source: src/molecule_graph.cpp@ f16a4b

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since f16a4b was 1f1b23, checked in by Frederik Heber <heber@…>, 15 years ago

Possibility to store all bonds to file added.

So far we only could store the adjacency (i.e. atom along with all bond partners per line) to file.
For plotting molecules with pgfplots (and maybe for other purposes too) we need to have single tupels of two per line.
Hence, the following additions were implemented:

  • Property mode set to 100644
File size: 60.6 KB
Line 
1/*
2 * molecule_graph.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "atom.hpp"
9#include "bond.hpp"
10#include "bondgraph.hpp"
11#include "config.hpp"
12#include "element.hpp"
13#include "helpers.hpp"
14#include "linkedcell.hpp"
15#include "lists.hpp"
16#include "log.hpp"
17#include "memoryallocator.hpp"
18#include "molecule.hpp"
19
20struct BFSAccounting
21{
22 atom **PredecessorList;
23 int *ShortestPathList;
24 enum Shading *ColorList;
25 class StackClass<atom *> *BFSStack;
26 class StackClass<atom *> *TouchedStack;
27 int AtomCount;
28 int BondOrder;
29 atom *Root;
30 bool BackStepping;
31 int CurrentGraphNr;
32 int ComponentNr;
33};
34
35/** Accounting data for Depth First Search.
36 */
37struct DFSAccounting
38{
39 class StackClass<atom *> *AtomStack;
40 class StackClass<bond *> *BackEdgeStack;
41 int CurrentGraphNr;
42 int ComponentNumber;
43 atom *Root;
44 bool BackStepping;
45};
46
47/************************************* Functions for class molecule *********************************/
48
49/** Creates an adjacency list of the molecule.
50 * We obtain an outside file with the indices of atoms which are bondmembers.
51 */
52void molecule::CreateAdjacencyListFromDbondFile(ifstream *input)
53{
54
55 // 1 We will parse bonds out of the dbond file created by tremolo.
56 int atom1, atom2;
57 atom *Walker, *OtherWalker;
58
59 if (!input) {
60 Log() << Verbose(1) << "Opening silica failed \n";
61 };
62
63 *input >> ws >> atom1;
64 *input >> ws >> atom2;
65 Log() << Verbose(1) << "Scanning file\n";
66 while (!input->eof()) // Check whether we read everything already
67 {
68 *input >> ws >> atom1;
69 *input >> ws >> atom2;
70
71 if (atom2 < atom1) //Sort indices of atoms in order
72 flip(atom1, atom2);
73 Walker = FindAtom(atom1);
74 OtherWalker = FindAtom(atom2);
75 AddBond(Walker, OtherWalker); //Add the bond between the two atoms with respective indices.
76 }
77}
78;
79
80/** Creates an adjacency list of the molecule.
81 * Generally, we use the CSD approach to bond recognition, that is the the distance
82 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
83 * a threshold t = 0.4 Angstroem.
84 * To make it O(N log N) the function uses the linked-cell technique as follows:
85 * The procedure is step-wise:
86 * -# Remove every bond in list
87 * -# Count the atoms in the molecule with CountAtoms()
88 * -# partition cell into smaller linked cells of size \a bonddistance
89 * -# put each atom into its corresponding cell
90 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
91 * -# correct the bond degree iteratively (single->double->triple bond)
92 * -# finally print the bond list to \a *out if desired
93 * \param *out out stream for printing the matrix, NULL if no output
94 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
95 * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
96 * \param *minmaxdistance function to give upper and lower bound on whether particle is bonded to some other
97 * \param *BG BondGraph with the member function above or NULL, if just standard covalent should be used.
98 */
99void molecule::CreateAdjacencyList(double bonddistance, bool IsAngstroem, void (BondGraph::*minmaxdistance)(BondedParticle * const , BondedParticle * const , double &, double &, bool), BondGraph *BG)
100{
101 atom *Walker = NULL;
102 atom *OtherWalker = NULL;
103 atom **AtomMap = NULL;
104 int n[NDIM];
105 double MinDistance, MaxDistance;
106 LinkedCell *LC = NULL;
107 bool free_BG = false;
108
109 if (BG == NULL) {
110 BG = new BondGraph(IsAngstroem);
111 free_BG = true;
112 }
113
114 BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
115 Log() << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
116 // remove every bond from the list
117 bond *Binder = NULL;
118 while (last->previous != first) {
119 Binder = last->previous;
120 Binder->leftatom->UnregisterBond(Binder);
121 Binder->rightatom->UnregisterBond(Binder);
122 removewithoutcheck(Binder);
123 }
124 BondCount = 0;
125
126 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
127 CountAtoms();
128 Log() << Verbose(1) << "AtomCount " << AtomCount << " and bonddistance is " << bonddistance << "." << endl;
129
130 if ((AtomCount > 1) && (bonddistance > 1.)) {
131 Log() << Verbose(2) << "Creating Linked Cell structure ... " << endl;
132 LC = new LinkedCell(this, bonddistance);
133
134 // create a list to map Tesselpoint::nr to atom *
135 Log() << Verbose(2) << "Creating TesselPoint to atom map ... " << endl;
136 AtomMap = Calloc<atom *> (AtomCount, "molecule::CreateAdjacencyList - **AtomCount");
137 Walker = start;
138 while (Walker->next != end) {
139 Walker = Walker->next;
140 AtomMap[Walker->nr] = Walker;
141 }
142
143 // 3a. go through every cell
144 Log() << Verbose(2) << "Celling ... " << endl;
145 for (LC->n[0] = 0; LC->n[0] < LC->N[0]; LC->n[0]++)
146 for (LC->n[1] = 0; LC->n[1] < LC->N[1]; LC->n[1]++)
147 for (LC->n[2] = 0; LC->n[2] < LC->N[2]; LC->n[2]++) {
148 const LinkedNodes *List = LC->GetCurrentCell();
149 //Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
150 if (List != NULL) {
151 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
152 Walker = AtomMap[(*Runner)->nr];
153 //Log() << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
154 // 3c. check for possible bond between each atom in this and every one in the 27 cells
155 for (n[0] = -1; n[0] <= 1; n[0]++)
156 for (n[1] = -1; n[1] <= 1; n[1]++)
157 for (n[2] = -1; n[2] <= 1; n[2]++) {
158 const LinkedNodes *OtherList = LC->GetRelativeToCurrentCell(n);
159 //Log() << Verbose(2) << "Current relative cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
160 if (OtherList != NULL) {
161 for (LinkedNodes::const_iterator OtherRunner = OtherList->begin(); OtherRunner != OtherList->end(); OtherRunner++) {
162 if ((*OtherRunner)->nr > Walker->nr) {
163 OtherWalker = AtomMap[(*OtherRunner)->nr];
164 //Log() << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
165 (BG->*minmaxdistance)(Walker, OtherWalker, MinDistance, MaxDistance, IsAngstroem);
166 const double distance = OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size);
167 const bool status = (distance <= MaxDistance * MaxDistance) && (distance >= MinDistance * MinDistance);
168 if ((OtherWalker->father->nr > Walker->father->nr) && (status)) { // create bond if distance is smaller
169 //Log() << Verbose(1) << "Adding Bond between " << *Walker << " and " << *OtherWalker << " in distance " << sqrt(distance) << "." << endl;
170 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
171 } else {
172 //Log() << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
173 }
174 }
175 }
176 }
177 }
178 }
179 }
180 }
181 Free(&AtomMap);
182 delete (LC);
183 Log() << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << BondDistance << "." << endl;
184
185 // correct bond degree by comparing valence and bond degree
186 Log() << Verbose(2) << "Correcting bond degree ... " << endl;
187 CorrectBondDegree();
188
189 // output bonds for debugging (if bond chain list was correctly installed)
190 ActOnAllAtoms( &atom::OutputBondOfAtom );
191 } else
192 Log() << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
193 Log() << Verbose(0) << "End of CreateAdjacencyList." << endl;
194 if (free_BG)
195 delete(BG);
196}
197;
198
199/** Prints a list of all bonds to \a *out.
