source: src/molecule_geometry.cpp@ 2cbe97

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 2cbe97 was 8cbb97, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Merge branch 'VectorRefactoring' into StructureRefactoring

Conflicts:

molecuilder/src/Legacy/oldmenu.cpp
molecuilder/src/Makefile.am
molecuilder/src/analysis_correlation.cpp
molecuilder/src/boundary.cpp
molecuilder/src/builder.cpp
molecuilder/src/config.cpp
molecuilder/src/ellipsoid.cpp
molecuilder/src/linkedcell.cpp
molecuilder/src/molecule.cpp
molecuilder/src/molecule_fragmentation.cpp
molecuilder/src/molecule_geometry.cpp
molecuilder/src/molecule_graph.cpp
molecuilder/src/moleculelist.cpp
molecuilder/src/tesselation.cpp
molecuilder/src/tesselationhelpers.cpp
molecuilder/src/unittests/AnalysisCorrelationToSurfaceUnitTest.cpp
molecuilder/src/unittests/bondgraphunittest.cpp
molecuilder/src/vector.cpp
molecuilder/src/vector.hpp

  • Property mode set to 100644
File size: 17.7 KB
Line 
1/*
2 * molecule_geometry.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "atom.hpp"
9#include "bond.hpp"
10#include "config.hpp"
11#include "element.hpp"
12#include "helpers.hpp"
13#include "leastsquaremin.hpp"
14#include "log.hpp"
15#include "memoryallocator.hpp"
16#include "molecule.hpp"
17#include "World.hpp"
18
19/************************************* Functions for class molecule *********************************/
20
21
22/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
23 * \param *out output stream for debugging
24 */
25bool molecule::CenterInBox()
26{
27 bool status = true;
28 const Vector *Center = DetermineCenterOfAll();
29 double * const cell_size = World::getInstance().getDomain();
30 double *M = ReturnFullMatrixforSymmetric(cell_size);
31 double *Minv = InverseMatrix(M);
32
33 // go through all atoms
34 ActOnAllVectors( &Vector::SubtractVector, *Center);
35 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
36
37 Free(&M);
38 Free(&Minv);
39 delete(Center);
40 return status;
41};
42
43
44/** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths.
45 * \param *out output stream for debugging
46 */
47bool molecule::BoundInBox()
48{
49 bool status = true;
50 double * const cell_size = World::getInstance().getDomain();
51 double *M = ReturnFullMatrixforSymmetric(cell_size);
52 double *Minv = InverseMatrix(M);
53
54 // go through all atoms
55 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
56
57 Free(&M);
58 Free(&Minv);
59 return status;
60};
61
62/** Centers the edge of the atoms at (0,0,0).
63 * \param *out output stream for debugging
64 * \param *max coordinates of other edge, specifying box dimensions.
65 */
66void molecule::CenterEdge(Vector *max)
67{
68 Vector *min = new Vector;
69
70// Log() << Verbose(3) << "Begin of CenterEdge." << endl;
71 atom *ptr = start->next; // start at first in list
72 if (ptr != end) { //list not empty?
73 for (int i=NDIM;i--;) {
74 max->at(i) = ptr->x[i];
75 min->at(i) = ptr->x[i];
76 }
77 while (ptr->next != end) { // continue with second if present
78 ptr = ptr->next;
79 //ptr->Output(1,1,out);
80 for (int i=NDIM;i--;) {
81 max->at(i) = (max->at(i) < ptr->x[i]) ? ptr->x[i] : max->at(i);
82 min->at(i) = (min->at(i) > ptr->x[i]) ? ptr->x[i] : min->at(i);
83 }
84 }
85// Log() << Verbose(4) << "Maximum is ";
86// max->Output(out);
87// Log() << Verbose(0) << ", Minimum is ";
88// min->Output(out);
89// Log() << Verbose(0) << endl;
90 min->Scale(-1.);
91 (*max) += (*min);
92 Translate(min);
93 Center.Zero();
94 }
95 delete(min);
96// Log() << Verbose(3) << "End of CenterEdge." << endl;
97};
98
99/** Centers the center of the atoms at (0,0,0).
