1 | /*
|
---|
2 | * molecule_graph.cpp
|
---|
3 | *
|
---|
4 | * Created on: Oct 5, 2009
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #include "atom.hpp"
|
---|
9 | #include "bond.hpp"
|
---|
10 | #include "bondgraph.hpp"
|
---|
11 | #include "config.hpp"
|
---|
12 | #include "element.hpp"
|
---|
13 | #include "helpers.hpp"
|
---|
14 | #include "linkedcell.hpp"
|
---|
15 | #include "lists.hpp"
|
---|
16 | #include "log.hpp"
|
---|
17 | #include "memoryallocator.hpp"
|
---|
18 | #include "molecule.hpp"
|
---|
19 |
|
---|
20 | struct BFSAccounting
|
---|
21 | {
|
---|
22 | atom **PredecessorList;
|
---|
23 | int *ShortestPathList;
|
---|
24 | enum Shading *ColorList;
|
---|
25 | class StackClass<atom *> *BFSStack;
|
---|
26 | class StackClass<atom *> *TouchedStack;
|
---|
27 | int AtomCount;
|
---|
28 | int BondOrder;
|
---|
29 | atom *Root;
|
---|
30 | bool BackStepping;
|
---|
31 | int CurrentGraphNr;
|
---|
32 | int ComponentNr;
|
---|
33 | };
|
---|
34 |
|
---|
35 | /** Accounting data for Depth First Search.
|
---|
36 | */
|
---|
37 | struct DFSAccounting
|
---|
38 | {
|
---|
39 | class StackClass<atom *> *AtomStack;
|
---|
40 | class StackClass<bond *> *BackEdgeStack;
|
---|
41 | int CurrentGraphNr;
|
---|
42 | int ComponentNumber;
|
---|
43 | atom *Root;
|
---|
44 | bool BackStepping;
|
---|
45 | };
|
---|
46 |
|
---|
47 | /************************************* Functions for class molecule *********************************/
|
---|
48 |
|
---|
49 | /** Creates an adjacency list of the molecule.
|
---|
50 | * We obtain an outside file with the indices of atoms which are bondmembers.
|
---|
51 | */
|
---|
52 | void molecule::CreateAdjacencyListFromDbondFile(ifstream *input)
|
---|
53 | {
|
---|
54 |
|
---|
55 | // 1 We will parse bonds out of the dbond file created by tremolo.
|
---|
56 | int atom1, atom2;
|
---|
57 | atom *Walker, *OtherWalker;
|
---|
58 |
|
---|
59 | if (!input) {
|
---|
60 | Log() << Verbose(1) << "Opening silica failed \n";
|
---|
61 | };
|
---|
62 |
|
---|
63 | *input >> ws >> atom1;
|
---|
64 | *input >> ws >> atom2;
|
---|
65 | Log() << Verbose(1) << "Scanning file\n";
|
---|
66 | while (!input->eof()) // Check whether we read everything already
|
---|
67 | {
|
---|
68 | *input >> ws >> atom1;
|
---|
69 | *input >> ws >> atom2;
|
---|
70 |
|
---|
71 | if (atom2 < atom1) //Sort indices of atoms in order
|
---|
72 | flip(atom1, atom2);
|
---|
73 | Walker = FindAtom(atom1);
|
---|
74 | OtherWalker = FindAtom(atom2);
|
---|
75 | AddBond(Walker, OtherWalker); //Add the bond between the two atoms with respective indices.
|
---|
76 | }
|
---|
77 | }
|
---|
78 | ;
|
---|
79 |
|
---|
80 | /** Creates an adjacency list of the molecule.
|
---|
81 | * Generally, we use the CSD approach to bond recognition, that is the the distance
|
---|
82 | * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
|
---|
83 | * a threshold t = 0.4 Angstroem.
|
---|
84 | * To make it O(N log N) the function uses the linked-cell technique as follows:
|
---|
85 | * The procedure is step-wise:
|
---|
86 | * -# Remove every bond in list
|
---|
87 | * -# Count the atoms in the molecule with CountAtoms()
|
---|
88 | * -# partition cell into smaller linked cells of size \a bonddistance
|
---|
89 | * -# put each atom into its corresponding cell
|
---|
90 | * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
|
---|
91 | * -# correct the bond degree iteratively (single->double->triple bond)
|
---|
92 | * -# finally print the bond list to \a *out if desired
|
---|
93 | * \param *out out stream for printing the matrix, NULL if no output
|
---|
94 | * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
|
---|
95 | * \param IsAngstroem whether coordinate system is gauged to Angstroem or Bohr radii
|
---|
96 | * \param *minmaxdistance function to give upper and lower bound on whether particle is bonded to some other
|
---|
97 | * \param *BG BondGraph with the member function above or NULL, if just standard covalent should be used.
|
---|
98 | */
|
---|
99 | void molecule::CreateAdjacencyList(double bonddistance, bool IsAngstroem, void (BondGraph::*minmaxdistance)(BondedParticle * const , BondedParticle * const , double &, double &, bool), BondGraph *BG)
|
---|
100 | {
|
---|
101 | atom *Walker = NULL;
|
---|
102 | atom *OtherWalker = NULL;
|
---|
103 | atom **AtomMap = NULL;
|
---|
104 | int n[NDIM];
|
---|
105 | double MinDistance, MaxDistance;
|
---|
106 | LinkedCell *LC = NULL;
|
---|
107 | bool free_BG = false;
|
---|
108 |
|
---|
109 | if (BG == NULL) {
|
---|
110 | BG = new BondGraph(IsAngstroem);
|
---|
111 | free_BG = true;
|
---|
112 | }
|
---|
113 |
|
---|
114 | BondDistance = bonddistance; // * ((IsAngstroem) ? 1. : 1./AtomicLengthToAngstroem);
|
---|
115 | Log() << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
|
---|
116 | // remove every bond from the list
|
---|
117 | bond *Binder = NULL;
|
---|
118 | while (last->previous != first) {
|
---|
119 | Binder = last->previous;
|
---|
120 | Binder->leftatom->UnregisterBond(Binder);
|
---|
121 | Binder->rightatom->UnregisterBond(Binder);
|
---|
122 | removewithoutcheck(Binder);
|
---|
123 | }
|
---|
124 | BondCount = 0;
|
---|
125 |
|
---|
126 | // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
|
---|
127 | CountAtoms();
|
---|
128 | Log() << Verbose(1) << "AtomCount " << AtomCount << " and bonddistance is " << bonddistance << "." << endl;
|
---|
129 |
|
---|
130 | if ((AtomCount > 1) && (bonddistance > 1.)) {
|
---|
131 | Log() << Verbose(2) << "Creating Linked Cell structure ... " << endl;
|
---|
132 | LC = new LinkedCell(this, bonddistance);
|
---|
133 |
|
---|
134 | // create a list to map Tesselpoint::nr to atom *
|
---|
135 | Log() << Verbose(2) << "Creating TesselPoint to atom map ... " << endl;
|
---|
136 | AtomMap = Calloc<atom *> (AtomCount, "molecule::CreateAdjacencyList - **AtomCount");
|
---|
137 | Walker = start;
|
---|
138 | while (Walker->next != end) {
|
---|
139 | Walker = Walker->next;
|
---|
140 | AtomMap[Walker->nr] = Walker;
|
---|
141 | }
|
---|
142 |
|
---|
143 | // 3a. go through every cell
|
---|
144 | Log() << Verbose(2) << "Celling ... " << endl;
|
---|
145 | for (LC->n[0] = 0; LC->n[0] < LC->N[0]; LC->n[0]++)
|
---|
146 | for (LC->n[1] = 0; LC->n[1] < LC->N[1]; LC->n[1]++)
|
---|
147 | for (LC->n[2] = 0; LC->n[2] < LC->N[2]; LC->n[2]++) {
|
---|
148 | const LinkedNodes *List = LC->GetCurrentCell();
|
---|
149 | //Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
|
---|
150 | if (List != NULL) {
|
---|
151 | for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
152 | Walker = AtomMap[(*Runner)->nr];
|
---|
153 | //Log() << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
|
---|
154 | // 3c. check for possible bond between each atom in this and every one in the 27 cells
|
---|
155 | for (n[0] = -1; n[0] <= 1; n[0]++)
|
---|
156 | for (n[1] = -1; n[1] <= 1; n[1]++)
|
---|
157 | for (n[2] = -1; n[2] <= 1; n[2]++) {
|
---|
158 | const LinkedNodes *OtherList = LC->GetRelativeToCurrentCell(n);
|
---|
159 | //Log() << Verbose(2) << "Current relative cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
|
---|
160 | if (OtherList != NULL) {
|
---|
161 | for (LinkedNodes::const_iterator OtherRunner = OtherList->begin(); OtherRunner != OtherList->end(); OtherRunner++) {
|
---|
162 | if ((*OtherRunner)->nr > Walker->nr) {
|
---|
163 | OtherWalker = AtomMap[(*OtherRunner)->nr];
|
---|
164 | //Log() << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
|
---|
165 | (BG->*minmaxdistance)(Walker, OtherWalker, MinDistance, MaxDistance, IsAngstroem);
|
---|
166 | const double distance = OtherWalker->x.PeriodicDistanceSquared(&(Walker->x), cell_size);
|
---|
167 | const bool status = (distance <= MaxDistance * MaxDistance) && (distance >= MinDistance * MinDistance);
|
---|
168 | if ((OtherWalker->father->nr > Walker->father->nr) && (status)) { // create bond if distance is smaller
|
---|
169 | //Log() << Verbose(1) << "Adding Bond between " << *Walker << " and " << *OtherWalker << " in distance " << sqrt(distance) << "." << endl;
|
---|
170 | AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
|
---|
171 | } else {
|
---|
172 | //Log() << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
|
---|
173 | }
|
---|
174 | }
|
---|
175 | }
|
---|
176 | }
|
---|
177 | }
|
---|
178 | }
|
---|
179 | }
|
---|
180 | }
|
---|
181 | Free(&AtomMap);
|
---|
182 | delete (LC);
|
---|
183 | Log() << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << BondDistance << "." << endl;
|
---|
184 |
|
---|
185 | // correct bond degree by comparing valence and bond degree
|
---|
186 | Log() << Verbose(2) << "Correcting bond degree ... " << endl;
|
---|
187 | CorrectBondDegree();
|
---|
188 |
|
---|
189 | // output bonds for debugging (if bond chain list was correctly installed)
|
---|
190 | ActOnAllAtoms( &atom::OutputBondOfAtom );
|
---|
191 | } else
|
---|
192 | Log() << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
|
---|
193 | Log() << Verbose(0) << "End of CreateAdjacencyList." << endl;
|
---|
194 | if (free_BG)
|
---|
195 | delete(BG);
|
---|
196 | }
|
---|
197 | ;
|
---|
198 |
|
---|
199 | /** Prints a list of all bonds to \a *out.
