/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* molecule_geometry.cpp
*
* Created on: Oct 5, 2009
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
//#include "CodePatterns/MemDebug.hpp"
#include "Atom/atom.hpp"
#include "Bond/bond.hpp"
#include "Box.hpp"
#include "CodePatterns/Log.hpp"
#include "CodePatterns/Verbose.hpp"
#include "config.hpp"
#include "Element/element.hpp"
#include "Graph/BondGraph.hpp"
#include "LinearAlgebra/leastsquaremin.hpp"
#include "LinearAlgebra/Line.hpp"
#include "LinearAlgebra/RealSpaceMatrix.hpp"
#include "LinearAlgebra/Plane.hpp"
#include "molecule.hpp"
#include "World.hpp"
#include
#include
#include
/************************************* Functions for class molecule *********************************/
/** Returns vector pointing to center of the domain.
* \return pointer to center of the domain
*/
#ifdef HAVE_INLINE
inline
#else
static
#endif
const Vector DetermineCenterOfBox()
{
Vector a(0.5,0.5,0.5);
const RealSpaceMatrix &M = World::getInstance().getDomain().getM();
a *= M;
return a;
}
/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
* \param *out output stream for debugging
*/
bool molecule::CenterInBox()
{
bool status = true;
const Vector Center = DetermineCenterOfAll();
const Vector CenterBox = DetermineCenterOfBox();
Box &domain = World::getInstance().getDomain();
// go through all atoms
Translate(CenterBox - Center);
getAtomSet().transformNodes(boost::bind(&Box::enforceBoundaryConditions,domain,_1));
return status;
}
/** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths.
* \param *out output stream for debugging
*/
bool molecule::BoundInBox()
{
bool status = true;
Box &domain = World::getInstance().getDomain();
// go through all atoms
getAtomSet().transformNodes(boost::bind(&Box::enforceBoundaryConditions,domain,_1));
return status;
}
/** Centers the edge of the atoms at (0,0,0).
*/
void molecule::CenterEdge()
{
const_iterator iter = const_cast(*this).begin();
if (iter != const_cast(*this).end()) { //list not empty?
Vector min = (*begin())->getPosition();
for (;iter != const_cast(*this).end(); ++iter) { // continue with second if present
const Vector ¤tPos = (*iter)->getPosition();
for (size_t i=0;i currentPos[i])
min[i] = currentPos[i];
}
Translate(-1.*min);
}
}
/** Centers the center of the atoms at (0,0,0).
* \param *out output stream for debugging
* \param *center return vector for translation vector
*/
void molecule::CenterOrigin()
{
int Num = 0;
const_iterator iter = const_cast(*this).begin(); // start at first in list
Vector Center;
Center.Zero();
if (iter != const_cast(*this).end()) { //list not empty?
for (; iter != const_cast(*this).end(); ++iter) { // continue with second if present
Num++;
Center += (*iter)->getPosition();
}
Center.Scale(-1./(double)Num); // divide through total number (and sign for direction)
Translate(Center);
}
}
/** Returns vector pointing to center of all atoms.
* \return pointer to center of all vector
*/
const Vector molecule::DetermineCenterOfAll() const
{
const_iterator iter = begin(); // start at first in list
Vector a;
double Num = 0;
a.Zero();
if (iter != end()) { //list not empty?
for (; iter != end(); ++iter) { // continue with second if present
Num++;
a += (*iter)->getPosition();
}
a.Scale(1./(double)Num); // divide through total mass (and sign for direction)
}
return a;
}
/** Returns vector pointing to center of gravity.
* \param *out output stream for debugging
* \return pointer to center of gravity vector
*/
const Vector molecule::DetermineCenterOfGravity() const
{
const_iterator iter = begin(); // start at first in list
Vector a;
Vector tmp;
double Num = 0;
a.Zero();
if (iter != end()) { //list not empty?
for (; iter != end(); ++iter) { // continue with second if present
Num += (*iter)->getType()->getMass();
tmp = (*iter)->getType()->getMass() * (*iter)->getPosition();
a += tmp;
}
a.Scale(1./Num); // divide through total mass
}
LOG(1, "INFO: Resulting center of gravity: " << a << ".");
return a;
}
/** Centers the center of gravity of the atoms at (0,0,0).
