| 1 | /* | 
|---|
| 2 | * molecule_geometry.cpp | 
|---|
| 3 | * | 
|---|
| 4 | *  Created on: Oct 5, 2009 | 
|---|
| 5 | *      Author: heber | 
|---|
| 6 | */ | 
|---|
| 7 |  | 
|---|
| 8 | #include "atom.hpp" | 
|---|
| 9 | #include "bond.hpp" | 
|---|
| 10 | #include "config.hpp" | 
|---|
| 11 | #include "element.hpp" | 
|---|
| 12 | #include "helpers.hpp" | 
|---|
| 13 | #include "leastsquaremin.hpp" | 
|---|
| 14 | #include "log.hpp" | 
|---|
| 15 | #include "memoryallocator.hpp" | 
|---|
| 16 | #include "molecule.hpp" | 
|---|
| 17 | #include "World.hpp" | 
|---|
| 18 |  | 
|---|
| 19 | /************************************* Functions for class molecule *********************************/ | 
|---|
| 20 |  | 
|---|
| 21 |  | 
|---|
| 22 | /** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths. | 
|---|
| 23 | * \param *out output stream for debugging | 
|---|
| 24 | */ | 
|---|
| 25 | bool molecule::CenterInBox() | 
|---|
| 26 | { | 
|---|
| 27 | bool status = true; | 
|---|
| 28 | const Vector *Center = DetermineCenterOfAll(); | 
|---|
| 29 | double * const cell_size = World::getInstance().getDomain(); | 
|---|
| 30 | double *M = ReturnFullMatrixforSymmetric(cell_size); | 
|---|
| 31 | double *Minv = InverseMatrix(M); | 
|---|
| 32 |  | 
|---|
| 33 | // go through all atoms | 
|---|
| 34 | ActOnAllVectors( &Vector::SubtractVector, *Center); | 
|---|
| 35 | ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv); | 
|---|
| 36 |  | 
|---|
| 37 | Free(&M); | 
|---|
| 38 | Free(&Minv); | 
|---|
| 39 | delete(Center); | 
|---|
| 40 | return status; | 
|---|
| 41 | }; | 
|---|
| 42 |  | 
|---|
| 43 |  | 
|---|
| 44 | /** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths. | 
|---|
| 45 | * \param *out output stream for debugging | 
|---|
| 46 | */ | 
|---|
| 47 | bool molecule::BoundInBox() | 
|---|
| 48 | { | 
|---|
| 49 | bool status = true; | 
|---|
| 50 | double * const cell_size = World::getInstance().getDomain(); | 
|---|
| 51 | double *M = ReturnFullMatrixforSymmetric(cell_size); | 
|---|
| 52 | double *Minv = InverseMatrix(M); | 
|---|
| 53 |  | 
|---|
| 54 | // go through all atoms | 
|---|
| 55 | ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv); | 
|---|
| 56 |  | 
|---|
| 57 | Free(&M); | 
|---|
| 58 | Free(&Minv); | 
|---|
| 59 | return status; | 
|---|
| 60 | }; | 
|---|
| 61 |  | 
|---|
| 62 | /** Centers the edge of the atoms at (0,0,0). | 
|---|
| 63 | * \param *out output stream for debugging | 
|---|
| 64 | * \param *max coordinates of other edge, specifying box dimensions. | 
|---|
| 65 | */ | 
|---|
| 66 | void molecule::CenterEdge(Vector *max) | 
|---|
| 67 | { | 
|---|
| 68 | Vector *min = new Vector; | 
|---|
| 69 |  | 
|---|
| 70 | //  Log() << Verbose(3) << "Begin of CenterEdge." << endl; | 
|---|
| 71 | atom *ptr = start->next;  // start at first in list | 
|---|
| 72 | if (ptr != end) {   //list not empty? | 
|---|
| 73 | for (int i=NDIM;i--;) { | 
|---|
| 74 | max->at(i) = ptr->x[i]; | 
|---|
| 75 | min->at(i) = ptr->x[i]; | 
