmentList->ListOfMolecules[TotalFragmentCounter] = BondFragments[i]->ListOfMolecules[j];
2184 BondFragments[i]->ListOfMolecules[j] = NULL;
2185 FragmentList->TEList[TotalFragmentCounter++] = BondFragments[i]->TEList[j];
2186 }
2187 delete(BondFragments[i]);
2188 }
2189 Free((void **)&BondFragments, "molecule::FragmentMolecule - **BondFragments");
2190 } else
2191 cout << Verbose(0) << "Using fragments reconstructed from the KeySetFile." << endl;
2192 // ==================================== End of FRAGMENTATION ================================
2193
2194 // === Save fragments' configuration to disk ===
2195 if (FragmentList != NULL) {
2196 // create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file
2197 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2198 for(int i=0;i<AtomCount;i++)
2199 SortIndex[i] = -1;
2200 runner = elemente->start;
2201 AtomNo = 0;
2202 while (runner->next != elemente->end) { // go through every element
2203 runner = runner->next;
2204 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2205 Walker = start;
2206 while (Walker->next != end) { // go through every atom of this element
2207 Walker = Walker->next;
2208 if (Walker->type->Z == runner->Z) // if this atom fits to element
2209 SortIndex[Walker->nr] = AtomNo++;
2210 }
2211 }
2212 }
2213 *out << Verbose(1) << "Writing " << FragmentList->NumberOfMolecules << " possible bond fragmentation configs" << endl;
2214 if (FragmentList->OutputConfigForListOfFragments("BondFragment", configuration, SortIndex))
2215 *out << Verbose(1) << "All configs written." << endl;
2216 else
2217 *out << Verbose(1) << "Some configs' writing failed." << endl;
2218 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
2219
2220 // restore orbital and Stop values
2221 CalculateOrbitals(*configuration);
2222
2223 // free memory for bond part
2224 *out << Verbose(1) << "Freeing bond memory" << endl;
2225 delete(FragmentList); // remove bond molecule from memory
2226 FragmentList = NULL;
2227 } else
2228 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2229 // free subgraph memory again
2230 if (Subgraphs != NULL) {
2231 while (Subgraphs->next != NULL) {
2232 Subgraphs = Subgraphs->next;
2233 delete(Subgraphs->previous);
2234 }
2235 delete(Subgraphs);
2236 }
2237
2238 *out << Verbose(0) << "End of bond fragmentation." << endl;
2239};
2240
2241/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2242 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2243 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2244 * Allocates memory, fills the array and exits
2245 * \param *out output stream for debugging
2246 */
2247void molecule::CreateListOfBondsPerAtom(ofstream *out)
2248{
2249 bond *Binder = NULL;
2250 atom *Walker = NULL;
2251 int TotalDegree;
2252 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2253
2254 // re-allocate memory
2255 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2256 if (ListOfBondsPerAtom != NULL) {
2257 for(int i=0;i<AtomCount;i++)
2258 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2259 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2260 }
2261 if (NumberOfBondsPerAtom != NULL)
2262 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2263 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2264 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2265
2266 // reset bond counts per atom
2267 for(int i=0;i<AtomCount;i++)
2268 NumberOfBondsPerAtom[i] = 0;
2269 // count bonds per atom
2270 Binder = first;
2271 while (Binder->next != last) {
2272 Binder = Binder->next;
2273 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2274 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2275 }
2276 // allocate list of bonds per atom
2277 for(int i=0;i<AtomCount;i++)
2278 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2279 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2280 for(int i=0;i<AtomCount;i++)
2281 NumberOfBondsPerAtom[i] = 0;
2282 // fill the list
2283 Binder = first;
2284 while (Binder->next != last) {
2285 Binder = Binder->next;
2286 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2287 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2288 }
2289
2290 // output list for debugging
2291 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2292 Walker = start;
2293 while (Walker->next != end) {
2294 Walker = Walker->next;
2295 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2296 TotalDegree = 0;
2297 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2298 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2299 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2300 }
2301 *out << " -- TotalDegree: " << TotalDegree << endl;
2302 }
2303 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2304};
2305
2306/** Splits up a molecule into atomic, non-hydrogen, hydrogen-saturated fragments.
2307 * \param *out output stream for debugging
2308 * \param NumberOfTopAtoms number to initialise second parameter of MoleculeListClass with
2309 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2310 * \param factor additional factor TE and forces factors are multiplied with
2311 * \param CutCyclic whether to add cut cyclic bond or to saturate
2312 * \return MoleculelistClass of pointer to each atomic fragment.
2313 */
2314MoleculeListClass * molecule::GetAtomicFragments(ofstream *out, int NumberOfTopAtoms, bool IsAngstroem, double factor, enum CutCyclicBond CutCyclic)
2315{
2316 atom *TopAtom = NULL, *BottomAtom = NULL; // Top = this, Bottom = AtomicFragment->ListOfMolecules[No]
2317 atom *Walker = NULL;
2318 MoleculeListClass *AtomicFragments = NULL;
2319 atom **AtomList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::GetAtomicFragments: **AtomList");
2320 for (int i=0;i<AtomCount;i++)
2321 AtomList[i] = NULL;
2322 bond **BondList = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::GetAtomicFragments: **AtomList");
2323 for (int i=0;i<BondCount;i++)
2324 BondList[i] = NULL;
2325 int No = 0, Cyclic;
2326
2327 *out << Verbose(0) << "Begin of GetAtomicFragments." << endl;
2328
2329 *out << Verbose(1) << "Atoms in Molecule: ";
2330 Walker = start;
2331 while (Walker->next != end) {
2332 Walker = Walker->next;
2333 *out << Walker << "\t";
2334 }
2335 *out << endl;
2336#ifdef ADDHYDROGEN
2337 if (NoNonHydrogen != 0) {
2338 AtomicFragments = new MoleculeListClass(NoNonHydrogen, NumberOfTopAtoms);
2339 } else {
2340 *out << Verbose(1) << "NoNonHydrogen is " << NoNonHydrogen << ", can't allocated MoleculeListClass." << endl;
2341#else
2342 if (AtomCount != 0) {
2343 AtomicFragments = new MoleculeListClass(AtomCount, NumberOfTopAtoms);
2344 } else {
2345 *out << Verbose(1) << "AtomCount is " << AtomCount << ", can't allocated MoleculeListClass." << endl;
2346#endif
2347 return (AtomicFragments);
2348 }
2349
2350 TopAtom = start;
2351 while (TopAtom->next != end) {
2352 TopAtom = TopAtom->next;
2353 //for(int i=0;i<AtomCount;i++) {
2354#ifdef ADDHYDROGEN
2355 if (TopAtom->type->Z != 1) { // regard only non-hydrogen
2356#endif
2357 //TopAtom = AtomsInMolecule[i];
2358 *out << Verbose(1) << "Current non-Hydrogen Atom: " << TopAtom->Name << endl;
2359
2360 // go through all bonds to check if cyclic
2361 Cyclic = 0;
2362 for(int i=0;i<NumberOfBondsPerAtom[TopAtom->nr];i++)
2363 Cyclic += (ListOfBondsPerAtom[TopAtom->nr][i]->Cyclic) ? 1 : 0;
2364
2365#ifdef ADDHYDROGEN
2366 if (No > NoNonHydrogen) {
2367#else
2368 if (No > AtomCount) {
2369#endif
2370 *out << Verbose(1) << "Access on created AtomicFragmentsListOfMolecules[" << No << "] beyond NumberOfMolecules " << AtomicFragments->NumberOfMolecules << "." << endl;
2371 break;
2372 }
2373 if (AtomList[TopAtom->nr] == NULL) {
2374 // create new molecule
2375 AtomicFragments->ListOfMolecules[No] = new molecule(elemente); // allocate memory
2376 AtomicFragments->TEList[No] = factor;
2377 AtomicFragments->ListOfMolecules[No]->BondDistance = BondDistance;
2378
2379 // add central atom
2380 BottomAtom = AtomicFragments->ListOfMolecules[No]->AddCopyAtom(TopAtom); // add this central atom to molecule
2381 AtomList[TopAtom->nr] = BottomAtom; // mark down in list
2382
2383 // create fragment
2384 *out << Verbose(1) << "New fragment around atom: " << TopAtom->Name << endl;
2385 BreadthFirstSearchAdd(out,AtomicFragments->ListOfMolecules[No], AtomList, BondList, TopAtom, NULL, 0, IsAngstroem, (Cyclic == 0) ? SaturateBond : CutCyclic);
2386 AtomicFragments->ListOfMolecules[No]->CountAtoms(out);
2387 // actually we now have to reset both arrays to NULL again, but BFS is overkill anyway for getting the atomic fragments
2388 // thus we do it in O(1) and avoid the O(n) which would make this routine O(N^2)!
