source: src/moleculelist.cpp@ a295d1

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since a295d1 was ead4e6, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Made the periodentafel use STL-containers instead of custom llists

  • Property mode set to 100755
File size: 46.7 KB
Line 
1/** \file MoleculeListClass.cpp
2 *
3 * Function implementations for the class MoleculeListClass.
4 *
5 */
6
7#include <cstring>
8
9#include "World.hpp"
10#include "atom.hpp"
11#include "bond.hpp"
12#include "boundary.hpp"
13#include "config.hpp"
14#include "element.hpp"
15#include "helpers.hpp"
16#include "linkedcell.hpp"
17#include "lists.hpp"
18#include "log.hpp"
19#include "molecule.hpp"
20#include "memoryallocator.hpp"
21#include "periodentafel.hpp"
22
23/*********************************** Functions for class MoleculeListClass *************************/
24
25/** Constructor for MoleculeListClass.
26 */
27MoleculeListClass::MoleculeListClass(World *_world) :
28 world(_world)
29{
30 // empty lists
31 ListOfMolecules.clear();
32 MaxIndex = 1;
33};
34
35/** Destructor for MoleculeListClass.
36 */
37MoleculeListClass::~MoleculeListClass()
38{
39 Log() << Verbose(3) << this << ": Freeing ListOfMolcules." << endl;
40 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
41 Log() << Verbose(4) << "ListOfMolecules: Freeing " << *ListRunner << "." << endl;
42 world->destroyMolecule(*ListRunner);
43 }
44 Log() << Verbose(4) << "Freeing ListOfMolecules." << endl;
45 ListOfMolecules.clear(); // empty list
46};
47
48/** Insert a new molecule into the list and set its number.
49 * \param *mol molecule to add to list.
50 * \return true - add successful
51 */
52void MoleculeListClass::insert(molecule *mol)
53{
54 OBSERVE;
55 mol->IndexNr = MaxIndex++;
56 ListOfMolecules.push_back(mol);
57 mol->signOn(this);
58};
59
60/** Compare whether two molecules are equal.
61 * \param *a molecule one
62 * \param *n molecule two
63 * \return lexical value (-1, 0, +1)
64 */
65int MolCompare(const void *a, const void *b)
66{
67 int *aList = NULL, *bList = NULL;
68 int Count, Counter, aCounter, bCounter;
69 int flag;
70 atom *aWalker = NULL;
71 atom *bWalker = NULL;
72
73 // sort each atom list and put the numbers into a list, then go through
74 //Log() << Verbose(0) << "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "." << endl;
75 if ((**(molecule **) a).AtomCount < (**(molecule **) b).AtomCount) {
76 return -1;
77 } else {
78 if ((**(molecule **) a).AtomCount > (**(molecule **) b).AtomCount)
79 return +1;
80 else {
81 Count = (**(molecule **) a).AtomCount;
82 aList = new int[Count];
83 bList = new int[Count];
84
85 // fill the lists
86 aWalker = (**(molecule **) a).start;
87 bWalker = (**(molecule **) b).start;
88 Counter = 0;
89 aCounter = 0;
90 bCounter = 0;
91 while ((aWalker->next != (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
92 aWalker = aWalker->next;
93 bWalker = bWalker->next;
94 if (aWalker->GetTrueFather() == NULL)
95 aList[Counter] = Count + (aCounter++);
96 else
97 aList[Counter] = aWalker->GetTrueFather()->nr;
98 if (bWalker->GetTrueFather() == NULL)
99 bList[Counter] = Count + (bCounter++);
100 else
101 bList[Counter] = bWalker->GetTrueFather()->nr;
102 Counter++;
103 }
104 // check if AtomCount was for real
105 flag = 0;
106 if ((aWalker->next == (**(molecule **) a).end) && (bWalker->next != (**(molecule **) b).end)) {
107 flag = -1;
108 } else {
109 if ((aWalker->next != (**(molecule **) a).end) && (bWalker->next == (**(molecule **) b).end))
110 flag = 1;
111 }
112 if (flag == 0) {
113 // sort the lists
114 gsl_heapsort(aList, Count, sizeof(int), CompareDoubles);
115 gsl_heapsort(bList, Count, sizeof(int), CompareDoubles);
116 // compare the lists
117
118 flag = 0;
119 for (int i = 0; i < Count; i++) {
120 if (aList[i] < bList[i]) {
121 flag = -1;
122 } else {
123 if (aList[i] > bList[i])
124 flag = 1;
125 }
126 if (flag != 0)
127 break;
128 }
129 }
130 delete[] (aList);
131 delete[] (bList);
132 return flag;
133 }
134 }
135 return -1;
136};
137
138/** Output of a list of all molecules.
139 * \param *out output stream
140 */
141void MoleculeListClass::Enumerate(ostream *out)
142{
143 atom *Walker = NULL;
144 periodentafel *periode = World::getInstance().getPeriode();
145 std::map<atomicNumber_t,unsigned int> counts;
146 double size=0;
147 Vector Origin;
148
149 // header
150 (*out) << "Index\tName\t\tAtoms\tFormula\tCenter\tSize" << endl;
151 (*out) << "-----------------------------------------------" << endl;
152 if (ListOfMolecules.size() == 0)
153 (*out) << "\tNone" << endl;
154 else {
155 Origin.Zero();
156 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
157 // count atoms per element and determine size of bounding sphere
158 size=0.;
159 Walker = (*ListRunner)->start;
160 while (Walker->next != (*ListRunner)->end) {
161 Walker = Walker->next;
162 counts[Walker->type->getNumber()]++;
163 if (Walker->x.DistanceSquared(&Origin) > size)
164 size = Walker->x.DistanceSquared(&Origin);
165 }
166 // output Index, Name, number of atoms, chemical formula
167 (*out) << ((*ListRunner)->ActiveFlag ? "*" : " ") << (*ListRunner)->IndexNr << "\t" << (*ListRunner)->name << "\t\t" << (*ListRunner)->AtomCount << "\t";
168
169 std::map<atomicNumber_t,unsigned int>::reverse_iterator iter;
170 for(iter=counts.rbegin(); iter!=counts.rend();++iter){
171 atomicNumber_t Z =(*iter).first;
172 (*out) << periode->FindElement(Z)->getSymbol() << (*iter).second;
173 }
174 // Center and size
175 (*out) << "\t" << (*ListRunner)->Center << "\t" << sqrt(size) << endl;
176 }
177 }
178};
179
180/** Returns the molecule with the given index \a index.