200 * \param output stream
201 */
202void molecule::OutputBondsList() const
203{
204 Log() << Verbose(1) << endl << "From contents of bond chain list:";
205 bond *Binder = first;
206 while (Binder->next != last) {
207 Binder = Binder->next;
208 Log() << Verbose(0) << *Binder << "\t" << endl;
209 }
210 Log() << Verbose(0) << endl;
211}
212;
213
214/** correct bond degree by comparing valence and bond degree.
215 * correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
216 * iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
217 * preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
218 * double bonds as was expected.
219 * \param *out output stream for debugging
220 * \return number of bonds that could not be corrected
221 */
222int molecule::CorrectBondDegree() const
223{
224 int No = 0, OldNo = -1;
225
226 if (BondCount != 0) {
227 Log() << Verbose(1) << "Correcting Bond degree of each bond ... " << endl;
228 do {
229 OldNo = No;
230 No = SumPerAtom( &atom::CorrectBondDegree );
231 } while (OldNo != No);
232 Log() << Verbose(0) << " done." << endl;
233 } else {
234 Log() << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
235 }
236 Log() << Verbose(0) << No << " bonds could not be corrected." << endl;
237
238 return (No);
239}
240;
241
242/** Counts all cyclic bonds and returns their number.
243 * \note Hydrogen bonds can never by cyclic, thus no check for that
244 * \param *out output stream for debugging
245 * \return number opf cyclic bonds
246 */
247int molecule::CountCyclicBonds()
248{
249 NoCyclicBonds = 0;
250 int *MinimumRingSize = NULL;
251 MoleculeLeafClass *Subgraphs = NULL;
252 class StackClass<bond *> *BackEdgeStack = NULL;
253 bond *Binder = first;
254 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
255 Log() << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
256 Subgraphs = DepthFirstSearchAnalysis(BackEdgeStack);
257 while (Subgraphs->next != NULL) {
258 Subgraphs = Subgraphs->next;
259 delete (Subgraphs->previous);
260 }
261 delete (Subgraphs);
262 delete[] (MinimumRingSize);
263 }
264 while (Binder->next != last) {
265 Binder = Binder->next;
266 if (Binder->Cyclic)
267 NoCyclicBonds++;
268 }
269 delete (BackEdgeStack);
270 return NoCyclicBonds;
271}
272;
273
274/** Returns Shading as a char string.
275 * \param color the Shading
276 * \return string of the flag
277 */
278string molecule::GetColor(enum Shading color) const
279{
280 switch (color) {
281 case white:
282 return "white";
283 break;
284 case lightgray:
285 return "lightgray";
286 break;
287 case darkgray:
288 return "darkgray";
289 break;
290 case black:
291 return "black";
292 break;
293 default:
294 return "uncolored";
295 break;
296 };
297}
298;
299
300/** Sets atom::GraphNr and atom::LowpointNr to BFSAccounting::CurrentGraphNr.
301 * \param *out output stream for debugging
302 * \param *Walker current node
303 * \param &BFS structure with accounting data for BFS
304 */
305void DepthFirstSearchAnalysis_SetWalkersGraphNr(atom *&Walker, struct DFSAccounting &DFS)
306{
307 if (!DFS.BackStepping) { // if we don't just return from (8)
308 Walker->GraphNr = DFS.CurrentGraphNr;
309 Walker->LowpointNr = DFS.CurrentGraphNr;
310 Log() << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
311 DFS.AtomStack->Push(Walker);
312 DFS.CurrentGraphNr++;
313 }
314}
315;
316
317/** During DFS goes along unvisited bond and touches other atom.
318 * Sets bond::type, if
319 * -# BackEdge: set atom::LowpointNr and push on \a BackEdgeStack
320 * -# TreeEgde: set atom::Ancestor and continue with Walker along this edge
321 * Continue until molecule::FindNextUnused() finds no more unused bonds.
322 * \param *out output stream for debugging
323 * \param *mol molecule with atoms and finding unused bonds
324 * \param *&Binder current edge
325 * \param &DFS DFS accounting data
326 */
327void DepthFirstSearchAnalysis_ProbeAlongUnusedBond(const molecule * const mol, atom *&Walker, bond *&Binder, struct DFSAccounting &DFS)
328{
329 atom *OtherAtom = NULL;
330
331 do { // (3) if Walker has no unused egdes, go to (5)
332 DFS.BackStepping = false; // reset backstepping flag for (8)
333 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
334 Binder = mol->FindNextUnused(Walker);
335 if (Binder == NULL)
336 break;
337 Log() << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
338 // (4) Mark Binder used, ...
339 Binder->MarkUsed(black);
340 OtherAtom = Binder->GetOtherAtom(Walker);
341 Log() << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
342 if (OtherAtom->GraphNr != -1) {
343 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
344 Binder->Type = BackEdge;
345 DFS.BackEdgeStack->Push(Binder);
346 Walker->LowpointNr = (Walker->LowpointNr < OtherAtom->GraphNr) ? Walker->LowpointNr : OtherAtom->GraphNr;
347 Log() << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
348 } else {
349 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
350 Binder->Type = TreeEdge;
351 OtherAtom->Ancestor = Walker;
352 Walker = OtherAtom;
353 Log() << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
354 break;
355 }
356 Binder = NULL;
357 } while (1); // (3)
358}
359;
360
361/** Checks whether we have a new component.
362 * if atom::LowpointNr of \a *&Walker is greater than atom::GraphNr of its atom::Ancestor, we have a new component.
363 * Meaning that if we touch upon a node who suddenly has a smaller atom::LowpointNr than its ancestor, then we
364 * have a found a new branch in the graph tree.
365 * \param *out output stream for debugging
366 * \param *mol molecule with atoms and finding unused bonds
367 * \param *&Walker current node
368 * \param &DFS DFS accounting data
369 */
370void DepthFirstSearchAnalysis_CheckForaNewComponent(const molecule * const mol, atom *&Walker, struct DFSAccounting &DFS, MoleculeLeafClass *&LeafWalker)
371{
372 atom *OtherAtom = NULL;
373
374 // (5) if Ancestor of Walker is ...