2389 AtomList[TopAtom->nr] = NULL; // remove this fragment's central atom again from the list
2390
2391 *out << Verbose(1) << "Atoms in Fragment " << TopAtom->nr << ": ";
2392 Walker = AtomicFragments->ListOfMolecules[No]->start;
2393 while (Walker->next != AtomicFragments->ListOfMolecules[No]->end) {
2394 Walker = Walker->next;
2395 //for(int k=0;k<AtomicFragments->ListOfMolecules[No]->AtomCount;k++)
2396 *out << Walker << "(" << Walker->father << ")\t";
2397 }
2398 *out << endl;
2399 No++;
2400 }
2401#ifdef ADDHYDROGEN
2402 } else
2403 *out << Verbose(1) << "Current Hydrogen Atom: " << TopAtom->Name << endl;
2404#endif
2405 }
2406
2407 // output of full list before reduction
2408 if (AtomicFragments != NULL) {
2409 *out << "AtomicFragments: ";
2410 AtomicFragments->Output(out);
2411 *out << endl;
2412 } else
2413 *out << Verbose(1) << "AtomicFragments is zero on return, splitting failed." << endl;
2414
2415 // Reducing the atomic fragments
2416 if (AtomicFragments != NULL) {
2417 // check whether there are equal fragments by GetMappingToUniqueFragments
2418 AtomicFragments->ReduceToUniqueList(out, &cell_size[0], BondDistance);
2419 } else
2420 *out << Verbose(1) << "AtomicFragments is zero, reducing failed." << endl;
2421 Free((void **)&BondList, "molecule::GetAtomicFragments: **BondList");
2422 Free((void **)&AtomList, "molecule::GetAtomicFragments: **AtomList");
2423 *out << Verbose(0) << "End of GetAtomicFragments." << endl;
2424 return (AtomicFragments);
2425};
2426
2427/** Splits up the bond in a molecule into a left and a right fragment.
2428 * \param *out output stream for debugging
2429 * \param *Bond bond to broken up into getting allocated ...
2430 * \param *LeftFragment ... left fragment molecule ... (ptr to the memory cell wherein the adress for the Fragment is to be stored)
2431 * \param *RightFragment ... and right fragment molecule to be returned.(ptr to the memory cell wherein the adress for the Fragment is to be stored)
2432 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2433 * \param CutCyclic whether to add cut cyclic bond or not
2434 * \sa FragmentTopDown()
2435 */
2436void molecule::FragmentMoleculeByBond(ofstream *out, bond *Bond, molecule **LeftFragment, molecule **RightFragment, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2437{
2438 *out << Verbose(0) << "Begin of FragmentMoleculeByBond." << endl;
2439#ifdef ADDHYDROGEN
2440 if ((Bond->leftatom->type->Z != 1) && (Bond->rightatom->type->Z != 1)) { // if both bond partners aren't hydrogen ...
2441#endif
2442 *out << Verbose(1) << "Current Non-Hydrogen Bond: " << Bond->leftatom->Name << " and " << Bond->rightatom->Name << endl;
2443 *LeftFragment = new molecule(elemente);
2444 *RightFragment = new molecule(elemente);
2445 // initialise marker list for all atoms
2446 atom **AddedAtomListLeft = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMoleculeByBond: **AddedAtomListLeft");
2447 atom **AddedAtomListRight = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMoleculeByBond: **AddedAtomListRight");
2448 for (int i=0;i<AtomCount;i++) {
2449 AddedAtomListLeft[i] = NULL;
2450 AddedAtomListRight[i] = NULL;
2451 }
2452 bond **AddedBondListLeft = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::FragmentMoleculeByBond: **AddedBondListLeft");
2453 bond **AddedBondListRight = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::FragmentMoleculeByBond: **AddedBondListRight");
2454 for (int i=0;i<BondCount;i++) {
2455 AddedBondListLeft[i] = NULL;
2456 AddedBondListRight[i] = NULL;
2457 }
2458
2459 // tag and add all atoms that have to be included
2460 *out << Verbose(1) << "Adding BFS-wise on left hand side with Bond Order " << NoNonBonds-1 << "." << endl;
2461 AddedAtomListLeft[Bond->leftatom->nr] = (*LeftFragment)->AddCopyAtom(Bond->leftatom);
2462 BreadthFirstSearchAdd(out, *LeftFragment, AddedAtomListLeft, AddedBondListLeft, Bond->leftatom, Bond,
2463#ifdef ADDHYDROGEN
2464 NoNonBonds
2465#else
2466 BondCount
2467#endif
2468 , IsAngstroem, CutCyclic);
2469 *out << Verbose(1) << "Adding BFS-wise on right hand side with Bond Order " << NoNonBonds-1 << "." << endl;
2470 AddedAtomListRight[Bond->rightatom->nr] = (*RightFragment)->AddCopyAtom(Bond->rightatom);
2471 BreadthFirstSearchAdd(out, *RightFragment, AddedAtomListRight, AddedBondListRight, Bond->rightatom, Bond,
2472#ifdef ADDHYDROGEN
2473 NoNonBonds
2474#else
2475 BondCount
2476#endif
2477 , IsAngstroem, CutCyclic);
2478
2479 // count atoms
2480 (*LeftFragment)->CountAtoms(out);
2481 (*RightFragment)->CountAtoms(out);
2482 // free all and exit
2483 Free((void **)&AddedAtomListLeft, "molecule::FragmentMoleculeByBond: **AddedAtomListLeft");
2484 Free((void **)&AddedAtomListRight, "molecule::FragmentMoleculeByBond: **AddedAtomListRight");
2485 Free((void **)&AddedBondListLeft, "molecule::FragmentMoleculeByBond: **AddedBondListLeft");
2486 Free((void **)&AddedBondListRight, "molecule::FragmentMoleculeByBond: **AddedBondListRight");
2487#ifdef ADDHYDROGEN
2488 }
2489#endif
2490 *out << Verbose(0) << "End of FragmentMoleculeByBond." << endl;
2491};
2492
2493/** Returns the given \a **FragmentList filled with molecules around each bond including up to \a BondDegree neighbours.
2494 * \param *out output stream for debugging
2495 * \param BondOrder neighbours on each side to be ...
2496 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2497 * \param CutCyclic whether to add cut cyclic bond or to saturate
2498 * \sa FragmentBottomUp(), molecule::AddBondOrdertoMolecule()
2499 */
2500MoleculeListClass * molecule::GetEachBondFragmentOfOrder(ofstream *out, int BondOrder, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2501{
2502 /// Allocate memory for Bond list and go through each bond and fragment molecule up to bond order and fill the list to be returned.
2503 MoleculeListClass *FragmentList = NULL;
2504 atom **AddedAtomList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::GetBondFragmentOfOrder: **AddedAtomList");
2505 bond **AddedBondList = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::GetBondFragmentOfOrder: **AddedBondList");
2506 bond *Binder = NULL;
2507
2508 *out << Verbose(0) << "Begin of GetEachBondFragmentOfOrder." << endl;
2509#ifdef ADDHYDROGEN
2510 if (NoNonBonds != 0) {
2511 FragmentList = new MoleculeListClass(NoNonBonds, AtomCount);
2512 } else {
2513 *out << Verbose(1) << "NoNonBonds is " << NoNonBonds << ", can't allocate list." << endl;
2514#else
2515 if (BondCount != 0) {
2516 FragmentList = new MoleculeListClass(BondCount, AtomCount);
2517 } else {
2518 *out << Verbose(1) << "BondCount is " << BondCount << ", can't allocate list." << endl;
2519#endif
2520 }
2521 int No = 0;
2522 Binder = first;
2523 while (Binder->next != last) { // get each bond, NULL is returned if it is a H-H bond
2524 Binder = Binder->next;
2525#ifdef ADDHYDROGEN
2526 if ((Binder->leftatom->type->Z != 1) && (Binder->rightatom->type->Z != 1)) // if both bond partners aren't hydrogen ...
2527#endif
2528 if ((CutCyclic == SaturateBond) || (!Binder->Cyclic)) {
2529 *out << Verbose(1) << "Getting Fragment for Non-Hydrogen Bond: " << Binder->leftatom->Name << " and " << Binder->rightatom->Name << endl;
2530 FragmentList->ListOfMolecules[No] = new molecule(elemente);
2531 // initialise marker list for all atoms
2532 for (int i=0;i<AtomCount;i++)
2533 AddedAtomList[i] = NULL;
2534 for (int i=0;i<BondCount;i++)
2535 AddedBondList[i] = NULL;
2536
2537 // add root bond as first bond (this is needed later on fragmenting)
2538 *out << Verbose(1) << "Adding Root Bond " << *Binder << " and its atom." << endl;
2539 AddedAtomList[Binder->leftatom->nr] = FragmentList->ListOfMolecules[No]->AddCopyAtom(Binder->leftatom);
2540 AddedAtomList[Binder->rightatom->nr] = FragmentList->ListOfMolecules[No]->AddCopyAtom(Binder->rightatom);
2541 AddedBondList[Binder->nr] = FragmentList->ListOfMolecules[No]->AddBond(AddedAtomList[Binder->leftatom->nr], AddedAtomList[Binder->rightatom->nr], Binder->BondDegree);
2542
2543 // tag and add all atoms that have to be included
2544 *out << Verbose(1) << "Adding BFS-wise on left hand side." << endl;
2545 BreadthFirstSearchAdd(out, FragmentList->ListOfMolecules[No], AddedAtomList, AddedBondList, Binder->leftatom, NULL, BondOrder, IsAngstroem, CutCyclic);
2546 *out << Verbose(1) << "Adding BFS-wise on right hand side." << endl;
2547 BreadthFirstSearchAdd(out, FragmentList->ListOfMolecules[No], AddedAtomList, AddedBondList, Binder->rightatom, NULL, BondOrder, IsAngstroem, CutCyclic);
2548
2549 // count atoms
2550 FragmentList->ListOfMolecules[No]->CountAtoms(out);
2551 FragmentList->TEList[No] = 1.;
2552 *out << Verbose(1) << "GetBondFragmentOfOrder: " << Binder->nr << "th Fragment: " << FragmentList->ListOfMolecules[No] << "." << endl;
2553 No++;
2554 }
2555 }
2556 // free all lists
2557 Free((void **)&AddedAtomList, "molecule::GetBondFragmentOfOrder: **AddedAtomList");
2558 Free((void **)&AddedBondList, "molecule::GetBondFragmentOfOrder: **AddedBondList");
2559 // output and exit
2560 FragmentList->Output(out);
2561 *out << Verbose(0) << "End of GetEachBondFragmentOfOrder." << endl;
2562 return (FragmentList);
2563};
2564
2565/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2566 * Gray vertices are always enqueued in an AtomStackClass FIFO queue, the rest is usual BFS with adding vertices found was
2567 * white and putting into queue.