* \param *out output stream for debugging
* \param *center return vector for translation vector
*/
void molecule::CenterPeriodic()
{
Vector NewCenter;
DeterminePeriodicCenter(NewCenter);
Translate(-1.*NewCenter);
}
/** Centers the center of gravity of the atoms at (0,0,0).
* \param *out output stream for debugging
* \param *center return vector for translation vector
*/
void molecule::CenterAtVector(const Vector &newcenter)
{
Translate(-1.*newcenter);
}
/** Calculate the inertia tensor of a the molecule.
*
* @return inertia tensor
*/
RealSpaceMatrix molecule::getInertiaTensor() const
{
RealSpaceMatrix InertiaTensor;
const Vector CenterOfGravity = DetermineCenterOfGravity();
// reset inertia tensor
InertiaTensor.setZero();
// sum up inertia tensor
for (const_iterator iter = begin(); iter != end(); ++iter) {
Vector x = (*iter)->getPosition();
x -= CenterOfGravity;
const double mass = (*iter)->getType()->getMass();
InertiaTensor.at(0,0) += mass*(x[1]*x[1] + x[2]*x[2]);
InertiaTensor.at(0,1) += mass*(-x[0]*x[1]);
InertiaTensor.at(0,2) += mass*(-x[0]*x[2]);
InertiaTensor.at(1,0) += mass*(-x[1]*x[0]);
InertiaTensor.at(1,1) += mass*(x[0]*x[0] + x[2]*x[2]);
InertiaTensor.at(1,2) += mass*(-x[1]*x[2]);
InertiaTensor.at(2,0) += mass*(-x[2]*x[0]);
InertiaTensor.at(2,1) += mass*(-x[2]*x[1]);
InertiaTensor.at(2,2) += mass*(x[0]*x[0] + x[1]*x[1]);
}
// print InertiaTensor
LOG(1, "INFO: The inertia tensor of molecule " << getName() << " is:" << InertiaTensor);
return InertiaTensor;
}
/** Rotates the molecule in such a way that biggest principal axis corresponds
* to given \a Axis.
*
* @param Axis Axis to align with biggest principal axis
*/
void molecule::RotateToPrincipalAxisSystem(const Vector &Axis)
{
const Vector CenterOfGravity = DetermineCenterOfGravity();
RealSpaceMatrix InertiaTensor = getInertiaTensor();
// diagonalize to determine principal axis system
Vector Eigenvalues = InertiaTensor.transformToEigenbasis();
for(int i=0;isetPosition(RotationAxis.rotateVector((*iter)->getPosition(), alpha));
*(*iter) += CenterOfGravity;
}
LOG(0, "STATUS: done.");
}
/** Scales all atoms by \a *factor.
* \param *factor pointer to scaling factor
*
* TODO: Is this realy what is meant, i.e.
* x=(x[0]*factor[0],x[1]*factor[1],x[2]*factor[2]) (current impl)
* or rather
* x=(**factor) * x (as suggested by comment)
*/
void molecule::Scale(const double *factor)
{
for (iterator iter = begin(); iter != end(); ++iter)
for (size_t j=0;j<(*iter)->getTrajectorySize();j++)
if ((*iter)->isStepPresent(j)) {
Vector temp = (*iter)->getPositionAtStep(j);
temp.ScaleAll(factor);
(*iter)->setPositionAtStep(j,temp);
}
};
/** Translate all atoms by given vector.
* \param trans[] translation vector.
*/
void molecule::Translate(const Vector &trans)
{
for (iterator iter = begin(); iter != end(); ++iter)
for (size_t j=0;j<(*iter)->getTrajectorySize();j++)
if ((*iter)->isStepPresent(j))
(*iter)->setPositionAtStep(j, (*iter)->getPositionAtStep(j) + (trans));
};
/** Translate the molecule periodically in the box.
* \param trans[] translation vector.
* TODO treatment of trajectories missing
*/
void molecule::TranslatePeriodically(const Vector &trans)
{
Translate(trans);
Box &domain = World::getInstance().getDomain();
getAtomSet().transformNodes(boost::bind(&Box::enforceBoundaryConditions,domain,_1));
};
/** Mirrors all atoms against a given plane.
* \param n[] normal vector of mirror plane.
*/
void molecule::Mirror(const Vector &n)
{
Plane p(n,0);
getAtomSet().transformNodes(boost::bind(&Plane::mirrorVector,p,_1));
};
/** Determines center of molecule (yet not considering atom masses).