|
---|
200 | * \param output stream
|
---|
201 | */
|
---|
202 | void molecule::OutputBondsList() const
|
---|
203 | {
|
---|
204 | Log() << Verbose(1) << endl << "From contents of bond chain list:";
|
---|
205 | bond *Binder = first;
|
---|
206 | while (Binder->next != last) {
|
---|
207 | Binder = Binder->next;
|
---|
208 | Log() << Verbose(0) << *Binder << "\t" << endl;
|
---|
209 | }
|
---|
210 | Log() << Verbose(0) << endl;
|
---|
211 | }
|
---|
212 | ;
|
---|
213 |
|
---|
214 | /** correct bond degree by comparing valence and bond degree.
|
---|
215 | * correct Bond degree of each bond by checking both bond partners for a mismatch between valence and current sum of bond degrees,
|
---|
216 | * iteratively increase the one first where the other bond partner has the fewest number of bonds (i.e. in general bonds oxygene
|
---|
217 | * preferred over carbon bonds). Beforehand, we had picked the first mismatching partner, which lead to oxygenes with single instead of
|
---|
218 | * double bonds as was expected.
|
---|
219 | * \param *out output stream for debugging
|
---|
220 | * \return number of bonds that could not be corrected
|
---|
221 | */
|
---|
222 | int molecule::CorrectBondDegree() const
|
---|
223 | {
|
---|
224 | int No = 0, OldNo = -1;
|
---|
225 |
|
---|
226 | if (BondCount != 0) {
|
---|
227 | Log() << Verbose(1) << "Correcting Bond degree of each bond ... " << endl;
|
---|
228 | do {
|
---|
229 | OldNo = No;
|
---|
230 | No = SumPerAtom( &atom::CorrectBondDegree );
|
---|
231 | } while (OldNo != No);
|
---|
232 | Log() << Verbose(0) << " done." << endl;
|
---|
233 | } else {
|
---|
234 | Log() << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
|
---|
235 | }
|
---|
236 | Log() << Verbose(0) << No << " bonds could not be corrected." << endl;
|
---|
237 |
|
---|
238 | return (No);
|
---|
239 | }
|
---|
240 | ;
|
---|
241 |
|
---|
242 | /** Counts all cyclic bonds and returns their number.
|
---|
243 | * \note Hydrogen bonds can never by cyclic, thus no check for that
|
---|
244 | * \param *out output stream for debugging
|
---|
245 | * \return number opf cyclic bonds
|
---|
246 | */
|
---|
247 | int molecule::CountCyclicBonds()
|
---|
248 | {
|
---|
249 | NoCyclicBonds = 0;
|
---|
250 | int *MinimumRingSize = NULL;
|
---|
251 | MoleculeLeafClass *Subgraphs = NULL;
|
---|
252 | class StackClass<bond *> *BackEdgeStack = NULL;
|
---|
253 | bond *Binder = first;
|
---|
254 | if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
|
---|
255 | Log() << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
|
---|
256 | Subgraphs = DepthFirstSearchAnalysis(BackEdgeStack);
|
---|
257 | while (Subgraphs->next != NULL) {
|
---|
258 | Subgraphs = Subgraphs->next;
|
---|
259 | delete (Subgraphs->previous);
|
---|
260 | }
|
---|
261 | delete (Subgraphs);
|
---|
262 | delete[] (MinimumRingSize);
|
---|
263 | }
|
---|
264 | while (Binder->next != last) {
|
---|
265 | Binder = Binder->next;
|
---|
266 | if (Binder->Cyclic)
|
---|
267 | NoCyclicBonds++;
|
---|
268 | }
|
---|
269 | delete (BackEdgeStack);
|
---|
270 | return NoCyclicBonds;
|
---|
271 | }
|
---|
272 | ;
|
---|
273 |
|
---|
274 | /** Returns Shading as a char string.
|
---|
275 | * \param color the Shading
|
---|
276 | * \return string of the flag
|
---|
277 | */
|
---|
278 | string molecule::GetColor(enum Shading color) const
|
---|
279 | {
|
---|
280 | switch (color) {
|
---|
281 | case white:
|
---|
282 | return "white";
|
---|
283 | break;
|
---|
284 | case lightgray:
|
---|
285 | return "lightgray";
|
---|
286 | break;
|
---|
287 | case darkgray:
|
---|
288 | return "darkgray";
|
---|
289 | break;
|
---|
290 | case black:
|
---|
291 | return "black";
|
---|
292 | break;
|
---|
293 | default:
|
---|
294 | return "uncolored";
|
---|
295 | break;
|
---|
296 | };
|
---|
297 | }
|
---|
298 | ;
|
---|
299 |
|
---|
300 | /** Sets atom::GraphNr and atom::LowpointNr to BFSAccounting::CurrentGraphNr.
|
---|
301 | * \param *out output stream for debugging
|
---|
302 | * \param *Walker current node
|
---|
303 | * \param &BFS structure with accounting data for BFS
|
---|
304 | */
|
---|
305 | void DepthFirstSearchAnalysis_SetWalkersGraphNr(atom *&Walker, struct DFSAccounting &DFS)
|
---|
306 | {
|
---|
307 | if (!DFS.BackStepping) { // if we don't just return from (8)
|
---|
308 | Walker->GraphNr = DFS.CurrentGraphNr;
|
---|
309 | Walker->LowpointNr = DFS.CurrentGraphNr;
|
---|
310 | Log() << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
|
---|
311 | DFS.AtomStack->Push(Walker);
|
---|
312 | DFS.CurrentGraphNr++;
|
---|
313 | }
|
---|
314 | }
|
---|
315 | ;
|
---|
316 |
|
---|
317 | /** During DFS goes along unvisited bond and touches other atom.
|
---|
318 | * Sets bond::type, if
|
---|
319 | * -# BackEdge: set atom::LowpointNr and push on \a BackEdgeStack
|
---|
320 | * -# TreeEgde: set atom::Ancestor and continue with Walker along this edge
|
---|
321 | * Continue until molecule::FindNextUnused() finds no more unused bonds.
|
---|
322 | * \param *out output stream for debugging
|
---|
323 | * \param *mol molecule with atoms and finding unused bonds
|
---|
324 | * \param *&Binder current edge
|
---|
325 | * \param &DFS DFS accounting data
|
---|
326 | */
|
---|
327 | void DepthFirstSearchAnalysis_ProbeAlongUnusedBond(const molecule * const mol, atom *&Walker, bond *&Binder, struct DFSAccounting &DFS)
|
---|
328 | {
|
---|
329 | atom *OtherAtom = NULL;
|
---|
330 |
|
---|
331 | do { // (3) if Walker has no unused egdes, go to (5)
|
---|
332 | DFS.BackStepping = false; // reset backstepping flag for (8)
|
---|
333 | if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
|
---|
334 | Binder = mol->FindNextUnused(Walker);
|
---|
335 | if (Binder == NULL)
|
---|
336 | break;
|
---|
337 | Log() << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
|
---|
338 | // (4) Mark Binder used, ...
|
---|
339 | Binder->MarkUsed(black);
|
---|
340 | OtherAtom = Binder->GetOtherAtom(Walker);
|
---|
341 | Log() << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
|
---|
342 | if (OtherAtom->GraphNr != -1) {
|
---|
343 | // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
|
---|
344 | Binder->Type = BackEdge;
|
---|
345 | DFS.BackEdgeStack->Push(Binder);
|
---|
346 | Walker->LowpointNr = (Walker->LowpointNr < OtherAtom->GraphNr) ? Walker->LowpointNr : OtherAtom->GraphNr;
|
---|
347 | Log() << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
|
---|
348 | } else {
|
---|
349 | // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
|
---|
350 | Binder->Type = TreeEdge;
|
---|
351 | OtherAtom->Ancestor = Walker;
|
---|
352 | Walker = OtherAtom;
|
---|
353 | Log() << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
|
---|
354 | break;
|
---|
355 | }
|
---|
356 | Binder = NULL;
|
---|
357 | } while (1); // (3)
|
---|
358 | }
|
---|
359 | ;
|
---|
360 |
|
---|
361 | /** Checks whether we have a new component.
|
---|
362 | * if atom::LowpointNr of \a *&Walker is greater than atom::GraphNr of its atom::Ancestor, we have a new component.
|
---|
363 | * Meaning that if we touch upon a node who suddenly has a smaller atom::LowpointNr than its ancestor, then we
|
---|
364 | * have a found a new branch in the graph tree.
|
---|
365 | * \param *out output stream for debugging
|
---|
366 | * \param *mol molecule with atoms and finding unused bonds
|
---|
367 | * \param *&Walker current node
|
---|
368 | * \param &DFS DFS accounting data
|
---|
369 | */
|
---|
370 | void DepthFirstSearchAnalysis_CheckForaNewComponent(const molecule * const mol, atom *&Walker, struct DFSAccounting &DFS, MoleculeLeafClass *&LeafWalker)
|
---|
371 | {
|
---|
372 | atom *OtherAtom = NULL;
|
---|
373 |
|
---|
374 | // (5) if Ancestor of Walker is ...