2568 * \param *out output stream for debugging
2569 * \param *Mol Molecule class to add atoms to
2570 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2571 * \param **AddedBondList list with added bond pointers, index is bond father's number
2572 * \param *Root root vertex for BFS
2573 * \param *Bond bond not to look beyond
2574 * \param BondOrder maximum distance for vertices to add
2575 * \param IsAngstroem lengths are in angstroem or bohrradii
2576 * \param CutCyclic whether to cut cyclic bonds (means saturate on need with hydrogen) or to always add
2577 */
2578void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2579{
2580 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2581 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2582 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2583 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
2584 atom *Walker = NULL, *OtherAtom = NULL;
2585 bond *Binder = NULL;
2586
2587 // add Root if not done yet
2588 AtomStack->ClearStack();
2589 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2590 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2591 AtomStack->Push(Root);
2592
2593 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2594 for (int i=0;i<AtomCount;i++) {
2595 PredecessorList[i] = NULL;
2596 ShortestPathList[i] = -1;
2597 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2598 ColorList[i] = lightgray;
2599 else
2600 ColorList[i] = white;
2601 }
2602 ShortestPathList[Root->nr] = 0;
2603
2604 // and go on ... Queue always contains all lightgray vertices
2605 while (!AtomStack->IsEmpty()) {
2606 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2607 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2608 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2609 // followed by n+1 till top of stack.
2610 Walker = AtomStack->PopFirst(); // pop oldest added
2611 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2612 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2613 Binder = ListOfBondsPerAtom[Walker->nr][i];
2614 if (Binder != NULL) { // don't look at bond equal NULL
2615 OtherAtom = Binder->GetOtherAtom(Walker);
2616 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2617 if (ColorList[OtherAtom->nr] == white) {
2618 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2619 ColorList[OtherAtom->nr] = lightgray;
2620 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2621 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2622 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2623 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond)) || (Binder->Cyclic && (CutCyclic == KeepBond))) ) { // Check for maximum distance
2624 *out << Verbose(3);
2625 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2626 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2627 *out << "Added OtherAtom " << OtherAtom->Name;
2628 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2629 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2630 AddedBondList[Binder->nr]->Type = Binder->Type;
2631 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2632 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2633 *out << "Not adding OtherAtom " << OtherAtom->Name;
2634 if (AddedBondList[Binder->nr] == NULL) {
2635 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2636 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2637 AddedBondList[Binder->nr]->Type = Binder->Type;
2638 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2639 } else
2640 *out << ", not added Bond ";
2641 }
2642 *out << ", putting OtherAtom into queue." << endl;
2643 AtomStack->Push(OtherAtom);
2644 } else { // out of bond order, then replace
2645 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2646 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2647 if (Binder == Bond)
2648 *out << Verbose(3) << "Not Queueing, is the Root bond";
2649 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2650 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2651 if ((Binder->Cyclic && (CutCyclic != KeepBond)))
2652 *out << ", is part of a cyclic bond yet we don't keep them, saturating bond with Hydrogen." << endl;
2653 if (!Binder->Cyclic)
2654 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2655 if (AddedBondList[Binder->nr] == NULL) {
2656 if ((AddedAtomList[OtherAtom->nr] != NULL) && (CutCyclic == KeepBond)) { // .. whether we add or saturate
2657 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2658 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2659 AddedBondList[Binder->nr]->Type = Binder->Type;
2660 } else {
2661#ifdef ADDHYDROGEN
2662 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2663#endif
2664 }
2665 }
2666 }
2667 } else {
2668 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2669 // This has to be a cyclic bond, check whether it's present ...
2670 if (AddedBondList[Binder->nr] == NULL) {
2671 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder) || (CutCyclic == KeepBond))) {
2672 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2673 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2674 AddedBondList[Binder->nr]->Type = Binder->Type;
2675 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2676#ifdef ADDHYDROGEN
2677 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2678#endif
2679 }
2680 }
2681 }
2682 }
2683 }
2684 ColorList[Walker->nr] = black;
2685 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2686 }
2687 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2688 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2689 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2690 delete(AtomStack);
2691};
2692
2693/** Adds bond structure to this molecule from \a Father molecule.
2694 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2695 * with end points present in this molecule, bond is created in this molecule.
2696 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
2697 * \param *out output stream for debugging
2698 * \param *Father father molecule
2699 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
2700 * \todo not checked, not fully working probably
2701 */
2702bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
2703{
2704 atom *Walker = NULL, *OtherAtom = NULL;
2705 bool status = true;
2706 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
2707
2708 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
2709
2710 // reset parent list
2711 *out << Verbose(3) << "Resetting ParentList." << endl;
2712 for (int i=0;i<Father->AtomCount;i++)
2713 ParentList[i] = NULL;
2714
2715 // fill parent list with sons
2716 *out << Verbose(3) << "Filling Parent List." << endl;
2717 Walker = start;
2718 while (Walker->next != end) {
2719 Walker = Walker->next;
2720 ParentList[Walker->father->nr] = Walker;
2721 // Outputting List for debugging
2722 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
2723 }
2724
2725 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
2726 *out << Verbose(3) << "Creating bonds." << endl;
2727 Walker = Father->start;
2728 while (Walker->next != Father->end) {
2729 Walker = Walker->next;
2730 if (ParentList[Walker->nr] != NULL) {
2731 if (ParentList[Walker->nr]->father != Walker) {
2732 status = false;
2733 } else {
2734 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
2735 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2736 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
2737 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
2738 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
2739 }
2740 }
2741 }
2742 }
2743 }
2744
2745 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
2746 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
2747 return status;
2748};
2749
2750
2751/** Looks through a AtomStackClass and returns the likeliest removal candiate.
2752 * \param *out output stream for debugging messages
2753 * \param *&Leaf KeySet to look through
2754 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
2755 * \param index of the atom suggested for removal
2756 */
2757int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
2758{
2759 atom *Runner = NULL;
2760 int SP, Removal;
2761
2762 *out << Verbose(2) << "Looking for removal candidate." << endl;
2763 SP = -1; //0; // not -1, so that Root is never removed
2764 Removal = -1;
2765 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
2766 Runner = FindAtom((*runner));
2767 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
2768 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
2769 SP = ShortestPathList[(*runner)];
2770 Removal = (*runner);
2771 }
2772 }
2773 }
2774 return Removal;
2775};
2776
2777/** Stores a fragment from \a KeySet into \a molecule.
2778 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
2779 * molecule and adds missing hydrogen where bonds were cut.
2780 * \param *out output stream for debugging messages
2781 * \param &Leaflet pointer to KeySet structure
2782 * \param IsAngstroem whether we have Ansgtroem or bohrradius
2783 * \return pointer to constructed molecule
2784 */
2785molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
2786{
2787 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
2788 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
2789 molecule *Leaf = new molecule(elemente);
2790
2791 *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
2792
2793 Leaf->BondDistance = BondDistance;
2794 for(int i=0;i<NDIM*2;i++)
2795 Leaf->cell_size[i] = cell_size[i];
2796
2797 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
2798 for(int i=0;i<AtomCount;i++)
2799 SonList[i] = NULL;
2800
2801 // first create the minimal set of atoms from the KeySet
2802 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
2803 FatherOfRunner = FindAtom((*runner));
2804 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
2805 }
2806
2807 // create the bonds between all: Make it an induced subgraph and add hydrogen
2808 *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
2809 Runner = Leaf->start;
2810 while (Runner->next != Leaf->end) {
2811 Runner = Runner->next;
2812 FatherOfRunner = Runner->father;
2813 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
2814 // create all bonds
2815 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
2816 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
2817 *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
2818 if (SonList[OtherFather->nr] != NULL) {
2819 *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
2820 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
2821 *out << Verbose(3) << "Adding Bond: " << Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree) << "." << endl;
2822 //NumBonds[Runner->nr]++;
2823 } else {
2824 *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
2825 }
2826 } else {
2827 *out << ", who has no son in this fragment molecule." << endl;
2828#ifdef ADDHYDROGEN
2829 *out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
2830 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
2831#endif
2832 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
2833 }
2834 }
2835 } else {
2836 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
2837 }
2838#ifdef ADDHYDROGEN
2839 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
2840 Runner = Runner->next;
2841#endif
2842 }
2843 Leaf->CreateListOfBondsPerAtom(out);
2844 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
2845 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
2846 *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
2847 return Leaf;
2848};
2849
2850/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
2851 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
2852 * computer game, that winds through the connected graph representing the molecule. Color (white,
2853 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
2854 * creating only unique fragments and not additional ones with vertices simply in different sequence.