181 * \param index index of the desired molecule
182 * \return pointer to molecule structure, NULL if not found
183 */
184molecule * MoleculeListClass::ReturnIndex(int index)
185{
186 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
187 if ((*ListRunner)->IndexNr == index)
188 return (*ListRunner);
189 return NULL;
190};
191
192/** Simple merge of two molecules into one.
193 * \param *mol destination molecule
194 * \param *srcmol source molecule
195 * \return true - merge successful, false - merge failed (probably due to non-existant indices
196 */
197bool MoleculeListClass::SimpleMerge(molecule *mol, molecule *srcmol)
198{
199 if (srcmol == NULL)
200 return false;
201
202 // put all molecules of src into mol
203 atom *Walker = srcmol->start;
204 atom *NextAtom = Walker->next;
205 while (NextAtom != srcmol->end) {
206 Walker = NextAtom;
207 NextAtom = Walker->next;
208 srcmol->UnlinkAtom(Walker);
209 mol->AddAtom(Walker);
210 }
211
212 // remove src
213 ListOfMolecules.remove(srcmol);
214 World::getInstance().destroyMolecule(srcmol);
215 return true;
216};
217
218/** Simple add of one molecules into another.
219 * \param *mol destination molecule
220 * \param *srcmol source molecule
221 * \return true - merge successful, false - merge failed (probably due to non-existant indices
222 */
223bool MoleculeListClass::SimpleAdd(molecule *mol, molecule *srcmol)
224{
225 if (srcmol == NULL)
226 return false;
227
228 // put all molecules of src into mol
229 atom *Walker = srcmol->start;
230 atom *NextAtom = Walker->next;
231 while (NextAtom != srcmol->end) {
232 Walker = NextAtom;
233 NextAtom = Walker->next;
234 Walker = mol->AddCopyAtom(Walker);
235 Walker->father = Walker;
236 }
237
238 return true;
239};
240
241/** Simple merge of a given set of molecules into one.
242 * \param *mol destination molecule
243 * \param *src index of set of source molecule
244 * \param N number of source molecules
245 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
246 */
247bool MoleculeListClass::SimpleMultiMerge(molecule *mol, int *src, int N)
248{
249 bool status = true;
250 // check presence of all source molecules
251 for (int i=0;i<N;i++) {
252 molecule *srcmol = ReturnIndex(src[i]);
253 status = status && SimpleMerge(mol, srcmol);
254 }
255 return status;
256};
257
258/** Simple add of a given set of molecules into one.
259 * \param *mol destination molecule
260 * \param *src index of set of source molecule
261 * \param N number of source molecules
262 * \return true - merge successful, false - some merges failed (probably due to non-existant indices)
263 */
264bool MoleculeListClass::SimpleMultiAdd(molecule *mol, int *src, int N)
265{
266 bool status = true;
267 // check presence of all source molecules
268 for (int i=0;i<N;i++) {
269 molecule *srcmol = ReturnIndex(src[i]);
270 status = status && SimpleAdd(mol, srcmol);
271 }
272 return status;
273};
274
275/** Scatter merge of a given set of molecules into one.
276 * Scatter merge distributes the molecules in such a manner that they don't overlap.
277 * \param *mol destination molecule
278 * \param *src index of set of source molecule
279 * \param N number of source molecules
280 * \return true - merge successful, false - merge failed (probably due to non-existant indices
281 * \TODO find scatter center for each src molecule
282 */
283bool MoleculeListClass::ScatterMerge(molecule *mol, int *src, int N)
284{
285 // check presence of all source molecules
286 for (int i=0;i<N;i++) {
287 // get pointer to src molecule
288 molecule *srcmol = ReturnIndex(src[i]);
289 if (srcmol == NULL)
290 return false;
291 }
292 // adapt each Center
293 for (int i=0;i<N;i++) {
294 // get pointer to src molecule
295 molecule *srcmol = ReturnIndex(src[i]);
296 //srcmol->Center.Zero();
297 srcmol->Translate(&srcmol->Center);
298 }
299 // perform a simple multi merge
300 SimpleMultiMerge(mol, src, N);
301 return true;
302};
303
304/** Embedding merge of a given set of molecules into one.
305 * Embedding merge inserts one molecule into the other.
306 * \param *mol destination molecule (fixed one)
307 * \param *srcmol source molecule (variable one, where atoms are taken from)
308 * \return true - merge successful, false - merge failed (probably due to non-existant indices)
309 * \TODO linked cell dimensions for boundary points has to be as big as inner diameter!
310 */
311bool MoleculeListClass::EmbedMerge(molecule *mol, molecule *srcmol)
312{
313 LinkedCell *LCList = NULL;
314 Tesselation *TesselStruct = NULL;
315 if ((srcmol == NULL) || (mol == NULL)) {
316 eLog() << Verbose(1) << "Either fixed or variable molecule is given as NULL." << endl;
317 return false;
318 }
319
320 // calculate envelope for *mol
321 LCList = new LinkedCell(mol, 8.);
322 FindNonConvexBorder(mol, TesselStruct, (const LinkedCell *&)LCList, 4., NULL);
323 if (TesselStruct == NULL) {
324 eLog() << Verbose(1) << "Could not tesselate the fixed molecule." << endl;
325 return false;
326 }
327 delete(LCList);
328 LCList = new LinkedCell(TesselStruct, 8.); // re-create with boundary points only!
329
330 // prepare index list for bonds
331 srcmol->CountAtoms();
332 atom ** CopyAtoms = new atom*[srcmol->AtomCount];
333 for(int i=0;i<srcmol->AtomCount;i++)
334 CopyAtoms[i] = NULL;
335
336 // for each of the source atoms check whether we are in- or outside and add copy atom
337 atom *Walker = srcmol->start;
338 int nr=0;
339 while (Walker->next != srcmol->end) {
340 Walker = Walker->next;
341 Log() << Verbose(2) << "INFO: Current Walker is " << *Walker << "." << endl;
342 if (!TesselStruct->IsInnerPoint(Walker->x, LCList)) {
343 CopyAtoms[Walker->nr] = Walker->clone();
344 mol->AddAtom(CopyAtoms[Walker->nr]);
345 nr++;
346 } else {
347 // do nothing
348 }
349 }
350 Log() << Verbose(1) << nr << " of " << srcmol->AtomCount << " atoms have been merged.";
351
352 // go through all bonds and add as well
353 bond *Binder = srcmol->first;
354 while(Binder->next != srcmol->last) {
355 Binder = Binder->next;
356 Log() << Verbose(3) << "Adding Bond between " << *CopyAtoms[Binder->leftatom->nr] << " and " << *CopyAtoms[Binder->rightatom->nr]<< "." << endl;
357 mol->AddBond(CopyAtoms[Binder->leftatom->nr], CopyAtoms[Binder->rightatom->nr], Binder->BondDegree);
358 }
359 delete(LCList);
360 return true;
361};
362
363/** Simple output of the pointers in ListOfMolecules.