|
---|
375 | Log() << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
|
---|
376 |
|
---|
377 | if (Walker->Ancestor->GraphNr != DFS.Root->GraphNr) {
|
---|
378 | // (6) (Ancestor of Walker is not Root)
|
---|
379 | if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
|
---|
380 | // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
|
---|
381 | Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
|
---|
382 | Log() << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
|
---|
383 | } else {
|
---|
384 | // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
|
---|
385 | Walker->Ancestor->SeparationVertex = true;
|
---|
386 | Log() << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
|
---|
387 | mol->SetNextComponentNumber(Walker->Ancestor, DFS.ComponentNumber);
|
---|
388 | Log() << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << DFS.ComponentNumber << "." << endl;
|
---|
389 | mol->SetNextComponentNumber(Walker, DFS.ComponentNumber);
|
---|
390 | Log() << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
|
---|
391 | do {
|
---|
392 | OtherAtom = DFS.AtomStack->PopLast();
|
---|
393 | LeafWalker->Leaf->AddCopyAtom(OtherAtom);
|
---|
394 | mol->SetNextComponentNumber(OtherAtom, DFS.ComponentNumber);
|
---|
395 | Log() << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
|
---|
396 | } while (OtherAtom != Walker);
|
---|
397 | DFS.ComponentNumber++;
|
---|
398 | }
|
---|
399 | // (8) Walker becomes its Ancestor, go to (3)
|
---|
400 | Log() << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
|
---|
401 | Walker = Walker->Ancestor;
|
---|
402 | DFS.BackStepping = true;
|
---|
403 | }
|
---|
404 | }
|
---|
405 | ;
|
---|
406 |
|
---|
407 | /** Cleans the root stack when we have found a component.
|
---|
408 | * If we are not DFSAccounting::BackStepping, then we clear the root stack by putting everything into a
|
---|
409 | * component down till we meet DFSAccounting::Root.
|
---|
410 | * \param *out output stream for debugging
|
---|
411 | * \param *mol molecule with atoms and finding unused bonds
|
---|
412 | * \param *&Walker current node
|
---|
413 | * \param *&Binder current edge
|
---|
414 | * \param &DFS DFS accounting data
|
---|
415 | */
|
---|
416 | void DepthFirstSearchAnalysis_CleanRootStackDownTillWalker(const molecule * const mol, atom *&Walker, bond *&Binder, struct DFSAccounting &DFS, MoleculeLeafClass *&LeafWalker)
|
---|
417 | {
|
---|
418 | atom *OtherAtom = NULL;
|
---|
419 |
|
---|
420 | if (!DFS.BackStepping) { // coming from (8) want to go to (3)
|
---|
421 | // (9) remove all from stack till Walker (including), these and Root form a component
|
---|
422 | //DFS.AtomStack->Output(out);
|
---|
423 | mol->SetNextComponentNumber(DFS.Root, DFS.ComponentNumber);
|
---|
424 | Log() << Verbose(3) << "(9) Root[" << DFS.Root->Name << "]'s Component is " << DFS.ComponentNumber << "." << endl;
|
---|
425 | mol->SetNextComponentNumber(Walker, DFS.ComponentNumber);
|
---|
426 | Log() << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << DFS.ComponentNumber << "." << endl;
|
---|
427 | do {
|
---|
428 | OtherAtom = DFS.AtomStack->PopLast();
|
---|
429 | LeafWalker->Leaf->AddCopyAtom(OtherAtom);
|
---|
430 | mol->SetNextComponentNumber(OtherAtom, DFS.ComponentNumber);
|
---|
431 | Log() << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << DFS.ComponentNumber << "." << endl;
|
---|
432 | } while (OtherAtom != Walker);
|
---|
433 | DFS.ComponentNumber++;
|
---|
434 |
|
---|
435 | // (11) Root is separation vertex, set Walker to Root and go to (4)
|
---|
436 | Walker = DFS.Root;
|
---|
437 | Binder = mol->FindNextUnused(Walker);
|
---|
438 | Log() << Verbose(1) << "(10) Walker is Root[" << DFS.Root->Name << "], next Unused Bond is " << Binder << "." << endl;
|
---|
439 | if (Binder != NULL) { // Root is separation vertex
|
---|
440 | Log() << Verbose(1) << "(11) Root is a separation vertex." << endl;
|
---|
441 | Walker->SeparationVertex = true;
|
---|
442 | }
|
---|
443 | }
|
---|
444 | }
|
---|
445 | ;
|
---|
446 |
|
---|
447 | /** Initializes DFSAccounting structure.
|
---|
448 | * \param *out output stream for debugging
|
---|
449 | * \param &DFS accounting structure to allocate
|
---|
450 | * \param *mol molecule with AtomCount, BondCount and all atoms
|
---|
451 | */
|
---|
452 | void DepthFirstSearchAnalysis_Init(struct DFSAccounting &DFS, const molecule * const mol)
|
---|
453 | {
|
---|
454 | DFS.AtomStack = new StackClass<atom *> (mol->AtomCount);
|
---|
455 | DFS.CurrentGraphNr = 0;
|
---|
456 | DFS.ComponentNumber = 0;
|
---|
457 | DFS.BackStepping = false;
|
---|
458 | mol->ResetAllBondsToUnused();
|
---|
459 | mol->SetAtomValueToValue(-1, &atom::GraphNr);
|
---|
460 | mol->ActOnAllAtoms(&atom::InitComponentNr);
|
---|
461 | DFS.BackEdgeStack->ClearStack();
|
---|
462 | }
|
---|
463 | ;
|
---|
464 |
|
---|
465 | /** Free's DFSAccounting structure.
|
---|
466 | * \param *out output stream for debugging
|
---|
467 | * \param &DFS accounting structure to free
|
---|
468 | */
|
---|
469 | void DepthFirstSearchAnalysis_Finalize(struct DFSAccounting &DFS)
|
---|
470 | {
|
---|
471 | delete (DFS.AtomStack);
|
---|
472 | // delete (DFS.BackEdgeStack); // DON'T free, see DepthFirstSearchAnalysis(), is returned as allocated
|
---|
473 | }
|
---|
474 | ;
|
---|
475 |
|
---|
476 | /** Performs a Depth-First search on this molecule.
|
---|
477 | * Marks bonds in molecule as cyclic, bridge, ... and atoms as
|
---|
478 | * articulations points, ...
|
---|
479 | * We use the algorithm from [Even, Graph Algorithms, p.62].
|
---|
480 | * \param *out output stream for debugging
|
---|
481 | * \param *&BackEdgeStack NULL pointer to StackClass with all the found back edges, allocated and filled on return
|
---|
482 | * \return list of each disconnected subgraph as an individual molecule class structure
|
---|
483 | */
|
---|
484 | MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(class StackClass<bond *> *&BackEdgeStack) const
|
---|
485 | {
|
---|
486 | struct DFSAccounting DFS;
|
---|
487 | BackEdgeStack = new StackClass<bond *> (BondCount);
|
---|
488 | DFS.BackEdgeStack = BackEdgeStack;
|
---|
489 | MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
|
---|
490 | MoleculeLeafClass *LeafWalker = SubGraphs;
|
---|
491 | int OldGraphNr = 0;
|
---|
492 | atom *Walker = NULL;
|
---|
493 | bond *Binder = NULL;
|
---|
494 |
|
---|
495 | Log() << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
|
---|
496 | DepthFirstSearchAnalysis_Init(DFS, this);
|
---|
497 |
|
---|
498 | DFS.Root = start->next;
|
---|
499 | while (DFS.Root != end) { // if there any atoms at all
|
---|
500 | // (1) mark all edges unused, empty stack, set atom->GraphNr = -1 for all
|
---|
501 | DFS.AtomStack->ClearStack();
|
---|
502 |
|
---|
503 | // put into new subgraph molecule and add this to list of subgraphs
|
---|
504 | LeafWalker = new MoleculeLeafClass(LeafWalker);
|
---|
505 | LeafWalker->Leaf = new molecule(elemente);
|
---|
506 | LeafWalker->Leaf->AddCopyAtom(DFS.Root);
|
---|
507 |
|
---|
508 | OldGraphNr = DFS.CurrentGraphNr;
|
---|
509 | Walker = DFS.Root;
|
---|
510 | do { // (10)
|
---|
511 | do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
|
---|
512 | DepthFirstSearchAnalysis_SetWalkersGraphNr(Walker, DFS);
|
---|
513 |
|
---|
514 | DepthFirstSearchAnalysis_ProbeAlongUnusedBond(this, Walker, Binder, DFS);
|
---|
515 |
|
---|
516 | if (Binder == NULL) {
|
---|
517 | Log() << Verbose(2) << "No more Unused Bonds." << endl;
|
---|
518 | break;
|
---|
519 | } else
|
---|
520 | Binder = NULL;
|
---|
521 | } while (1); // (2)
|
---|
522 |
|
---|
523 | // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
|
---|
524 | if ((Walker == DFS.Root) && (Binder == NULL))
|
---|
525 | break;
|
---|
526 |
|
---|
527 | DepthFirstSearchAnalysis_CheckForaNewComponent(this, Walker, DFS, LeafWalker);
|
---|
528 |
|
---|
529 | DepthFirstSearchAnalysis_CleanRootStackDownTillWalker(this, Walker, Binder, DFS, LeafWalker);
|
---|
530 |
|
---|
531 | } while ((DFS.BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
|
---|
532 |
|
---|
533 | // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
|
---|
534 | Log() << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << DFS.CurrentGraphNr << "." << endl;
|
---|
535 | LeafWalker->Leaf->Output((ofstream *)&cout);
|
---|
536 | Log() << Verbose(0) << endl;
|
---|
537 |
|
---|
538 | // step on to next root
|
---|
539 | while ((DFS.Root != end) && (DFS.Root->GraphNr != -1)) {
|
---|
540 | //Log() << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
|
---|
541 | if (DFS.Root->GraphNr != -1) // if already discovered, step on
|
---|
542 | DFS.Root = DFS.Root->next;
|
---|
543 | }
|
---|
544 | }
|
---|
545 | // set cyclic bond criterium on "same LP" basis
|
---|
546 | CyclicBondAnalysis();
|
---|
547 |
|
---|
548 | OutputGraphInfoPerAtom();
|
---|
549 |
|
---|
550 | OutputGraphInfoPerBond();
|
---|
551 |
|
---|
552 | // free all and exit
|
---|
553 | DepthFirstSearchAnalysis_Finalize(DFS);
|
---|
554 | Log() << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
|
---|
555 | return SubGraphs;
|
---|
556 | }
|
---|
557 | ;
|
---|
558 |
|
---|
559 | /** Scans through all bonds and set bond::Cyclic to true where atom::LowpointNr of both ends is equal: LP criterion.