|---|
| 76 | } | 
|---|
| 77 | while (ptr->next != end) {  // continue with second if present | 
|---|
| 78 | ptr = ptr->next; | 
|---|
| 79 | //ptr->Output(1,1,out); | 
|---|
| 80 | for (int i=NDIM;i--;) { | 
|---|
| 81 | max->at(i) = (max->at(i) < ptr->x[i]) ? ptr->x[i] : max->at(i); | 
|---|
| 82 | min->at(i) = (min->at(i) > ptr->x[i]) ? ptr->x[i] : min->at(i); | 
|---|
| 83 | } | 
|---|
| 84 | } | 
|---|
| 85 | //    Log() << Verbose(4) << "Maximum is "; | 
|---|
| 86 | //    max->Output(out); | 
|---|
| 87 | //    Log() << Verbose(0) << ", Minimum is "; | 
|---|
| 88 | //    min->Output(out); | 
|---|
| 89 | //    Log() << Verbose(0) << endl; | 
|---|
| 90 | min->Scale(-1.); | 
|---|
| 91 | (*max) += (*min); | 
|---|
| 92 | Translate(min); | 
|---|
| 93 | Center.Zero(); | 
|---|
| 94 | } | 
|---|
| 95 | delete(min); | 
|---|
| 96 | //  Log() << Verbose(3) << "End of CenterEdge." << endl; | 
|---|
| 97 | }; | 
|---|
| 98 |  | 
|---|
| 99 | /** Centers the center of the atoms at (0,0,0). | 
|---|
| 100 | * \param *out output stream for debugging | 
|---|
| 101 | * \param *center return vector for translation vector | 
|---|
| 102 | */ | 
|---|
| 103 | void molecule::CenterOrigin() | 
|---|
| 104 | { | 
|---|
| 105 | int Num = 0; | 
|---|
| 106 | atom *ptr = start;  // start at first in list | 
|---|
| 107 |  | 
|---|
| 108 | Center.Zero(); | 
|---|
| 109 |  | 
|---|
| 110 | if (ptr->next != end) {   //list not empty? | 
|---|
| 111 | while (ptr->next != end) { | 
|---|
| 112 | ptr = ptr->next; | 
|---|
| 113 | Num++; | 
|---|
| 114 | Center += ptr->x; | 
|---|
| 115 | } | 
|---|
| 116 | Center.Scale(-1./Num); // divide through total number (and sign for direction) | 
|---|
| 117 | Translate(&Center); | 
|---|
| 118 | Center.Zero(); | 
|---|
| 119 | } | 
|---|
| 120 | }; | 
|---|
| 121 |  | 
|---|
| 122 | /** Returns vector pointing to center of all atoms. | 
|---|
| 123 | * \return pointer to center of all vector | 
|---|
| 124 | */ | 
|---|
| 125 | Vector * molecule::DetermineCenterOfAll() const | 
|---|
| 126 | { | 
|---|
| 127 | atom *ptr = start;  // start at first in list | 
|---|
| 128 | Vector *a = new Vector(); | 
|---|
| 129 | double Num = 0; | 
|---|
| 130 |  | 
|---|
| 131 | a->Zero(); | 
|---|
| 132 |  | 
|---|
| 133 | if (ptr->next != end) {   //list not empty? | 
|---|
| 134 | while (ptr->next != end) { | 
|---|
| 135 | ptr = ptr->next; | 
|---|
| 136 | Num += 1.; | 
|---|
| 137 | (*a) += ptr->x; | 
|---|
| 138 | } | 
|---|
| 139 | a->Scale(1./Num); // divide through total mass (and sign for direction) | 
|---|
| 140 | } | 
|---|
| 141 | return a; | 
|---|
| 142 | }; | 
|---|
| 143 |  | 
|---|
| 144 | /** Returns vector pointing to center of gravity. | 
|---|
| 145 | * \param *out output stream for debugging | 
|---|
| 146 | * \return pointer to center of gravity vector | 
|---|
| 147 | */ | 
|---|
| 148 | Vector * molecule::DetermineCenterOfGravity() | 
|---|
| 149 | { | 
|---|
| 150 | atom *ptr = start->next;  // start at first in list | 