2855 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
2856 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
2857 * stepping.
2858 * \param *out output stream for debugging
2859 * \param Order number of atoms in each fragment
2860 * \param *configuration configuration for writing config files for each fragment
2861 * \return List of all unique fragments with \a Order atoms
2862 */
2863/*
2864MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
2865{
2866 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2867 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2868 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2869 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2870 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
2871 AtomStackClass *RootStack = new AtomStackClass(AtomCount);
2872 AtomStackClass *TouchedStack = new AtomStackClass((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
2873 AtomStackClass *SnakeStack = new AtomStackClass(Order+1); // equal to Order is not possible, as then the AtomStackClass cannot discern between full and empty stack!
2874 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
2875 MoleculeListClass *FragmentList = NULL;
2876 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
2877 bond *Binder = NULL;
2878 int RunningIndex = 0, FragmentCounter = 0;
2879
2880 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
2881
2882 // reset parent list
2883 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
2884 for (int i=0;i<AtomCount;i++) { // reset all atom labels
2885 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
2886 Labels[i] = -1;
2887 SonList[i] = NULL;
2888 PredecessorList[i] = NULL;
2889 ColorVertexList[i] = white;
2890 ShortestPathList[i] = -1;
2891 }
2892 for (int i=0;i<BondCount;i++)
2893 ColorEdgeList[i] = white;
2894 RootStack->ClearStack(); // clearstack and push first atom if exists
2895 TouchedStack->ClearStack();
2896 Walker = start->next;
2897 while ((Walker != end)
2898#ifdef ADDHYDROGEN
2899 && (Walker->type->Z == 1)
2900#endif
2901 ) { // search for first non-hydrogen atom
2902 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
2903 Walker = Walker->next;
2904 }
2905 if (Walker != end)
2906 RootStack->Push(Walker);
2907 else
2908 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
2909 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
2910
2911 ///// OUTER LOOP ////////////
2912 while (!RootStack->IsEmpty()) {
2913 // get new root vertex from atom stack
2914 Root = RootStack->PopFirst();
2915 ShortestPathList[Root->nr] = 0;
2916 if (Labels[Root->nr] == -1)
2917 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
2918 PredecessorList[Root->nr] = Root;
2919 TouchedStack->Push(Root);
2920 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
2921
2922 // clear snake stack
2923 SnakeStack->ClearStack();
2924 //SnakeStack->TestImplementation(out, start->next);
2925
2926 ///// INNER LOOP ////////////
2927 // Problems:
2928 // - what about cyclic bonds?
2929 Walker = Root;
2930 do {
2931 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
2932 // initial setting of the new Walker: label, color, shortest path and put on stacks
2933 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
2934 Labels[Walker->nr] = RunningIndex++;
2935 RootStack->Push(Walker);
2936 }
2937 *out << ", has label " << Labels[Walker->nr];
2938 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
2939 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
2940 // Binder ought to be set still from last neighbour search
2941 *out << ", coloring bond " << *Binder << " black";
2942 ColorEdgeList[Binder->nr] = black; // mark this bond as used
2943 }
2944 if (ShortestPathList[Walker->nr] == -1) {
2945 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
2946 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
2947 }
2948 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
2949 SnakeStack->Push(Walker);
2950 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
2951 }
2952 }
2953 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
2954
2955 // then check the stack for a newly stumbled upon fragment
2956 if (SnakeStack->ItemCount() == Order) { // is stack full?
2957 // store the fragment if it is one and get a removal candidate
2958 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
2959 // remove the candidate if one was found
2960 if (Removal != NULL) {
2961 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
2962 SnakeStack->RemoveItem(Removal);
2963 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
2964 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
2965 Walker = PredecessorList[Removal->nr];
2966 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
2967 }
2968 }
2969 } else
2970 Removal = NULL;
2971
2972 // finally, look for a white neighbour as the next Walker
2973 Binder = NULL;
2974 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
2975 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
2976 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
2977 if (ShortestPathList[Walker->nr] < Order) {
2978 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2979 Binder = ListOfBondsPerAtom[Walker->nr][i];
2980 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
2981 OtherAtom = Binder->GetOtherAtom(Walker);
2982 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
2983 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
2984 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
2985 } else { // otherwise check its colour and element
2986 if (
2987#ifdef ADDHYDROGEN
2988 (OtherAtom->type->Z != 1) &&
2989#endif
2990 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
2991 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
2992 // i find it currently rather sensible to always set the predecessor in order to find one's way back
2993 //if (PredecessorList[OtherAtom->nr] == NULL) {
2994 PredecessorList[OtherAtom->nr] = Walker;
2995 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2996 //} else {
2997 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2998 //}
2999 Walker = OtherAtom;
3000 break;
3001 } else {
3002 if (OtherAtom->type->Z == 1)
3003 *out << "Links to a hydrogen atom." << endl;
3004 else
3005 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
3006 }
3007 }
3008 }
3009 } else { // means we have stepped beyond the horizon: Return!
3010 Walker = PredecessorList[Walker->nr];
3011 OtherAtom = Walker;
3012 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
3013 }
3014 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
3015 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
3016 ColorVertexList[Walker->nr] = black;
3017 Walker = PredecessorList[Walker->nr];
3018 }
3019 }
3020 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
3021 *out << Verbose(2) << "Inner Looping is finished." << endl;
3022
3023 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
3024 *out << Verbose(2) << "Resetting lists." << endl;
3025 Walker = NULL;
3026 Binder = NULL;
3027 while (!TouchedStack->IsEmpty()) {
3028 Walker = TouchedStack->PopLast();
3029 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
3030 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
3031 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
3032 PredecessorList[Walker->nr] = NULL;
3033 ColorVertexList[Walker->nr] = white;
3034 ShortestPathList[Walker->nr] = -1;
3035 }
3036 }
3037 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
3038
3039 // copy together
3040 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
3041 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
3042 RunningIndex = 0;
3043 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
3044 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
3045 Leaflet->Leaf = NULL; // prevent molecule from being removed
3046 TempLeaf = Leaflet;
3047 Leaflet = Leaflet->previous;
3048 delete(TempLeaf);
3049 };
3050
3051 // free memory and exit
3052 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3053 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3054 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3055 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3056 delete(RootStack);
3057 delete(TouchedStack);
3058 delete(SnakeStack);
3059
3060 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3061 return FragmentList;
3062};
3063*/
3064
3065/** Structure containing all values in power set combination generation.
3066 */
3067struct UniqueFragments {
3068 config *configuration;
3069 atom *Root;
3070 Graph *Leaflet;
3071 KeySet *FragmentSet;
3072 int ANOVAOrder;
3073 int FragmentCounter;
3074 int CurrentIndex;
3075 int *Labels;
3076 int *ShortestPathList;
3077 bool **UsedList;
3078 bond **BondsPerSPList;
3079 double TEFactor;
3080 int *BondsPerSPCount;
3081};
3082
3083/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3084 * This basically involves recursion to create all power set combinations.