|
---|
560 | */
|
---|
561 | void molecule::CyclicBondAnalysis() const
|
---|
562 | {
|
---|
563 | NoCyclicBonds = 0;
|
---|
564 | bond *Binder = first;
|
---|
565 | while (Binder->next != last) {
|
---|
566 | Binder = Binder->next;
|
---|
567 | if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
|
---|
568 | Binder->Cyclic = true;
|
---|
569 | NoCyclicBonds++;
|
---|
570 | }
|
---|
571 | }
|
---|
572 | }
|
---|
573 | ;
|
---|
574 |
|
---|
575 | /** Output graph information per atom.
|
---|
576 | * \param *out output stream
|
---|
577 | */
|
---|
578 | void molecule::OutputGraphInfoPerAtom() const
|
---|
579 | {
|
---|
580 | Log() << Verbose(1) << "Final graph info for each atom is:" << endl;
|
---|
581 | ActOnAllAtoms( &atom::OutputGraphInfo );
|
---|
582 | }
|
---|
583 | ;
|
---|
584 |
|
---|
585 | /** Output graph information per bond.
|
---|
586 | * \param *out output stream
|
---|
587 | */
|
---|
588 | void molecule::OutputGraphInfoPerBond() const
|
---|
589 | {
|
---|
590 | Log() << Verbose(1) << "Final graph info for each bond is:" << endl;
|
---|
591 | bond *Binder = first;
|
---|
592 | while (Binder->next != last) {
|
---|
593 | Binder = Binder->next;
|
---|
594 | Log() << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
|
---|
595 | Log() << Verbose(0) << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
|
---|
596 | Binder->leftatom->OutputComponentNumber();
|
---|
597 | Log() << Verbose(0) << " === ";
|
---|
598 | Log() << Verbose(0) << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
|
---|
599 | Binder->rightatom->OutputComponentNumber();
|
---|
600 | Log() << Verbose(0) << ">." << endl;
|
---|
601 | if (Binder->Cyclic) // cyclic ??
|
---|
602 | Log() << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
|
---|
603 | }
|
---|
604 | }
|
---|
605 | ;
|
---|
606 |
|
---|
607 | /** Initialise each vertex as white with no predecessor, empty queue, color Root lightgray.
|
---|
608 | * \param *out output stream for debugging
|
---|
609 | * \param &BFS accounting structure
|
---|
610 | * \param AtomCount number of entries in the array to allocate
|
---|
611 | */
|
---|
612 | void InitializeBFSAccounting(struct BFSAccounting &BFS, int AtomCount)
|
---|
613 | {
|
---|
614 | BFS.AtomCount = AtomCount;
|
---|
615 | BFS.PredecessorList = Calloc<atom*> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: **PredecessorList");
|
---|
616 | BFS.ShortestPathList = Malloc<int> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ShortestPathList");
|
---|
617 | BFS.ColorList = Calloc<enum Shading> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ColorList");
|
---|
618 | BFS.BFSStack = new StackClass<atom *> (AtomCount);
|
---|
619 |
|
---|
620 | for (int i = AtomCount; i--;)
|
---|
621 | BFS.ShortestPathList[i] = -1;
|
---|
622 | };
|
---|
623 |
|
---|
624 | /** Free's accounting structure.
|
---|
625 | * \param *out output stream for debugging
|
---|
626 | * \param &BFS accounting structure
|
---|
627 | */
|
---|
628 | void FinalizeBFSAccounting(struct BFSAccounting &BFS)
|
---|
629 | {
|
---|
630 | Free(&BFS.PredecessorList);
|
---|
631 | Free(&BFS.ShortestPathList);
|
---|
632 | Free(&BFS.ColorList);
|
---|
633 | delete (BFS.BFSStack);
|
---|
634 | BFS.AtomCount = 0;
|
---|
635 | };
|
---|
636 |
|
---|
637 | /** Clean the accounting structure.
|
---|
638 | * \param *out output stream for debugging
|
---|
639 | * \param &BFS accounting structure
|
---|
640 | */
|
---|
641 | void CleanBFSAccounting(struct BFSAccounting &BFS)
|
---|
642 | {
|
---|
643 | atom *Walker = NULL;
|
---|
644 | while (!BFS.TouchedStack->IsEmpty()) {
|
---|
645 | Walker = BFS.TouchedStack->PopFirst();
|
---|
646 | BFS.PredecessorList[Walker->nr] = NULL;
|
---|
647 | BFS.ShortestPathList[Walker->nr] = -1;
|
---|
648 | BFS.ColorList[Walker->nr] = white;
|
---|
649 | }
|
---|
650 | };
|
---|
651 |
|
---|
652 | /** Resets shortest path list and BFSStack.
|
---|
653 | * \param *out output stream for debugging
|
---|
654 | * \param *&Walker current node, pushed onto BFSAccounting::BFSStack and BFSAccounting::TouchedStack
|
---|
655 | * \param &BFS accounting structure
|
---|
656 | */
|
---|
657 | void ResetBFSAccounting(atom *&Walker, struct BFSAccounting &BFS)
|
---|
658 | {
|
---|
659 | BFS.ShortestPathList[Walker->nr] = 0;
|
---|
660 | BFS.BFSStack->ClearStack(); // start with empty BFS stack
|
---|
661 | BFS.BFSStack->Push(Walker);
|
---|
662 | BFS.TouchedStack->Push(Walker);
|
---|
663 | };
|
---|
664 |
|
---|
665 | /** Performs a BFS from \a *Root, trying to find the same node and hence a cycle.
|
---|
666 | * \param *out output stream for debugging
|
---|
667 | * \param *&BackEdge the edge from root that we don't want to move along
|
---|
668 | * \param &BFS accounting structure
|
---|
669 | */
|
---|
670 | void CyclicStructureAnalysis_CyclicBFSFromRootToRoot(bond *&BackEdge, struct BFSAccounting &BFS)
|
---|
671 | {
|
---|
672 | atom *Walker = NULL;
|
---|
673 | atom *OtherAtom = NULL;
|
---|
674 | do { // look for Root
|
---|
675 | Walker = BFS.BFSStack->PopFirst();
|
---|
676 | Log() << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *BFS.Root << "." << endl;
|
---|
677 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
|
---|
678 | if ((*Runner) != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
|
---|
679 | OtherAtom = (*Runner)->GetOtherAtom(Walker);
|
---|
680 | #ifdef ADDHYDROGEN
|
---|
681 | if (OtherAtom->type->Z != 1) {
|
---|
682 | #endif
|
---|
683 | Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *(*Runner) << "." << endl;
|
---|
684 | if (BFS.ColorList[OtherAtom->nr] == white) {
|
---|
685 | BFS.TouchedStack->Push(OtherAtom);
|
---|
686 | BFS.ColorList[OtherAtom->nr] = lightgray;
|
---|
687 | BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
|
---|
688 | BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
|
---|
689 | Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << BFS.ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
|
---|
690 | //if (BFS.ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr]) { // Check for maximum distance
|
---|
691 | Log() << Verbose(3) << "Putting OtherAtom into queue." << endl;
|
---|
692 | BFS.BFSStack->Push(OtherAtom);
|
---|
693 | //}
|
---|
694 | } else {
|
---|
695 | Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
|
---|
696 | }
|
---|
697 | if (OtherAtom == BFS.Root)
|
---|
698 | break;
|
---|
699 | #ifdef ADDHYDROGEN
|
---|
700 | } else {
|
---|
701 | Log() << Verbose(2) << "Skipping hydrogen atom " << *OtherAtom << "." << endl;
|
---|
702 | BFS.ColorList[OtherAtom->nr] = black;
|
---|
703 | }
|
---|
704 | #endif
|
---|
705 | } else {
|
---|
706 | Log() << Verbose(2) << "Bond " << *(*Runner) << " not Visiting, is the back edge." << endl;
|
---|
707 | }
|
---|
708 | }
|
---|
709 | BFS.ColorList[Walker->nr] = black;
|
---|
710 | Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
|
---|
711 | if (OtherAtom == BFS.Root) { // if we have found the root, check whether this cycle wasn't already found beforehand
|
---|
712 | // step through predecessor list
|
---|
713 | while (OtherAtom != BackEdge->rightatom) {
|
---|
714 | if (!OtherAtom->GetTrueFather()->IsCyclic) // if one bond in the loop is not marked as cyclic, we haven't found this cycle yet
|
---|
715 | break;
|
---|
716 | else
|
---|
717 | OtherAtom = BFS.PredecessorList[OtherAtom->nr];
|
---|
718 | }
|
---|
719 | if (OtherAtom == BackEdge->rightatom) { // if each atom in found cycle is cyclic, loop's been found before already
|
---|
720 | Log() << Verbose(3) << "This cycle was already found before, skipping and removing seeker from search." << endl;
|
---|
721 | do {
|
---|
722 | OtherAtom = BFS.TouchedStack->PopLast();
|
---|
723 | if (BFS.PredecessorList[OtherAtom->nr] == Walker) {
|
---|
724 | Log() << Verbose(4) << "Removing " << *OtherAtom << " from lists and stacks." << endl;
|
---|
725 | BFS.PredecessorList[OtherAtom->nr] = NULL;
|
---|
726 | BFS.ShortestPathList[OtherAtom->nr] = -1;
|
---|
727 | BFS.ColorList[OtherAtom->nr] = white;
|
---|
728 | BFS.BFSStack->RemoveItem(OtherAtom);
|
---|
729 | }
|
---|
730 | } while ((!BFS.TouchedStack->IsEmpty()) && (BFS.PredecessorList[OtherAtom->nr] == NULL));
|
---|
731 | BFS.TouchedStack->Push(OtherAtom); // last was wrongly popped
|
---|
732 | OtherAtom = BackEdge->rightatom; // set to not Root
|
---|
733 | } else
|
---|
734 | OtherAtom = BFS.Root;
|
---|
735 | }
|
---|
736 | } while ((!BFS.BFSStack->IsEmpty()) && (OtherAtom != BFS.Root) && (OtherAtom != NULL)); // || (ShortestPathList[OtherAtom->nr] < MinimumRingSize[Walker->GetTrueFather()->nr])));
|
---|
737 | };
|
---|
738 |
|
---|
739 | /** Climb back the BFSAccounting::PredecessorList and find cycle members.