|---|
| 151 | Vector *a = new Vector(); | 
|---|
| 152 | Vector tmp; | 
|---|
| 153 | double Num = 0; | 
|---|
| 154 |  | 
|---|
| 155 | a->Zero(); | 
|---|
| 156 |  | 
|---|
| 157 | if (ptr != end) {   //list not empty? | 
|---|
| 158 | while (ptr->next != end) {  // continue with second if present | 
|---|
| 159 | ptr = ptr->next; | 
|---|
| 160 | Num += ptr->type->mass; | 
|---|
| 161 | tmp = ptr->type->mass * ptr->x; | 
|---|
| 162 | (*a) += tmp; | 
|---|
| 163 | } | 
|---|
| 164 | a->Scale(-1./Num); // divide through total mass (and sign for direction) | 
|---|
| 165 | } | 
|---|
| 166 | //  Log() << Verbose(1) << "Resulting center of gravity: "; | 
|---|
| 167 | //  a->Output(out); | 
|---|
| 168 | //  Log() << Verbose(0) << endl; | 
|---|
| 169 | return a; | 
|---|
| 170 | }; | 
|---|
| 171 |  | 
|---|
| 172 | /** Centers the center of gravity of the atoms at (0,0,0). | 
|---|
| 173 | * \param *out output stream for debugging | 
|---|
| 174 | * \param *center return vector for translation vector | 
|---|
| 175 | */ | 
|---|
| 176 | void molecule::CenterPeriodic() | 
|---|
| 177 | { | 
|---|
| 178 | DeterminePeriodicCenter(Center); | 
|---|
| 179 | }; | 
|---|
| 180 |  | 
|---|
| 181 |  | 
|---|
| 182 | /** Centers the center of gravity of the atoms at (0,0,0). | 
|---|
| 183 | * \param *out output stream for debugging | 
|---|
| 184 | * \param *center return vector for translation vector | 
|---|
| 185 | */ | 
|---|
| 186 | void molecule::CenterAtVector(Vector *newcenter) | 
|---|
| 187 | { | 
|---|
| 188 | Center = *newcenter; | 
|---|
| 189 | }; | 
|---|
| 190 |  | 
|---|
| 191 |  | 
|---|
| 192 | /** Scales all atoms by \a *factor. | 
|---|
| 193 | * \param *factor pointer to scaling factor | 
|---|
| 194 | * | 
|---|
| 195 | * TODO: Is this realy what is meant, i.e. | 
|---|
| 196 | * x=(x[0]*factor[0],x[1]*factor[1],x[2]*factor[2]) (current impl) | 
|---|
| 197 | * or rather | 
|---|
| 198 | * x=(**factor) * x (as suggested by comment) | 
|---|
| 199 | */ | 
|---|
| 200 | void molecule::Scale(const double ** const factor) | 
|---|
| 201 | { | 
|---|
| 202 | atom *ptr = start; | 
|---|
| 203 |  | 
|---|
| 204 | while (ptr->next != end) { | 
|---|
| 205 | ptr = ptr->next; | 
|---|
| 206 | for (int j=0;j<MDSteps;j++) | 
|---|
| 207 | ptr->Trajectory.R.at(j).ScaleAll(*factor); | 
|---|
| 208 | ptr->x.ScaleAll(*factor); | 
|---|
| 209 | } | 
|---|
| 210 | }; | 
|---|
| 211 |  | 
|---|
| 212 | /** Translate all atoms by given vector. | 
|---|
| 213 | * \param trans[] translation vector. | 
|---|
| 214 | */ | 
|---|
| 215 | void molecule::Translate(const Vector *trans) | 
|---|
| 216 | { | 
|---|
| 217 | atom *ptr = start; | 
|---|
| 218 |  | 
|---|
| 219 | while (ptr->next != end) { | 
|---|
| 220 | ptr = ptr->next; | 
|---|
| 221 | for (int j=0;j<MDSteps;j++) | 
|---|
| 222 | ptr->Trajectory.R.at(j) += (*trans); | 
|---|
| 223 | ptr->x += (*trans); | 
|---|
| 224 | } | 
|---|
| 225 | }; | 
|---|
| 226 |  | 
|---|