364 * \param *out output stream
365 */
366void MoleculeListClass::Output(ofstream *out)
367{
368 Log() << Verbose(1) << "MoleculeList: ";
369 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
370 Log() << Verbose(0) << *ListRunner << "\t";
371 Log() << Verbose(0) << endl;
372};
373
374/** Calculates necessary hydrogen correction due to unwanted interaction between saturated ones.
375 * If for a pair of two hydrogen atoms a and b, at least is a saturated one, and a and b are not
376 * bonded to the same atom, then we add for this pair a correction term constructed from a Morse
377 * potential function fit to QM calculations with respecting to the interatomic hydrogen distance.
378 * \param *out output stream for debugging
379 * \param *path path to file
380 */
381bool MoleculeListClass::AddHydrogenCorrection(char *path)
382{
383 atom *Walker = NULL;
384 atom *Runner = NULL;
385 bond *Binder = NULL;
386 double ***FitConstant = NULL, **correction = NULL;
387 int a, b;
388 ofstream output;
389 ifstream input;
390 string line;
391 stringstream zeile;
392 double distance;
393 char ParsedLine[1023];
394 double tmp;
395 char *FragmentNumber = NULL;
396
397 Log() << Verbose(1) << "Saving hydrogen saturation correction ... ";
398 // 0. parse in fit constant files that should have the same dimension as the final energy files
399 // 0a. find dimension of matrices with constants
400 line = path;
401 line.append("/");
402 line += FRAGMENTPREFIX;
403 line += "1";
404 line += FITCONSTANTSUFFIX;
405 input.open(line.c_str());
406 if (input == NULL) {
407 Log() << Verbose(1) << endl << "Unable to open " << line << ", is the directory correct?" << endl;
408 return false;
409 }
410 a = 0;
411 b = -1; // we overcount by one
412 while (!input.eof()) {
413 input.getline(ParsedLine, 1023);
414 zeile.str(ParsedLine);
415 int i = 0;
416 while (!zeile.eof()) {
417 zeile >> distance;
418 i++;
419 }
420 if (i > a)
421 a = i;
422 b++;
423 }
424 Log() << Verbose(0) << "I recognized " << a << " columns and " << b << " rows, ";
425 input.close();
426
427 // 0b. allocate memory for constants
428 FitConstant = Calloc<double**>(3, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant");
429 for (int k = 0; k < 3; k++) {
430 FitConstant[k] = Calloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]");
431 for (int i = a; i--;) {
432 FitConstant[k][i] = Calloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]");
433 }
434 }
435 // 0c. parse in constants
436 for (int i = 0; i < 3; i++) {
437 line = path;
438 line.append("/");
439 line += FRAGMENTPREFIX;
440 sprintf(ParsedLine, "%d", i + 1);
441 line += ParsedLine;
442 line += FITCONSTANTSUFFIX;
443 input.open(line.c_str());
444 if (input == NULL) {
445 eLog() << Verbose(0) << endl << "Unable to open " << line << ", is the directory correct?" << endl;
446 performCriticalExit();
447 return false;
448 }
449 int k = 0, l;
450 while ((!input.eof()) && (k < b)) {
451 input.getline(ParsedLine, 1023);
452 //Log() << Verbose(0) << "Current Line: " << ParsedLine << endl;
453 zeile.str(ParsedLine);
454 zeile.clear();
455 l = 0;
456 while ((!zeile.eof()) && (l < a)) {
457 zeile >> FitConstant[i][l][k];
458 //Log() << Verbose(0) << FitConstant[i][l][k] << "\t";
459 l++;
460 }
461 //Log() << Verbose(0) << endl;
462 k++;
463 }
464 input.close();
465 }
466 for (int k = 0; k < 3; k++) {
467 Log() << Verbose(0) << "Constants " << k << ":" << endl;
468 for (int j = 0; j < b; j++) {
469 for (int i = 0; i < a; i++) {
470 Log() << Verbose(0) << FitConstant[k][i][j] << "\t";
471 }
472 Log() << Verbose(0) << endl;
473 }
474 Log() << Verbose(0) << endl;
475 }
476
477 // 0d. allocate final correction matrix
478 correction = Calloc<double*>(a, "MoleculeListClass::AddHydrogenCorrection: **correction");
479 for (int i = a; i--;)
480 correction[i] = Calloc<double>(b, "MoleculeListClass::AddHydrogenCorrection: *correction[]");
481
482 // 1a. go through every molecule in the list
483 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
484 // 1b. zero final correction matrix
485 for (int k = a; k--;)
486 for (int j = b; j--;)
487 correction[k][j] = 0.;
488 // 2. take every hydrogen that is a saturated one
489 Walker = (*ListRunner)->start;
490 while (Walker->next != (*ListRunner)->end) {
491 Walker = Walker->next;
492 //Log() << Verbose(1) << "Walker: " << *Walker << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl;
493 if ((Walker->type->Z == 1) && ((Walker->father == NULL)
494 || (Walker->father->type->Z != 1))) { // if it's a hydrogen
495 Runner = (*ListRunner)->start;
496 while (Runner->next != (*ListRunner)->end) {
497 Runner = Runner->next;
498 //Log() << Verbose(2) << "Runner: " << *Runner << " with first bond " << *(Walker->ListOfBonds.begin()) << "." << endl;
499 // 3. take every other hydrogen that is the not the first and not bound to same bonding partner
500 Binder = *(Runner->ListOfBonds.begin());
501 if ((Runner->type->Z == 1) && (Runner->nr > Walker->nr) && (Binder->GetOtherAtom(Runner) != Binder->GetOtherAtom(Walker))) { // (hydrogens have only one bonding partner!)
