/** \file MoleculeListClass.cpp * * Function implementations for the class MoleculeListClass. * */ #include "molecules.hpp" /*********************************** Functions for class MoleculeListClass *************************/ /** Constructor for MoleculeListClass. */ MoleculeListClass::MoleculeListClass() { }; /** constructor for MoleculeListClass. * \param NumMolecules number of molecules to allocate for * \param NumAtoms number of atoms to allocate for */ MoleculeListClass::MoleculeListClass(int NumMolecules, int NumAtoms) { ListOfMolecules = (molecule **) Malloc(sizeof(molecule *)*NumMolecules, "MoleculeListClass:MoleculeListClass: **ListOfMolecules"); for (int i=NumMolecules;i--;) ListOfMolecules[i] = NULL; NumberOfMolecules = NumMolecules; NumberOfTopAtoms = NumAtoms; }; /** Destructor for MoleculeListClass. */ MoleculeListClass::~MoleculeListClass() { cout << Verbose(3) << this << ": Freeing ListOfMolcules." << endl; for (int i=NumberOfMolecules;i--;) { if (ListOfMolecules[i] != NULL) { // if NULL don't free cout << Verbose(4) << "ListOfMolecules: Freeing " << ListOfMolecules[i] << "." << endl; delete(ListOfMolecules[i]); ListOfMolecules[i] = NULL; } } cout << Verbose(4) << "Freeing ListOfMolecules." << endl; Free((void **)&ListOfMolecules, "MoleculeListClass:MoleculeListClass: **ListOfMolecules"); }; /** Compare whether two molecules are equal. * \param *a molecule one * \param *n molecule two * \return lexical value (-1, 0, +1) */ int MolCompare(const void *a, const void *b) { int *aList = NULL, *bList = NULL; int Count, Counter, aCounter, bCounter; int flag; atom *aWalker = NULL; atom *bWalker = NULL; // sort each atom list and put the numbers into a list, then go through //cout << "Comparing fragment no. " << *(molecule **)a << " to " << *(molecule **)b << "." << endl; if ( (**(molecule **)a).AtomCount < (**(molecule **)b).AtomCount ) { return -1; } else { if ((**(molecule **)a).AtomCount > (**(molecule **)b).AtomCount) return +1; else { Count = (**(molecule **)a).AtomCount; aList = new int[Count]; bList = new int[Count]; // fill the lists aWalker = (**(molecule **)a).start; bWalker = (**(molecule **)b).start; Counter = 0; aCounter = 0; bCounter = 0; while ((aWalker->next != (**(molecule **)a).end) && (bWalker->next != (**(molecule **)b).end)) { aWalker = aWalker->next; bWalker = bWalker->next; if (aWalker->GetTrueFather() == NULL) aList[Counter] = Count + (aCounter++); else aList[Counter] = aWalker->GetTrueFather()->nr; if (bWalker->GetTrueFather() == NULL) bList[Counter] = Count + (bCounter++); else bList[Counter] = bWalker->GetTrueFather()->nr; Counter++; } // check if AtomCount was for real flag = 0; if ((aWalker->next == (**(molecule **)a).end) && (bWalker->next != (**(molecule **)b).end)) { flag = -1; } else { if ((aWalker->next != (**(molecule **)a).end) && (bWalker->next == (**(molecule **)b).end)) flag = 1; } if (flag == 0) { // sort the lists gsl_heapsort(aList,Count, sizeof(int), CompareDoubles); gsl_heapsort(bList,Count, sizeof(int), CompareDoubles); // compare the lists flag = 0; for(int i=0;i bList[i]) flag = 1; } if (flag != 0) break; } } delete[](aList); delete[](bList); return flag; } } return -1; }; /** Simple output of the pointers in ListOfMolecules. * \param *out output stream */ void MoleculeListClass::Output(ofstream *out) { *out<< Verbose(1) << "MoleculeList: "; for (int i=0;i> distance; i++; } if (i > a) a = i; b++; } cout << "I recognized " << a << " columns and " << b << " rows, "; input.close(); // 0b. allocate memory for constants FitConstant = (double ***) Malloc(sizeof(double **)*3, "MoleculeListClass::AddHydrogenCorrection: ***FitConstant"); for (int k=0;k<3;k++) { FitConstant[k] = (double **) Malloc(sizeof(double *)*a, "MoleculeListClass::AddHydrogenCorrection: **FitConstant[]"); for (int i=a;i--;) { FitConstant[k][i] = (double *) Malloc(sizeof(double)*b, "MoleculeListClass::AddHydrogenCorrection: *FitConstant[][]"); } } // 0c. parse in constants for (int i=0;i<3;i++) { line = path; line.append("/"); line += FRAGMENTPREFIX; sprintf(ParsedLine, "%d", i+1); line += ParsedLine; line += FITCONSTANTSUFFIX; input.open(line.c_str()); if (input == NULL) { cerr << endl << "Unable to open " << line << ", is the directory correct?" << endl; return false; } int k = 0,l; while ((!input.eof()) && (k < b)) { input.getline(ParsedLine, 1023); //cout << "Current Line: " << ParsedLine << endl; zeile.str(ParsedLine); zeile.clear(); l = 0; while ((!zeile.eof()) && (l < a)) { zeile >> FitConstant[i][l][k]; //cout << FitConstant[i][l][k] << "\t"; l++; } //cout << endl; k++; } input.close(); } for(int k=0;k<3;k++) { cout << "Constants " << k << ":" << endl; for (int j=0;jstart; while (Walker->next != ListOfMolecules[i]->end) { Walker = Walker->next; //cout << Verbose(1) << "Walker: " << *Walker << " with first bond " << *ListOfMolecules[i]->ListOfBondsPerAtom[Walker->nr][0] << "." << endl; if ((Walker->type->Z == 1) && ((Walker->father == NULL) || (Walker->father->type->Z != 1))) { // if it's a hydrogen Runner = ListOfMolecules[i]->start; while (Runner->next != ListOfMolecules[i]->end) { Runner = Runner->next; //cout << Verbose(2) << "Runner: " << *Runner << " with first bond " << *ListOfMolecules[i]->ListOfBondsPerAtom[Runner->nr][0] << "." << endl; // 3. take every other hydrogen that is the not the first and not bound to same bonding partner if ((Runner->type->Z == 1) && (Runner->nr > Walker->nr) && (ListOfMolecules[i]->ListOfBondsPerAtom[Runner->nr][0]->GetOtherAtom(Runner) != ListOfMolecules[i]->ListOfBondsPerAtom[Walker->nr][0]->GetOtherAtom(Walker))) { // (hydrogens have only one bonding partner!) // 4. evaluate the morse potential for each matrix component and add up distance = sqrt(Runner->x.Distance(&Walker->x)); //cout << "Fragment " << i << ": " << *Runner << "<= " << distance << "=>" << *Walker << ":" << endl; for(int k=0;kelemente->start; while (runner->next != ListOfMolecules[j]->elemente->end) { // go through every element runner = runner->next; if (ListOfMolecules[j]->ElementsInMolecule[runner->Z]) { // if this element got atoms Walker = ListOfMolecules[j]->start; while (Walker->next != ListOfMolecules[j]->end) { // go through every atom of this element Walker = Walker->next; if (Walker->type->Z == runner->Z) { if ((Walker->GetTrueFather() != NULL) && (Walker->GetTrueFather() != Walker)) {// if there is a rea //cout << "Walker is " << *Walker << " with true father " << *( Walker->GetTrueFather()) << ", it ForcesFile << SortIndex[Walker->GetTrueFather()->nr] << "\t"; } else // otherwise a -1 to indicate an added saturation hydrogen ForcesFile << "-1\t"; } } } } ForcesFile << endl; } ForcesFile.close(); *out << Verbose(1) << "done." << endl; } else { status = false; *out << Verbose(1) << "failed to open file " << line.str() << "." << endl; } ForcesFile.close(); return status; }; /** Writes a config file for each molecule in the given \a **FragmentList. * \param *out output stream for debugging * \param *configuration standard configuration to attach atoms in fragment molecule to. * \param *SortIndex Index to map from the BFS labeling to the sequence how of Ion_Type in the config * \return true - success (each file was written), false - something went wrong. */ bool MoleculeListClass::OutputConfigForListOfFragments(ofstream *out, config *configuration, int *SortIndex) { ofstream outputFragment; char FragmentName[MAXSTRINGSIZE]; char PathBackup[MAXSTRINGSIZE]; bool result = true; bool intermediateResult = true; atom *Walker = NULL; Vector BoxDimension; char *FragmentNumber = NULL; char *path = NULL; int FragmentCounter = 0; ofstream output; // store the fragments as config and as xyz for(int i=0;iGetDefaultPath(); if (path != NULL) strcpy(PathBackup, path); else cerr << "OutputConfigForListOfFragments: NULL default path obtained from config!" << endl; // correct periodic ListOfMolecules[i]->ScanForPeriodicCorrection(out); // output xyz file FragmentNumber = FixedDigitNumber(NumberOfMolecules, FragmentCounter++); sprintf(FragmentName, "%s/%s%s.conf.xyz", configuration->configpath, FRAGMENTPREFIX, FragmentNumber); outputFragment.open(FragmentName, ios::out); *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter-1 << " as XYZ ..."; if ((intermediateResult = ListOfMolecules[i]->OutputXYZ(&outputFragment))) *out << " done." << endl; else *out << " failed." << endl; result = result && intermediateResult; outputFragment.close(); outputFragment.clear(); // list atoms in fragment for debugging *out << Verbose(2) << "Contained atoms: "; Walker = ListOfMolecules[i]->start; while (Walker->next != ListOfMolecules[i]->end) { Walker = Walker->next; *out << Walker->Name << " "; } *out << endl; // center on edge ListOfMolecules[i]->CenterEdge(out, &BoxDimension); ListOfMolecules[i]->SetBoxDimension(&BoxDimension); // update Box of atoms by boundary int j = -1; for (int k=0;kGetIsAngstroem() ? 1. : 1./AtomicLengthToAngstroem); ListOfMolecules[i]->cell_size[j] += BoxDimension.x[k]*2.; } ListOfMolecules[i]->Translate(&BoxDimension); // also calculate necessary orbitals ListOfMolecules[i]->CountElements(); // this is a bugfix, atoms should should actually be added correctly to this fragment ListOfMolecules[i]->CalculateOrbitals(*configuration); // change path in config //strcpy(PathBackup, configuration->configpath); sprintf(FragmentName, "%s/%s%s/", PathBackup, FRAGMENTPREFIX, FragmentNumber); configuration->SetDefaultPath(FragmentName); // and save as config sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber); *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter-1 << " as config ..."; if ((intermediateResult = configuration->Save(FragmentName, ListOfMolecules[i]->elemente, ListOfMolecules[i]))) *out << " done." << endl; else *out << " failed." << endl; result = result && intermediateResult; // restore old config configuration->SetDefaultPath(PathBackup); // and save as mpqc input file sprintf(FragmentName, "%s/%s%s.conf", configuration->configpath, FRAGMENTPREFIX, FragmentNumber); *out << Verbose(2) << "Saving bond fragment No. " << FragmentNumber << "/" << FragmentCounter-1 << " as mpqc input ..."; if ((intermediateResult = configuration->SaveMPQC(FragmentName, ListOfMolecules[i]))) *out << " done." << endl; else *out << " failed." << endl; result = result && intermediateResult; //outputFragment.close(); //outputFragment.clear(); delete(FragmentNumber); //Free((void **)&FragmentNumber, "MoleculeListClass::OutputConfigForListOfFragments: *FragmentNumber"); } cout << " done." << endl; // printing final number *out << "Final number of fragments: " << FragmentCounter << "." << endl; return result; }; /******************************************* Class MoleculeLeafClass ************************************************/ /** Constructor for MoleculeLeafClass root leaf. * \param *Up Leaf on upper level * \param *PreviousLeaf NULL - We are the first leaf on this level, otherwise points to previous in list */ //MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *Up = NULL, MoleculeLeafClass *Previous = NULL) MoleculeLeafClass::MoleculeLeafClass(MoleculeLeafClass *PreviousLeaf = NULL) { // if (Up != NULL) // if (Up->DownLeaf == NULL) // are we the first down leaf for the upper leaf? // Up->DownLeaf = this; // UpLeaf = Up; // DownLeaf = NULL; Leaf = NULL; previous = PreviousLeaf; if (previous != NULL) { MoleculeLeafClass *Walker = previous->next; previous->next = this; next = Walker; } else { next = NULL; } }; /** Destructor for MoleculeLeafClass. */ MoleculeLeafClass::~MoleculeLeafClass() { // if (DownLeaf != NULL) {// drop leaves further down // MoleculeLeafClass *Walker = DownLeaf; // MoleculeLeafClass *Next; // do { // Next = Walker->NextLeaf; // delete(Walker); // Walker = Next; // } while (Walker != NULL); // // Last Walker sets DownLeaf automatically to NULL // } // remove the leaf itself if (Leaf != NULL) { delete(Leaf); Leaf = NULL; } // remove this Leaf from level list if (previous != NULL) previous->next = next; // } else { // we are first in list (connects to UpLeaf->DownLeaf) // if ((NextLeaf != NULL) && (NextLeaf->UpLeaf == NULL)) // NextLeaf->UpLeaf = UpLeaf; // either null as we are top level or the upleaf of the first node // if (UpLeaf != NULL) // UpLeaf->DownLeaf = NextLeaf; // either null as we are only leaf or NextLeaf if we are just the first // } // UpLeaf = NULL; if (next != NULL) // are we last in list next->previous = previous; next = NULL; previous = NULL; }; /** Adds \a molecule leaf to the tree. * \param *ptr ptr to molecule to be added * \param *Previous previous MoleculeLeafClass referencing level and which on the level * \return true - success, false - something went wrong */ bool MoleculeLeafClass::AddLeaf(molecule *ptr, MoleculeLeafClass *Previous) { return false; }; /** Fills the bond structure of this chain list subgraphs that are derived from a complete \a *reference molecule. * Calls this routine in each MoleculeLeafClass::next subgraph if it's not NULL. * \param *out output stream for debugging * \param *reference reference molecule with the bond structure to be copied * \param &FragmentCounter Counter needed to address \a **ListOfLocalAtoms * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in \a *reference, may be NULL on start, then it is filled * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not * \return true - success, false - faoilure */ bool MoleculeLeafClass::FillBondStructureFromReference(ofstream *out, molecule *reference, int &FragmentCounter, atom ***&ListOfLocalAtoms, bool FreeList) { atom *Walker = NULL, *OtherWalker = NULL; bond *Binder = NULL; bool status = true; int AtomNo; *out << Verbose(1) << "Begin of FillBondStructureFromReference." << endl; // fill ListOfLocalAtoms if NULL was given if (!FillListOfLocalAtoms(out, ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) { *out << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl; return false; } if (status) { *out << Verbose(1) << "Creating adjacency list for subgraph " << this << "." << endl; Walker = Leaf->start; while (Walker->next != Leaf->end) { Walker = Walker->next; AtomNo = Walker->GetTrueFather()->nr; // global id of the current walker for(int i=0;iNumberOfBondsPerAtom[AtomNo];i++) { // go through father's bonds and copy them all Binder = reference->ListOfBondsPerAtom[AtomNo][i]; OtherWalker = ListOfLocalAtoms[FragmentCounter][Binder->GetOtherAtom(Walker->GetTrueFather())->nr]; // local copy of current bond partner of walker if (OtherWalker != NULL) { if (OtherWalker->nr > Walker->nr) Leaf->AddBond(Walker, OtherWalker, Binder->BondDegree); } else { *out << Verbose(1) << "OtherWalker = ListOfLocalAtoms[" << FragmentCounter << "][" << Binder->GetOtherAtom(Walker->GetTrueFather())->nr << "] is NULL!" << endl; status = false; } } } Leaf->CreateListOfBondsPerAtom(out); FragmentCounter++; if (next != NULL) status = next->FillBondStructureFromReference(out, reference, FragmentCounter, ListOfLocalAtoms); FragmentCounter--; } if ((FreeList) && (ListOfLocalAtoms != NULL)) { // free the index lookup list Free((void **)&ListOfLocalAtoms[FragmentCounter], "MoleculeLeafClass::FillBondStructureFromReference - **ListOfLocalAtoms[]"); if (FragmentCounter == 0) // first fragments frees the initial pointer to list Free((void **)&ListOfLocalAtoms, "MoleculeLeafClass::FillBondStructureFromReference - ***ListOfLocalAtoms"); } FragmentCounter--; *out << Verbose(1) << "End of FillBondStructureFromReference." << endl; return status; }; /** Fills the root stack for