3085 * \param *out output stream for debugging
3086 * \param FragmentSearch UniqueFragments structure with all values needed
3087 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3088 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3089 * \param SubOrder remaining number of allowed vertices to add
3090 */
3091void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3092{
3093 atom *OtherWalker = NULL;
3094 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3095 int NumCombinations;
3096 bool bit;
3097 int bits, TouchedIndex, SubSetDimension, SP;
3098 int Removal;
3099 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3100 bond *Binder = NULL;
3101 bond **BondsList = NULL;
3102
3103 NumCombinations = 1 << SetDimension;
3104
3105 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3106 // von Endstuecken (aus den Bonds) hinzugefÃŒgt werden und fÃŒr verbleibende ANOVAOrder
3107 // rekursiv GraphCrawler in der nÀchsten Ebene aufgerufen werden
3108
3109 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3110 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3111
3112 // initialised touched list (stores added atoms on this level)
3113 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3114 for (TouchedIndex=0;TouchedIndex<=SubOrder;TouchedIndex++) // empty touched list
3115 TouchedList[TouchedIndex] = -1;
3116 TouchedIndex = 0;
3117
3118 // create every possible combination of the endpieces
3119 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3120 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3121 // count the set bit of i
3122 bits = 0;
3123 for (int j=0;j<SetDimension;j++)
3124 bits += (i & (1 << j)) >> j;
3125
3126 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3127 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3128 // --1-- add this set of the power set of bond partners to the snake stack
3129 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3130 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3131 if (bit) { // if bit is set, we add this bond partner
3132 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3133 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3134 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
3135 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
3136 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << "." << endl;
3137 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3138 FragmentSearch->FragmentSet->insert( FragmentSearch->FragmentSet->end(), OtherWalker->nr);
3139 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3140 //}
3141 } else {
3142 *out << Verbose(2+verbosity) << "Not adding." << endl;
3143 }
3144 }
3145
3146 if (bits < SubOrder) {
3147 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
3148 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3149 SP = RootDistance+1; // this is the next level
3150 // first count the members in the subset
3151 SubSetDimension = 0;
3152 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3153 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3154 Binder = Binder->next;
3155 for (int k=0;k<TouchedIndex;k++) {
3156 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3157 SubSetDimension++;
3158 }
3159 }
3160 // then allocate and fill the list
3161 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3162 SubSetDimension = 0;
3163 Binder = FragmentSearch->BondsPerSPList[2*SP];
3164 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3165 Binder = Binder->next;
3166 for (int k=0;k<TouchedIndex;k++) {
3167 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3168 BondsList[SubSetDimension++] = Binder;
3169 }
3170 }
3171 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3172 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3173 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3174 } else {
3175 // --2-- otherwise store the complete fragment
3176 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3177 // store fragment as a KeySet
3178 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], indices are: ";
3179 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++) {
3180 *out << (*runner)+1 << " ";
3181 }
3182 InsertFragmentIntoGraph(out, FragmentSearch);
3183 Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3184 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3185 }
3186
3187 // --3-- remove all added items in this level from snake stack
3188 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3189 for(int j=0;j<TouchedIndex;j++) {
3190 Removal = TouchedList[j];
3191 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal+1 << " from snake stack." << endl;
3192 FragmentSearch->FragmentSet->erase(Removal);
3193 TouchedList[j] = -1;
3194 }
3195 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3196 } else {
3197 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3198 }
3199 }
3200 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3201 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3202};
3203
3204/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment in the context of \a this molecule.
3205 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3206 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3207 * \param *out output stream for debugging
3208 * \param Order number of vertices
3209 * \param *ListOfGraph Graph structure to insert found fragments into
3210 * \param Fragment Restricted vertex set to use in context of molecule
3211 * \param TEFactor TEFactor to store in graphlist in the end
3212 * \param *configuration configuration needed for IsAngstroem
3213 * \return number of inserted fragments
3214 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3215 */
3216int molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, Graph *ListOfGraph, KeySet Fragment, double TEFactor, config *configuration)
3217{
3218 int SP, UniqueIndex, RootKeyNr, AtomKeyNr;
3219 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::CreateListOfUniqueFragmentsOfOrder: *SPLevelCount");
3220 atom *Walker = NULL, *OtherWalker = NULL;
3221 bond *Binder = NULL;
3222 bond **BondsList = NULL;
3223 KeyStack RootStack;
3224 KeyStack AtomStack;
3225 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3226 KeySet::iterator runner;
3227
3228 // initialise the fragments structure
3229 struct UniqueFragments FragmentSearch;
3230 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::CreateListOfUniqueFragmentsOfOrder: ***BondsPerSPList");
3231 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::CreateListOfUniqueFragmentsOfOrder: *BondsPerSPCount");
3232 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3233 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3234 FragmentSearch.FragmentCounter = 0;
3235 FragmentSearch.FragmentSet = new KeySet;
3236 FragmentSearch.configuration = configuration;
3237 FragmentSearch.TEFactor = TEFactor;
3238 FragmentSearch.Leaflet = ListOfGraph; // set to insertion graph
3239 for (int i=0;i<AtomCount;i++) {
3240 FragmentSearch.Labels[i] = -1;
3241 FragmentSearch.ShortestPathList[i] = -1;
3242 PredecessorList[i] = NULL;
3243 }
3244 for (int i=0;i<Order;i++) {
3245 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3246 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3247 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3248 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3249 FragmentSearch.BondsPerSPCount[i] = 0;
3250 }
3251
3252 *out << endl;
3253 *out << Verbose(0) << "Begin of CreateListOfUniqueFragmentsOfOrder with order " << Order << "." << endl;
3254
3255 RootStack.clear();
3256 // find first root candidates
3257 runner = Fragment.begin();
3258 Walker = NULL;
3259 while ((Walker == NULL) && (runner != Fragment.end())) { // search for first non-hydrogen atom
3260 Walker = FindAtom((*runner));
3261 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
3262#ifdef ADDHYDROGEN
3263 if (Walker->type->Z == 1) // skip hydrogen
3264 Walker = NULL;
3265#endif
3266 runner++;
3267 }
3268 if (Walker != NULL)
3269 RootStack.push_back(Walker->nr);
3270 else
3271 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
3272
3273 UniqueIndex = 0;
3274 while (!RootStack.empty()) {
3275 // Get Root and prepare
3276 RootKeyNr = RootStack.front();
3277 RootStack.pop_front();
3278 FragmentSearch.Root = FindAtom(RootKeyNr);
3279 if (FragmentSearch.Labels[RootKeyNr] == -1)
3280 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3281 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3282 // prepare the atom stack counters (number of atoms with certain SP on stack)
3283 for (int i=0;i<Order;i++)
3284 NumberOfAtomsSPLevel[i] = 0;
3285 NumberOfAtomsSPLevel[0] = 1; // for root
3286 SP = -1;
3287 *out << endl;
3288 *out << Verbose(0) << "Starting BFS analysis with current Root: " << *FragmentSearch.Root << "." << endl;
3289 // push as first on atom stack and goooo ...
3290 AtomStack.clear();
3291 AtomStack.push_back(RootKeyNr);
3292 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3293 // do a BFS search to fill the SP lists and label the found vertices
3294 while (!AtomStack.empty()) {
3295 // pop next atom
3296 AtomKeyNr = AtomStack.front();
3297 AtomStack.pop_front();
3298 if (SP != -1)
3299 NumberOfAtomsSPLevel[SP]--;
3300 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3301 ////if (SP < FragmentSearch.ShortestPathList[AtomKeyNr]) { // bfs has reached new SP level, hence allocate for new list
3302 SP++;
3303 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3304 ////SP = FragmentSearch.ShortestPathList[AtomKeyNr];
3305 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3306 if (SP > 0)
3307 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3308 else
3309 *out << "." << endl;
3310 FragmentSearch.BondsPerSPCount[SP] = 0;
3311 } else {
3312 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3313 }
3314 Walker = FindAtom(AtomKeyNr);
3315 *out << Verbose(0) << "Current Walker is: " << *Walker << " with label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3316 // check for new sp level
3317 // go through all its bonds
3318 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3319 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3320 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3321 OtherWalker = Binder->GetOtherAtom(Walker);
3322 if ((Fragment.find(OtherWalker->nr) != Fragment.end())
3323#ifdef ADDHYDROGEN
3324 && (OtherWalker->type->Z != 1)
3325#endif
3326 ) { // skip hydrogens and restrict to fragment
3327 *out << Verbose(2) << "Current partner is " << *OtherWalker << " in bond " << *Binder << "." << endl;
3328 // set the label if not set (and push on root stack as well)
3329 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3330 RootStack.push_back(OtherWalker->nr);
3331 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3332 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3333 } else {
3334 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3335 }
3336 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (FragmentSearch.Labels[OtherWalker->nr] > FragmentSearch.Labels[RootKeyNr])) { // only pass through those with label bigger than Root's
3337 // set shortest path if not set or longer
3338 //if ((FragmentSearch.ShortestPathList[OtherWalker->nr] == -1) || (FragmentSearch.ShortestPathList[OtherWalker->nr] > FragmentSearch.ShortestPathList[AtomKeyNr])) {
3339 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3340 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3341 //} else {
3342 // *out << Verbose(3) << "Shortest Path is already " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3343 //}
3344 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3345 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3346 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3347 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3348 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3349 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3350 AtomStack.push_back(OtherWalker->nr);
3351 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3352 } else {
3353 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3354 }
3355 // add the bond in between to the SP list
3356 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3357 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3358 FragmentSearch.BondsPerSPCount[SP]++;