100 * \param *out output stream for debugging
101 * \param *center return vector for translation vector
102 */
103void molecule::CenterOrigin()
104{
105 int Num = 0;
106 atom *ptr = start; // start at first in list
107
108 Center.Zero();
109
110 if (ptr->next != end) { //list not empty?
111 while (ptr->next != end) { // continue with second if present
112 ptr = ptr->next;
113 Num++;
114 Center += ptr->x;
115 }
116 Center.Scale(-1./Num); // divide through total number (and sign for direction)
117 Translate(&Center);
118 Center.Zero();
119 }
120};
121
122/** Returns vector pointing to center of all atoms.
123 * \return pointer to center of all vector
124 */
125Vector * molecule::DetermineCenterOfAll() const
126{
127 atom *ptr = start->next; // start at first in list
128 Vector *a = new Vector();
129 Vector tmp;
130 double Num = 0;
131
132 a->Zero();
133
134 if (ptr != end) { //list not empty?
135 while (ptr->next != end) { // continue with second if present
136 ptr = ptr->next;
137 Num += 1.;
138 tmp = ptr->x;
139 (*a) += tmp;
140 }
141 a->Scale(1./Num); // divide through total mass (and sign for direction)
142 }
143 return a;
144};
145
146/** Returns vector pointing to center of gravity.
147 * \param *out output stream for debugging
148 * \return pointer to center of gravity vector
149 */
150Vector * molecule::DetermineCenterOfGravity()
151{
152 atom *ptr = start->next; // start at first in list
153 Vector *a = new Vector();
154 Vector tmp;
155 double Num = 0;
156
157 a->Zero();
158
159 if (ptr != end) { //list not empty?
160 while (ptr->next != end) { // continue with second if present
161 ptr = ptr->next;
162 Num += ptr->type->mass;
163 tmp = ptr->type->mass * ptr->x;
164 (*a) += tmp;
165 }
166 a->Scale(-1./Num); // divide through total mass (and sign for direction)
167 }
168// Log() << Verbose(1) << "Resulting center of gravity: ";
169// a->Output(out);
170// Log() << Verbose(0) << endl;
171 return a;
172};
173
174/** Centers the center of gravity of the atoms at (0,0,0).
175 * \param *out output stream for debugging
176 * \param *center return vector for translation vector
177 */
178void molecule::CenterPeriodic()
179{
180 DeterminePeriodicCenter(Center);
181};
182
183
184/** Centers the center of gravity of the atoms at (0,0,0).
185 * \param *out output stream for debugging
186 * \param *center return vector for translation vector
187 */
188void molecule::CenterAtVector(Vector *newcenter)
189{
190 Center = *newcenter;
191};
192
193
194/** Scales all atoms by \a *factor.
195 * \param *factor pointer to scaling factor
196 *
197 * TODO: Is this realy what is meant, i.e.
198 * x=(x[0]*factor[0],x[1]*factor[1],x[2]*factor[2]) (current impl)
199 * or rather
200 * x=(**factor) * x (as suggested by comment)
201 */
202void molecule::Scale(const double ** const factor)
203{
204 atom *ptr = start;
205
206 while (ptr->next != end) {
207 ptr = ptr->next;
208 for (int j=0;j<MDSteps;j++)
209 ptr->Trajectory.R.at(j).ScaleAll(*factor);
210 ptr->x.ScaleAll(*factor);
211 }
212};
213
214/** Translate all atoms by given vector.
215 * \param trans[] translation vector.
216 */
217void molecule::Translate(const Vector *trans)
218{
219 atom *ptr = start;
220
221 while (ptr->next != end) {
222 ptr = ptr->next;
223 for (int j=0;j<MDSteps;j++)
224 ptr->Trajectory.R.at(j) += (*trans);
225 ptr->x += (*trans);
226 }
227};
228
229/** Translate the molecule periodically in the box.
230 * \param trans[] translation vector.