375 Log() << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
376
377 if (Walker->Ancestor->GraphNr != DFS.Root->GraphNr) {
378 // (6) (Ancestor of Walker is not Root)
379 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
380 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
381 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
382 Log() << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
383 } else {
384 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
385 Walker->Ancestor->SeparationVertex = true;
386 Log() << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
387 mol->SetNextComponentNumber(Walker->Ancestor, DFS.ComponentNumber);
388 Log() << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << DFS.ComponentNumber << "." << endl;
389 mol->SetNextComponentNumber(Walker, DFS.ComponentNumber);
390 Log() << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
391 do {
392 OtherAtom = DFS.AtomStack->PopLast();
393 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
394 mol->SetNextComponentNumber(OtherAtom, DFS.ComponentNumber);
395 Log() << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
396 } while (OtherAtom != Walker);
397 DFS.ComponentNumber++;
398 }
399 // (8) Walker becomes its Ancestor, go to (3)
400 Log() << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
401 Walker = Walker->Ancestor;
402 DFS.BackStepping = true;
403 }
404}
405;
406
407/** Cleans the root stack when we have found a component.
408 * If we are not DFSAccounting::BackStepping, then we clear the root stack by putting everything into a
409 * component down till we meet DFSAccounting::Root.
410 * \param *out output stream for debugging
411 * \param *mol molecule with atoms and finding unused bonds
412 * \param *&Walker current node
413 * \param *&Binder current edge
414 * \param &DFS DFS accounting data
415 */
416void DepthFirstSearchAnalysis_CleanRootStackDownTillWalker(const molecule * const mol, atom *&Walker, bond *&Binder, struct DFSAccounting &DFS, MoleculeLeafClass *&LeafWalker)
417{
418 atom *OtherAtom = NULL;
419
420 if (!DFS.BackStepping) { // coming from (8) want to go to (3)
421 // (9) remove all from stack till Walker (including), these and Root form a component
422 //DFS.AtomStack->Output(out);
423 mol->SetNextComponentNumber(DFS.Root, DFS.ComponentNumber);
424 Log() << Verbose(3) << "(9) Root[" << DFS.Root->Name << "]'s Component is " << DFS.ComponentNumber << "." << endl;
425 mol->SetNextComponentNumber(Walker, DFS.ComponentNumber);
426 Log() << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << DFS.ComponentNumber << "." << endl;
427 do {
428 OtherAtom = DFS.AtomStack->PopLast();
429 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
430 mol->SetNextComponentNumber(OtherAtom, DFS.ComponentNumber);
431 Log() << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
432 } while (OtherAtom != Walker);
433 DFS.ComponentNumber++;
434
435 // (11) Root is separation vertex, set Walker to Root and go to (4)
436 Walker = DFS.Root;
437 Binder = mol->FindNextUnused(Walker);
438 Log() << Verbose(1) << "(10) Walker is Root[" << DFS.Root->Name << "], next Unused Bond is " << Binder << "." << endl;
439 if (Binder != NULL) { // Root is separation vertex
440 Log() << Verbose(1) << "(11) Root is a separation vertex." << endl;
441 Walker->SeparationVertex = true;
442 }
443 }
444}
445;
446
447/** Initializes DFSAccounting structure.
448 * \param *out output stream for debugging
449 * \param &DFS accounting structure to allocate
450 * \param *mol molecule with AtomCount, BondCount and all atoms
451 */
452void DepthFirstSearchAnalysis_Init(struct DFSAccounting &DFS, const molecule * const mol)
453{
454 DFS.AtomStack = new StackClass<atom *> (mol->AtomCount);
455 DFS.CurrentGraphNr = 0;
456 DFS.ComponentNumber = 0;
457 DFS.BackStepping = false;
458 mol->ResetAllBondsToUnused();
459 mol->SetAtomValueToValue(-1, &atom::GraphNr);
460 mol->ActOnAllAtoms(&atom::InitComponentNr);
461 DFS.BackEdgeStack->ClearStack();
462}
463;
464
465/** Free's DFSAccounting structure.
466 * \param *out output stream for debugging
467 * \param &DFS accounting structure to free
468 */
469void DepthFirstSearchAnalysis_Finalize(struct DFSAccounting &DFS)
470{
471 delete (DFS.AtomStack);
472 // delete (DFS.BackEdgeStack); // DON'T free, see DepthFirstSearchAnalysis(), is returned as allocated
473}
474;
475
476/** Performs a Depth-First search on this molecule.
477 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
478 * articulations points, ...
479 * We use the algorithm from [Even, Graph Algorithms, p.62].
480 * \param *out output stream for debugging
481 * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return
482 * \return list of each disconnected subgraph as an individual molecule class structure
483 */
484MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(class StackClass<bond *> *&BackEdgeStack) const
485{
486 struct DFSAccounting DFS;
487 BackEdgeStack = new StackClass<bond *> (BondCount);
488 DFS.BackEdgeStack = BackEdgeStack;
489 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
490 MoleculeLeafClass *LeafWalker = SubGraphs;
491 int OldGraphNr = 0;
492 atom *Walker = NULL;
493 bond *Binder = NULL;
494
495 Log() << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
496 DepthFirstSearchAnalysis_Init(DFS, this);
497
498 DFS.Root = start->next;
499 while (DFS.Root != end) { // if there any atoms at all
500 // (1) mark all edges unused, empty stack, set atom->GraphNr = -1 for all
501 DFS.AtomStack->ClearStack();
502
503 // put into new subgraph molecule and add this to list of subgraphs
504 LeafWalker = new MoleculeLeafClass(LeafWalker);
505 LeafWalker->Leaf = new molecule(elemente);
506 LeafWalker->Leaf->AddCopyAtom(DFS.Root);
507
508 OldGraphNr = DFS.CurrentGraphNr;
509 Walker = DFS.Root;
510 do { // (10)
511 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
512 DepthFirstSearchAnalysis_SetWalkersGraphNr(Walker, DFS);
513
514 DepthFirstSearchAnalysis_ProbeAlongUnusedBond(this, Walker, Binder, DFS);
515
516 if (Binder == NULL) {
517 Log() << Verbose(2) << "No more Unused Bonds." << endl;
518 break;
519 } else
520 Binder = NULL;
521 } while (1); // (2)
522
523 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
524 if ((Walker == DFS.Root) && (Binder == NULL))
525 break;
526
527 DepthFirstSearchAnalysis_CheckForaNewComponent(this, Walker, DFS, LeafWalker);
528
529 DepthFirstSearchAnalysis_CleanRootStackDownTillWalker(this, Walker, Binder, DFS, LeafWalker);
530
531 } while ((DFS.BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
532
533 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
534 Log() << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << DFS.CurrentGraphNr << "." << endl;
535 LeafWalker->Leaf->Output((ofstream *)&cout);
536 Log() << Verbose(0) << endl;
537
538 // step on to next root
539 while ((DFS.Root != end) && (DFS.Root->GraphNr != -1)) {
540 //Log() << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
541 if (DFS.Root->GraphNr != -1) // if already discovered, step on
542 DFS.Root = DFS.Root->next;
543 }
544 }
545 // set cyclic bond criterium on "same LP" basis
546 CyclicBondAnalysis();
547
548 OutputGraphInfoPerAtom();
549
550 OutputGraphInfoPerBond();
551
552 // free all and exit
553 DepthFirstSearchAnalysis_Finalize(DFS);
554 Log() << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
555 return SubGraphs;
556}
557;
558
559/** Scans through all bonds and set bond::Cyclic to true where atom::LowpointNr of both ends is equal: LP criterion.