502 // 4. evaluate the morse potential for each matrix component and add up
503 distance = Runner->x.Distance(&Walker->x);
504 //Log() << Verbose(0) << "Fragment " << (*ListRunner)->name << ": " << *Runner << "<= " << distance << "=>" << *Walker << ":" << endl;
505 for (int k = 0; k < a; k++) {
506 for (int j = 0; j < b; j++) {
507 switch (k) {
508 case 1:
509 case 7:
510 case 11:
511 tmp = pow(FitConstant[0][k][j] * (1. - exp(-FitConstant[1][k][j] * (distance - FitConstant[2][k][j]))), 2);
512 break;
513 default:
514 tmp = FitConstant[0][k][j] * pow(distance, FitConstant[1][k][j]) + FitConstant[2][k][j];
515 };
516 correction[k][j] -= tmp; // ground state is actually lower (disturbed by additional interaction)
517 //Log() << Verbose(0) << tmp << "\t";
518 }
519 //Log() << Verbose(0) << endl;
520 }
521 //Log() << Verbose(0) << endl;
522 }
523 }
524 }
525 }
526 // 5. write final matrix to file
527 line = path;
528 line.append("/");
529 line += FRAGMENTPREFIX;
530 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), (*ListRunner)->IndexNr);
531 line += FragmentNumber;
532 delete (FragmentNumber);
533 line += HCORRECTIONSUFFIX;
534 output.open(line.c_str());
535 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
536 for (int j = 0; j < b; j++) {
537 for (int i = 0; i < a; i++)
538 output << correction[i][j] << "\t";
539 output << endl;
540 }
541 output.close();
542 }
543 line = path;
544 line.append("/");
545 line += HCORRECTIONSUFFIX;
546 output.open(line.c_str());
547 output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl;
548 for (int j = 0; j < b; j++) {
549 for (int i = 0; i < a; i++)
550 output << 0 << "\t";
551 output << endl;
552 }
553 output.close();
554 // 6. free memory of parsed matrices
555 for (int k = 0; k < 3; k++) {
556 for (int i = a; i--;) {
557 Free(&FitConstant[k][i]);
558 }
559 Free(&FitConstant[k]);
560 }
561 Free(&FitConstant);
562 Log() << Verbose(0) << "done." << endl;
563 return true;
564};
565
566/** Store force indices, i.e. the connection between the nuclear index in the total molecule config and the respective atom in fragment config.
567 * \param *out output stream for debugging
568 * \param *path path to file
569 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
570 * \return true - file written successfully, false - writing failed
571 */
572bool MoleculeListClass::StoreForcesFile(char *path,
573 int *SortIndex)
574{
575 bool status = true;
576 ofstream ForcesFile;
577 stringstream line;
578 atom *Walker = NULL;
579 periodentafel *periode=World::getInstance().getPeriode();
580
581 // open file for the force factors
582 Log() << Verbose(1) << "Saving force factors ... ";
583 line << path << "/" << FRAGMENTPREFIX << FORCESFILE;
584 ForcesFile.open(line.str().c_str(), ios::out);
585 if (ForcesFile != NULL) {
586 //Log() << Verbose(1) << "Final AtomicForcesList: ";
587 //output << prefix << "Forces" << endl;
588 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
589 periodentafel::const_iterator elemIter;
590 for(elemIter=periode->begin();elemIter!=periode->end();++elemIter){
591 if ((*ListRunner)->ElementsInMolecule[(*elemIter).first]) { // if this element got atoms
592 Walker = (*ListRunner)->start;
593 while (Walker->next != (*ListRunner)->end) { // go through every atom of this element
594 Walker = Walker->next;
595 if (Walker->type->getNumber() == (*elemIter).first) {
596 if ((Walker->GetTrueFather() != NULL) && (Walker->GetTrueFather() != Walker)) {// if there is a rea
597 //Log() << Verbose(0) << "Walker is " << *Walker << " with true father " << *( Walker->GetTrueFather()) << ", it
598 ForcesFile << SortIndex[Walker->GetTrueFather()->nr] << "\t";
599 } else
600 // otherwise a -1 to indicate an added saturation hydrogen
601 ForcesFile << "-1\t";
602 }
603 }
604 }
605 }
606 ForcesFile << endl;
607 }
608 ForcesFile.close();
609 Log() << Verbose(1) << "done." << endl;
610 } else {
611 status = false;
612 Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl;
613 }
614 ForcesFile.close();
615
616 return status;
617};
618
619/** Writes a config file for each molecule in the given \a **FragmentList.
620 * \param *out output stream for debugging
621 * \param *configuration standard configuration to attach atoms in fragment molecule to.
622 * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config
623 * \param DoPeriodic true - call ScanForPeriodicCorrection, false - don't
624 * \param DoCentering true - call molecule::CenterEdge(), false - don't
625 * \return true - success (each file was written), false - something went wrong.