* \param center reference to return vector
* \param treatment whether to treat hydrogen special or not
*/
void molecule::DeterminePeriodicCenter(Vector ¢er, const enum HydrogenTreatment treatment)
{
const RealSpaceMatrix &matrix = World::getInstance().getDomain().getM();
const RealSpaceMatrix &inversematrix = World::getInstance().getDomain().getM();
double tmp;
bool flag;
Vector Testvector, Translationvector;
Vector Center;
const BondGraph * const BG = World::getInstance().getBondGraph();
do {
Center.Zero();
flag = true;
for (const_iterator iter = const_cast(*this).begin();
iter != const_cast(*this).end();
++iter) {
if ((treatment == IncludeHydrogen) || ((*iter)->getType()->getAtomicNumber() != 1)) {
Testvector = inversematrix * (*iter)->getPosition();
Translationvector.Zero();
const BondList& ListOfBonds = (*iter)->getListOfBonds();
for (BondList::const_iterator Runner = ListOfBonds.begin();
Runner != ListOfBonds.end();
++Runner) {
if ((*iter)->getNr() < (*Runner)->GetOtherAtom((*iter))->getNr()) // otherwise we shift one to, the other fro and gain nothing
for (int j=0;jat(j) - (*Runner)->GetOtherAtom(*iter)->at(j);
const range MinMaxBondDistance(
BG->getMinMaxDistance((*iter), (*Runner)->GetOtherAtom(*iter)));
if (fabs(tmp) > MinMaxBondDistance.last) { // check against Min is not useful for components
flag = false;
LOG(0, "Hit: atom " << (*iter)->getName() << " in bond " << *(*Runner) << " has to be shifted due to " << tmp << ".");
if (tmp > 0)
Translationvector[j] -= 1.;
else
Translationvector[j] += 1.;
}
}
}
Testvector += Translationvector;
Testvector *= matrix;
Center += Testvector;
LOG(1, "vector is: " << Testvector);
if (treatment == ExcludeHydrogen) {
// now also change all hydrogens
for (BondList::const_iterator Runner = ListOfBonds.begin();
Runner != ListOfBonds.end();
++Runner) {
if ((*Runner)->GetOtherAtom((*iter))->getType()->getAtomicNumber() == 1) {
Testvector = inversematrix * (*Runner)->GetOtherAtom((*iter))->getPosition();
Testvector += Translationvector;
Testvector *= matrix;
Center += Testvector;
LOG(1, "Hydrogen vector is: " << Testvector);
}
}
}
}
}
} while (!flag);
Center.Scale(1./static_cast(getAtomCount()));
CenterAtVector(Center);
};
/** Align all atoms in such a manner that given vector \a *n is along z axis.
* \param n[] alignment vector.
*/
void molecule::Align(const Vector &n)
{
double alpha, tmp;
Vector z_axis;
Vector alignment(n);
z_axis[0] = 0.;
z_axis[1] = 0.;
z_axis[2] = 1.;
// rotate on z-x plane
LOG(0, "Begin of Aligning all atoms.");
alpha = atan(-alignment.at(0)/alignment.at(2));
LOG(1, "INFO: Z-X-angle: " << alpha << " ... ");
for (iterator iter = begin(); iter != end(); ++iter) {
tmp = (*iter)->at(0);
(*iter)->set(0, cos(alpha) * tmp + sin(alpha) * (*iter)->at(2));
(*iter)->set(2, -sin(alpha) * tmp + cos(alpha) * (*iter)->at(2));
for (int j=0;jgetPositionAtStep(j)[0] + sin(alpha) * (*iter)->getPositionAtStep(j)[2];
temp[2] = -sin(alpha) * (*iter)->getPositionAtStep(j)[0] + cos(alpha) * (*iter)->getPositionAtStep(j)[2];
(*iter)->setPositionAtStep(j,temp);
}
}
// rotate n vector
tmp = alignment.at(0);
alignment.at(0) = cos(alpha) * tmp + sin(alpha) * alignment.at(2);
alignment.at(2) = -sin(alpha) * tmp + cos(alpha) * alignment.at(2);
LOG(1, "alignment vector after first rotation: " << alignment);
// rotate on z-y plane
alpha = atan(-alignment.at(1)/alignment.at(2));
LOG(1, "INFO: Z-Y-angle: " << alpha << " ... ");
for (iterator iter = begin(); iter != end(); ++iter) {
tmp = (*iter)->at(1);
(*iter)->set(1, cos(alpha) * tmp + sin(alpha) * (*iter)->at(2));
(*iter)->set(2, -sin(alpha) * tmp + cos(alpha) * (*iter)->at(2));
for (int j=0;jgetPositionAtStep(j)[1] + sin(alpha) * (*iter)->getPositionAtStep(j)[2];
temp[2] = -sin(alpha) * (*iter)->getPositionAtStep(j)[1] + cos(alpha) * (*iter)->getPositionAtStep(j)[2];
(*iter)->setPositionAtStep(j,temp);
}
}
// rotate n vector (for consistency check)
tmp = alignment.at(1);
alignment.at(1) = cos(alpha) * tmp + sin(alpha) * alignment.at(2);
alignment.at(2) = -sin(alpha) * tmp + cos(alpha) * alignment.at(2);
LOG(1, "alignment vector after second rotation: " << alignment);
LOG(0, "End of Aligning all atoms.");
};
/** Calculates sum over least square distance to line hidden in \a *x.