231 * TODO treatment of trajetories missing
232 */
233void molecule::TranslatePeriodically(const Vector *trans)
234{
235 double * const cell_size = World::getInstance().getDomain();
236 double *M = ReturnFullMatrixforSymmetric(cell_size);
237 double *Minv = InverseMatrix(M);
238
239 // go through all atoms
240 ActOnAllVectors( &Vector::SubtractVector, *trans);
241 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
242
243 Free(&M);
244 Free(&Minv);
245};
246
247
248/** Mirrors all atoms against a given plane.
249 * \param n[] normal vector of mirror plane.
250 */
251void molecule::Mirror(const Vector *n)
252{
253 ActOnAllVectors( &Vector::Mirror, *n );
254};
255
256/** Determines center of molecule (yet not considering atom masses).
257 * \param center reference to return vector
258 */
259void molecule::DeterminePeriodicCenter(Vector &center)
260{
261 atom *Walker = start;
262 double * const cell_size = World::getInstance().getDomain();
263 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
264 double *inversematrix = InverseMatrix(cell_size);
265 double tmp;
266 bool flag;
267 Vector Testvector, Translationvector;
268
269 do {
270 Center.Zero();
271 flag = true;
272 while (Walker->next != end) {
273 Walker = Walker->next;
274#ifdef ADDHYDROGEN
275 if (Walker->type->Z != 1) {
276#endif
277 Testvector = Walker->x;
278 Testvector.MatrixMultiplication(inversematrix);
279 Translationvector.Zero();
280 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
281 if (Walker->nr < (*Runner)->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
282 for (int j=0;j<NDIM;j++) {
283 tmp = Walker->x[j] - (*Runner)->GetOtherAtom(Walker)->x[j];
284 if ((fabs(tmp)) > BondDistance) {
285 flag = false;
286 DoLog(0) && (Log() << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *(*Runner) << " has to be shifted due to " << tmp << "." << endl);
287 if (tmp > 0)
288 Translationvector[j] -= 1.;
289 else
290 Translationvector[j] += 1.;
291 }
292 }
293 }
294 Testvector += Translationvector;
295 Testvector.MatrixMultiplication(matrix);
296 Center += Testvector;
297 Log() << Verbose(1) << "vector is: " << Testvector << endl;
298#ifdef ADDHYDROGEN
299 // now also change all hydrogens
300 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
301 if ((*Runner)->GetOtherAtom(Walker)->type->Z == 1) {
302 Testvector = (*Runner)->GetOtherAtom(Walker)->x;
303 Testvector.MatrixMultiplication(inversematrix);
304 Testvector += Translationvector;
305 Testvector.MatrixMultiplication(matrix);
306 Center += Testvector;
307 Log() << Verbose(1) << "Hydrogen vector is: " << Testvector << endl;
308 }
309 }
310 }
311#endif
312 }
313 } while (!flag);
314 Free(&matrix);
315 Free(&inversematrix);
316
317 Center.Scale(1./(double)AtomCount);
318};
319
320/** Transforms/Rotates the given molecule into its principal axis system.
321 * \param *out output stream for debugging
322 * \param DoRotate whether to rotate (true) or only to determine the PAS.