626 */
627bool MoleculeListClass::OutputConfigForListOfFragments(config *configuration, int *SortIndex)
628{
629 ofstream outputFragment;
630 char FragmentName[MAXSTRINGSIZE];
631 char PathBackup[MAXSTRINGSIZE];
632 bool result = true;
633 bool intermediateResult = true;
634 atom *Walker = NULL;
635 Vector BoxDimension;
636 char *FragmentNumber = NULL;
637 char *path = NULL;
638 int FragmentCounter = 0;
639 ofstream output;
640
641 // store the fragments as config and as xyz
642 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) {
643 // save default path as it is changed for each fragment
644 path = configuration->GetDefaultPath();
645 if (path != NULL)
646 strcpy(PathBackup, path);
647 else {
648 eLog() << Verbose(0) << "OutputConfigForListOfFragments: NULL default path obtained from config!" << endl;
649 performCriticalExit();
650 }
651
652 // correct periodic
653 (*ListRunner)->ScanForPeriodicCorrection();
654
655 // output xyz file
656 FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), FragmentCounter++);
657 sprintf(FragmentName, "%s/%s%s.conf.xyz", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
658 outputFragment.open(FragmentName, ios::out);
659 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as XYZ ...";
660 if ((intermediateResult = (*ListRunner)->OutputXYZ(&outputFragment)))
661 Log() << Verbose(0) << " done." << endl;
662 else
663 Log() << Verbose(0) << " failed." << endl;
664 result = result && intermediateResult;
665 outputFragment.close();
666 outputFragment.clear();
667
668 // list atoms in fragment for debugging
669 Log() << Verbose(2) << "Contained atoms: ";
670 Walker = (*ListRunner)->start;
671 while (Walker->next != (*ListRunner)->end) {
672 Walker = Walker->next;
673 Log() << Verbose(0) << Walker->Name << " ";
674 }
675 Log() << Verbose(0) << endl;
676
677 // center on edge
678 (*ListRunner)->CenterEdge(&BoxDimension);
679 (*ListRunner)->SetBoxDimension(&BoxDimension); // update Box of atoms by boundary
680 int j = -1;
681 for (int k = 0; k < NDIM; k++) {
682 j += k + 1;
683 BoxDimension.x[k] = 2.5 * (configuration->GetIsAngstroem() ? 1. : 1. / AtomicLengthToAngstroem);
684 (*ListRunner)->cell_size[j] += BoxDimension.x[k] * 2.;
685 }
686 (*ListRunner)->Translate(&BoxDimension);
687
688 // also calculate necessary orbitals
689 (*ListRunner)->CountElements(); // this is a bugfix, atoms should shoulds actually be added correctly to this fragment
690 (*ListRunner)->CalculateOrbitals(*configuration);
691
692 // change path in config
693 //strcpy(PathBackup, configuration->configpath);
694 sprintf(FragmentName, "%s/%s%s/", PathBackup, FRAGMENTPREFIX, FragmentNumber);
695 configuration->SetDefaultPath(FragmentName);
696
697 // and save as config
698 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
699 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as config ...";
700 if ((intermediateResult = configuration->Save(FragmentName, (*ListRunner)->elemente, (*ListRunner))))
701 Log() << Verbose(0) << " done." << endl;
702 else
703 Log() << Verbose(0) << " failed." << endl;
704 result = result && intermediateResult;
705
706 // restore old config
707 configuration->SetDefaultPath(PathBackup);
708
709 // and save as mpqc input file
710 sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber);
711 Log() << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as mpqc input ...";
712 if ((intermediateResult = configuration->SaveMPQC(FragmentName, (*ListRunner))))
713 Log() << Verbose(2) << " done." << endl;
714 else
715 Log() << Verbose(0) << " failed." << endl;
716
717 result = result && intermediateResult;
718 //outputFragment.close();
719 //outputFragment.clear();
720 Free(&FragmentNumber);
721 }
722 Log() << Verbose(0) << " done." << endl;
723
724 // printing final number
725 Log() << Verbose(2) << "Final number of fragments: " << FragmentCounter << "." << endl;
726
727 return result;
728};
729
730/** Counts the number of molecules with the molecule::ActiveFlag set.
731 * \return number of molecules with ActiveFlag set to true.
732 */
733int MoleculeListClass::NumberOfActiveMolecules()
734{
735 int count = 0;
736 for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
737 count += ((*ListRunner)->ActiveFlag ? 1 : 0);
738 return count;
739};
740
741/** Dissects given \a *mol into connected subgraphs and inserts them as new molecules but with old atoms into \a this.
742 * \param *out output stream for debugging
743 * \param *periode periodentafel
744 * \param *configuration config with BondGraph
745 */
746void MoleculeListClass::DissectMoleculeIntoConnectedSubgraphs(const periodentafel * const periode, config * const configuration)
747{
748 molecule *mol = World::getInstance().createMolecule();
749 atom *Walker = NULL;
750 atom *Advancer = NULL;
751 bond *Binder = NULL;
752 bond *Stepper = NULL;
753 // 0. gather all atoms into single molecule
754 for (MoleculeList::iterator MolRunner = ListOfMolecules.begin(); !ListOfMolecules.empty(); MolRunner = ListOfMolecules.begin()) {
755 // shift all atoms to new molecule
756 Advancer = (*MolRunner)->start->next;
757 while (Advancer != (*MolRunner)->end) {
758 Walker = Advancer;
759 Advancer = Advancer->next;
760 Log() << Verbose(3) << "Re-linking " << *Walker << "..." << endl;
761 unlink(Walker);
762 Walker->father = Walker;
763 mol->AddAtom(Walker); // counting starts at 1
764 }
765 // remove all bonds
766 Stepper = (*MolRunner)->first->next;
767 while (Stepper != (*MolRunner)->last) {
768 Binder = Stepper;
769 Stepper = Stepper->next;
770 delete(Binder);
771 }
772 // remove the molecule
773 World::getInstance().destroyMolecule(*MolRunner);
774 ListOfMolecules.erase(MolRunner);
775 }
776
777 // 1. dissect the molecule into connected subgraphs
778 configuration->BG->ConstructBondGraph(mol);
779
780 // 2. scan for connected subgraphs
781 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
782 class StackClass<bond *> *BackEdgeStack = NULL;
783 Subgraphs = mol->DepthFirstSearchAnalysis(BackEdgeStack);
784 delete(BackEdgeStack);
785
786 // 3. dissect (the following construct is needed to have the atoms not in the order of the DFS, but in
787 // the original one as parsed in)
788 // TODO: Optimize this, when molecules just contain pointer list of global atoms!