560 */
561void molecule::CyclicBondAnalysis() const
562{
563 NoCyclicBonds = 0;
564 bond *Binder = first;
565 while (Binder->next != last) {
566 Binder = Binder->next;
567 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
568 Binder->Cyclic = true;
569 NoCyclicBonds++;
570 }
571 }
572}
573;
574
575/** Output graph information per atom.
576 * \param *out output stream
577 */
578void molecule::OutputGraphInfoPerAtom() const
579{
580 Log() << Verbose(1) << "Final graph info for each atom is:" << endl;
581 ActOnAllAtoms( &atom::OutputGraphInfo );
582}
583;
584
585/** Output graph information per bond.
586 * \param *out output stream
587 */
588void molecule::OutputGraphInfoPerBond() const
589{
590 Log() << Verbose(1) << "Final graph info for each bond is:" << endl;
591 bond *Binder = first;
592 while (Binder->next != last) {
593 Binder = Binder->next;
594 Log() << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
595 Log() << Verbose(0) << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
596 Binder->leftatom->OutputComponentNumber();
597 Log() << Verbose(0) << " === ";
598 Log() << Verbose(0) << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
599 Binder->rightatom->OutputComponentNumber();
600 Log() << Verbose(0) << ">." << endl;
601 if (Binder->Cyclic) // cyclic ??
602 Log() << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
603 }
604}
605;
606
607/** Initialise each vertex as white with no predecessor, empty queue, color Root lightgray.
608 * \param *out output stream for debugging
609 * \param &BFS accounting structure
610 * \param AtomCount number of entries in the array to allocate
611 */
612void InitializeBFSAccounting(struct BFSAccounting &BFS, int AtomCount)
613{
614 BFS.AtomCount = AtomCount;
615 BFS.PredecessorList = Calloc<atom*> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: **PredecessorList");
616 BFS.ShortestPathList = Malloc<int> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ShortestPathList");
617 BFS.ColorList = Calloc<enum Shading> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ColorList");
618 BFS.BFSStack = new StackClass<atom *> (AtomCount);
619
620 for (int i = AtomCount; i--;)
621 BFS.ShortestPathList[i] = -1;
622};
623
624/** Free's accounting structure.
625 * \param *out output stream for debugging
626 * \param &BFS accounting structure
627 */
628void FinalizeBFSAccounting(struct BFSAccounting &BFS)
629{
630 Free(&BFS.PredecessorList);
631 Free(&BFS.ShortestPathList);
632 Free(&BFS.ColorList);
633 delete (BFS.BFSStack);
634 BFS.AtomCount = 0;
635};
636
637/** Clean the accounting structure.
638 * \param *out output stream for debugging
639 * \param &BFS accounting structure
640 */
641void CleanBFSAccounting(struct BFSAccounting &BFS)
642{
643 atom *Walker = NULL;
644 while (!BFS.TouchedStack->IsEmpty()) {
645 Walker = BFS.TouchedStack->PopFirst();
646 BFS.PredecessorList[Walker->nr] = NULL;
647 BFS.ShortestPathList[Walker->nr] = -1;
648 BFS.ColorList[Walker->nr] = white;
649 }
650};
651
652/** Resets shortest path list and BFSStack.
653 * \param *out output stream for debugging
654 * \param *&Walker current node, pushed onto BFSAccounting::BFSStack and BFSAccounting::TouchedStack
655 * \param &BFS accounting structure
656 */
657void ResetBFSAccounting(atom *&Walker, struct BFSAccounting &BFS)
658{
659 BFS.ShortestPathList[Walker->nr] = 0;
660 BFS.BFSStack->ClearStack(); // start with empty BFS stack
661 BFS.BFSStack->Push(Walker);
662 BFS.TouchedStack->Push(Walker);
663};
664
665/** Performs a BFS from \a *Root, trying to find the same node and hence a cycle.
666 * \param *out output stream for debugging
667 * \param *&BackEdge the edge from root that we don't want to move along
668 * \param &BFS accounting structure
669 */
670void CyclicStructureAnalysis_CyclicBFSFromRootToRoot(bond *&BackEdge, struct BFSAccounting &BFS)
671{
672 atom *Walker = NULL;
673 atom *OtherAtom = NULL;
674 do { // look for Root
675 Walker = BFS.BFSStack->PopFirst();
676 Log() << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *BFS.Root << "." << endl;
677 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
678 if ((*Runner) != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
679 OtherAtom = (*Runner)->GetOtherAtom(Walker);
680#ifdef ADDHYDROGEN
681 if (OtherAtom->type->Z != 1) {
682#endif
683 Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *(*Runner) << "." << endl;
684 if (BFS.ColorList[OtherAtom->nr] == white) {
685 BFS.TouchedStack->Push(OtherAtom);
686 BFS.ColorList[OtherAtom->nr] = lightgray;
687 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
688 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
689 Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << BFS.ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
690 //if (BFS.ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
691 Log() << Verbose(3) << "Putting OtherAtom into queue." << endl;
692 BFS.BFSStack->Push(OtherAtom);
693 //}
694 } else {
695 Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
696 }
697 if (OtherAtom == BFS.Root)
698 break;
699#ifdef ADDHYDROGEN
700 } else {
701 Log() << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;
702 BFS.ColorList[OtherAtom->nr] = black;
703 }
704#endif
705 } else {
706 Log() << Verbose(2) << "Bond " << *(*Runner) << " not Visiting, is the back edge." << endl;
707 }
708 }
709 BFS.ColorList[Walker->nr] = black;
710 Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
711 if (OtherAtom == BFS.Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
712 // step through predecessor list
713 while (OtherAtom != BackEdge->rightatom) {
714 if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
715 break;
716 else
717 OtherAtom = BFS.PredecessorList[OtherAtom->nr];
718 }
719 if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
720 Log() << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;
721 do {
722 OtherAtom = BFS.TouchedStack->PopLast();
723 if (BFS.PredecessorList[OtherAtom->nr] == Walker) {
724 Log() << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;
725 BFS.PredecessorList[OtherAtom->nr] = NULL;
726 BFS.ShortestPathList[OtherAtom->nr] = -1;
727 BFS.ColorList[OtherAtom->nr] = white;
728 BFS.BFSStack->RemoveItem(OtherAtom);
729 }
730 } while ((!BFS.TouchedStack->IsEmpty()) && (BFS.PredecessorList[OtherAtom->nr] == NULL));
731 BFS.TouchedStack->Push(OtherAtom); // last was wrongly popped
732 OtherAtom = BackEdge->rightatom; // set to not Root
733 } else
734 OtherAtom = BFS.Root;
735 }
736 } while ((!BFS.BFSStack->IsEmpty()) && (OtherAtom != BFS.Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
737};
738
739/** Climb back the BFSAccounting::PredecessorList and find cycle members.