323 * TODO treatment of trajetories missing
324 */
325void molecule::PrincipalAxisSystem(bool DoRotate)
326{
327 atom *ptr = start; // start at first in list
328 double InertiaTensor[NDIM*NDIM];
329 Vector *CenterOfGravity = DetermineCenterOfGravity();
330
331 CenterPeriodic();
332
333 // reset inertia tensor
334 for(int i=0;i<NDIM*NDIM;i++)
335 InertiaTensor[i] = 0.;
336
337 // sum up inertia tensor
338 while (ptr->next != end) {
339 ptr = ptr->next;
340 Vector x = ptr->x;
341 //x.SubtractVector(CenterOfGravity);
342 InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]);
343 InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]);
344 InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]);
345 InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]);
346 InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]);
347 InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]);
348 InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]);
349 InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]);
350 InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]);
351 }
352 // print InertiaTensor for debugging
353 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl);
354 for(int i=0;i<NDIM;i++) {
355 for(int j=0;j<NDIM;j++)
356 DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ");
357 DoLog(0) && (Log() << Verbose(0) << endl);
358 }
359 DoLog(0) && (Log() << Verbose(0) << endl);
360
361 // diagonalize to determine principal axis system
362 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
363 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
364 gsl_vector *eval = gsl_vector_alloc(NDIM);
365 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
366 gsl_eigen_symmv(&m.matrix, eval, evec, T);
367 gsl_eigen_symmv_free(T);
368 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
369
370 for(int i=0;i<NDIM;i++) {
371 DoLog(1) && (Log() << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i));
372 DoLog(0) && (Log() << Verbose(0) << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl);
373 }
374
375 // check whether we rotate or not
376 if (DoRotate) {
377 DoLog(1) && (Log() << Verbose(1) << "Transforming molecule into PAS ... ");
378 // the eigenvectors specify the transformation matrix
379 ActOnAllVectors( &Vector::MatrixMultiplication, (const double *) evec->data );
380 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
381
382 // summing anew for debugging (resulting matrix has to be diagonal!)
383 // reset inertia tensor
384 for(int i=0;i<NDIM*NDIM;i++)
385 InertiaTensor[i] = 0.;
386
387 // sum up inertia tensor
388 ptr = start;
389 while (ptr->next != end) {
390 ptr = ptr->next;
391 Vector x = ptr->x;
392 //x.SubtractVector(CenterOfGravity);
393 InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]);
394 InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]);
395 InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]);
396 InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]);
397 InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]);
398 InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]);
399 InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]);
400 InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]);
401 InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]);
402 }
403 // print InertiaTensor for debugging
404 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl);
405 for(int i=0;i<NDIM;i++) {
406 for(int j=0;j<NDIM;j++)
407 DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ");
408 DoLog(0) && (Log() << Verbose(0) << endl);
409 }
410 DoLog(0) && (Log() << Verbose(0) << endl);
411 }
412
413 // free everything
414 delete(CenterOfGravity);
415 gsl_vector_free(eval);
416 gsl_matrix_free(evec);
417};
418
419
420/** Align all atoms in such a manner that given vector \a *n is along z axis.
421 * \param n[] alignment vector.
422 */
423void molecule::Align(Vector *n)
424{
425 atom *ptr = start;
426 double alpha, tmp;
427 Vector z_axis;
428 z_axis[0] = 0.;
429 z_axis[1] = 0.;
430 z_axis[2] = 1.;
431
432 // rotate on z-x plane
433 DoLog(0) && (Log() << Verbose(0) << "Begin of Aligning all atoms." << endl);
434 alpha = atan(-n->at(0)/n->at(2));
435 DoLog(1) && (Log() << Verbose(1) << "Z-X-angle: " << alpha << " ... ");
436 while (ptr->next != end) {
437 ptr = ptr->next;
438 tmp = ptr->x[0];
439 ptr->x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x[2];
440 ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2];
441 for (int j=0;j<MDSteps;j++) {
442 tmp = ptr->Trajectory.R.at(j)[0];
443 ptr->Trajectory.R.at(j)[0] = cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2];
444 ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2];
445 }
446 }
447 // rotate n vector
448 tmp = n->at(0);
449 n->at(0) = cos(alpha) * tmp + sin(alpha) * n->at(2);
450 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
451 DoLog(1) && (Log() << Verbose(1) << "alignment vector after first rotation: " << n << endl);
452
453 // rotate on z-y plane
454 ptr = start;
455 alpha = atan(-n->at(1)/n->at(2));
456 DoLog(1) && (Log() << Verbose(1) << "Z-Y-angle: " << alpha << " ... ");
457 while (ptr->next != end) {
458 ptr = ptr->next;
459 tmp = ptr->x[1];
460 ptr->x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x[2];
461 ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2];
462 for (int j=0;j<MDSteps;j++) {
463 tmp = ptr->Trajectory.R.at(j)[1];
464 ptr->Trajectory.R.at(j)[1] = cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2];
465 ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2];
466 }
467 }
468 // rotate n vector (for consistency check)
469 tmp = n->at(1);
470 n->at(1) = cos(alpha) * tmp + sin(alpha) * n->at(2);
471 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
472
473
474 DoLog(1) && (Log() << Verbose(1) << "alignment vector after second rotation: " << n << endl);
475 DoLog(0) && (Log() << Verbose(0) << "End of Aligning all atoms." << endl);
476};
477
478
479/** Calculates sum over least square distance to line hidden in \a *x.