789
790 // 4a. create array of molecules to fill
791 const int MolCount = Subgraphs->next->Count();
792 char number[MAXSTRINGSIZE];
793 molecule **molecules = Malloc<molecule *>(MolCount, "config::Load() - **molecules");
794 for (int i=0;i<MolCount;i++) {
795 molecules[i] = World::getInstance().createMolecule();
796 molecules[i]->ActiveFlag = true;
797 strncpy(molecules[i]->name, mol->name, MAXSTRINGSIZE);
798 if (MolCount > 1) {
799 sprintf(number, "-%d", i+1);
800 strncat(molecules[i]->name, number, MAXSTRINGSIZE - strlen(mol->name) - 1);
801 }
802 cout << "MolName is " << molecules[i]->name << endl;
803 insert(molecules[i]);
804 }
805
806 // 4b. create and fill map of which atom is associated to which connected molecule (note, counting starts at 1)
807 int FragmentCounter = 0;
808 int *MolMap = Calloc<int>(mol->AtomCount, "config::Load() - *MolMap");
809 MoleculeLeafClass *MolecularWalker = Subgraphs;
810 Walker = NULL;
811 while (MolecularWalker->next != NULL) {
812 MolecularWalker = MolecularWalker->next;
813 Walker = MolecularWalker->Leaf->start;
814 while (Walker->next != MolecularWalker->Leaf->end) {
815 Walker = Walker->next;
816 MolMap[Walker->GetTrueFather()->nr] = FragmentCounter+1;
817 }
818 FragmentCounter++;
819 }
820
821 // 4c. relocate atoms to new molecules and remove from Leafs
822 Walker = NULL;
823 while (mol->start->next != mol->end) {
824 Walker = mol->start->next;
825 if ((Walker->nr <0) || (Walker->nr >= mol->AtomCount)) {
826 eLog() << Verbose(0) << "Index of atom " << *Walker << " is invalid!" << endl;
827 performCriticalExit();
828 }
829 FragmentCounter = MolMap[Walker->nr];
830 if (FragmentCounter != 0) {
831 Log() << Verbose(3) << "Re-linking " << *Walker << "..." << endl;
832 unlink(Walker);
833 molecules[FragmentCounter-1]->AddAtom(Walker); // counting starts at 1
834 } else {
835 eLog() << Verbose(0) << "Atom " << *Walker << " not associated to molecule!" << endl;
836 performCriticalExit();
837 }
838 }
839 // 4d. we don't need to redo bonds, as they are connected subgraphs and still maintain their ListOfBonds, but we have to remove them from first..last list
840 Binder = mol->first;
841 while (mol->first->next != mol->last) {
842 Binder = mol->first->next;
843 Walker = Binder->leftatom;
844 unlink(Binder);
845 link(Binder,molecules[MolMap[Walker->nr]-1]->last); // counting starts at 1
846 }
847 // 4e. free Leafs
848 MolecularWalker = Subgraphs;
849 while (MolecularWalker->next != NULL) {
850 MolecularWalker = MolecularWalker->next;
851 delete(MolecularWalker->previous);
852 }
853 delete(MolecularWalker);
854 Free(&MolMap);
855 Free(&molecules);
856 Log() << Verbose(1) << "I scanned " << FragmentCounter << " molecules." << endl;
857};
858
859/** Count all atoms in each molecule.
860 * \return number of atoms in the MoleculeListClass.
861 * TODO: the inner loop should be done by some (double molecule::CountAtom()) function
862 */
863int MoleculeListClass::CountAllAtoms() const
864{
865 atom *Walker = NULL;
866 int AtomNo = 0;
867 for (MoleculeList::const_iterator MolWalker = ListOfMolecules.begin(); MolWalker != ListOfMolecules.end(); MolWalker++) {
868 Walker = (*MolWalker)->start;
869 while (Walker->next != (*MolWalker)->end) {
870 Walker = Walker->next;
871 AtomNo++;
872 }
873 }
874 return AtomNo;
875}
876
877/***********
878 * Methods Moved here from the menus
879 */
880
881void MoleculeListClass::flipChosen() {
882 int j;
883 Log() << Verbose(0) << "Enter index of molecule: ";
884 cin >> j;
885 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
886 if ((*ListRunner)->IndexNr == j)
887 (*ListRunner)->ActiveFlag = !(*ListRunner)->ActiveFlag;
888}
889
890void MoleculeListClass::createNewMolecule(periodentafel *periode) {
891 OBSERVE;
892 molecule *mol = NULL;
893 mol = World::getInstance().createMolecule();
894 insert(mol);
895};
896
897void MoleculeListClass::loadFromXYZ(periodentafel *periode){
898 molecule *mol = NULL;
899 Vector center;
900 char filename[MAXSTRINGSIZE];
901 Log() << Verbose(0) << "Format should be XYZ with: ShorthandOfElement\tX\tY\tZ" << endl;
902 mol = World::getInstance().createMolecule();
903 do {
904 Log() << Verbose(0) << "Enter file name: ";
905 cin >> filename;
906 } while (!mol->AddXYZFile(filename));
907 mol->SetNameFromFilename(filename);
908 // center at set box dimensions
909 mol->CenterEdge(&center);
910 mol->cell_size[0] = center.x[0];
911 mol->cell_size[1] = 0;
912 mol->cell_size[2] = center.x[1];
913 mol->cell_size[3] = 0;
914 mol->cell_size[4] = 0;
915 mol->cell_size[5] = center.x[2];
916 insert(mol);
917}
918
919void MoleculeListClass::setMoleculeFilename() {
920 char filename[MAXSTRINGSIZE];
921 int nr;
922 molecule *mol = NULL;
923 do {
924 Log() << Verbose(0) << "Enter index of molecule: ";
925 cin >> nr;
926 mol = ReturnIndex(nr);
927 } while (mol == NULL);
928 Log() << Verbose(0) << "Enter name: ";
929 cin >> filename;
930 mol->SetNameFromFilename(filename);
931}
932
933void MoleculeListClass::parseXYZIntoMolecule(){
934 char filename[MAXSTRINGSIZE];
935 int nr;
936 molecule *mol = NULL;
937 mol = NULL;
938 do {
939 Log() << Verbose(0) << "Enter index of molecule: ";
940 cin >> nr;
941 mol = ReturnIndex(nr);
942 } while (mol == NULL);
943 Log() << Verbose(0) << "Format should be XYZ with: ShorthandOfElement\tX\tY\tZ" << endl;
944 do {
945 Log() << Verbose(0) << "Enter file name: ";
946 cin >> filename;
947 } while (!mol->AddXYZFile(filename));
948 mol->SetNameFromFilename(filename);
949};
950
951void MoleculeListClass::eraseMolecule(){
952 int nr;
953 molecule *mol = NULL;
954 Log() << Verbose(0) << "Enter index of molecule: ";
955 cin >> nr;
956 for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++)
957 if (nr == (*ListRunner)->IndexNr) {
958 mol = *ListRunner;
959 ListOfMolecules.erase(ListRunner);
960 World::getInstance().destroyMolecule(mol);
961 break;
962 }
963};
964
965
966/******************************************* Class MoleculeLeafClass ************************************************/
967
968/** Constructor for MoleculeLeafClass root leaf.
969 * \param *Up Leaf on upper level
970 * \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list
971 */
972//MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL)
973MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL)
974{
975 // if (Up != NULL)
976 // if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf?