740 * \param *out output stream for debugging
741 * \param *&OtherAtom
742 * \param *&BackEdge denotes the edge we did not want to travel along when doing CyclicBFSFromRootToRoot()
743 * \param &BFS accounting structure
744 * \param *&MinimumRingSize minimum distance from this node possible without encountering oneself, set on return for each atom
745 * \param &MinRingSize global minimum distance from one node without encountering oneself, set on return
746 */
747void CyclicStructureAnalysis_RetrieveCycleMembers(atom *&OtherAtom, bond *&BackEdge, struct BFSAccounting &BFS, int *&MinimumRingSize, int &MinRingSize)
748{
749 atom *Walker = NULL;
750 int NumCycles = 0;
751 int RingSize = -1;
752
753 if (OtherAtom == BFS.Root) {
754 // now climb back the predecessor list and thus find the cycle members
755 NumCycles++;
756 RingSize = 1;
757 BFS.Root->GetTrueFather()->IsCyclic = true;
758 Log() << Verbose(1) << "Found ring contains: ";
759 Walker = BFS.Root;
760 while (Walker != BackEdge->rightatom) {
761 Log() << Verbose(0) << Walker->Name << " <-> ";
762 Walker = BFS.PredecessorList[Walker->nr];
763 Walker->GetTrueFather()->IsCyclic = true;
764 RingSize++;
765 }
766 Log() << Verbose(0) << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
767 // walk through all and set MinimumRingSize
768 Walker = BFS.Root;
769 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
770 while (Walker != BackEdge->rightatom) {
771 Walker = BFS.PredecessorList[Walker->nr];
772 if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
773 MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
774 }
775 if ((RingSize < MinRingSize) || (MinRingSize == -1))
776 MinRingSize = RingSize;
777 } else {
778 Log() << Verbose(1) << "No ring containing " << *BFS.Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
779 }
780};
781
782/** From a given node performs a BFS to touch the next cycle, for whose nodes \a *&MinimumRingSize is set and set it accordingly.
783 * \param *out output stream for debugging
784 * \param *&Root node to look for closest cycle from, i.e. \a *&MinimumRingSize is set for this node
785 * \param *&MinimumRingSize minimum distance from this node possible without encountering oneself, set on return for each atom
786 * \param AtomCount number of nodes in graph
787 */
788void CyclicStructureAnalysis_BFSToNextCycle(atom *&Root, atom *&Walker, int *&MinimumRingSize, int AtomCount)
789{
790 struct BFSAccounting BFS;
791 atom *OtherAtom = Walker;
792
793 InitializeBFSAccounting(BFS, AtomCount);
794
795 ResetBFSAccounting(Walker, BFS);
796 while (OtherAtom != NULL) { // look for Root
797 Walker = BFS.BFSStack->PopFirst();
798 //Log() << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
799 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
800 // "removed (*Runner) != BackEdge) || " from next if, is u
801 if ((Walker->ListOfBonds.size() == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
802 OtherAtom = (*Runner)->GetOtherAtom(Walker);
803 //Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
804 if (BFS.ColorList[OtherAtom->nr] == white) {
805 BFS.TouchedStack->Push(OtherAtom);
806 BFS.ColorList[OtherAtom->nr] = lightgray;
807 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
808 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
809 //Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
810 if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
811 MinimumRingSize[Root->GetTrueFather()->nr] = BFS.ShortestPathList[OtherAtom->nr] + MinimumRingSize[OtherAtom->GetTrueFather()->nr];
812 OtherAtom = NULL; //break;
813 break;
814 } else
815 BFS.BFSStack->Push(OtherAtom);
816 } else {
817 //Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
818 }
819 } else {
820 //Log() << Verbose(3) << "Not Visiting, is a back edge." << endl;
821 }
822 }
823 BFS.ColorList[Walker->nr] = black;
824 //Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
825 }
826 //CleanAccountingLists(TouchedStack, PredecessorList, ShortestPathList, ColorList);
827
828 FinalizeBFSAccounting(BFS);
829}
830;
831
832/** All nodes that are not in cycles get assigned a \a *&MinimumRingSizeby BFS to next cycle.
833 * \param *out output stream for debugging
834 * \param *&MinimumRingSize array with minimum distance without encountering onself for each atom
835 * \param &MinRingSize global minium distance
836 * \param &NumCyles number of cycles in graph
837 * \param *mol molecule with atoms
838 */
839void CyclicStructureAnalysis_AssignRingSizetoNonCycleMembers(int *&MinimumRingSize, int &MinRingSize, int &NumCycles, const molecule * const mol)
840{
841 atom *Root = NULL;
842 atom *Walker = NULL;
843 if (MinRingSize != -1) { // if rings are present
844 // go over all atoms
845 Root = mol->start;
846 while (Root->next != mol->end) {
847 Root = Root->next;
848
849 if (MinimumRingSize[Root->GetTrueFather()->nr] == mol->AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
850 Walker = Root;
851
852 //Log() << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
853 CyclicStructureAnalysis_BFSToNextCycle(Root, Walker, MinimumRingSize, mol->AtomCount);
854
855 }
856 Log() << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
857 }
858 Log() << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
859 } else
860 Log() << Verbose(1) << "No rings were detected in the molecular structure." << endl;
861}
862;
863
864/** Analyses the cycles found and returns minimum of all cycle lengths.
865 * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
866 * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
867 * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
868 * as cyclic and print out the cycles.
869 * \param *out output stream for debugging
870 * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!
871 * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
872 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
873 */
874void molecule::CyclicStructureAnalysis(class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize) const
875{
876 struct BFSAccounting BFS;
877 atom *Walker = NULL;
878 atom *OtherAtom = NULL;
879 bond *BackEdge = NULL;
880 int NumCycles = 0;
881 int MinRingSize = -1;
882
883 InitializeBFSAccounting(BFS, AtomCount);
884
885 //Log() << Verbose(1) << "Back edge list - ";
886 //BackEdgeStack->Output(out);
887
888 Log() << Verbose(1) << "Analysing cycles ... " << endl;
889 NumCycles = 0;
890 while (!BackEdgeStack->IsEmpty()) {
891 BackEdge = BackEdgeStack->PopFirst();
892 // this is the target
893 BFS.Root = BackEdge->leftatom;
894 // this is the source point
895 Walker = BackEdge->rightatom;
896
897 ResetBFSAccounting(Walker, BFS);
898
899 Log() << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
900 OtherAtom = NULL;
901 CyclicStructureAnalysis_CyclicBFSFromRootToRoot(BackEdge, BFS);
902
903 CyclicStructureAnalysis_RetrieveCycleMembers(OtherAtom, BackEdge, BFS, MinimumRingSize, MinRingSize);
904
905 CleanBFSAccounting(BFS);
906 }
907 FinalizeBFSAccounting(BFS);
908
909 CyclicStructureAnalysis_AssignRingSizetoNonCycleMembers(MinimumRingSize, MinRingSize, NumCycles, this);
910};
911
912/** Sets the next component number.
913 * This is O(N) as the number of bonds per atom is bound.