3359 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3360 } else {
3361 *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3362 }
3363 } else {
3364 *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3365 }
3366 } else {
3367 *out << Verbose(3) << "Not passing on, as label of " << *OtherWalker << " " << FragmentSearch.Labels[OtherWalker->nr] << " is smaller than that of Root " << FragmentSearch.Labels[RootKeyNr] << " or this is my predecessor." << endl;
3368 }
3369 } else {
3370 *out << Verbose(2) << "Is not in the Fragment or skipping hydrogen " << *OtherWalker << "." << endl;
3371 }
3372 }
3373 }
3374 // reset predecessor list
3375 for(int i=0;i<Order;i++) {
3376 Binder = FragmentSearch.BondsPerSPList[2*i];
3377 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3378 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3379 Binder = Binder->next;
3380 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3381 }
3382 }
3383 *out << endl;
3384 *out << Verbose(0) << "Printing all found lists." << endl;
3385 // outputting all list for debugging
3386 for(int i=0;i<Order;i++) {
3387 Binder = FragmentSearch.BondsPerSPList[2*i];
3388 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3389 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3390 Binder = Binder->next;
3391 *out << Verbose(2) << *Binder << endl;
3392 }
3393 }
3394
3395 // creating fragments with the found edge sets
3396 SP = 0;
3397 for(int i=0;i<Order;i++) { // sum up all found edges
3398 Binder = FragmentSearch.BondsPerSPList[2*i];
3399 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3400 Binder = Binder->next;
3401 SP ++;
3402 }
3403 }
3404 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3405 if (SP >= (Order-1)) {
3406 // start with root (push on fragment stack)
3407 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << "." << endl;
3408 FragmentSearch.FragmentSet->clear();
3409 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3410
3411 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3412 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3413 // store fragment as a KeySet
3414 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], indices are: ";
3415 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3416 *out << (*runner)+1 << " ";
3417 }
3418 *out << endl;
3419 InsertFragmentIntoGraph(out, &FragmentSearch);
3420 //StoreFragmentFromStack(out, FragmentSearch.Root, FragmentSearch.Leaflet, FragmentSearch.FragmentStack, FragmentSearch.ShortestPathList,FragmentSearch.Labels, &FragmentSearch.FragmentCounter, FragmentSearch.configuration);
3421 } else {
3422 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3423 // prepare the subset and call the generator
3424 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::CreateListOfUniqueFragmentsOfOrder: **BondsList");
3425 Binder = FragmentSearch.BondsPerSPList[0];
3426 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3427 Binder = Binder->next;
3428 BondsList[i] = Binder;
3429 }
3430 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3431 Free((void **)&BondsList, "molecule::CreateListOfUniqueFragmentsOfOrder: **BondsList");
3432 }
3433 } else {
3434 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3435 }
3436
3437 // remove root from stack
3438 *out << Verbose(0) << "Removing root again from stack." << endl;
3439 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3440
3441 // free'ing the bonds lists
3442 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3443 for(int i=0;i<Order;i++) {
3444 *out << Verbose(1) << "Current SP level is " << i << ": ";
3445 Binder = FragmentSearch.BondsPerSPList[2*i];
3446 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3447 Binder = Binder->next;
3448 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3449 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3450 }
3451 // delete added bonds
3452 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3453 // also start and end node
3454 *out << "cleaned." << endl;
3455 }
3456 }
3457
3458 // free allocated memory
3459 Free((void **)&NumberOfAtomsSPLevel, "molecule::CreateListOfUniqueFragmentsOfOrder: *SPLevelCount");
3460 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3461 for(int i=0;i<Order;i++) { // delete start and end of each list
3462 delete(FragmentSearch.BondsPerSPList[2*i]);
3463 delete(FragmentSearch.BondsPerSPList[2*i+1]);
3464 }
3465 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::CreateListOfUniqueFragmentsOfOrder: ***BondsPerSPList");
3466 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *BondsPerSPCount");
3467 Free((void **)&FragmentSearch.ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3468 Free((void **)&FragmentSearch.Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3469 delete(FragmentSearch.FragmentSet);
3470
3471// // gather all the leaves together
3472// *out << Verbose(0) << "Copying all fragments into MoleculeList structure." << endl;
3473// FragmentList = new Graph;
3474// UniqueIndex = 0;
3475// while ((FragmentSearch.Leaflet != NULL) && (UniqueIndex < FragmentSearch.FragmentCounter)) {
3476// FragmentList->insert();
3477// FragmentList->ListOfMolecules[UniqueIndex++] = FragmentSearch.Leaflet->Leaf;
3478// FragmentSearch.Leaflet->Leaf = NULL; // prevent molecule from being removed
3479// TempLeaf = FragmentSearch.Leaflet;
3480// FragmentSearch.Leaflet = FragmentSearch.Leaflet->previous;
3481// delete(TempLeaf);
3482// };
3483
3484 // return list
3485 *out << Verbose(0) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3486 return FragmentSearch.FragmentCounter;
3487};
3488
3489/** Corrects the nuclei position if the fragment was created over the cell borders.
3490 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3491 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3492 * and re-add the bond. Looping on the distance check.
3493 * \param *out ofstream for debugging messages
3494 */
3495void molecule::ScanForPeriodicCorrection(ofstream *out)
3496{
3497 bond *Binder = NULL;
3498 bond *OtherBinder = NULL;
3499 atom *Walker = NULL;
3500 atom *OtherWalker = NULL;
3501 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3502 enum Shading *ColorList = NULL;
3503 double tmp;
3504 vector TranslationVector;
3505 //AtomStackClass *CompStack = NULL;
3506 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
3507 bool flag = true;
3508
3509 *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3510
3511 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3512 while (flag) {
3513 // remove bonds that are beyond bonddistance
3514 for(int i=0;i<NDIM;i++)
3515 TranslationVector.x[i] = 0.;
3516 // scan all bonds
3517 Binder = first;
3518 flag = false;
3519 while ((!flag) && (Binder->next != last)) {
3520 Binder = Binder->next;
3521 for (int i=0;i<NDIM;i++) {
3522 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3523 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3524 if (tmp > BondDistance) {
3525 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3526 unlink(Binder); // unlink bond
3527 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3528 flag = true;
3529 break;
3530 }
3531 }
3532 }
3533 if (flag) {
3534 // create translation vector from their periodically modified distance
3535 for (int i=0;i<NDIM;i++) {
3536 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3537 if (fabs(tmp) > BondDistance)
3538 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3539 }
3540 TranslationVector.MatrixMultiplication(matrix);
3541 //*out << "Translation vector is ";
3542 //TranslationVector.Output(out);
3543 //*out << endl;
3544 // apply to all atoms of first component via BFS
3545 for (int i=0;i<AtomCount;i++)
3546 ColorList[i] = white;
3547 AtomStack->Push(Binder->leftatom);
3548 while (!AtomStack->IsEmpty()) {
3549 Walker = AtomStack->PopFirst();
3550 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3551 ColorList[Walker->nr] = black; // mark as explored
3552 Walker->x.AddVector(&TranslationVector); // translate
3553 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3554 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3555 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3556 if (ColorList[OtherWalker->nr] == white) {
3557 AtomStack->Push(OtherWalker); // push if yet unexplored
3558 }
3559 }
3560 }
3561 }
3562 // re-add bond
3563 link(Binder, OtherBinder);
3564 } else {
3565 *out << Verbose(2) << "No corrections for this fragment." << endl;
3566 }
3567 //delete(CompStack);
3568 }
3569
3570 // free allocated space from ReturnFullMatrixforSymmetric()
3571 delete(AtomStack);
3572 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3573 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3574 *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3575};
3576
3577/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3578 * \param *symm 6-dim array of unique symmetric matrix components
3579 * \return allocated NDIM*NDIM array with the symmetric matrix
3580 */
3581double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3582{
3583 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3584 matrix[0] = symm[0];
3585 matrix[1] = symm[1];
3586 matrix[2] = symm[3];
3587 matrix[3] = symm[1];
3588 matrix[4] = symm[2];
3589 matrix[5] = symm[4];
3590 matrix[6] = symm[3];
3591 matrix[7] = symm[4];
3592 matrix[8] = symm[5];
3593 return matrix;
3594};
3595
3596bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3597{
3598 //cout << "my check is used." << endl;
3599 if (SubgraphA.size() < SubgraphB.size()) {
3600 return true;
3601 } else {
3602 if (SubgraphA.size() > SubgraphB.size()) {
3603 return false;
3604 } else {
3605 KeySet::iterator IteratorA = SubgraphA.begin();
3606 KeySet::iterator IteratorB = SubgraphB.begin();
3607 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3608 if ((*IteratorA) < (*IteratorB))
3609 return true;
3610 else if ((*IteratorA) > (*IteratorB)) {
3611 return false;
3612 } // else, go on to next index
3613 IteratorA++;
3614 IteratorB++;
3615 } // end of while loop
3616 }// end of check in case of equal sizes
3617 }
3618 return false; // if we reach this point, they are equal
3619};
3620
3621//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3622//{
3623// return KeyCompare(SubgraphA, SubgraphB);
3624//};
3625
3626/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3627 * \param *out output stream for debugging
3628 * \param &set KeySet to insert
3629 * \param &graph Graph to insert into
3630 * \param *counter pointer to unique fragment count
3631 * \param factor energy factor for the fragment
3632 */
3633inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3634{
3635 GraphTestPair testGraphInsert;
3636
3637 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
3638 if (testGraphInsert.second) {
3639 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3640 Fragment->FragmentCounter++;
3641 } else {
3642 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3643 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor;
3644 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3645 }
3646};
3647//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3648//{
3649// // copy stack contents to set and call overloaded function again
3650// KeySet set;
3651// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3652// set.insert((*runner));
3653// InsertIntoGraph(out, set, graph, counter, factor);
3654//};
3655
3656/** Inserts each KeySet in \a graph2 into \a graph1.
3657 * \param *out output stream for debugging
3658 * \param graph1 first (dest) graph
3659 * \param graph2 second (source) graph
3660 */
3661inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3662{
3663 GraphTestPair testGraphInsert;
3664
3665 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3666 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3667 if (testGraphInsert.second) {
3668 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3669 } else {
3670 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3671 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3672 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3673 }
3674 }
3675};
3676
3677
3678/** Creates truncated BOSSANOVA expansion up to order \a k.