977 // Up->DownLeaf = this;
978 // UpLeaf = Up;
979 // DownLeaf = NULL;
980 Leaf = NULL;
981 previous = PreviousLeaf;
982 if (previous != NULL) {
983 MoleculeLeafClass *Walker = previous->next;
984 previous->next = this;
985 next = Walker;
986 } else {
987 next = NULL;
988 }
989};
990
991/** Destructor for MoleculeLeafClass.
992 */
993MoleculeLeafClass::~MoleculeLeafClass()
994{
995 // if (DownLeaf != NULL) {// drop leaves further down
996 // MoleculeLeafClass *Walker = DownLeaf;
997 // MoleculeLeafClass *Next;
998 // do {
999 // Next = Walker->NextLeaf;
1000 // delete(Walker);
1001 // Walker = Next;
1002 // } while (Walker != NULL);
1003 // // Last Walker sets DownLeaf automatically to NULL
1004 // }
1005 // remove the leaf itself
1006 if (Leaf != NULL) {
1007 World::getInstance().destroyMolecule(Leaf);
1008 Leaf = NULL;
1009 }
1010 // remove this Leaf from level list
1011 if (previous != NULL)
1012 previous->next = next;
1013 // } else { // we are first in list (connects to UpLeaf->DownLeaf)
1014 // if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL))
1015 // NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node
1016 // if (UpLeaf != NULL)
1017 // UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first
1018 // }
1019 // UpLeaf = NULL;
1020 if (next != NULL) // are we last in list
1021 next->previous = previous;
1022 next = NULL;
1023 previous = NULL;
1024};
1025
1026/** Adds \a molecule leaf to the tree.
1027 * \param *ptr ptr to molecule to be added
1028 * \param *Previous previous MoleculeLeafClass referencing level and which on the level
1029 * \return true - success, false - something went wrong
1030 */
1031bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous)
1032{
1033 return false;
1034};
1035
1036/** Fills the bond structure of this chain list subgraphs that are derived from a complete \a *reference molecule.
1037 * Calls this routine in each MoleculeLeafClass::next subgraph if it's not NULL.
1038 * \param *out output stream for debugging
1039 * \param *reference reference molecule with the bond structure to be copied
1040 * \param &FragmentCounter Counter needed to address \a **ListOfLocalAtoms
1041 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in \a *reference, may be NULL on start, then it is filled
1042 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1043 * \return true - success, false - faoilure
1044 */
1045bool MoleculeLeafClass::FillBondStructureFromReference(const molecule * const reference, int &FragmentCounter, atom ***&ListOfLocalAtoms, bool FreeList)
1046{
1047 atom *Walker = NULL;
1048 atom *OtherWalker = NULL;
1049 atom *Father = NULL;
1050 bool status = true;
1051 int AtomNo;
1052
1053 Log() << Verbose(1) << "Begin of FillBondStructureFromReference." << endl;
1054 // fill ListOfLocalAtoms if NULL was given
1055 if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
1056 Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
1057 return false;
1058 }
1059
1060 if (status) {
1061 Log() << Verbose(1) << "Creating adjacency list for subgraph " << Leaf << "." << endl;
1062 // remove every bond from the list
1063 bond *Binder = NULL;
1064 while (Leaf->last->previous != Leaf->first) {
1065 Binder = Leaf->last->previous;
1066 Binder->leftatom->UnregisterBond(Binder);
1067 Binder->rightatom->UnregisterBond(Binder);
1068 removewithoutcheck(Binder);
1069 }
1070
1071 Walker = Leaf->start;
1072 while (Walker->next != Leaf->end) {
1073 Walker = Walker->next;
1074 Father = Walker->GetTrueFather();
1075 AtomNo = Father->nr; // global id of the current walker
1076 for (BondList::const_iterator Runner = Father->ListOfBonds.begin(); Runner != Father->ListOfBonds.end(); (++Runner)) {
1077 OtherWalker = ListOfLocalAtoms[FragmentCounter][(*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr]; // local copy of current bond partner of walker
1078 if (OtherWalker != NULL) {
1079 if (OtherWalker->nr > Walker->nr)
1080 Leaf->AddBond(Walker, OtherWalker, (*Runner)->BondDegree);
1081 } else {
1082 Log() << Verbose(1) << "OtherWalker = ListOfLocalAtoms[" << FragmentCounter << "][" << (*Runner)->GetOtherAtom(Walker->GetTrueFather())->nr << "] is NULL!" << endl;
1083 status = false;
1084 }
1085 }
1086 }
1087 }
1088
1089 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
1090 // free the index lookup list
1091 Free(&ListOfLocalAtoms[FragmentCounter]);
1092 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
1093 Free(&ListOfLocalAtoms);
1094 }
1095 Log() << Verbose(1) << "End of FillBondStructureFromReference." << endl;
1096 return status;
1097};
1098
1099/** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria
1100 * Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's.
1101 * \param *out output stream for debugging
1102 * \param *&RootStack stack to be filled
1103 * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site
1104 * \param &FragmentCounter counts through the fragments in this MoleculeLeafClass
1105 * \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update
1106 */
1107bool MoleculeLeafClass::FillRootStackForSubgraphs(KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter)
1108{
1109 atom *Walker = NULL, *Father = NULL;
1110
1111 if (RootStack != NULL) {
1112 // find first root candidates
1113 if (&(RootStack[FragmentCounter]) != NULL) {
1114 RootStack[FragmentCounter].clear();
1115 Walker = Leaf->start;
1116 while (Walker->next != Leaf->end) { // go through all (non-hydrogen) atoms
1117 Walker = Walker->next;
1118 Father = Walker->GetTrueFather();
1119 if (AtomMask[Father->nr]) // apply mask
1120#ifdef ADDHYDROGEN
1121 if (Walker->type->Z != 1) // skip hydrogen
1122#endif
1123 RootStack[FragmentCounter].push_front(Walker->nr);
1124 }
1125 if (next != NULL)
1126 next->FillRootStackForSubgraphs(RootStack, AtomMask, ++FragmentCounter);
1127 } else {
1128 Log() << Verbose(1) << "Rootstack[" << FragmentCounter << "] is NULL." << endl;
1129 return false;
1130 }
1131 FragmentCounter--;
1132 return true;
1133 } else {
1134 Log() << Verbose(1) << "Rootstack is NULL." << endl;
1135 return false;
1136 }
1137};
1138
1139/** Fills a lookup list of father's Atom::nr -> atom for each subgraph.
