/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010-2012 University of Bonn. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /** \file MoleculeListClass.cpp * * Function implementations for the class MoleculeListClass. * */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include //#include #include #include "MoleculeListClass.hpp" #include "CodePatterns/Log.hpp" #include "Atom/atom.hpp" #include "Bond/bond.hpp" #include "Box.hpp" #include "config.hpp" #include "Element/element.hpp" #include "Element/periodentafel.hpp" #include "Fragmentation/Graph.hpp" #include "Fragmentation/KeySet.hpp" #include "Fragmentation/SortIndex.hpp" #include "Graph/BondGraph.hpp" #include "Helpers/helpers.hpp" #include "molecule.hpp" #include "LinearAlgebra/RealSpaceMatrix.hpp" #include "Parser/FormatParserStorage.hpp" #include "World.hpp" /** Constructor for MoleculeListClass. */ MoleculeListClass::MoleculeListClass(World *_world) : Observable("MoleculeListClass"), MaxIndex(1), world(_world) {}; /** Destructor for MoleculeListClass. */ MoleculeListClass::~MoleculeListClass() { LOG(4, "Clearing ListOfMolecules."); for(MoleculeList::iterator MolRunner = ListOfMolecules.begin(); MolRunner != ListOfMolecules.end(); ++MolRunner) (*MolRunner)->signOff(this); ListOfMolecules.clear(); // empty list }; /** Insert a new molecule into the list and set its number. * \param *mol molecule to add to list. */ void MoleculeListClass::insert(molecule *mol) { OBSERVE; mol->IndexNr = MaxIndex++; ListOfMolecules.push_back(mol); mol->signOn(this); }; /** Erases a molecule from the list. * \param *mol molecule to add to list. */ void MoleculeListClass::erase(molecule *mol) { OBSERVE; mol->signOff(this); ListOfMolecules.remove(mol); }; /** Comparison function for two values. * \param *a * \param *b * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b */ int CompareDoubles (const void * a, const void * b) { if (*(double *)a > *(double *)b) return -1; else if (*(double *)a < *(double *)b) return 1; else return 0; }; /** Compare whether two molecules are equal. * \param *a molecule one * \param *n molecule two * \return lexical value (-1, 0, +1) */ int MolCompare(const void *a, const void *b) { int *aList = NULL, *bList = NULL; int Count, Counter, aCounter, bCounter; int flag; // sort each atom list and put the numbers into a list, then go through //LOG(0, "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "."); // Yes those types are awkward... but check it for yourself it checks out this way const molecule *const *mol1_ptr= static_cast(a); const molecule *mol1 = *mol1_ptr; const molecule *const *mol2_ptr= static_cast(b); const molecule *mol2 = *mol2_ptr; if (mol1->getAtomCount() < mol2->getAtomCount()) { return -1; } else { if (mol1->getAtomCount() > mol2->getAtomCount()) return +1; else { Count = mol1->getAtomCount(); aList = new int[Count]; bList = new int[Count]; // fill the lists Counter = 0; aCounter = 0; bCounter = 0; molecule::const_iterator aiter = mol1->begin(); molecule::const_iterator biter = mol2->begin(); for (;(aiter != mol1->end()) && (biter != mol2->end()); ++aiter, ++biter) { if ((*aiter)->GetTrueFather() == NULL) aList[Counter] = Count + (aCounter++); else aList[Counter] = (*aiter)->GetTrueFather()->getNr(); if ((*biter)->GetTrueFather() == NULL) bList[Counter] = Count + (bCounter++); else bList[Counter] = (*biter)->GetTrueFather()->getNr(); Counter++; } // check if AtomCount was for real flag = 0; if ((aiter == mol1->end()) && (biter != mol2->end())) { flag = -1; } else { if ((aiter != mol1->end()) && (biter == mol2->end())) flag = 1; } if (flag == 0) { // sort the lists gsl_heapsort(aList, Count, sizeof(int), CompareDoubles); gsl_heapsort(bList, Count, sizeof(int), CompareDoubles); // compare the lists flag = 0; for (int i = 0; i < Count; i++) { if (aList[i] < bList[i]) { flag = -1; } else { if (aList[i] > bList[i]) flag = 1; } if (flag != 0) break; } } delete[] (aList); delete[] (bList); return flag; } } return -1; }; /** Output of a list of all molecules. * \param *out output stream */ void MoleculeListClass::Enumerate(std::ostream *out) { periodentafel *periode = World::getInstance().getPeriode(); std::map counts; double size=0; Vector Origin; // header (*out) << "Index\tName\t\tAtoms\tFormula\tCenter\tSize" << endl; (*out) << "-----------------------------------------------" << endl; if (ListOfMolecules.size() == 0) (*out) << "\tNone" << endl; else { Origin.Zero(); for (MoleculeList::const_iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { // count atoms per element and determine size of bounding sphere size=0.; const molecule *MolRunner = *ListRunner; for (molecule::const_iterator iter = MolRunner->begin(); iter != MolRunner->end(); ++iter) { counts[(*iter)->getType()->getAtomicNumber()]++; if ((*iter)->DistanceSquared(Origin) > size) size = (*iter)->DistanceSquared(Origin); } // output Index, Name, number of atoms, chemical formula (*out) << (MolRunner->ActiveFlag ? "*" : " ") << MolRunner->IndexNr << "\t" << MolRunner->name << "\t\t" << MolRunner->getAtomCount() << "\t"; std::map::reverse_iterator iter; for(iter=counts.rbegin(); iter!