914 * \param *vertex atom whose next atom::*ComponentNr is to be set
915 * \param nr number to use
916 */
917void molecule::SetNextComponentNumber(atom *vertex, int nr) const
918{
919 size_t i = 0;
920 if (vertex != NULL) {
921 for (; i < vertex->ListOfBonds.size(); i++) {
922 if (vertex->ComponentNr[i] == -1) { // check if not yet used
923 vertex->ComponentNr[i] = nr;
924 break;
925 } else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
926 break; // breaking here will not cause error!
927 }
928 if (i == vertex->ListOfBonds.size()) {
929 eLog() << Verbose(0) << "Error: All Component entries are already occupied!" << endl;
930 performCriticalExit();
931 }
932 } else {
933 eLog() << Verbose(0) << "Error: Given vertex is NULL!" << endl;
934 performCriticalExit();
935 }
936}
937;
938
939/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
940 * \param *vertex atom to regard
941 * \return bond class or NULL
942 */
943bond * molecule::FindNextUnused(atom *vertex) const
944{
945 for (BondList::const_iterator Runner = vertex->ListOfBonds.begin(); Runner != vertex->ListOfBonds.end(); (++Runner))
946 if ((*Runner)->IsUsed() == white)
947 return ((*Runner));
948 return NULL;
949}
950;
951
952/** Resets bond::Used flag of all bonds in this molecule.
953 * \return true - success, false - -failure
954 */
955void molecule::ResetAllBondsToUnused() const
956{
957 bond *Binder = first;
958 while (Binder->next != last) {
959 Binder = Binder->next;
960 Binder->ResetUsed();
961 }
962}
963;
964
965/** Output a list of flags, stating whether the bond was visited or not.
966 * \param *out output stream for debugging
967 * \param *list
968 */
969void OutputAlreadyVisited(int *list)
970{
971 Log() << Verbose(4) << "Already Visited Bonds:\t";
972 for (int i = 1; i <= list[0]; i++)
973 Log() << Verbose(0) << list[i] << " ";
974 Log() << Verbose(0) << endl;
975}
976;
977
978/** Storing the bond structure of a molecule to file.
979 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
980 * \param *out output stream for debugging
981 * \param *path path to file
982 * \return true - file written successfully, false - writing failed
983 */
984bool molecule::StoreAdjacencyToFile(char *path)
985{
986 ofstream AdjacencyFile;
987 stringstream line;
988 bool status = true;
989
990 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
991 AdjacencyFile.open(line.str().c_str(), ios::out);
992 Log() << Verbose(1) << "Saving adjacency list ... ";
993 if (AdjacencyFile != NULL) {
994 AdjacencyFile << "m\tn" << endl;
995 ActOnAllAtoms(&atom::OutputAdjacency, &AdjacencyFile);
996 AdjacencyFile.close();
997 Log() << Verbose(1) << "done." << endl;
998 } else {
999 Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl;
1000 status = false;
1001 }
1002
1003 return status;
1004}
1005;
1006
1007/** Storing the bond structure of a molecule to file.
1008 * Simply stores Atom::nr and then the Atom::nr of all bond partners, one per line.
1009 * \param *out output stream for debugging
1010 * \param *path path to file
1011 * \return true - file written successfully, false - writing failed
1012 */
1013bool molecule::StoreBondsToFile(char *path)
1014{
1015 ofstream BondFile;
1016 stringstream line;
1017 bool status = true;
1018
1019 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
1020 BondFile.open(line.str().c_str(), ios::out);
1021 Log() << Verbose(1) << "Saving adjacency list ... ";
1022 if (BondFile != NULL) {
1023 BondFile << "m\tn" << endl;
1024 ActOnAllAtoms(&atom::OutputBonds, &BondFile);
1025 BondFile.close();
1026 Log() << Verbose(1) << "done." << endl;
1027 } else {
1028 Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl;
1029 status = false;
1030 }
1031
1032 return status;
1033}
1034;
1035
1036bool CheckAdjacencyFileAgainstMolecule_Init(char *path, ifstream &File, int *&CurrentBonds)
1037{
1038 stringstream filename;
1039 filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
1040 File.open(filename.str().c_str(), ios::out);
1041 Log() << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
1042 if (File == NULL)
1043 return false;
1044
1045 // allocate storage structure
1046 CurrentBonds = Calloc<int> (8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
1047 return true;
1048}
1049;
1050
1051void CheckAdjacencyFileAgainstMolecule_Finalize(ifstream &File, int *&CurrentBonds)
1052{
1053 File.close();
1054 File.clear();
1055 Free(&CurrentBonds);
1056}
1057;
1058
1059void CheckAdjacencyFileAgainstMolecule_CompareBonds(bool &status, int &NonMatchNumber, atom *&Walker, size_t &CurrentBondsOfAtom, int AtomNr, int *&CurrentBonds, atom **ListOfAtoms)
1060{
1061 size_t j = 0;
1062 int id = -1;
1063
1064 //Log() << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
1065 if (CurrentBondsOfAtom == Walker->ListOfBonds.size()) {
1066 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1067 id = (*Runner)->GetOtherAtom(Walker)->nr;
1068 j = 0;
1069 for (; (j < CurrentBondsOfAtom) && (CurrentBonds[j++] != id);)
1070 ; // check against all parsed bonds
1071 if (CurrentBonds[j - 1] != id) { // no match ? Then mark in ListOfAtoms
1072 ListOfAtoms[AtomNr] = NULL;
1073 NonMatchNumber++;
1074 status = false;
1075 //Log() << Verbose(0) << "[" << id << "]\t";
1076 } else {
1077 //Log() << Verbose(0) << id << "\t";
1078 }
1079 }
1080 //Log() << Verbose(0) << endl;
1081 } else {
1082 Log() << Verbose(0) << "Number of bonds for Atom " << *Walker << " does not match, parsed " << CurrentBondsOfAtom << " against " << Walker->ListOfBonds.size() << "." << endl;
1083 status = false;
1084 }
1085}
1086;
1087
1088/** Checks contents of adjacency file against bond structure in structure molecule.
1089 * \param *out output stream for debugging
1090 * \param *path path to file
1091 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1092 * \return true - structure is equal, false - not equivalence
1093 */
1094bool molecule::CheckAdjacencyFileAgainstMolecule(char *path, atom **ListOfAtoms)
1095{
1096 ifstream File;
1097 bool status = true;
1098 atom *Walker = NULL;
1099 char *buffer = NULL;
1100 int *CurrentBonds = NULL;
1101 int NonMatchNumber = 0; // will number of atoms with differing bond structure
1102 size_t CurrentBondsOfAtom = -1;
1103
1104 if (!CheckAdjacencyFileAgainstMolecule_Init(path, File, CurrentBonds)) {
1105 Log() << Verbose(1) << "Adjacency file not found." << endl;
1106 return true;
1107 }
1108
1109 buffer = Malloc<char> (MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
1110 // Parse the file line by line and count the bonds
1111 while (!File.eof()) {
1112 File.getline(buffer, MAXSTRINGSIZE);
1113 stringstream line;
1114 line.str(buffer);
1115 int AtomNr = -1;
1116 line >> AtomNr;
1117 CurrentBondsOfAtom = -1; // we count one too far due to line end
1118 // parse into structure
1119 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1120 Walker = ListOfAtoms[AtomNr];
1121 while (!line.eof())
1122 line >> CurrentBonds[++CurrentBondsOfAtom];
1123 // compare against present bonds
1124 CheckAdjacencyFileAgainstMolecule_CompareBonds(status, NonMatchNumber, Walker, CurrentBondsOfAtom, AtomNr, CurrentBonds, ListOfAtoms);
1125 }
1126 }
1127 Free(&buffer);
1128 CheckAdjacencyFileAgainstMolecule_Finalize(File, CurrentBonds);
1129
1130 if (status) { // if equal we parse the KeySetFile
1131 Log() << Verbose(1) << "done: Equal." << endl;
1132 } else
1133 Log() << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
1134 return status;
1135}
1136;
1137
1138/** Picks from a global stack with all back edges the ones in the fragment.