480 * \param *x offset and direction vector
481 * \param *params pointer to lsq_params structure
482 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
483 */
484double LeastSquareDistance (const gsl_vector * x, void * params)
485{
486 double res = 0, t;
487 Vector a,b,c,d;
488 struct lsq_params *par = (struct lsq_params *)params;
489 atom *ptr = par->mol->start;
490
491 // initialize vectors
492 a[0] = gsl_vector_get(x,0);
493 a[1] = gsl_vector_get(x,1);
494 a[2] = gsl_vector_get(x,2);
495 b[0] = gsl_vector_get(x,3);
496 b[1] = gsl_vector_get(x,4);
497 b[2] = gsl_vector_get(x,5);
498 // go through all atoms
499 while (ptr != par->mol->end) {
500 ptr = ptr->next;
501 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
502 c = ptr->x - a;
503 t = c.ScalarProduct(b); // get direction parameter
504 d = t*b; // and create vector
505 c -= d; // ... yielding distance vector
506 res += d.ScalarProduct(d); // add squared distance
507 }
508 }
509 return res;
510};
511
512/** By minimizing the least square distance gains alignment vector.
513 * \bug this is not yet working properly it seems
514 */
515void molecule::GetAlignvector(struct lsq_params * par) const
516{
517 int np = 6;
518
519 const gsl_multimin_fminimizer_type *T =
520 gsl_multimin_fminimizer_nmsimplex;
521 gsl_multimin_fminimizer *s = NULL;
522 gsl_vector *ss;
523 gsl_multimin_function minex_func;
524
525 size_t iter = 0, i;
526 int status;
527 double size;
528
529 /* Initial vertex size vector */
530 ss = gsl_vector_alloc (np);
531
532 /* Set all step sizes to 1 */
533 gsl_vector_set_all (ss, 1.0);
534
535 /* Starting point */
536 par->x = gsl_vector_alloc (np);
537 par->mol = this;
538
539 gsl_vector_set (par->x, 0, 0.0); // offset
540 gsl_vector_set (par->x, 1, 0.0);
541 gsl_vector_set (par->x, 2, 0.0);
542 gsl_vector_set (par->x, 3, 0.0); // direction
543 gsl_vector_set (par->x, 4, 0.0);
544 gsl_vector_set (par->x, 5, 1.0);
545
546 /* Initialize method and iterate */
547 minex_func.f = &LeastSquareDistance;
548 minex_func.n = np;
549 minex_func.params = (void *)par;
550
551 s = gsl_multimin_fminimizer_alloc (T, np);
552 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
553
554 do
555 {
556 iter++;
557 status = gsl_multimin_fminimizer_iterate(s);
558
559 if (status)
560 break;
561
562 size = gsl_multimin_fminimizer_size (s);
563 status = gsl_multimin_test_size (size, 1e-2);
564
565 if (status == GSL_SUCCESS)
566 {
567 printf ("converged to minimum at\n");
568 }
569
570 printf ("%5d ", (int)iter);
571 for (i = 0; i < (size_t)np; i++)
572 {
573 printf ("%10.3e ", gsl_vector_get (s->x, i));
574 }
575 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
576 }
577 while (status == GSL_CONTINUE && iter < 100);
578
579 for (i=0;i<(size_t)np;i++)
580 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
581 //gsl_vector_free(par->x);
582 gsl_vector_free(ss);
583 gsl_multimin_fminimizer_free (s);
584};
Note: See TracBrowser for help on using the repository browser.