* \param *x offset and direction vector
* \param *params pointer to lsq_params structure
* \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
*/
double LeastSquareDistance (const gsl_vector * x, void * params)
{
double res = 0, t;
Vector a,b,c,d;
struct lsq_params *par = (struct lsq_params *)params;
// initialize vectors
a[0] = gsl_vector_get(x,0);
a[1] = gsl_vector_get(x,1);
a[2] = gsl_vector_get(x,2);
b[0] = gsl_vector_get(x,3);
b[1] = gsl_vector_get(x,4);
b[2] = gsl_vector_get(x,5);
// go through all atoms
for (molecule::const_iterator iter = par->mol->begin(); iter != par->mol->end(); ++iter) {
if ((*iter)->getType() == ((struct lsq_params *)params)->type) { // for specific type
c = (*iter)->getPosition() - a;
t = c.ScalarProduct(b); // get direction parameter
d = t*b; // and create vector
c -= d; // ... yielding distance vector
res += d.ScalarProduct(d); // add squared distance
}
}
return res;
};
/** By minimizing the least square distance gains alignment vector.
* \bug this is not yet working properly it seems
*/
void molecule::GetAlignvector(struct lsq_params * par) const
{
int np = 6;
const gsl_multimin_fminimizer_type *T =
gsl_multimin_fminimizer_nmsimplex;
gsl_multimin_fminimizer *s = NULL;
gsl_vector *ss;
gsl_multimin_function minex_func;
size_t iter = 0, i;
int status;
double size;
/* Initial vertex size vector */
ss = gsl_vector_alloc (np);
/* Set all step sizes to 1 */
gsl_vector_set_all (ss, 1.0);
/* Starting point */
par->x = gsl_vector_alloc (np);
par->mol = this;
gsl_vector_set (par->x, 0, 0.0); // offset
gsl_vector_set (par->x, 1, 0.0);
gsl_vector_set (par->x, 2, 0.0);
gsl_vector_set (par->x, 3, 0.0); // direction
gsl_vector_set (par->x, 4, 0.0);
gsl_vector_set (par->x, 5, 1.0);
/* Initialize method and iterate */
minex_func.f = &LeastSquareDistance;
minex_func.n = np;
minex_func.params = (void *)par;
s = gsl_multimin_fminimizer_alloc (T, np);
gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
do
{
iter++;
status = gsl_multimin_fminimizer_iterate(s);
if (status)
break;
size = gsl_multimin_fminimizer_size (s);
status = gsl_multimin_test_size (size, 1e-2);
if (status == GSL_SUCCESS)
{
printf ("converged to minimum at\n");
}
printf ("%5d ", (int)iter);
for (i = 0; i < (size_t)np; i++)
{
printf ("%10.3e ", gsl_vector_get (s->x, i));
}
printf ("f() = %7.3f size = %.3f\n", s->fval, size);
}
while (status == GSL_CONTINUE && iter < 100);
for (i=0;i<(size_t)np;i++)
gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
//gsl_vector_free(par->x);
gsl_vector_free(ss);
gsl_multimin_fminimizer_free (s);
};