|
---|
740 | * \param *out output stream for debugging
|
---|
741 | * \param *&OtherAtom
|
---|
742 | * \param *&BackEdge denotes the edge we did not want to travel along when doing CyclicBFSFromRootToRoot()
|
---|
743 | * \param &BFS accounting structure
|
---|
744 | * \param *&MinimumRingSize minimum distance from this node possible without encountering oneself, set on return for each atom
|
---|
745 | * \param &MinRingSize global minimum distance from one node without encountering oneself, set on return
|
---|
746 | */
|
---|
747 | void CyclicStructureAnalysis_RetrieveCycleMembers(atom *&OtherAtom, bond *&BackEdge, struct BFSAccounting &BFS, int *&MinimumRingSize, int &MinRingSize)
|
---|
748 | {
|
---|
749 | atom *Walker = NULL;
|
---|
750 | int NumCycles = 0;
|
---|
751 | int RingSize = -1;
|
---|
752 |
|
---|
753 | if (OtherAtom == BFS.Root) {
|
---|
754 | // now climb back the predecessor list and thus find the cycle members
|
---|
755 | NumCycles++;
|
---|
756 | RingSize = 1;
|
---|
757 | BFS.Root->GetTrueFather()->IsCyclic = true;
|
---|
758 | Log() << Verbose(1) << "Found ring contains: ";
|
---|
759 | Walker = BFS.Root;
|
---|
760 | while (Walker != BackEdge->rightatom) {
|
---|
761 | Log() << Verbose(0) << Walker->Name << " <-> ";
|
---|
762 | Walker = BFS.PredecessorList[Walker->nr];
|
---|
763 | Walker->GetTrueFather()->IsCyclic = true;
|
---|
764 | RingSize++;
|
---|
765 | }
|
---|
766 | Log() << Verbose(0) << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
|
---|
767 | // walk through all and set MinimumRingSize
|
---|
768 | Walker = BFS.Root;
|
---|
769 | MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
|
---|
770 | while (Walker != BackEdge->rightatom) {
|
---|
771 | Walker = BFS.PredecessorList[Walker->nr];
|
---|
772 | if (RingSize < MinimumRingSize[Walker->GetTrueFather()->nr])
|
---|
773 | MinimumRingSize[Walker->GetTrueFather()->nr] = RingSize;
|
---|
774 | }
|
---|
775 | if ((RingSize < MinRingSize) || (MinRingSize == -1))
|
---|
776 | MinRingSize = RingSize;
|
---|
777 | } else {
|
---|
778 | Log() << Verbose(1) << "No ring containing " << *BFS.Root << " with length equal to or smaller than " << MinimumRingSize[Walker->GetTrueFather()->nr] << " found." << endl;
|
---|
779 | }
|
---|
780 | };
|
---|
781 |
|
---|
782 | /** From a given node performs a BFS to touch the next cycle, for whose nodes \a *&MinimumRingSize is set and set it accordingly.
|
---|
783 | * \param *out output stream for debugging
|
---|
784 | * \param *&Root node to look for closest cycle from, i.e. \a *&MinimumRingSize is set for this node
|
---|
785 | * \param *&MinimumRingSize minimum distance from this node possible without encountering oneself, set on return for each atom
|
---|
786 | * \param AtomCount number of nodes in graph
|
---|
787 | */
|
---|
788 | void CyclicStructureAnalysis_BFSToNextCycle(atom *&Root, atom *&Walker, int *&MinimumRingSize, int AtomCount)
|
---|
789 | {
|
---|
790 | struct BFSAccounting BFS;
|
---|
791 | atom *OtherAtom = Walker;
|
---|
792 |
|
---|
793 | InitializeBFSAccounting(BFS, AtomCount);
|
---|
794 |
|
---|
795 | ResetBFSAccounting(Walker, BFS);
|
---|
796 | while (OtherAtom != NULL) { // look for Root
|
---|
797 | Walker = BFS.BFSStack->PopFirst();
|
---|
798 | //Log() << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
|
---|
799 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
|
---|
800 | // "removed (*Runner) != BackEdge) || " from next if, is u
|
---|
801 | if ((Walker->ListOfBonds.size() == 1)) { // only walk along DFS spanning tree (otherwise we always find SP of 1 being backedge Binder), but terminal hydrogens may be connected via backedge, hence extra check
|
---|
802 | OtherAtom = (*Runner)->GetOtherAtom(Walker);
|
---|
803 | //Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
|
---|
804 | if (BFS.ColorList[OtherAtom->nr] == white) {
|
---|
805 | BFS.TouchedStack->Push(OtherAtom);
|
---|
806 | BFS.ColorList[OtherAtom->nr] = lightgray;
|
---|
807 | BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
|
---|
808 | BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
|
---|
809 | //Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
|
---|
810 | if (OtherAtom->GetTrueFather()->IsCyclic) { // if the other atom is connected to a ring
|
---|
811 | MinimumRingSize[Root->GetTrueFather()->nr] = BFS.ShortestPathList[OtherAtom->nr] + MinimumRingSize[OtherAtom->GetTrueFather()->nr];
|
---|
812 | OtherAtom = NULL; //break;
|
---|
813 | break;
|
---|
814 | } else
|
---|
815 | BFS.BFSStack->Push(OtherAtom);
|
---|
816 | } else {
|
---|
817 | //Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
|
---|
818 | }
|
---|
819 | } else {
|
---|
820 | //Log() << Verbose(3) << "Not Visiting, is a back edge." << endl;
|
---|
821 | }
|
---|
822 | }
|
---|
823 | BFS.ColorList[Walker->nr] = black;
|
---|
824 | //Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
|
---|
825 | }
|
---|
826 | //CleanAccountingLists(TouchedStack, PredecessorList, ShortestPathList, ColorList);
|
---|
827 |
|
---|
828 | FinalizeBFSAccounting(BFS);
|
---|
829 | }
|
---|
830 | ;
|
---|
831 |
|
---|
832 | /** All nodes that are not in cycles get assigned a \a *&MinimumRingSizeby BFS to next cycle.
|
---|
833 | * \param *out output stream for debugging
|
---|
834 | * \param *&MinimumRingSize array with minimum distance without encountering onself for each atom
|
---|
835 | * \param &MinRingSize global minium distance
|
---|
836 | * \param &NumCyles number of cycles in graph
|
---|
837 | * \param *mol molecule with atoms
|
---|
838 | */
|
---|
839 | void CyclicStructureAnalysis_AssignRingSizetoNonCycleMembers(int *&MinimumRingSize, int &MinRingSize, int &NumCycles, const molecule * const mol)
|
---|
840 | {
|
---|
841 | atom *Root = NULL;
|
---|
842 | atom *Walker = NULL;
|
---|
843 | if (MinRingSize != -1) { // if rings are present
|
---|
844 | // go over all atoms
|
---|
845 | Root = mol->start;
|
---|
846 | while (Root->next != mol->end) {
|
---|
847 | Root = Root->next;
|
---|
848 |
|
---|
849 | if (MinimumRingSize[Root->GetTrueFather()->nr] == mol->AtomCount) { // check whether MinimumRingSize is set, if not BFS to next where it is
|
---|
850 | Walker = Root;
|
---|
851 |
|
---|
852 | //Log() << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
|
---|
853 | CyclicStructureAnalysis_BFSToNextCycle(Root, Walker, MinimumRingSize, mol->AtomCount);
|
---|
854 |
|
---|
855 | }
|
---|
856 | Log() << Verbose(1) << "Minimum ring size of " << *Root << " is " << MinimumRingSize[Root->GetTrueFather()->nr] << "." << endl;
|
---|
857 | }
|
---|
858 | Log() << Verbose(1) << "Minimum ring size is " << MinRingSize << ", over " << NumCycles << " cycles total." << endl;
|
---|
859 | } else
|
---|
860 | Log() << Verbose(1) << "No rings were detected in the molecular structure." << endl;
|
---|
861 | }
|
---|
862 | ;
|
---|
863 |
|
---|
864 | /** Analyses the cycles found and returns minimum of all cycle lengths.
|
---|
865 | * We begin with a list of Back edges found during DepthFirstSearchAnalysis(). We go through this list - one end is the Root,
|
---|
866 | * the other our initial Walker - and do a Breadth First Search for the Root. We mark down each Predecessor and as soon as
|
---|
867 | * we have found the Root via BFS, we may climb back the closed cycle via the Predecessors. Thereby we mark atoms and bonds
|
---|
868 | * as cyclic and print out the cycles.
|
---|
869 | * \param *out output stream for debugging
|
---|
870 | * \param *BackEdgeStack stack with all back edges found during DFS scan. Beware: This stack contains the bonds from the total molecule, not from the subgraph!
|
---|
871 | * \param *&MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
|
---|
872 | * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
|
---|
873 | */
|
---|
874 | void molecule::CyclicStructureAnalysis(class StackClass<bond *> * BackEdgeStack, int *&MinimumRingSize) const
|
---|
875 | {
|
---|
876 | struct BFSAccounting BFS;
|
---|
877 | atom *Walker = NULL;
|
---|
878 | atom *OtherAtom = NULL;
|
---|
879 | bond *BackEdge = NULL;
|
---|
880 | int NumCycles = 0;
|
---|
881 | int MinRingSize = -1;
|
---|
882 |
|
---|
883 | InitializeBFSAccounting(BFS, AtomCount);
|
---|
884 |
|
---|
885 | //Log() << Verbose(1) << "Back edge list - ";
|
---|
886 | //BackEdgeStack->Output(out);
|
---|
887 |
|
---|
888 | Log() << Verbose(1) << "Analysing cycles ... " << endl;
|
---|
889 | NumCycles = 0;
|
---|
890 | while (!BackEdgeStack->IsEmpty()) {
|
---|
891 | BackEdge = BackEdgeStack->PopFirst();
|
---|
892 | // this is the target
|
---|
893 | BFS.Root = BackEdge->leftatom;
|
---|
894 | // this is the source point
|
---|
895 | Walker = BackEdge->rightatom;
|
---|
896 |
|
---|
897 | ResetBFSAccounting(Walker, BFS);
|
---|
898 |
|
---|
899 | Log() << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
|
---|
900 | OtherAtom = NULL;
|
---|
901 | CyclicStructureAnalysis_CyclicBFSFromRootToRoot(BackEdge, BFS);
|
---|
902 |
|
---|
903 | CyclicStructureAnalysis_RetrieveCycleMembers(OtherAtom, BackEdge, BFS, MinimumRingSize, MinRingSize);
|
---|
904 |
|
---|
905 | CleanBFSAccounting(BFS);
|
---|
906 | }
|
---|
907 | FinalizeBFSAccounting(BFS);
|
---|
908 |
|
---|
909 | CyclicStructureAnalysis_AssignRingSizetoNonCycleMembers(MinimumRingSize, MinRingSize, NumCycles, this);
|
---|
910 | };
|
---|
911 |
|
---|
912 | /** Sets the next component number.