sites to be used as root in fragmentation depending on order or adaptivity criteria * Again, as in \sa FillBondStructureFromReference steps recursively through each Leaf in this chain list of molecule's. * \param *out output stream for debugging * \param *&RootStack stack to be filled * \param *AtomMask defines true/false per global Atom::nr to mask in/out each nuclear site * \param &FragmentCounter counts through the fragments in this MoleculeLeafClass * \return true - stack is non-empty, fragmentation necessary, false - stack is empty, no more sites to update */ bool MoleculeLeafClass::FillRootStackForSubgraphs(ofstream *out, KeyStack *&RootStack, bool *AtomMask, int &FragmentCounter) { atom *Walker = NULL, *Father = NULL; if (RootStack != NULL) { // find first root candidates if (&(RootStack[FragmentCounter]) != NULL) { RootStack[FragmentCounter].clear(); Walker = Leaf->start; while (Walker->next != Leaf->end) { // go through all (non-hydrogen) atoms Walker = Walker->next; Father = Walker->GetTrueFather(); if (AtomMask[Father->nr]) // apply mask #ifdef ADDHYDROGEN if (Walker->type->Z != 1) // skip hydrogen #endif RootStack[FragmentCounter].push_front(Walker->nr); } if (next != NULL) next->FillRootStackForSubgraphs(out, RootStack, AtomMask, ++FragmentCounter); } else { *out << Verbose(1) << "Rootstack[" << FragmentCounter << "] is NULL." << endl; return false; } FragmentCounter--; return true; } else { *out << Verbose(1) << "Rootstack is NULL." << endl; return false; } }; /** Fills a lookup list of father's Atom::nr -> atom for each subgraph. * \param *out output stream fro debugging * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled * \param FragmentCounter counts the fragments as we move along the list * \param GlobalAtomCount number of atoms in the complete molecule * \param &FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not * \return true - succes, false - failure */ bool MoleculeLeafClass::FillListOfLocalAtoms(ofstream *out, atom ***&ListOfLocalAtoms, const int FragmentCounter, const int GlobalAtomCount, bool &FreeList) { bool status = true; int Counter = Count(); if (ListOfLocalAtoms == NULL) { // allocated initial pointer // allocate and set each field to NULL ListOfLocalAtoms = (atom ***) Malloc(sizeof(atom **)*Counter, "MoleculeLeafClass::FillBondStructureFromReference - ***ListOfLocalAtoms"); if (ListOfLocalAtoms != NULL) { for (int i=Counter;i--;) ListOfLocalAtoms[i] = NULL; FreeList = FreeList && true; } else status = false; } if ((ListOfLocalAtoms != NULL) && (ListOfLocalAtoms[FragmentCounter] == NULL)) { // allocate and fill list of this fragment/subgraph status = status && CreateFatherLookupTable(out, Leaf->start, Leaf->end, ListOfLocalAtoms[FragmentCounter], GlobalAtomCount); FreeList = FreeList && true; } return status; }; /** The indices per keyset are compared to the respective father's Atom::nr in each subgraph and thus put into \a **&FragmentList. * \param *out output stream fro debugging * \param *reference reference molecule with the bond structure to be copied * \param *KeySetList list with all keysets * \param ***ListOfLocalAtoms Lookup table for each subgraph and index of each atom in global molecule, may be NULL on start, then it is filled * \param **&FragmentList list to be allocated and returned * \param &FragmentCounter counts the fragments as we move along the list * \param FreeList true - ***ListOfLocalAtoms is free'd before return, false - it is not * \retuen true - success, false - failure */ bool MoleculeLeafClass::AssignKeySetsToFragment(ofstream *out, molecule *reference, Graph *KeySetList, atom ***&ListOfLocalAtoms, Graph **&FragmentList, int &FragmentCounter, bool FreeList) { bool status = true; int KeySetCounter = 0; *out << Verbose(1) << "Begin of AssignKeySetsToFragment." << endl; // fill ListOfLocalAtoms if NULL was given if (!FillListOfLocalAtoms(out, ListOfLocalAtoms, FragmentCounter, reference->AtomCount, FreeList)) { *out << Verbose(1) << "Filling of ListOfLocalAtoms failed." << endl; return false; } // allocate fragment list if (FragmentList == NULL) { KeySetCounter = Count(); FragmentList = (Graph **) Malloc(sizeof(Graph *)*KeySetCounter, "MoleculeLeafClass::AssignKeySetsToFragment - **FragmentList"); for(int i=KeySetCounter;i--;) FragmentList[i] = NULL; KeySetCounter = 0; } if ((KeySetList != NULL) && (KeySetList->size() != 0)) { // if there are some scanned keysets at all // assign scanned keysets if (FragmentList[FragmentCounter] == NULL) FragmentList[FragmentCounter] = new Graph; KeySet *TempSet = new KeySet; for(Graph::iterator runner = KeySetList->begin();runner != KeySetList->end(); runner++) { // key sets contain global numbers! if ( ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*((*runner).first.begin()))->nr] != NULL) {// as we may assume that that bond structure is unchanged, we only test the first key in each set // translate keyset to local numbers for(KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++) TempSet->insert(ListOfLocalAtoms[FragmentCounter][reference->FindAtom(*sprinter)->nr]->nr); // insert into FragmentList FragmentList[FragmentCounter]->insert(GraphPair (*TempSet, pair(KeySetCounter++, (*runner).second.second))); } TempSet->clear(); } delete(TempSet); if (KeySetCounter == 0) {// if there are no keysets, delete the list *out << Verbose(1) << "KeySetCounter is zero, deleting FragmentList." << endl; delete(FragmentList[FragmentCounter]); } else *out << Verbose(1) << KeySetCounter << " keysets were assigned to subgraph " << FragmentCounter << "." << endl; FragmentCounter++; if (next != NULL) next->AssignKeySetsToFragment(out, reference, KeySetList, ListOfLocalAtoms, FragmentList, FragmentCounter, FreeList); FragmentCounter--; } else *out << Verbose(1) << "KeySetList is NULL or empty." << endl; if ((FreeList) && (ListOfLocalAtoms != NULL)) { // free the index lookup list Free((void **)&ListOfLocalAtoms[FragmentCounter], "MoleculeLeafClass::AssignKeySetsToFragment - **ListOfLocalAtoms[]"); if (FragmentCounter == 0) // first fragments frees the initial pointer to list Free((void **)&ListOfLocalAtoms, "MoleculeLeafClass::AssignKeySetsToFragment - ***ListOfLocalAtoms"); } *out << Verbose(1) << "End of AssignKeySetsToFragment." << endl; return status; }; /** Translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf) * \param *out output stream for debugging * \param **FragmentList Graph with local numbers per fragment * \param &FragmentCounter counts the fragments as we move along the list * \param &TotalNumberOfKeySets global key set counter * \param &TotalGraph Graph to be filled with global numbers */ void MoleculeLeafClass::TranslateIndicesToGlobalIDs(ofstream *out, Graph **FragmentList, int &FragmentCounter, int &TotalNumberOfKeySets, Graph &TotalGraph) { *out << Verbose(1) << "Begin of TranslateIndicesToGlobalIDs." << endl; KeySet *TempSet = new KeySet; if (FragmentList[FragmentCounter] != NULL) { for(Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) { for(KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++) TempSet->insert((Leaf->FindAtom(*sprinter))->GetTrueFather()->nr); TotalGraph.insert(GraphPair(*TempSet, pair(TotalNumberOfKeySets++, (*runner).second.second))); TempSet->clear(); } delete(TempSet); } else { *out << Verbose(1) << "FragmentList is NULL." << endl; } if (next != NULL) next->TranslateIndicesToGlobalIDs(out, FragmentList, ++FragmentCounter, TotalNumberOfKeySets, TotalGraph); FragmentCounter--; *out << Verbose(1) << "End of TranslateIndicesToGlobalIDs." << endl; }; /** Simply counts the number of items in the list, from given MoleculeLeafClass. * \return number of items */ int MoleculeLeafClass::Count() const { if (next != NULL) return next->Count()+1; else return 1; };