3679 * \param *out output stream for debugging
3680 * \param ANOVAOrder ANOVA expansion is truncated above this order
3681 * \param *configuration configuration for writing config files for each fragment
3682 * \return pointer to MoleculeListClass with all the fragments or NULL if something went wrong.
3683 */
3684MoleculeListClass * molecule::FragmentBOSSANOVA(ofstream *out, int ANOVAOrder, config *configuration)
3685{
3686 Graph *FragmentList = NULL, ***FragmentLowerOrdersList = NULL;
3687 MoleculeListClass *FragmentMoleculeList = NULL;
3688 int Order, NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3689 int counter = 0;
3690
3691 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3692
3693 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3694 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3695 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*ANOVAOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3696 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*ANOVAOrder, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3697
3698 // Construct the complete KeySet
3699 atom *Walker = start;
3700 KeySet CompleteMolecule;
3701 while (Walker->next != end) {
3702 Walker = Walker->next;
3703 CompleteMolecule.insert(Walker->nr);
3704 }
3705
3706 for (int BondOrder=1;BondOrder<=ANOVAOrder;BondOrder++) {
3707 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3708 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3709 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3710 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3711 NumLevels = 1 << (BondOrder-1); // (int)pow(2,BondOrder-1);
3712 *out << Verbose(0) << "BondOrder is (" << BondOrder << "/" << ANOVAOrder << ") and NumLevels is " << NumLevels << "." << endl;
3713
3714 // allocate memory for all lower level orders in this 1D-array of ptrs
3715 FragmentLowerOrdersList[BondOrder-1] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3716
3717 // create top order where nothing is reduced
3718 *out << Verbose(0) << "==============================================================================================================" << endl;
3719 *out << Verbose(0) << "Creating list of unique fragments of Bond Order " << BondOrder << " itself." << endl;
3720 // Create list of Graphs of current Bond Order (i.e. F_{ij})
3721 FragmentLowerOrdersList[BondOrder-1][0] = new Graph;
3722 NumMoleculesOfOrder[BondOrder-1] = CreateListOfUniqueFragmentsOfOrder(out, BondOrder, FragmentLowerOrdersList[BondOrder-1][0], CompleteMolecule, 1., configuration);
3723 *out << Verbose(1) << "Number of resulting molecules is: " << NumMoleculesOfOrder[BondOrder-1] << "." << endl;
3724 NumMolecules = 0;
3725
3726 // create lower order fragments
3727 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
3728 Order = BondOrder;
3729 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
3730
3731 // step down to next order at (virtual) boundary of powers of 2 in array
3732 while (source >= (1 << (BondOrder-Order))) // (int)pow(2,BondOrder-Order))
3733 Order--;
3734 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
3735 for (int SubOrder=Order;SubOrder>1;SubOrder--) {
3736 int dest = source + (1 << (BondOrder-SubOrder));
3737 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
3738 *out << Verbose(0) << "Current SubOrder is: " << SubOrder-1 << " with source " << source << " to destination " << dest << "." << endl;
3739
3740 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
3741 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[BondOrder-1][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
3742 //NumMolecules = 0;
3743 FragmentLowerOrdersList[BondOrder-1][dest] = new Graph;
3744 for(Graph::iterator runner = (*FragmentLowerOrdersList[BondOrder-1][source]).begin();runner != (*FragmentLowerOrdersList[BondOrder-1][source]).end(); runner++) {
3745 NumMolecules += CreateListOfUniqueFragmentsOfOrder(out,SubOrder-1, FragmentLowerOrdersList[BondOrder-1][dest], (*runner).first, -(*runner).second.second, configuration);
3746 }
3747 *out << Verbose(1) << "Number of resulting molecules is: " << NumMolecules << "." << endl;
3748 }
3749 }
3750 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current BondOrder
3751 //NumMoleculesOfOrder[BondOrder-1] = NumMolecules;
3752 TotalNumMolecules += NumMoleculesOfOrder[BondOrder-1];
3753 *out << Verbose(1) << "Number of resulting molecules for Order " << BondOrder << " is: " << NumMoleculesOfOrder[BondOrder-1] << "." << endl;
3754 }
3755 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
3756 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
3757 // 5433222211111111
3758 // 43221111
3759 // 3211
3760 // 21
3761 // 1
3762 // Subsequently, we combine same orders into a single list (FragmentByOrderList) and reduce these by order
3763
3764 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
3765 FragmentList = new Graph;
3766 for (int BondOrder=1;BondOrder<=ANOVAOrder;BondOrder++) {
3767 NumLevels = 1 << (BondOrder-1);
3768 for(int i=0;i<NumLevels;i++) {
3769 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[BondOrder-1][i]), &counter);
3770 delete(FragmentLowerOrdersList[BondOrder-1][i]);
3771 }
3772 Free((void **)&FragmentLowerOrdersList[BondOrder-1], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3773 }
3774 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3775 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3776 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
3777 FragmentMoleculeList = new MoleculeListClass(TotalNumMolecules, AtomCount);
3778 int k=0;
3779 for(Graph::iterator runner = FragmentList->begin(); runner != FragmentList->end(); runner++) {
3780 KeySet test = (*runner).first;
3781 FragmentMoleculeList->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
3782 FragmentMoleculeList->TEList[k] = ((*runner).second).second;
3783 k++;
3784 }
3785
3786 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
3787 delete(FragmentList);
3788 return FragmentMoleculeList;
3789};
3790
3791/** Fragments a molecule, taking \a BondDegree neighbours into accent.
3792 * First of all, we have to split up the molecule into bonds ranging out till \a BondDegree.
3793 * These fragments serve in the following as the basis the calculate the bond energy of the bond
3794 * they originated from. Thus, they are split up in a left and a right part, each calculated for
3795 * the total energy, including the fragment as a whole and then we get:
3796 * E(fragment) - E(left) - E(right) = E(bond)
3797 * The splitting up is done via Breadth-First-Search, \sa BreadthFirstSearchAdd().
3798 * \param *out output stream for debugging
3799 * \param BondOrder up to how many neighbouring bonds a fragment contains
3800 * \param *configuration configuration for writing config files for each fragment
3801 * \param CutCyclic whether to add cut cyclic bond or to saturate
3802 * \return pointer to MoleculeListClass with all the fragments or NULL if something went wrong.
3803 */
3804MoleculeListClass * molecule::FragmentBottomUp(ofstream *out, int BondOrder, config *configuration, enum CutCyclicBond CutCyclic)
3805{
3806 int Num;
3807 MoleculeListClass *FragmentList = NULL, **FragmentsList = NULL;
3808 bond *Bond = NULL;
3809
3810 *out << Verbose(0) << "Begin of FragmentBottomUp." << endl;
3811 FragmentsList = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*2, "molecule::FragmentBottomUp: **FragmentsList");
3812 *out << Verbose(0) << "Getting Atomic fragments." << endl;
3813 FragmentsList[0] = GetAtomicFragments(out, AtomCount, configuration->GetIsAngstroem(), 1., CutCyclic);
3814
3815 // create the fragments including each one bond of the original molecule and up to \a BondDegree neighbours
3816 *out << Verbose(0) << "Getting " <<
3817#ifdef ADDHYDROGEN
3818 NoNonBonds
3819#else
3820 BondCount
3821#endif
3822 << " Bond fragments." << endl;
3823 FragmentList = GetEachBondFragmentOfOrder(out, BondOrder, configuration->GetIsAngstroem(), CutCyclic);
3824
3825 // check whether there are equal fragments by ReduceToUniqueOnes
3826 FragmentList->ReduceToUniqueList(out, &cell_size[0], BondDistance);
3827
3828 *out << Verbose(0) << "Begin of Separating " << FragmentList->NumberOfMolecules << " Fragments into Bond pieces." << endl;
3829 // as we have the list, we have to take each fragment split it relative to its originating
3830 // bond into left and right and store these in a new list
3831 *out << Verbose(2) << endl << "Allocating MoleculeListClass" << endl;
3832 FragmentsList[1] = new MoleculeListClass(3*FragmentList->NumberOfMolecules, AtomCount); // for each molecule the whole and its left and right part
3833 *out << Verbose(2) << "Creating TEList." << endl;
3834 // and create TE summation for these bond energy approximations (bond = whole - left - right)
3835 for(int i=0;i<FragmentList->NumberOfMolecules;i++) {
3836 // make up factors to regain total energy of whole molecule
3837 FragmentsList[1]->TEList[3*i] = FragmentList->TEList[i]; // bond energy is 1 * whole
3838 FragmentsList[1]->TEList[3*i+1] = -FragmentList->TEList[i]; // - 1. * left part
3839 FragmentsList[1]->TEList[3*i+2] = -FragmentList->TEList[i]; // - 1. * right part
3840
3841 // shift the pointer on whole molecule to new list in order to avoid that this molecule is deleted on deconstructing FragmentList
3842 FragmentsList[1]->ListOfMolecules[3*i] = FragmentList->ListOfMolecules[i];
3843 *out << Verbose(2) << "shifting whole fragment pointer for fragment " << FragmentList->ListOfMolecules[i] << " -> " << FragmentsList[1]->ListOfMolecules[3*i] << "." << endl;
3844 // create bond matrix and count bonds
