/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010-2012 University of Bonn. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * molecule_geometry.cpp * * Created on: Oct 5, 2009 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif //#include "CodePatterns/MemDebug.hpp" #include "Atom/atom.hpp" #include "Bond/bond.hpp" #include "Box.hpp" #include "CodePatterns/Log.hpp" #include "CodePatterns/Verbose.hpp" #include "config.hpp" #include "Element/element.hpp" #include "Graph/BondGraph.hpp" #include "LinearAlgebra/leastsquaremin.hpp" #include "LinearAlgebra/Line.hpp" #include "LinearAlgebra/RealSpaceMatrix.hpp" #include "LinearAlgebra/Plane.hpp" #include "molecule.hpp" #include "World.hpp" #include #include #include /************************************* Functions for class molecule *********************************/ /** Returns vector pointing to center of the domain. * \return pointer to center of the domain */ #ifdef HAVE_INLINE inline #else static #endif const Vector DetermineCenterOfBox() { Vector a(0.5,0.5,0.5); const RealSpaceMatrix &M = World::getInstance().getDomain().getM(); a *= M; return a; } /** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths. * \param *out output stream for debugging */ bool molecule::CenterInBox() { bool status = true; const Vector Center = DetermineCenterOfAll(); const Vector CenterBox = DetermineCenterOfBox(); Box &domain = World::getInstance().getDomain(); // go through all atoms Translate(CenterBox - Center); getAtomSet().transformNodes(boost::bind(&Box::enforceBoundaryConditions,domain,_1)); return status; } /** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths. * \param *out output stream for debugging */ bool molecule::BoundInBox() { bool status = true; Box &domain = World::getInstance().getDomain(); // go through all atoms getAtomSet().transformNodes(boost::bind(&Box::enforceBoundaryConditions,domain,_1)); return status; } /** Centers the edge of the atoms at (0,0,0). */ void molecule::CenterEdge() { const_iterator iter = const_cast(*this).begin(); if (iter != const_cast(*this).end()) { //list not empty? Vector min = (*begin())->getPosition(); for (;iter != const_cast(*this).end(); ++iter) { // continue with second if present const Vector ¤tPos = (*iter)->getPosition(); for (size_t i=0;i currentPos[i]) min[i] = currentPos[i]; } Translate(-1.*min); } } /** Centers the center of the atoms at (0,0,0). * \param *out output stream for debugging * \param *center return vector for translation vector */ void molecule::CenterOrigin() { int Num = 0; const_iterator iter = const_cast(*this).begin(); // start at first in list Vector Center; Center.Zero(); if (iter != const_cast(*this).end()) { //list not empty? for (; iter != const_cast(*this).end(); ++iter) { // continue with second if present Num++; Center += (*iter)->getPosition(); } Center.Scale(-1./(double)Num); // divide through total number (and sign for direction) Translate(Center); } } /** Returns vector pointing to center of all atoms. * \return pointer to center of all vector */ const Vector molecule::DetermineCenterOfAll() const { const_iterator iter = begin(); // start at first in list Vector a; double Num = 0; a.Zero(); if (iter != end()) { //list not empty? for (; iter != end(); ++iter) { // continue with second if present Num++; a += (*iter)->getPosition(); } a.Scale(1./(double)Num); // divide through total mass (and sign for direction) } return a; } /** Returns vector pointing to center of gravity. * \param *out output stream for debugging * \return pointer to center of gravity vector */ const Vector molecule::DetermineCenterOfGravity() const { const_iterator iter = begin(); // start at first in list Vector a; Vector tmp; double Num = 0; a.Zero(); if (iter != end()) { //list not empty? for (; iter != end(); ++iter) { // continue with second if present Num += (*iter)->getType()->getMass(); tmp = (*iter)->getType()->getMass() * (*iter)->getPosition(); a += tmp; } a.Scale(1./Num); // divide through total mass } LOG(1, "INFO: Resulting center of gravity: " << a << "."); return a; } /** Centers the center of gravity of the atoms at (0,0,0). * \param *out output stream for debugging * \param *center return vector for translation vector */ void molecule::CenterPeriodic() { Vector NewCenter; DeterminePeriodicCenter(NewCenter); Translate(-1.*NewCenter); } /** Centers the center of gravity of the atoms at (0,0,0). * \param *out output stream for debugging * \param *center return vector for translation vector */ void molecule::CenterAtVector(const Vector &newcenter) { Translate(-1.*newcenter); } /** Calculate the inertia tensor of a the molecule. * * @return inertia tensor */ RealSpaceMatrix molecule::getInertiaTensor() const { RealSpaceMatrix InertiaTensor; const Vector CenterOfGravity = DetermineCenterOfGravity(); // reset inertia tensor InertiaTensor.setZero(); // sum up inertia tensor for (const_iterator iter = begin(); iter != end(); ++iter) { Vector x = (*iter)->getPosition(); x -= CenterOfGravity; const double mass = (*iter)->getType()->getMass(); InertiaTensor.at(0,0) += mass*(x[1]*x[1] + x[2]*x[2]); InertiaTensor.at(0,1) += mass*(-x[0]*x[1]); InertiaTensor.at(0,2) += mass*(-x[0]*x[2]); InertiaTensor.at(1,0) += mass*(-x[1]*x[0]); InertiaTensor.at(1,1) += mass*(x[0]*x[0] + x[2]*x[2]); InertiaTensor.at(1,2) += mass*(-x[1]*x[2]); InertiaTensor.at(2,0) += mass*(-x[2]*x[0]); InertiaTensor.at(2,1) += mass*(-x[2]*x[1]); InertiaTensor.at(2,2) += mass*(x[0]*x[0] + x[1]*x[1]); } // print InertiaTensor LOG(1, "INFO: The inertia tensor of molecule " << getName() << " is:" << InertiaTensor); return InertiaTensor; } /** Rotates the molecule in such a way that biggest principal axis corresponds * to given \a Axis. * * @param Axis Axis to align with biggest principal axis */ void molecule::RotateToPrincipalAxisSystem(const Vector &Axis) { const Vector CenterOfGravity = DetermineCenterOfGravity(); RealSpaceMatrix InertiaTensor = getInertiaTensor(); // diagonalize to determine principal axis system Vector Eigenvalues = InertiaTensor.transformToEigenbasis(); for(int i=0;isetPosition(RotationAxis.rotateVector((*iter)->getPosition(), alpha)); *(*iter) += CenterOfGravity; } LOG(0, "STATUS: done."); } /** Scales all atoms by \a *factor. * \param *factor pointer to scaling factor * * TODO: Is this realy what is meant, i.e. * x=(x[0]*factor[0],x[1]*factor[1],x[2]*factor[2]) (current impl) * or rather * x=(**factor) * x (as suggested by comment) */ void molecule::Scale(const double *factor) { for (iterator iter = begin(); iter != end(); ++iter) for (size_t j=0;j<(*iter)->getTrajectorySize();j++) if ((*iter)->isStepPresent(j)) { Vector temp = (*iter)->getPositionAtStep(j); temp.ScaleAll(factor); (*iter)->setPositionAtStep(j,temp); } }; /** Translate all atoms by given vector. * \param trans[] translation vector. */ void molecule::Translate(const Vector &trans) { for (iterator iter = begin(); iter != end(); ++iter) for (size_t j=0;j<(*iter)->getTrajectorySize();j++) if ((*iter)->isStepPresent(j)) (*iter)->setPositionAtStep(j, (*iter)->getPositionAtStep(j) + (trans)); }; /** Translate the molecule periodically in the box. * \param trans[] translation vector. * TODO treatment of trajectories missing */ void molecule::TranslatePeriodically(const