=counts.rend();++iter){ atomicNumber_t Z =(*iter).first; (*out) << periode->FindElement(Z)->getSymbol() << (*iter).second; } // Center and size Vector Center = MolRunner->DetermineCenterOfAll(); (*out) << "\t" << Center << "\t" << sqrt(size) << endl; } } }; /** Returns the molecule with the given index \a index. * \param index index of the desired molecule * \return pointer to molecule structure, NULL if not found */ molecule * MoleculeListClass::ReturnIndex(int index) { for(MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) if ((*ListRunner)->IndexNr == index) return (*ListRunner); return NULL; }; /** Simple output of the pointers in ListOfMolecules. * \param *out output stream */ void MoleculeListClass::Output(std::ostream *out) { if (DoLog(1)) { std::stringstream output; output << "MoleculeList: "; for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) output << *ListRunner << "\t"; LOG(1, output.str()); } }; /** Returns a string with \a i prefixed with 0s to match order of total number of molecules in digits. * \param FragmentNumber total number of fragments to determine necessary number of digits * \param digits number to create with 0 prefixed * \return allocated(!) char array with number in digits, ten base. */ inline char *FixedDigitNumber(const int FragmentNumber, const int digits) { char *returnstring; int number = FragmentNumber; int order = 0; while (number != 0) { // determine number of digits needed number = (int)floor(((double)number / 10.)); order++; //LOG(0, "Number is " << number << ", order is " << order << "."); } // allocate string returnstring = new char[order + 2]; // terminate and fill string array from end backward returnstring[order] = '\0'; number = digits; for (int i=order;i--;) { returnstring[i] = '0' + (char)(number % 10); number = (int)floor(((double)number / 10.)); } //LOG(0, returnstring); return returnstring; }; /** Calculates necessary hydrogen correction due to unwanted interaction between saturated ones. * If for a pair of two hydrogen atoms a and b, at least is a saturated one, and a and b are not * bonded to the same atom, then we add for this pair a correction term constructed from a Morse * potential function fit to QM calculations with respecting to the interatomic hydrogen distance. * \param &path path to file */ bool MoleculeListClass::AddHydrogenCorrection(std::string &path) { bond::ptr Binder; double ***FitConstant = NULL, **correction = NULL; int a, b; ofstream output; ifstream input; string line; stringstream zeile; double distance; char ParsedLine[1023]; double tmp; char *FragmentNumber = NULL; LOG(1, "Saving hydrogen saturation correction ... "); // 0. parse in fit constant files that should have the same dimension as the final energy files // 0a. find dimension of matrices with constants line = path; line += "1"; line += FITCONSTANTSUFFIX; input.open(line.c_str()); if (input.fail()) { LOG(1, endl << "Unable to open " << line << ", is the directory correct?"); return false; } a = 0; b = -1; // we overcount by one while (!input.eof()) { input.getline(ParsedLine, 1023); zeile.str(ParsedLine); int i = 0; while (!zeile.eof()) { zeile >> distance; i++; } if (i > a) a = i; b++; } LOG(0, "I recognized " << a << " columns and " << b << " rows, "); input.close(); // 0b. allocate memory for constants FitConstant = new double**[3]; for (int k = 0; k < 3; k++) { FitConstant[k] = new double*[a]; for (int i = a; i--;) { FitConstant[k][i] = new double[b]; for (int j = b; j--;) { FitConstant[k][i][j] = 0.; } } } // 0c. parse in constants for (int i = 0; i < 3; i++) { line = path; line.append("/"); line += FRAGMENTPREFIX; sprintf(ParsedLine, "%d", i + 1); line += ParsedLine; line += FITCONSTANTSUFFIX; input.open(line.c_str()); if (input.fail()) { ELOG(0, endl << "Unable to open " << line << ", is the directory correct?"); performCriticalExit(); return false; } int k = 0, l; while ((!input.eof()) && (k < b)) { input.getline(ParsedLine, 1023); //LOG(1, "INFO: Current Line: " << ParsedLine); zeile.str(ParsedLine); zeile.clear(); l = 0; //std::stringstream output; while ((!zeile.eof()) && (l < a)) { zeile >> FitConstant[i][l][k]; //output << FitConstant[i][l][k] << "\t"; l++; } //LOG(1, "INFO: fit constant are " << output.str()); k++; } input.close(); } if (DoLog(1)) { for (int k = 0; k < 3; k++) { std::stringstream output; output << "Constants " << k << ": "; for (int j = 0; j < b; j++) { for (int i = 0; i < a; i++) { output << FitConstant[k][i][j] << "\t"; } output << std::endl; } LOG(0, output.str()); } } // 0d. allocate final correction matrix correction = new double*[a]; for (int i = a; i--;) correction[i] = new double[b]; // 1a. go through every molecule in the list for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { // 1b. zero final correction matrix for (int k = a; k--;) for (int j = b; j--;) correction[k][j] = 0.; // 2. take every hydrogen that is a saturated one const molecule *MolRunner = *ListRunner; for (molecule::const_iterator iter = MolRunner->begin(); iter != MolRunner->end(); ++iter) { //LOG(1, "(*iter): " << *(*iter) << " with first bond " << *((*iter)->getListOfBonds().begin()) << "."); if (((*iter)->getType()->getAtomicNumber() == 1) && (((*iter)->getFather() == NULL) || ((*iter)->getFather()->getType()->getAtomicNumber() != 1))) { // if it's a hydrogen for (molecule::const_iterator runner = MolRunner->begin(); runner != MolRunner->end(); ++runner) { //LOG(2, "Runner: " << *(*runner) << " with first bond " << *((*iter)->getListOfBonds().begin()) << "."); // 3. take every other hydrogen that is the not the first and not bound to same bonding partner const BondList &bondlist = (*runner)->getListOfBonds(); Binder = *(bondlist.begin()); if (((*runner)->getType()->getAtomicNumber() == 1) && ((*runner)->getNr() > (*iter)->getNr()) && (Binder->GetOtherAtom((*runner)) != Binder->GetOtherAtom((*iter)))) { // (hydrogens have only one bonding partner!) // 4. evaluate the morse potential for each matrix component and add up distance = (*runner)->distance(*(*iter)); //std::stringstream output; //output << "Fragment " << MolRunner->name << ": " << *(*runner) << "<= " << distance << "=>" << *(*iter) << ":"; for (int k = 0; k < a; k++) { for (int j = 0; j < b; j++) { switch (k) { case 1: case 7: case 11: tmp = pow(FitConstant[0][k][j] * (1. - exp(-FitConstant[1][k][j] * (distance - FitConstant[2][k][j]))), 2); break; default: tmp = FitConstant[0][k][j] * pow(distance, FitConstant[1][k][j]) + FitConstant[2][k][j]; break; }; correction[k][j] -= tmp; // ground state is actually lower (disturbed by additional interaction) //output << tmp << "\t"; } //output << endl; } //LOG(0, output.str()); } } } } // 5. write final matrix to file line = path; line.append("/"); line += FRAGMENTPREFIX; FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), MolRunner->IndexNr); line += FragmentNumber; delete[] (FragmentNumber); line += HCORRECTIONSUFFIX; output.open(line.c_str()); output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl; for (int j = 0; j < b; j++) { for (int i = 0; i < a; i++) output << correction[i][j] << "\t"; output << endl; } output.close(); } for (int i = a; i--;) delete[](correction[i]); delete[](correction); line = path; line.append("/"); line += HCORRECTIONSUFFIX; output.open(line.c_str()); output << "Time\t\tTotal\t\tKinetic\t\tNonLocal\tCorrelation\tExchange\tPseudo\t\tHartree\t\t-Gauss\t\tEwald\t\tIonKin\t\tETotal" << endl; for (int j = 0; j < b; j++) { for (int i = 0; i < a; i++) output << 0 << "\t"; output << endl; } output.close(); // 6. free memory of parsed matrices for (int k = 0; k < 3; k++) { for (int i = a; i--;) { delete[](FitConstant[k][i]); } delete[](FitConstant[k]); } delete[](FitConstant); LOG(0, "done."); return true; }; /** Store force indices, i.e. the connection between the nuclear index in the total molecule config and the respective atom in fragment config. * \param &path path to file * \param SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config * \return true - file written successfully, false - writing failed */ bool MoleculeListClass::StoreForcesFile(std::string &path, const SortIndex_t &SortIndex) { bool status = true; string filename(path); filename += FORCESFILE; ofstream ForcesFile(filename.c_str()); periodentafel *periode=World::getInstance().getPeriode(); // open file for the force factors LOG(1, "Saving force factors ... "); if (!ForcesFile.fail()) { //output << prefix << "Forces" << endl; for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { periodentafel::const_iterator elemIter; const molecule *MolRunner = *ListRunner; for(elemIter=periode->begin();elemIter!