1139 * \param *out output stream for debugging
1140 * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)
1141 * \param *ReferenceStack stack with all the back egdes
1142 * \param *LocalStack stack to be filled
1143 * \return true - everything ok, false - ReferenceStack was empty
1144 */
1145bool molecule::PickLocalBackEdges(atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack) const
1146{
1147 bool status = true;
1148 if (ReferenceStack->IsEmpty()) {
1149 Log() << Verbose(1) << "ReferenceStack is empty!" << endl;
1150 return false;
1151 }
1152 bond *Binder = ReferenceStack->PopFirst();
1153 bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely
1154 atom *Walker = NULL, *OtherAtom = NULL;
1155 ReferenceStack->Push(Binder);
1156
1157 do { // go through all bonds and push local ones
1158 Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule
1159 if (Walker != NULL) // if this Walker exists in the subgraph ...
1160 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1161 OtherAtom = (*Runner)->GetOtherAtom(Walker);
1162 if (OtherAtom == ListOfLocalAtoms[(*Runner)->rightatom->nr]) { // found the bond
1163 LocalStack->Push((*Runner));
1164 Log() << Verbose(3) << "Found local edge " << *(*Runner) << "." << endl;
1165 break;
1166 }
1167 }
1168 Binder = ReferenceStack->PopFirst(); // loop the stack for next item
1169 Log() << Verbose(3) << "Current candidate edge " << Binder << "." << endl;
1170 ReferenceStack->Push(Binder);
1171 } while (FirstBond != Binder);
1172
1173 return status;
1174}
1175;
1176
1177void BreadthFirstSearchAdd_Init(struct BFSAccounting &BFS, atom *&Root, int AtomCount, int BondOrder, atom **AddedAtomList = NULL)
1178{
1179 BFS.AtomCount = AtomCount;
1180 BFS.BondOrder = BondOrder;
1181 BFS.PredecessorList = Calloc<atom*> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: **PredecessorList");
1182 BFS.ShortestPathList = Calloc<int> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ShortestPathList");
1183 BFS.ColorList = Malloc<enum Shading> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ColorList");
1184 BFS.BFSStack = new StackClass<atom *> (AtomCount);
1185
1186 BFS.Root = Root;
1187 BFS.BFSStack->ClearStack();
1188 BFS.BFSStack->Push(Root);
1189
1190 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
1191 for (int i = AtomCount; i--;) {
1192 BFS.ShortestPathList[i] = -1;
1193 if ((AddedAtomList != NULL) && (AddedAtomList[i] != NULL)) // mark already present atoms (i.e. Root and maybe others) as visited
1194 BFS.ColorList[i] = lightgray;
1195 else
1196 BFS.ColorList[i] = white;
1197 }
1198 //BFS.ShortestPathList[Root->nr] = 0; //is set due to Calloc()
1199}
1200;
1201
1202void BreadthFirstSearchAdd_Free(struct BFSAccounting &BFS)
1203{
1204 Free(&BFS.PredecessorList);
1205 Free(&BFS.ShortestPathList);
1206 Free(&BFS.ColorList);
1207 delete (BFS.BFSStack);
1208 BFS.AtomCount = 0;
1209}
1210;
1211
1212void BreadthFirstSearchAdd_UnvisitedNode(molecule *Mol, struct BFSAccounting &BFS, atom *&Walker, atom *&OtherAtom, bond *&Binder, bond *&Bond, atom **&AddedAtomList, bond **&AddedBondList, bool IsAngstroem)
1213{
1214 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
1215 BFS.ColorList[OtherAtom->nr] = lightgray;
1216 BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
1217 BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
1218 Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((BFS.ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << BFS.ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
1219 if ((((BFS.ShortestPathList[OtherAtom->nr] < BFS.BondOrder) && (Binder != Bond)))) { // Check for maximum distance
1220 Log() << Verbose(3);
1221 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
1222 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
1223 Log() << Verbose(0) << "Added OtherAtom " << OtherAtom->Name;
1224 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1225 Log() << Verbose(0) << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
1226 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
1227 Log() << Verbose(0) << "Not adding OtherAtom " << OtherAtom->Name;
1228 if (AddedBondList[Binder->nr] == NULL) {
1229 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1230 Log() << Verbose(0) << ", added Bond " << *(AddedBondList[Binder->nr]);
1231 } else
1232 Log() << Verbose(0) << ", not added Bond ";
1233 }
1234 Log() << Verbose(0) << ", putting OtherAtom into queue." << endl;
1235 BFS.BFSStack->Push(OtherAtom);
1236 } else { // out of bond order, then replace
1237 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
1238 BFS.ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
1239 if (Binder == Bond)
1240 Log() << Verbose(3) << "Not Queueing, is the Root bond";
1241 else if (BFS.ShortestPathList[OtherAtom->nr] >= BFS.BondOrder)
1242 Log() << Verbose(3) << "Not Queueing, is out of Bond Count of " << BFS.BondOrder;
1243 if (!Binder->Cyclic)
1244 Log() << Verbose(0) << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
1245 if (AddedBondList[Binder->nr] == NULL) {
1246 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
1247 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1248 } else {
1249#ifdef ADDHYDROGEN
1250 if (!Mol->AddHydrogenReplacementAtom(Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, IsAngstroem))
1251 exit(1);
1252#endif
1253 }
1254 }
1255 }
1256}
1257;
1258
1259void BreadthFirstSearchAdd_VisitedNode(molecule *Mol, struct BFSAccounting &BFS, atom *&Walker, atom *&OtherAtom, bond *&Binder, bond *&Bond, atom **&AddedAtomList, bond **&AddedBondList, bool IsAngstroem)
1260{
1261 Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
1262 // This has to be a cyclic bond, check whether it's present ...
1263 if (AddedBondList[Binder->nr] == NULL) {
1264 if ((Binder != Bond) && (Binder->Cyclic) && (((BFS.ShortestPathList[Walker->nr] + 1) < BFS.BondOrder))) {
1265 AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
1266 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
1267#ifdef ADDHYDROGEN
1268 if(!Mol->AddHydrogenReplacementAtom(Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, IsAngstroem))
1269 exit(1);
1270#endif
1271 }
1272 }
1273}
1274;
1275
1276/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
1277 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
1278 * white and putting into queue.