Vector &trans) { Translate(trans); Box &domain = World::getInstance().getDomain(); getAtomSet().transformNodes(boost::bind(&Box::enforceBoundaryConditions,domain,_1)); }; /** Mirrors all atoms against a given plane. * \param n[] normal vector of mirror plane. */ void molecule::Mirror(const Vector &n) { Plane p(n,0); getAtomSet().transformNodes(boost::bind(&Plane::mirrorVector,p,_1)); }; /** Determines center of molecule (yet not considering atom masses). * \param center reference to return vector * \param treatment whether to treat hydrogen special or not */ void molecule::DeterminePeriodicCenter(Vector ¢er, const enum HydrogenTreatment treatment) { const RealSpaceMatrix &matrix = World::getInstance().getDomain().getM(); const RealSpaceMatrix &inversematrix = World::getInstance().getDomain().getM(); double tmp; bool flag; Vector Testvector, Translationvector; Vector Center; const BondGraph * const BG = World::getInstance().getBondGraph(); do { Center.Zero(); flag = true; for (const_iterator iter = const_cast(*this).begin(); iter != const_cast(*this).end(); ++iter) { if ((treatment == IncludeHydrogen) || ((*iter)->getType()->getAtomicNumber() != 1)) { Testvector = inversematrix * (*iter)->getPosition(); Translationvector.Zero(); const BondList& ListOfBonds = (*iter)->getListOfBonds(); for (BondList::const_iterator Runner = ListOfBonds.begin(); Runner != ListOfBonds.end(); ++Runner) { if ((*iter)->getNr() < (*Runner)->GetOtherAtom((*iter))->getNr()) // otherwise we shift one to, the other fro and gain nothing for (int j=0;jat(j) - (*Runner)->GetOtherAtom(*iter)->at(j); const range MinMaxBondDistance( BG->getMinMaxDistance((*iter), (*Runner)->GetOtherAtom(*iter))); if (fabs(tmp) > MinMaxBondDistance.last) { // check against Min is not useful for components flag = false; LOG(0, "Hit: atom " << (*iter)->getName() << " in bond " << *(*Runner) << " has to be shifted due to " << tmp << "."); if (tmp > 0) Translationvector[j] -= 1.; else Translationvector[j] += 1.; } } } Testvector += Translationvector; Testvector *= matrix; Center += Testvector; LOG(1, "vector is: " << Testvector); if (treatment == ExcludeHydrogen) { // now also change all hydrogens for (BondList::const_iterator Runner = ListOfBonds.begin(); Runner != ListOfBonds.end(); ++Runner) { if ((*Runner)->GetOtherAtom((*iter))->getType()->getAtomicNumber() == 1) { Testvector = inversematrix * (*Runner)->GetOtherAtom((*iter))->getPosition(); Testvector += Translationvector; Testvector *= matrix; Center += Testvector; LOG(1, "Hydrogen vector is: " << Testvector); } } } } } } while (!flag); Center.Scale(1./static_cast(getAtomCount())); CenterAtVector(Center); }; /** Align all atoms in such a manner that given vector \a *n is along z axis. * \param n[] alignment vector. */ void molecule::Align(const Vector &n) { double alpha, tmp; Vector z_axis; Vector alignment(n); z_axis[0] = 0.; z_axis[1] = 0.; z_axis[2] = 1.; // rotate on z-x plane LOG(0, "Begin of Aligning all atoms."); alpha = atan(-alignment.at(0)/alignment.at(2)); LOG(1, "INFO: Z-X-angle: " << alpha << " ... "); for (iterator iter = begin(); iter != end(); ++iter) { tmp = (*iter)->at(0); (*iter)->set(0, cos(alpha) * tmp + sin(alpha) * (*iter)->at(2)); (*iter)->set(2, -sin(alpha) * tmp + cos(alpha) * (*iter)->at(2)); for (int j=0;jgetPositionAtStep(j)[0] + sin(alpha) * (*iter)->getPositionAtStep(j)[2]; temp[2] = -sin(alpha) * (*iter)->getPositionAtStep(j)[0] + cos(alpha) * (*iter)->getPositionAtStep(j)[2]; (*iter)->setPositionAtStep(j,temp); } } // rotate n vector tmp = alignment.at(0); alignment.at(0) = cos(alpha) * tmp + sin(alpha) * alignment.at(2); alignment.at(2) = -sin(alpha) * tmp + cos(alpha) * alignment.at(2); LOG(1, "alignment vector after first rotation: " << alignment); // rotate on z-y plane alpha = atan(-alignment.at(1)/alignment.at(2)); LOG(1, "INFO: Z-Y-angle: " << alpha << " ... "); for (iterator iter = begin(); iter != end(); ++iter) { tmp = (*iter)->at(1); (*iter)->set(1, cos(alpha) * tmp + sin(alpha) * (*iter)->at(2)); (*iter)->set(2, -sin(alpha) * tmp + cos(alpha) * (*iter)->at(2)); for (int j=0;jgetPositionAtStep(j)[1] + sin(alpha) * (*iter)->getPositionAtStep(j)[2]; temp[2] = -sin(alpha) * (*iter)->getPositionAtStep(j)[1] + cos(alpha) * (*iter)->getPositionAtStep(j)[2]; (*iter)->setPositionAtStep(j,temp); } } // rotate n vector (for consistency check) tmp = alignment.at(1); alignment.at(1) = cos(alpha) * tmp + sin(alpha) * alignment.at(2); alignment.at(2) = -sin(alpha) * tmp + cos(alpha) * alignment.at(2); LOG(1, "alignment vector after second rotation: " << alignment); LOG(0, "End of Aligning all atoms."); }; /** Calculates sum over least square distance to line hidden in \a *x. * \param *x offset and direction vector * \param *params pointer to lsq_params structure * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$ */ double LeastSquareDistance (const gsl_vector * x, void * params) { double res = 0, t; Vector a,b,c,d; struct lsq_params *par = (struct lsq_params *)params; // initialize vectors a[0] = gsl_vector_get(x,0); a[1] = gsl_vector_get(x,1); a[2] = gsl_vector_get(x,2); b[0] = gsl_vector_get(x,3); b[1] = gsl_vector_get(x,4); b[2] = gsl_vector_get(x,5); // go through all atoms for (molecule::const_iterator iter = par->mol->begin(); iter != par->mol->end(); ++iter) { if ((*iter)->getType() == ((struct lsq_params *)params)->type) { // for specific type c = (*iter)->getPosition() - a; t = c.ScalarProduct(b); // get direction parameter d = t*b; // and create vector c -= d; // ... yielding distance vector res += d.ScalarProduct(d); // add squared distance } } return res; }; /** By minimizing the least square distance gains alignment vector. * \bug this is not yet working properly it seems */ void molecule::GetAlignvector(struct lsq_params * par) const { int np = 6; const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex; gsl_multimin_fminimizer *s = NULL; gsl_vector *ss; gsl_multimin_function minex_func; size_t iter = 0, i; int status; double size; /* Initial vertex size vector */ ss = gsl_vector_alloc (np); /* Set all step sizes to 1 */ gsl_vector_set_all (ss, 1.0); /* Starting point */ par->x = gsl_vector_alloc (np); par->mol = this; gsl_vector_set (par->x, 0, 0.0); // offset gsl_vector_set (par->x, 1, 0.0); gsl_vector_set (par->x, 2, 0.0); gsl_vector_set (par->x, 3, 0.0); // direction gsl_vector_set (par->x, 4, 0.0); gsl_vector_set (par->x, 5, 1.0); /* Initialize method and iterate */ minex_func.f = &LeastSquareDistance; minex_func.n = np; minex_func.params = (void *)par; s = gsl_multimin_fminimizer_alloc (T, np); gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss); do { iter++; status = gsl_multimin_fminimizer_iterate(s); if (status) break; size = gsl_multimin_fminimizer_size (s); status = gsl_multimin_test_size (size, 1e-2); if (status == GSL_SUCCESS) { printf ("converged to minimum at\n"); } printf ("%5d ", (int)iter); for (i = 0; i < (size_t)np; i++) { printf ("%10.3e ", gsl_vector_get (s->x, i)); } printf ("f() = %7.3f size = %.3f\n", s->fval, size); } while (status == GSL_CONTINUE && iter < 100); for (i=0;i<(size_t)np;i++) gsl_vector_set(par->x, i, gsl_vector_get(s->x, i)); //gsl_vector_free(par->x); gsl_vector_free(ss); gsl_multimin_fminimizer_free (s); };