|
---|
913 | * This is O(N) as the number of bonds per atom is bound.
|
---|
914 | * \param *vertex atom whose next atom::*ComponentNr is to be set
|
---|
915 | * \param nr number to use
|
---|
916 | */
|
---|
917 | void molecule::SetNextComponentNumber(atom *vertex, int nr) const
|
---|
918 | {
|
---|
919 | size_t i = 0;
|
---|
920 | if (vertex != NULL) {
|
---|
921 | for (; i < vertex->ListOfBonds.size(); i++) {
|
---|
922 | if (vertex->ComponentNr[i] == -1) { // check if not yet used
|
---|
923 | vertex->ComponentNr[i] = nr;
|
---|
924 | break;
|
---|
925 | } else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
|
---|
926 | break; // breaking here will not cause error!
|
---|
927 | }
|
---|
928 | if (i == vertex->ListOfBonds.size())
|
---|
929 | eLog() << Verbose(0) << "Error: All Component entries are already occupied!" << endl;
|
---|
930 | } else
|
---|
931 | eLog() << Verbose(0) << "Error: Given vertex is NULL!" << endl;
|
---|
932 | }
|
---|
933 | ;
|
---|
934 |
|
---|
935 | /** Returns next unused bond for this atom \a *vertex or NULL of none exists.
|
---|
936 | * \param *vertex atom to regard
|
---|
937 | * \return bond class or NULL
|
---|
938 | */
|
---|
939 | bond * molecule::FindNextUnused(atom *vertex) const
|
---|
940 | {
|
---|
941 | for (BondList::const_iterator Runner = vertex->ListOfBonds.begin(); Runner != vertex->ListOfBonds.end(); (++Runner))
|
---|
942 | if ((*Runner)->IsUsed() == white)
|
---|
943 | return ((*Runner));
|
---|
944 | return NULL;
|
---|
945 | }
|
---|
946 | ;
|
---|
947 |
|
---|
948 | /** Resets bond::Used flag of all bonds in this molecule.
|
---|
949 | * \return true - success, false - -failure
|
---|
950 | */
|
---|
951 | void molecule::ResetAllBondsToUnused() const
|
---|
952 | {
|
---|
953 | bond *Binder = first;
|
---|
954 | while (Binder->next != last) {
|
---|
955 | Binder = Binder->next;
|
---|
956 | Binder->ResetUsed();
|
---|
957 | }
|
---|
958 | }
|
---|
959 | ;
|
---|
960 |
|
---|
961 | /** Output a list of flags, stating whether the bond was visited or not.
|
---|
962 | * \param *out output stream for debugging
|
---|
963 | * \param *list
|
---|
964 | */
|
---|
965 | void OutputAlreadyVisited(int *list)
|
---|
966 | {
|
---|
967 | Log() << Verbose(4) << "Already Visited Bonds:\t";
|
---|
968 | for (int i = 1; i <= list[0]; i++)
|
---|
969 | Log() << Verbose(0) << list[i] << " ";
|
---|
970 | Log() << Verbose(0) << endl;
|
---|
971 | }
|
---|
972 | ;
|
---|
973 |
|
---|
974 | /** Storing the bond structure of a molecule to file.
|
---|
975 | * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
|
---|
976 | * \param *out output stream for debugging
|
---|
977 | * \param *path path to file
|
---|
978 | * \return true - file written successfully, false - writing failed
|
---|
979 | */
|
---|
980 | bool molecule::StoreAdjacencyToFile(char *path)
|
---|
981 | {
|
---|
982 | ofstream AdjacencyFile;
|
---|
983 | stringstream line;
|
---|
984 | bool status = true;
|
---|
985 |
|
---|
986 | line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
|
---|
987 | AdjacencyFile.open(line.str().c_str(), ios::out);
|
---|
988 | Log() << Verbose(1) << "Saving adjacency list ... ";
|
---|
989 | if (AdjacencyFile != NULL) {
|
---|
990 | ActOnAllAtoms(&atom::OutputAdjacency, &AdjacencyFile);
|
---|
991 | AdjacencyFile.close();
|
---|
992 | Log() << Verbose(1) << "done." << endl;
|
---|
993 | } else {
|
---|
994 | Log() << Verbose(1) << "failed to open file " << line.str() << "." << endl;
|
---|
995 | status = false;
|
---|
996 | }
|
---|
997 |
|
---|
998 | return status;
|
---|
999 | }
|
---|
1000 | ;
|
---|
1001 |
|
---|
1002 | bool CheckAdjacencyFileAgainstMolecule_Init(char *path, ifstream &File, int *&CurrentBonds)
|
---|
1003 | {
|
---|
1004 | stringstream filename;
|
---|
1005 | filename << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
|
---|
1006 | File.open(filename.str().c_str(), ios::out);
|
---|
1007 | Log() << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
|
---|
1008 | if (File == NULL)
|
---|
1009 | return false;
|
---|
1010 |
|
---|
1011 | // allocate storage structure
|
---|
1012 | CurrentBonds = Calloc<int> (8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
|
---|
1013 | return true;
|
---|
1014 | }
|
---|
1015 | ;
|
---|
1016 |
|
---|
1017 | void CheckAdjacencyFileAgainstMolecule_Finalize(ifstream &File, int *&CurrentBonds)
|
---|
1018 | {
|
---|
1019 | File.close();
|
---|
1020 | File.clear();
|
---|
1021 | Free(&CurrentBonds);
|
---|
1022 | }
|
---|
1023 | ;
|
---|
1024 |
|
---|
1025 | void CheckAdjacencyFileAgainstMolecule_CompareBonds(bool &status, int &NonMatchNumber, atom *&Walker, size_t &CurrentBondsOfAtom, int AtomNr, int *&CurrentBonds, atom **ListOfAtoms)
|
---|
1026 | {
|
---|
1027 | size_t j = 0;
|
---|
1028 | int id = -1;
|
---|
1029 |
|
---|
1030 | //Log() << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
|
---|
1031 | if (CurrentBondsOfAtom == Walker->ListOfBonds.size()) {
|
---|
1032 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
|
---|
1033 | id = (*Runner)->GetOtherAtom(Walker)->nr;
|
---|
1034 | j = 0;
|
---|
1035 | for (; (j < CurrentBondsOfAtom) && (CurrentBonds[j++] != id);)
|
---|
1036 | ; // check against all parsed bonds
|
---|
1037 | if (CurrentBonds[j - 1] != id) { // no match ? Then mark in ListOfAtoms
|
---|
1038 | ListOfAtoms[AtomNr] = NULL;
|
---|
1039 | NonMatchNumber++;
|
---|
1040 | status = false;
|
---|
1041 | //Log() << Verbose(0) << "[" << id << "]\t";
|
---|
1042 | } else {
|
---|
1043 | //Log() << Verbose(0) << id << "\t";
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 | //Log() << Verbose(0) << endl;
|
---|
1047 | } else {
|
---|
1048 | Log() << Verbose(0) << "Number of bonds for Atom " << *Walker << " does not match, parsed " << CurrentBondsOfAtom << " against " << Walker->ListOfBonds.size() << "." << endl;
|
---|
1049 | status = false;
|
---|
1050 | }
|
---|
1051 | }
|
---|
1052 | ;
|
---|
1053 |
|
---|
1054 | /** Checks contents of adjacency file against bond structure in structure molecule.
|
---|
1055 | * \param *out output stream for debugging
|
---|
1056 | * \param *path path to file
|
---|
1057 | * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
|
---|
1058 | * \return true - structure is equal, false - not equivalence
|
---|
1059 | */
|
---|
1060 | bool molecule::CheckAdjacencyFileAgainstMolecule(char *path, atom **ListOfAtoms)
|
---|
1061 | {
|
---|
1062 | ifstream File;
|
---|
1063 | bool status = true;
|
---|
1064 | atom *Walker = NULL;
|
---|
1065 | char *buffer = NULL;
|
---|
1066 | int *CurrentBonds = NULL;
|
---|
1067 | int NonMatchNumber = 0; // will number of atoms with differing bond structure
|
---|
1068 | size_t CurrentBondsOfAtom = -1;
|
---|
1069 |
|
---|
1070 | if (!CheckAdjacencyFileAgainstMolecule_Init(path, File, CurrentBonds)) {
|
---|
1071 | Log() << Verbose(1) << "Adjacency file not found." << endl;
|
---|
1072 | return true;
|
---|
1073 | }
|
---|
1074 |
|
---|
1075 | buffer = Malloc<char> (MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
|
---|
1076 | // Parse the file line by line and count the bonds
|
---|
1077 | while (!File.eof()) {
|
---|
1078 | File.getline(buffer, MAXSTRINGSIZE);
|
---|
1079 | stringstream line;
|
---|
1080 | line.str(buffer);
|
---|
1081 | int AtomNr = -1;
|
---|
1082 | line >> AtomNr;
|
---|
1083 | CurrentBondsOfAtom = -1; // we count one too far due to line end
|
---|
1084 | // parse into structure
|
---|
1085 | if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
|
---|
1086 | Walker = ListOfAtoms[AtomNr];
|
---|
1087 | while (!line.eof())
|
---|
1088 | line >> CurrentBonds[++CurrentBondsOfAtom];
|
---|
1089 | // compare against present bonds
|
---|
1090 | CheckAdjacencyFileAgainstMolecule_CompareBonds(status, NonMatchNumber, Walker, CurrentBondsOfAtom, AtomNr, CurrentBonds, ListOfAtoms);
|
---|
1091 | }
|
---|
1092 | }
|
---|
1093 | Free(&buffer);
|
---|
1094 | CheckAdjacencyFileAgainstMolecule_Finalize(File, CurrentBonds);
|
---|
1095 |
|
---|
1096 | if (status) { // if equal we parse the KeySetFile
|
---|
1097 | Log() << Verbose(1) << "done: Equal." << endl;
|
---|
1098 | } else
|
---|
1099 | Log() << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
|
---|
1100 | return status;
|
---|
1101 | }
|
---|
1102 | ;
|
---|
1103 |
|
---|
1104 | /** Picks from a global stack with all back edges the ones in the fragment.