1140 * \param *out output stream from debugging
1141 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
1142 * \param FragmentCounter counts the fragments as we move along the list
1143 * \param GlobalAtomCount number of atoms in the complete molecule
1144 * \param &FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1145 * \return true - success, false - failure
1146 */
1147bool MoleculeLeafClass::FillListOfLocalAtoms(atom ***&ListOfLocalAtoms, const int FragmentCounter, const int GlobalAtomCount, bool &FreeList)
1148{
1149 bool status = true;
1150
1151 if (ListOfLocalAtoms == NULL) { // allocated initial pointer
1152 // allocate and set each field to NULL
1153 const int Counter = Count();
1154 ListOfLocalAtoms = Calloc<atom**>(Counter, "MoleculeLeafClass::FillListOfLocalAtoms - ***ListOfLocalAtoms");
1155 if (ListOfLocalAtoms == NULL) {
1156 FreeList = FreeList && false;
1157 status = false;
1158 }
1159 }
1160
1161 if ((ListOfLocalAtoms != NULL) && (ListOfLocalAtoms[FragmentCounter] == NULL)) { // allocate and fill list of this fragment/subgraph
1162 status = status && CreateFatherLookupTable(Leaf->start, Leaf->end, ListOfLocalAtoms[FragmentCounter], GlobalAtomCount);
1163 FreeList = FreeList && true;
1164 }
1165
1166 return status;
1167};
1168
1169/** The indices per keyset are compared to the respective father's Atom::nr in each subgraph and thus put into \a **&FragmentList.
1170 * \param *out output stream fro debugging
1171 * \param *reference reference molecule with the bond structure to be copied
1172 * \param *KeySetList list with all keysets
1173 * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled
1174 * \param **&FragmentList list to be allocated and returned
1175 * \param &FragmentCounter counts the fragments as we move along the list
1176 * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not
1177 * \retuen true - success, false - failure
1178 */
1179bool MoleculeLeafClass::AssignKeySetsToFragment(molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms, Graph **&FragmentList, int &FragmentCounter, bool FreeList)
1180{
1181 bool status = true;
1182 int KeySetCounter = 0;
1183
1184 Log() << Verbose(1) << "Begin of AssignKeySetsToFragment." << endl;
1185 // fill ListOfLocalAtoms if NULL was given
1186 if (!FillListOfLocalAtoms(ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) {
1187 Log() << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl;
1188 return false;
1189 }
1190
1191 // allocate fragment list
1192 if (FragmentList == NULL) {
1193 KeySetCounter = Count();
1194 FragmentList = Calloc<Graph*>(KeySetCounter, "MoleculeLeafClass::AssignKeySetsToFragment - **FragmentList");
1195 KeySetCounter = 0;
1196 }
1197
1198 if ((KeySetList != NULL) && (KeySetList->size() != 0)) { // if there are some scanned keysets at all
1199 // assign scanned keysets
1200 if (FragmentList[FragmentCounter] == NULL)
1201 FragmentList[FragmentCounter] = new Graph;
1202 KeySet *TempSet = new KeySet;
1203 for (Graph::iterator runner = KeySetList->begin(); runner != KeySetList->end(); runner++) { // key sets contain global numbers!
1204 if (ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->nr] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set
1205 // translate keyset to local numbers
1206 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1207 TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->nr]->nr);
1208 // insert into FragmentList
1209 FragmentList[FragmentCounter]->insert(GraphPair(*TempSet, pair<int, double> (KeySetCounter++, (*runner).second.second)));
1210 }
1211 TempSet->clear();
1212 }
1213 delete (TempSet);
1214 if (KeySetCounter == 0) {// if there are no keysets, delete the list
1215 Log() << Verbose(1) << "KeySetCounter is zero, deleting FragmentList." << endl;
1216 delete (FragmentList[FragmentCounter]);
1217 } else
1218 Log() << Verbose(1) << KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << "." << endl;
1219 FragmentCounter++;
1220 if (next != NULL)
1221 next->AssignKeySetsToFragment(reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList);
1222 FragmentCounter--;
1223 } else
1224 Log() << Verbose(1) << "KeySetList is NULL or empty." << endl;
1225
1226 if ((FreeList) && (ListOfLocalAtoms != NULL)) {
1227 // free the index lookup list
1228 Free(&ListOfLocalAtoms[FragmentCounter]);
1229 if (FragmentCounter == 0) // first fragments frees the initial pointer to list
1230 Free(&ListOfLocalAtoms);
1231 }
1232 Log() << Verbose(1) << "End of AssignKeySetsToFragment." << endl;
1233 return status;
1234};
1235
1236/** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
1237 * \param *out output stream for debugging
1238 * \param **FragmentList Graph with local numbers per fragment
1239 * \param &FragmentCounter counts the fragments as we move along the list
1240 * \param &TotalNumberOfKeySets global key set counter
1241 * \param &TotalGraph Graph to be filled with global numbers
1242 */
1243void MoleculeLeafClass::TranslateIndicesToGlobalIDs(Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets, Graph &TotalGraph)
1244{
1245 Log() << Verbose(1) << "Begin of TranslateIndicesToGlobalIDs." << endl;
1246 KeySet *TempSet = new KeySet;
1247 if (FragmentList[FragmentCounter] != NULL) {
1248 for (Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
1249 for (KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
1250 TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->nr);
1251 TotalGraph.insert(GraphPair(*TempSet, pair<int, double> (TotalNumberOfKeySets++, (*runner).second.second)));
1252 TempSet->clear();
1253 }
1254 delete (TempSet);
1255 } else {
1256 Log() << Verbose(1) << "FragmentList is NULL." << endl;
1257 }
1258 if (next != NULL)
1259 next->TranslateIndicesToGlobalIDs(FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph);
1260 FragmentCounter--;
1261 Log() << Verbose(1) << "End of TranslateIndicesToGlobalIDs." << endl;
1262};
1263
1264/** Simply counts the number of items in the list, from given MoleculeLeafClass.
1265 * \return number of items
1266 */
1267int MoleculeLeafClass::Count() const
1268{
1269 if (next != NULL)
1270 return next->Count() + 1;
1271 else
1272 return 1;
1273};
1274
Note: See TracBrowser for help on using the repository browser.