=periode->end();++elemIter){ if (MolRunner->hasElement((*elemIter).first)) { // if this element got atoms for(molecule::const_iterator atomIter = MolRunner->begin(); atomIter !=MolRunner->end();++atomIter){ if ((*atomIter)->getType()->getAtomicNumber() == (*elemIter).first) { if (((*atomIter)->GetTrueFather() != NULL) && ((*atomIter)->GetTrueFather() != (*atomIter))) {// if there is a rea const atomId_t fatherid = (*atomIter)->GetTrueFather()->getId(); ForcesFile << SortIndex.find(fatherid) << "\t"; } else // otherwise a -1 to indicate an added saturation hydrogen ForcesFile << "-1\t"; } } } } ForcesFile << endl; } ForcesFile.close(); LOG(1, "done."); } else { status = false; LOG(1, "failed to open file " << filename << "."); } ForcesFile.close(); return status; }; /** Writes a config file for each molecule in the given \a **FragmentList. * \param *out output stream for debugging * \param &prefix path and prefix to the fragment config files * \param SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config * \param type desired type to store * \return true - success (each file was written), false - something went wrong. */ bool MoleculeListClass::OutputConfigForListOfFragments(std::string &prefix, ParserTypes type) { ofstream outputFragment; std::string FragmentName; bool result = true; bool intermediateResult = true; Vector BoxDimension; char *FragmentNumber = NULL; int FragmentCounter = 0; ofstream output; RealSpaceMatrix cell_size = World::getInstance().getDomain().getM(); RealSpaceMatrix cell_size_backup = cell_size; int count=0; // store the fragments as config and as xyz for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) { // correct periodic const molecule *MolRunner = *ListRunner; if ((*ListRunner)->ScanForPeriodicCorrection()) { count++; } { // list atoms in fragment for debugging std::stringstream output; output << "Contained atoms: "; for (molecule::const_iterator iter = MolRunner->begin(); iter != MolRunner->end(); ++iter) { output << (*iter)->getName() << " "; } LOG(2, output.str()); } { // // center on edge // MolRunner->CenterEdge(&BoxDimension); // for (int k = 0; k < NDIM; k++) // if one edge is to small, set at least to 1 angstroem // if (BoxDimension[k] < 1.) // BoxDimension[k] += 1.; // { // RealSpaceMatrix domain; // for(int i =0; iGetIsAngstroem() ? 1. : 1. / AtomicLengthToAngstroem); // cell_size.at(k,k) = BoxDimension[k] * 2.; // } // World::getInstance().setDomain(cell_size); // MolRunner->Translate(&BoxDimension); // output file std::vector atoms; for (molecule::const_iterator iter = const_cast(*ListRunner)->begin(); iter != const_cast(*ListRunner)->end(); ++iter) { atoms.push_back(*iter); } FragmentNumber = FixedDigitNumber(ListOfMolecules.size(), FragmentCounter++); FragmentName = prefix + FragmentNumber + "." + FormatParserStorage::getInstance().getSuffixFromType(type); outputFragment.open(FragmentName.c_str(), ios::out); std::stringstream output; output << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter - 1 << " as XYZ ... "; if ((intermediateResult = FormatParserStorage::getInstance().save( outputFragment, FormatParserStorage::getInstance().getSuffixFromType(type), atoms))) output << " done."; else output << " failed."; LOG(3, output.str()); delete[](FragmentNumber); result = result && intermediateResult; outputFragment.close(); outputFragment.clear(); } } LOG(0, "STATUS: done."); // printing final number LOG(2, "INFO: Final number of fragments: " << FragmentCounter << "."); // printing final number LOG(2, "INFO: For " << count << " fragments periodic correction would have been necessary."); // restore cell_size World::getInstance().setDomain(cell_size_backup); return result; }; /** Counts the number of molecules with the molecule::ActiveFlag set. * \return number of molecules with ActiveFlag set to true. */ int MoleculeListClass::NumberOfActiveMolecules() { int count = 0; for (MoleculeList::iterator ListRunner = ListOfMolecules.begin(); ListRunner != ListOfMolecules.end(); ListRunner++) count += ((*ListRunner)->ActiveFlag ? 1 : 0); return count; }; /** Count all atoms in each molecule. * \return number of atoms in the MoleculeListClass. * TODO: the inner loop should be done by some (double molecule::CountAtom()) function */ int MoleculeListClass::CountAllAtoms() const { int AtomNo = 0; for (MoleculeList::const_iterator MolWalker = ListOfMolecules.begin(); MolWalker != ListOfMolecules.end(); MolWalker++) { AtomNo += (*MolWalker)->size(); } return AtomNo; }