|
---|
1105 | * \param *out output stream for debugging
|
---|
1106 | * \param **ListOfLocalAtoms array of father atom::nr to local atom::nr (reverse of atom::father)
|
---|
1107 | * \param *ReferenceStack stack with all the back egdes
|
---|
1108 | * \param *LocalStack stack to be filled
|
---|
1109 | * \return true - everything ok, false - ReferenceStack was empty
|
---|
1110 | */
|
---|
1111 | bool molecule::PickLocalBackEdges(atom **ListOfLocalAtoms, class StackClass<bond *> *&ReferenceStack, class StackClass<bond *> *&LocalStack) const
|
---|
1112 | {
|
---|
1113 | bool status = true;
|
---|
1114 | if (ReferenceStack->IsEmpty()) {
|
---|
1115 | eLog() << Verbose(0) << "ReferenceStack is empty!" << endl;
|
---|
1116 | return false;
|
---|
1117 | }
|
---|
1118 | bond *Binder = ReferenceStack->PopFirst();
|
---|
1119 | bond *FirstBond = Binder; // mark the first bond, so that we don't loop through the stack indefinitely
|
---|
1120 | atom *Walker = NULL, *OtherAtom = NULL;
|
---|
1121 | ReferenceStack->Push(Binder);
|
---|
1122 |
|
---|
1123 | do { // go through all bonds and push local ones
|
---|
1124 | Walker = ListOfLocalAtoms[Binder->leftatom->nr]; // get one atom in the reference molecule
|
---|
1125 | if (Walker != NULL) // if this Walker exists in the subgraph ...
|
---|
1126 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
|
---|
1127 | OtherAtom = (*Runner)->GetOtherAtom(Walker);
|
---|
1128 | if (OtherAtom == ListOfLocalAtoms[(*Runner)->rightatom->nr]) { // found the bond
|
---|
1129 | LocalStack->Push((*Runner));
|
---|
1130 | Log() << Verbose(3) << "Found local edge " << *(*Runner) << "." << endl;
|
---|
1131 | break;
|
---|
1132 | }
|
---|
1133 | }
|
---|
1134 | Binder = ReferenceStack->PopFirst(); // loop the stack for next item
|
---|
1135 | Log() << Verbose(3) << "Current candidate edge " << Binder << "." << endl;
|
---|
1136 | ReferenceStack->Push(Binder);
|
---|
1137 | } while (FirstBond != Binder);
|
---|
1138 |
|
---|
1139 | return status;
|
---|
1140 | }
|
---|
1141 | ;
|
---|
1142 |
|
---|
1143 | void BreadthFirstSearchAdd_Init(struct BFSAccounting &BFS, atom *&Root, int AtomCount, int BondOrder, atom **AddedAtomList = NULL)
|
---|
1144 | {
|
---|
1145 | BFS.AtomCount = AtomCount;
|
---|
1146 | BFS.BondOrder = BondOrder;
|
---|
1147 | BFS.PredecessorList = Calloc<atom*> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: **PredecessorList");
|
---|
1148 | BFS.ShortestPathList = Calloc<int> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ShortestPathList");
|
---|
1149 | BFS.ColorList = Malloc<enum Shading> (AtomCount, "molecule::BreadthFirstSearchAdd_Init: *ColorList");
|
---|
1150 | BFS.BFSStack = new StackClass<atom *> (AtomCount);
|
---|
1151 |
|
---|
1152 | BFS.Root = Root;
|
---|
1153 | BFS.BFSStack->ClearStack();
|
---|
1154 | BFS.BFSStack->Push(Root);
|
---|
1155 |
|
---|
1156 | // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
|
---|
1157 | for (int i = AtomCount; i--;) {
|
---|
1158 | BFS.ShortestPathList[i] = -1;
|
---|
1159 | if ((AddedAtomList != NULL) && (AddedAtomList[i] != NULL)) // mark already present atoms (i.e. Root and maybe others) as visited
|
---|
1160 | BFS.ColorList[i] = lightgray;
|
---|
1161 | else
|
---|
1162 | BFS.ColorList[i] = white;
|
---|
1163 | }
|
---|
1164 | //BFS.ShortestPathList[Root->nr] = 0; //is set due to Calloc()
|
---|
1165 | }
|
---|
1166 | ;
|
---|
1167 |
|
---|
1168 | void BreadthFirstSearchAdd_Free(struct BFSAccounting &BFS)
|
---|
1169 | {
|
---|
1170 | Free(&BFS.PredecessorList);
|
---|
1171 | Free(&BFS.ShortestPathList);
|
---|
1172 | Free(&BFS.ColorList);
|
---|
1173 | delete (BFS.BFSStack);
|
---|
1174 | BFS.AtomCount = 0;
|
---|
1175 | }
|
---|
1176 | ;
|
---|
1177 |
|
---|
1178 | void BreadthFirstSearchAdd_UnvisitedNode(molecule *Mol, struct BFSAccounting &BFS, atom *&Walker, atom *&OtherAtom, bond *&Binder, bond *&Bond, atom **&AddedAtomList, bond **&AddedBondList, bool IsAngstroem)
|
---|
1179 | {
|
---|
1180 | if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
|
---|
1181 | BFS.ColorList[OtherAtom->nr] = lightgray;
|
---|
1182 | BFS.PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
|
---|
1183 | BFS.ShortestPathList[OtherAtom->nr] = BFS.ShortestPathList[Walker->nr] + 1;
|
---|
1184 | Log() << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((BFS.ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << BFS.ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
|
---|
1185 | if ((((BFS.ShortestPathList[OtherAtom->nr] < BFS.BondOrder) && (Binder != Bond)))) { // Check for maximum distance
|
---|
1186 | Log() << Verbose(3);
|
---|
1187 | if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
|
---|
1188 | AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
|
---|
1189 | Log() << Verbose(0) << "Added OtherAtom " << OtherAtom->Name;
|
---|
1190 | AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
|
---|
1191 | Log() << Verbose(0) << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
|
---|
1192 | } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
|
---|
1193 | Log() << Verbose(0) << "Not adding OtherAtom " << OtherAtom->Name;
|
---|
1194 | if (AddedBondList[Binder->nr] == NULL) {
|
---|
1195 | AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
|
---|
1196 | Log() << Verbose(0) << ", added Bond " << *(AddedBondList[Binder->nr]);
|
---|
1197 | } else
|
---|
1198 | Log() << Verbose(0) << ", not added Bond ";
|
---|
1199 | }
|
---|
1200 | Log() << Verbose(0) << ", putting OtherAtom into queue." << endl;
|
---|
1201 | BFS.BFSStack->Push(OtherAtom);
|
---|
1202 | } else { // out of bond order, then replace
|
---|
1203 | if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
|
---|
1204 | BFS.ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
|
---|
1205 | if (Binder == Bond)
|
---|
1206 | Log() << Verbose(3) << "Not Queueing, is the Root bond";
|
---|
1207 | else if (BFS.ShortestPathList[OtherAtom->nr] >= BFS.BondOrder)
|
---|
1208 | Log() << Verbose(3) << "Not Queueing, is out of Bond Count of " << BFS.BondOrder;
|
---|
1209 | if (!Binder->Cyclic)
|
---|
1210 | Log() << Verbose(0) << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
|
---|
1211 | if (AddedBondList[Binder->nr] == NULL) {
|
---|
1212 | if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
|
---|
1213 | AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
|
---|
1214 | } else {
|
---|
1215 | #ifdef ADDHYDROGEN
|
---|
1216 | if (!Mol->AddHydrogenReplacementAtom(Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, IsAngstroem))
|
---|
1217 | exit(1);
|
---|
1218 | #endif
|
---|
1219 | }
|
---|
1220 | }
|
---|
1221 | }
|
---|
1222 | }
|
---|
1223 | ;
|
---|
1224 |
|
---|
1225 | void BreadthFirstSearchAdd_VisitedNode(molecule *Mol, struct BFSAccounting &BFS, atom *&Walker, atom *&OtherAtom, bond *&Binder, bond *&Bond, atom **&AddedAtomList, bond **&AddedBondList, bool IsAngstroem)
|
---|
1226 | {
|
---|
1227 | Log() << Verbose(3) << "Not Adding, has already been visited." << endl;
|
---|
1228 | // This has to be a cyclic bond, check whether it's present ...
|
---|
1229 | if (AddedBondList[Binder->nr] == NULL) {
|
---|
1230 | if ((Binder != Bond) && (Binder->Cyclic) && (((BFS.ShortestPathList[Walker->nr] + 1) < BFS.BondOrder))) {
|
---|
1231 | AddedBondList[Binder->nr] = Mol->CopyBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder);
|
---|
1232 | } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
|
---|
1233 | #ifdef ADDHYDROGEN
|
---|
1234 | if(!Mol->AddHydrogenReplacementAtom(Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, IsAngstroem))
|
---|
1235 | exit(1);
|
---|
1236 | #endif
|
---|
1237 | }
|
---|
1238 | }
|
---|
1239 | }
|
---|
1240 | ;
|
---|
1241 |
|
---|
1242 | /** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
|
---|
1243 | * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
|
---|
1244 | * white and putting into queue.