3845 *out << Verbose(2) << "Updating bond list for fragment " << i << " [" << FragmentList << "]: " << FragmentList->ListOfMolecules[i] << endl;
3846 // create list of bonds per atom for this fragment (atoms were counted above)
3847 FragmentsList[1]->ListOfMolecules[3*i]->CreateListOfBondsPerAtom(out);
3848
3849 *out << Verbose(0) << "Getting left & right fragments for fragment " << i << "." << endl;
3850 // the bond around which the fragment has been setup is always the first by construction (bond partners are first added atoms)
3851 Bond = FragmentsList[1]->ListOfMolecules[3*i]->first->next; // is the bond between atom 0 and another in the middle
3852 FragmentsList[1]->ListOfMolecules[3*i]->FragmentMoleculeByBond(out, Bond, &(FragmentsList[1]->ListOfMolecules[3*i+1]), &(FragmentsList[1]->ListOfMolecules[3*i+2]), configuration->GetIsAngstroem(), CutCyclic);
3853 if ((FragmentsList[1]->ListOfMolecules[3*i+1] == NULL) || (FragmentsList[1]->ListOfMolecules[3*i+2] == NULL)) {
3854 *out << Verbose(2) << "Left and/or Right Fragment is NULL!" << endl;
3855 } else {
3856 *out << Verbose(3) << "Left Fragment is " << FragmentsList[1]->ListOfMolecules[3*i+1] << ": " << endl;
3857 FragmentsList[1]->ListOfMolecules[3*i+1]->Output(out);
3858 *out << Verbose(3) << "Right Fragment is " << FragmentsList[1]->ListOfMolecules[3*i+2] << ": " << endl;
3859 FragmentsList[1]->ListOfMolecules[3*i+2]->Output(out);
3860 *out << endl;
3861 }
3862 // remove in old list, so that memory for this molecule is not free'd on final delete of this list
3863 FragmentList->ListOfMolecules[i] = NULL;
3864 }
3865 *out << Verbose(0) << "End of Separating Fragments into Bond pieces." << endl;
3866 delete(FragmentList);
3867 FragmentList = NULL;
3868
3869 // combine atomic and bond list
3870 FragmentList = new MoleculeListClass(FragmentsList[0]->NumberOfMolecules + FragmentsList[1]->NumberOfMolecules, AtomCount);
3871 Num = 0;
3872 for(int i=0;i<2;i++) {
3873 for(int j=0;j<FragmentsList[i]->NumberOfMolecules;j++) {
3874 // transfer molecule
3875 FragmentList->ListOfMolecules[Num] = FragmentsList[i]->ListOfMolecules[j];
3876 FragmentsList[i]->ListOfMolecules[j] = NULL;
3877 // transfer TE factor
3878 FragmentList->TEList[Num] = FragmentsList[i]->TEList[j];
3879 Num++;
3880 }
3881 delete(FragmentsList[i]);
3882 FragmentsList[i] = NULL;
3883 }
3884 *out << Verbose(2) << "Memory cleanup and return with filled list." << endl;
3885 Free((void **)&FragmentsList, "molecule::FragmentBottomUp: **FragmentsList");
3886
3887 // reducing list
3888 FragmentList->ReduceToUniqueList(out, &cell_size[0], BondDistance);
3889
3890 // write configs for all fragements (are written in FragmentMolecule)
3891 // free FragmentList
3892 *out << Verbose(0) << "End of FragmentBottomUp." << endl;
3893 return FragmentList;
3894};
3895
3896
3897/** Comparision function for GSL heapsort on distances in two molecules.
3898 * \param *a
3899 * \param *b
3900 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
3901 */
3902int CompareDoubles (const void * a, const void * b)
3903{
3904 if (*(double *)a > *(double *)b)
3905 return -1;
3906 else if (*(double *)a < *(double *)b)
3907 return 1;
3908 else
3909 return 0;
3910};
3911
3912/** Determines whether two molecules actually contain the same atoms and coordination.
3913 * \param *out output stream for debugging
3914 * \param *OtherMolecule the molecule to compare this one to
3915 * \param threshold upper limit of difference when comparing the coordination.
3916 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
3917 */
3918int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
3919{
3920 int flag;
3921 double *Distances = NULL, *OtherDistances = NULL;
3922 vector CenterOfGravity, OtherCenterOfGravity;
3923 size_t *PermMap = NULL, *OtherPermMap = NULL;
3924 int *PermutationMap = NULL;
3925 atom *Walker = NULL;
3926 bool result = true; // status of comparison
3927
3928 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
3929 /// first count both their atoms and elements and update lists thereby ...
3930 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
3931 CountAtoms(out);
3932 OtherMolecule->CountAtoms(out);
3933 CountElements();
3934 OtherMolecule->CountElements();
3935
3936 /// ... and compare:
3937 /// -# AtomCount
3938 if (result) {
3939 if (AtomCount != OtherMolecule->AtomCount) {
3940 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3941 result = false;
3942 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3943 }
3944 /// -# ElementCount
3945 if (result) {
3946 if (ElementCount != OtherMolecule->ElementCount) {
3947 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3948 result = false;
3949 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3950 }
3951 /// -# ElementsInMolecule
3952 if (result) {
3953 for (flag=0;flag<MAX_ELEMENTS;flag++) {
3954 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
3955 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
3956 break;
3957 }
3958 if (flag < MAX_ELEMENTS) {
3959 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
3960 result = false;
3961 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
3962 }
3963 /// then determine and compare center of gravity for each molecule ...
3964 if (result) {
3965 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
3966 DetermineCenterOfGravity(CenterOfGravity);
3967 OtherMolecule->DetermineCenterOfGravity(OtherCenterOfGravity);
3968 *out << Verbose(5) << "Center of Gravity: ";
3969 CenterOfGravity.Output(out);
3970 *out << endl << Verbose(5) << "Other Center of Gravity: ";
3971 OtherCenterOfGravity.Output(out);
3972 *out << endl;
3973 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
3974 *out << Verbose(4) << "Centers of gravity don't match." << endl;
3975 result = false;
3976 }
3977 }
3978
3979 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
3980 if (result) {
3981 *out << Verbose(5) << "Calculating distances" << endl;
3982 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
3983 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
3984 Walker = start;
3985 while (Walker->next != end) {
3986 Walker = Walker->next;
3987 //for (i=0;i<AtomCount;i++) {
3988 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
3989 }
3990 Walker = OtherMolecule->start;
3991 while (Walker->next != OtherMolecule->end) {
3992 Walker = Walker->next;
3993 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
3994 }
3995
3996 /// ... sort each list (using heapsort (o(N log N)) from GSL)
3997 *out << Verbose(5) << "Sorting distances" << endl;
3998 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
3999 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4000 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
4001 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
4002 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4003 *out << Verbose(5) << "Combining Permutation Maps" << endl;
4004 for(int i=0;i<AtomCount;i++)
4005 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
4006
4007 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
4008 *out << Verbose(4) << "Comparing distances" << endl;
4009 flag = 0;
4010 for (int i=0;i<AtomCount;i++) {
4011 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
4012 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
4013 flag = 1;
4014 }
4015 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
4016 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4017
4018 /// free memory
4019 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
4020 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
4021 if (flag) { // if not equal
4022 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4023 result = false;
4024 }
4025 }
4026 /// return pointer to map if all distances were below \a threshold
4027 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
4028 if (result) {
4029 *out << Verbose(3) << "Result: Equal." << endl;
4030 return PermutationMap;
4031 } else {
4032 *out << Verbose(3) << "Result: Not equal." << endl;
4033 return NULL;
4034 }
4035};
4036
4037/** Returns an index map for two father-son-molecules.
4038 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
4039 * \param *out output stream for debugging
4040 * \param *OtherMolecule corresponding molecule with fathers
4041 * \return allocated map of size molecule::AtomCount with map
4042 * \todo make this with a good sort O(n), not O(n^2)
4043 */
4044int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
4045{
4046 atom *Walker = NULL, *OtherWalker = NULL;
4047 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
4048 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
4049 for (int i=0;i<AtomCount;i++)
4050 AtomicMap[i] = -1;
4051 if (OtherMolecule == this) { // same molecule
4052 for (int i=0;i<AtomCount;i++) // no need as -1 means already that there is trivial correspondence
4053 AtomicMap[i] = i;
4054 *out << Verbose(4) << "Map is trivial." << endl;
4055 } else {
4056 *out << Verbose(4) << "Map is ";
4057 Walker = start;
4058 while (Walker->next != end) {
4059 Walker = Walker->next;
4060 if (Walker->father == NULL) {
4061 AtomicMap[Walker->nr] = -2;
4062 } else {
4063 OtherWalker = OtherMolecule->start;
4064 while (OtherWalker->next != OtherMolecule->end) {
4065 OtherWalker = OtherWalker->next;
4066 //for (int i=0;i<AtomCount;i++) { // search atom
4067 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
4068 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
4069 if (Walker->father == OtherWalker)
4070 AtomicMap[Walker->nr] = OtherWalker->nr;
4071 }
4072 }
4073 *out << AtomicMap[Walker->nr] << "\t";
4074 }
4075 *out << endl;
4076 }
4077 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
4078 return AtomicMap;
4079};
4080
Note: See TracBrowser for help on using the repository browser.