1279 * \param *out output stream for debugging
1280 * \param *Mol Molecule class to add atoms to
1281 * \param **AddedAtomList list with added atom pointers, index is atom father's number
1282 * \param **AddedBondList list with added bond pointers, index is bond father's number
1283 * \param *Root root vertex for BFS
1284 * \param *Bond bond not to look beyond
1285 * \param BondOrder maximum distance for vertices to add
1286 * \param IsAngstroem lengths are in angstroem or bohrradii
1287 */
1288void molecule::BreadthFirstSearchAdd(molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
1289{
1290 struct BFSAccounting BFS;
1291 atom *Walker = NULL, *OtherAtom = NULL;
1292 bond *Binder = NULL;
1293
1294 // add Root if not done yet
1295 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
1296 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
1297
1298 BreadthFirstSearchAdd_Init(BFS, Root, BondOrder, AtomCount, AddedAtomList);
1299
1300 // and go on ... Queue always contains all lightgray vertices
1301 while (!BFS.BFSStack->IsEmpty()) {
1302 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
1303 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
1304 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
1305 // followed by n+1 till top of stack.
1306 Walker = BFS.BFSStack->PopFirst(); // pop oldest added
1307 Log() << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << Walker->ListOfBonds.size() << " bonds." << endl;
1308 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1309 if ((*Runner) != NULL) { // don't look at bond equal NULL
1310 Binder = (*Runner);
1311 OtherAtom = (*Runner)->GetOtherAtom(Walker);
1312 Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *(*Runner) << "." << endl;
1313 if (BFS.ColorList[OtherAtom->nr] == white) {
1314 BreadthFirstSearchAdd_UnvisitedNode(Mol, BFS, Walker, OtherAtom, Binder, Bond, AddedAtomList, AddedBondList, IsAngstroem);
1315 } else {
1316 BreadthFirstSearchAdd_VisitedNode(Mol, BFS, Walker, OtherAtom, Binder, Bond, AddedAtomList, AddedBondList, IsAngstroem);
1317 }
1318 }
1319 }
1320 BFS.ColorList[Walker->nr] = black;
1321 Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
1322 }
1323 BreadthFirstSearchAdd_Free(BFS);
1324}
1325;
1326
1327/** Adds a bond as a copy to a given one
1328 * \param *left leftatom of new bond
1329 * \param *right rightatom of new bond
1330 * \param *CopyBond rest of fields in bond are copied from this
1331 * \return pointer to new bond
1332 */
1333bond * molecule::CopyBond(atom *left, atom *right, bond *CopyBond)
1334{
1335 bond *Binder = AddBond(left, right, CopyBond->BondDegree);
1336 Binder->Cyclic = CopyBond->Cyclic;
1337 Binder->Type = CopyBond->Type;
1338 return Binder;
1339}
1340;
1341
1342void BuildInducedSubgraph_Init(atom **&ParentList, int AtomCount)
1343{
1344 // reset parent list
1345 ParentList = Calloc<atom*> (AtomCount, "molecule::BuildInducedSubgraph_Init: **ParentList");
1346 Log() << Verbose(3) << "Resetting ParentList." << endl;
1347}
1348;
1349
1350void BuildInducedSubgraph_FillParentList(const molecule *mol, const molecule *Father, atom **&ParentList)
1351{
1352 // fill parent list with sons
1353 Log() << Verbose(3) << "Filling Parent List." << endl;
1354 atom *Walker = mol->start;
1355 while (Walker->next != mol->end) {
1356 Walker = Walker->next;
1357 ParentList[Walker->father->nr] = Walker;
1358 // Outputting List for debugging
1359 Log() << Verbose(4) << "Son[" << Walker->father->nr << "] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
1360 }
1361
1362}
1363;
1364
1365void BuildInducedSubgraph_Finalize(atom **&ParentList)
1366{
1367 Free(&ParentList);
1368}
1369;
1370
1371bool BuildInducedSubgraph_CreateBondsFromParent(molecule *mol, const molecule *Father, atom **&ParentList)
1372{
1373 bool status = true;
1374 atom *Walker = NULL;
1375 atom *OtherAtom = NULL;
1376 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
1377 Log() << Verbose(3) << "Creating bonds." << endl;
1378 Walker = Father->start;
1379 while (Walker->next != Father->end) {
1380 Walker = Walker->next;
1381 if (ParentList[Walker->nr] != NULL) {
1382 if (ParentList[Walker->nr]->father != Walker) {
1383 status = false;
1384 } else {
1385 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1386 OtherAtom = (*Runner)->GetOtherAtom(Walker);
1387 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
1388 Log() << Verbose(4) << "Endpoints of Bond " << (*Runner) << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
1389 mol->AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], (*Runner)->BondDegree);
1390 }
1391 }
1392 }
1393 }
1394 }
1395 return status;
1396}
1397;
1398
1399/** Adds bond structure to this molecule from \a Father molecule.
1400 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
1401 * with end points present in this molecule, bond is created in this molecule.
1402 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
1403 * \param *out output stream for debugging
1404 * \param *Father father molecule
1405 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
1406 * \todo not checked, not fully working probably
1407 */
1408bool molecule::BuildInducedSubgraph(const molecule *Father)
1409{
1410 bool status = true;
1411 atom **ParentList = NULL;
1412
1413 Log() << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
1414 BuildInducedSubgraph_Init(ParentList, Father->AtomCount);
1415 BuildInducedSubgraph_FillParentList(this, Father, ParentList);
1416 status = BuildInducedSubgraph_CreateBondsFromParent(this, Father, ParentList);
1417 BuildInducedSubgraph_Finalize(ParentList);
1418 Log() << Verbose(2) << "End of BuildInducedSubgraph." << endl;
1419 return status;
1420}
1421;
1422
1423/** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
1424 * \param *out output stream for debugging
1425 * \param *Fragment Keyset of fragment's vertices
1426 * \return true - connected, false - disconnected
1427 * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
1428 */
1429bool molecule::CheckForConnectedSubgraph(KeySet *Fragment)
1430{
1431 atom *Walker = NULL, *Walker2 = NULL;
1432 bool BondStatus = false;
1433 int size;
1434
1435 Log() << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;
1436 Log() << Verbose(2) << "Disconnected atom: ";
1437
1438 // count number of atoms in graph
1439 size = 0;
1440 for (KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
1441 size++;
1442 if (size > 1)
1443 for (KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
1444 Walker = FindAtom(*runner);
1445 BondStatus = false;
1446 for (KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
1447 Walker2 = FindAtom(*runners);
1448 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
1449 if ((*Runner)->GetOtherAtom(Walker) == Walker2) {
1450 BondStatus = true;
1451 break;
1452 }
1453 if (BondStatus)
1454 break;
1455 }
1456 }
1457 if (!BondStatus) {
1458 Log() << Verbose(0) << (*Walker) << endl;
1459 return false;
1460 }
1461 }
1462 else {
1463 Log() << Verbose(0) << "none." << endl;
1464 return true;
1465 }
1466 Log() << Verbose(0) << "none." << endl;
1467
1468 Log() << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;
1469
1470 return true;
1471}
Note: See TracBrowser for help on using the repository browser.