|
---|
1245 | * \param *out output stream for debugging
|
---|
1246 | * \param *Mol Molecule class to add atoms to
|
---|
1247 | * \param **AddedAtomList list with added atom pointers, index is atom father's number
|
---|
1248 | * \param **AddedBondList list with added bond pointers, index is bond father's number
|
---|
1249 | * \param *Root root vertex for BFS
|
---|
1250 | * \param *Bond bond not to look beyond
|
---|
1251 | * \param BondOrder maximum distance for vertices to add
|
---|
1252 | * \param IsAngstroem lengths are in angstroem or bohrradii
|
---|
1253 | */
|
---|
1254 | void molecule::BreadthFirstSearchAdd(molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
|
---|
1255 | {
|
---|
1256 | struct BFSAccounting BFS;
|
---|
1257 | atom *Walker = NULL, *OtherAtom = NULL;
|
---|
1258 | bond *Binder = NULL;
|
---|
1259 |
|
---|
1260 | // add Root if not done yet
|
---|
1261 | if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
|
---|
1262 | AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
|
---|
1263 |
|
---|
1264 | BreadthFirstSearchAdd_Init(BFS, Root, BondOrder, AtomCount, AddedAtomList);
|
---|
1265 |
|
---|
1266 | // and go on ... Queue always contains all lightgray vertices
|
---|
1267 | while (!BFS.BFSStack->IsEmpty()) {
|
---|
1268 | // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
|
---|
1269 | // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
|
---|
1270 | // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
|
---|
1271 | // followed by n+1 till top of stack.
|
---|
1272 | Walker = BFS.BFSStack->PopFirst(); // pop oldest added
|
---|
1273 | Log() << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << Walker->ListOfBonds.size() << " bonds." << endl;
|
---|
1274 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
|
---|
1275 | if ((*Runner) != NULL) { // don't look at bond equal NULL
|
---|
1276 | Binder = (*Runner);
|
---|
1277 | OtherAtom = (*Runner)->GetOtherAtom(Walker);
|
---|
1278 | Log() << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *(*Runner) << "." << endl;
|
---|
1279 | if (BFS.ColorList[OtherAtom->nr] == white) {
|
---|
1280 | BreadthFirstSearchAdd_UnvisitedNode(Mol, BFS, Walker, OtherAtom, Binder, Bond, AddedAtomList, AddedBondList, IsAngstroem);
|
---|
1281 | } else {
|
---|
1282 | BreadthFirstSearchAdd_VisitedNode(Mol, BFS, Walker, OtherAtom, Binder, Bond, AddedAtomList, AddedBondList, IsAngstroem);
|
---|
1283 | }
|
---|
1284 | }
|
---|
1285 | }
|
---|
1286 | BFS.ColorList[Walker->nr] = black;
|
---|
1287 | Log() << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
|
---|
1288 | }
|
---|
1289 | BreadthFirstSearchAdd_Free(BFS);
|
---|
1290 | }
|
---|
1291 | ;
|
---|
1292 |
|
---|
1293 | /** Adds a bond as a copy to a given one
|
---|
1294 | * \param *left leftatom of new bond
|
---|
1295 | * \param *right rightatom of new bond
|
---|
1296 | * \param *CopyBond rest of fields in bond are copied from this
|
---|
1297 | * \return pointer to new bond
|
---|
1298 | */
|
---|
1299 | bond * molecule::CopyBond(atom *left, atom *right, bond *CopyBond)
|
---|
1300 | {
|
---|
1301 | bond *Binder = AddBond(left, right, CopyBond->BondDegree);
|
---|
1302 | Binder->Cyclic = CopyBond->Cyclic;
|
---|
1303 | Binder->Type = CopyBond->Type;
|
---|
1304 | return Binder;
|
---|
1305 | }
|
---|
1306 | ;
|
---|
1307 |
|
---|
1308 | void BuildInducedSubgraph_Init(atom **&ParentList, int AtomCount)
|
---|
1309 | {
|
---|
1310 | // reset parent list
|
---|
1311 | ParentList = Calloc<atom*> (AtomCount, "molecule::BuildInducedSubgraph_Init: **ParentList");
|
---|
1312 | Log() << Verbose(3) << "Resetting ParentList." << endl;
|
---|
1313 | }
|
---|
1314 | ;
|
---|
1315 |
|
---|
1316 | void BuildInducedSubgraph_FillParentList(const molecule *mol, const molecule *Father, atom **&ParentList)
|
---|
1317 | {
|
---|
1318 | // fill parent list with sons
|
---|
1319 | Log() << Verbose(3) << "Filling Parent List." << endl;
|
---|
1320 | atom *Walker = mol->start;
|
---|
1321 | while (Walker->next != mol->end) {
|
---|
1322 | Walker = Walker->next;
|
---|
1323 | ParentList[Walker->father->nr] = Walker;
|
---|
1324 | // Outputting List for debugging
|
---|
1325 | Log() << Verbose(4) << "Son[" << Walker->father->nr << "] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | }
|
---|
1329 | ;
|
---|
1330 |
|
---|
1331 | void BuildInducedSubgraph_Finalize(atom **&ParentList)
|
---|
1332 | {
|
---|
1333 | Free(&ParentList);
|
---|
1334 | }
|
---|
1335 | ;
|
---|
1336 |
|
---|
1337 | bool BuildInducedSubgraph_CreateBondsFromParent(molecule *mol, const molecule *Father, atom **&ParentList)
|
---|
1338 | {
|
---|
1339 | bool status = true;
|
---|
1340 | atom *Walker = NULL;
|
---|
1341 | atom *OtherAtom = NULL;
|
---|
1342 | // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
|
---|
1343 | Log() << Verbose(3) << "Creating bonds." << endl;
|
---|
1344 | Walker = Father->start;
|
---|
1345 | while (Walker->next != Father->end) {
|
---|
1346 | Walker = Walker->next;
|
---|
1347 | if (ParentList[Walker->nr] != NULL) {
|
---|
1348 | if (ParentList[Walker->nr]->father != Walker) {
|
---|
1349 | status = false;
|
---|
1350 | } else {
|
---|
1351 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
|
---|
1352 | OtherAtom = (*Runner)->GetOtherAtom(Walker);
|
---|
1353 | if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
|
---|
1354 | Log() << Verbose(4) << "Endpoints of Bond " << (*Runner) << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
|
---|
1355 | mol->AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], (*Runner)->BondDegree);
|
---|
1356 | }
|
---|
1357 | }
|
---|
1358 | }
|
---|
1359 | }
|
---|
1360 | }
|
---|
1361 | return status;
|
---|
1362 | }
|
---|
1363 | ;
|
---|
1364 |
|
---|
1365 | /** Adds bond structure to this molecule from \a Father molecule.
|
---|
1366 | * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
|
---|
1367 | * with end points present in this molecule, bond is created in this molecule.
|
---|
1368 | * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
|
---|
1369 | * \param *out output stream for debugging
|
---|
1370 | * \param *Father father molecule
|
---|
1371 | * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
|
---|
1372 | * \todo not checked, not fully working probably
|
---|
1373 | */
|
---|
1374 | bool molecule::BuildInducedSubgraph(const molecule *Father)
|
---|
1375 | {
|
---|
1376 | bool status = true;
|
---|
1377 | atom **ParentList = NULL;
|
---|
1378 |
|
---|
1379 | Log() << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
|
---|
1380 | BuildInducedSubgraph_Init(ParentList, Father->AtomCount);
|
---|
1381 | BuildInducedSubgraph_FillParentList(this, Father, ParentList);
|
---|
1382 | status = BuildInducedSubgraph_CreateBondsFromParent(this, Father, ParentList);
|
---|
1383 | BuildInducedSubgraph_Finalize(ParentList);
|
---|
1384 | Log() << Verbose(2) << "End of BuildInducedSubgraph." << endl;
|
---|
1385 | return status;
|
---|
1386 | }
|
---|
1387 | ;
|
---|
1388 |
|
---|
1389 | /** For a given keyset \a *Fragment, checks whether it is connected in the current molecule.
|
---|
1390 | * \param *out output stream for debugging
|
---|
1391 | * \param *Fragment Keyset of fragment's vertices
|
---|
1392 | * \return true - connected, false - disconnected
|
---|
1393 | * \note this is O(n^2) for it's just a bug checker not meant for permanent use!
|
---|
1394 | */
|
---|
1395 | bool molecule::CheckForConnectedSubgraph(KeySet *Fragment)
|
---|
1396 | {
|
---|
1397 | atom *Walker = NULL, *Walker2 = NULL;
|
---|
1398 | bool BondStatus = false;
|
---|
1399 | int size;
|
---|
1400 |
|
---|
1401 | Log() << Verbose(1) << "Begin of CheckForConnectedSubgraph" << endl;
|
---|
1402 | Log() << Verbose(2) << "Disconnected atom: ";
|
---|
1403 |
|
---|
1404 | // count number of atoms in graph
|
---|
1405 | size = 0;
|
---|
1406 | for (KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++)
|
---|
1407 | size++;
|
---|
1408 | if (size > 1)
|
---|
1409 | for (KeySet::iterator runner = Fragment->begin(); runner != Fragment->end(); runner++) {
|
---|
1410 | Walker = FindAtom(*runner);
|
---|
1411 | BondStatus = false;
|
---|
1412 | for (KeySet::iterator runners = Fragment->begin(); runners != Fragment->end(); runners++) {
|
---|
1413 | Walker2 = FindAtom(*runners);
|
---|
1414 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
|
---|
1415 | if ((*Runner)->GetOtherAtom(Walker) == Walker2) {
|
---|
1416 | BondStatus = true;
|
---|
1417 | break;
|
---|
1418 | }
|
---|
1419 | if (BondStatus)
|
---|
1420 | break;
|
---|
1421 | }
|
---|
1422 | }
|
---|
1423 | if (!BondStatus) {
|
---|
1424 | Log() << Verbose(0) << (*Walker) << endl;
|
---|
1425 | return false;
|
---|
1426 | }
|
---|
1427 | }
|
---|
1428 | else {
|
---|
1429 | Log() << Verbose(0) << "none." << endl;
|
---|
1430 | return true;
|
---|
1431 | }
|
---|
1432 | Log() << Verbose(0) << "none." << endl;
|
---|
1433 |
|
---|
1434 | Log() << Verbose(1) << "End of CheckForConnectedSubgraph" << endl;
|
---|
1435 |
|
---|
1436 | return true;
|
---|
1437 | }
|
---|