| 227 | /** Translate the molecule periodically in the box. | 
|---|
| 228 | * \param trans[] translation vector. | 
|---|
| 229 | * TODO treatment of trajetories missing | 
|---|
| 230 | */ | 
|---|
| 231 | void molecule::TranslatePeriodically(const Vector *trans) | 
|---|
| 232 | { | 
|---|
| 233 | double * const cell_size = World::getInstance().getDomain(); | 
|---|
| 234 | double *M = ReturnFullMatrixforSymmetric(cell_size); | 
|---|
| 235 | double *Minv = InverseMatrix(M); | 
|---|
| 236 |  | 
|---|
| 237 | // go through all atoms | 
|---|
| 238 | ActOnAllVectors( &Vector::SubtractVector, *trans); | 
|---|
| 239 | ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv); | 
|---|
| 240 |  | 
|---|
| 241 | Free(&M); | 
|---|
| 242 | Free(&Minv); | 
|---|
| 243 | }; | 
|---|
| 244 |  | 
|---|
| 245 |  | 
|---|
| 246 | /** Mirrors all atoms against a given plane. | 
|---|
| 247 | * \param n[] normal vector of mirror plane. | 
|---|
| 248 | */ | 
|---|
| 249 | void molecule::Mirror(const Vector *n) | 
|---|
| 250 | { | 
|---|
| 251 | ActOnAllVectors( &Vector::Mirror, *n ); | 
|---|
| 252 | }; | 
|---|
| 253 |  | 
|---|
| 254 | /** Determines center of molecule (yet not considering atom masses). | 
|---|
| 255 | * \param center reference to return vector | 
|---|
| 256 | */ | 
|---|
| 257 | void molecule::DeterminePeriodicCenter(Vector ¢er) | 
|---|
| 258 | { | 
|---|
| 259 | atom *Walker = start; | 
|---|
| 260 | double * const cell_size = World::getInstance().getDomain(); | 
|---|
| 261 | double *matrix = ReturnFullMatrixforSymmetric(cell_size); | 
|---|
| 262 | double *inversematrix = InverseMatrix(cell_size); | 
|---|
| 263 | double tmp; | 
|---|
| 264 | bool flag; | 
|---|
| 265 | Vector Testvector, Translationvector; | 
|---|
| 266 |  | 
|---|
| 267 | do { | 
|---|
| 268 | Center.Zero(); | 
|---|
| 269 | flag = true; | 
|---|
| 270 | while (Walker->next != end) { | 
|---|
| 271 | Walker = Walker->next; | 
|---|
| 272 | #ifdef ADDHYDROGEN | 
|---|
| 273 | if (Walker->type->Z != 1) { | 
|---|
| 274 | #endif | 
|---|
| 275 | Testvector = Walker->x; | 
|---|
| 276 | Testvector.MatrixMultiplication(inversematrix); | 
|---|
| 277 | Translationvector.Zero(); | 
|---|
| 278 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) { | 
|---|
| 279 | if (Walker->nr < (*Runner)->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing | 
|---|
| 280 | for (int j=0;j<NDIM;j++) { | 
|---|
| 281 | tmp = Walker->x[j] - (*Runner)->GetOtherAtom(Walker)->x[j]; | 
|---|
| 282 | if ((fabs(tmp)) > BondDistance) { | 
|---|
| 283 | flag = false; | 
|---|
| 284 | DoLog(0) && (Log() << Verbose(0) << "Hit: atom " << Walker->getName() << " in bond " << *(*Runner) << " has to be shifted due to " << tmp << "." << endl); | 
|---|
| 285 | if (tmp > 0) | 
|---|
| 286 | Translationvector[j] -= 1.; | 
|---|
| 287 | else | 
|---|
| 288 | Translationvector[j] += 1.; | 
|---|
| 289 | } | 
|---|
| 290 | } | 
|---|
| 291 | } | 
|---|
| 292 | Testvector += Translationvector; | 
|---|
| 293 | Testvector.MatrixMultiplication(matrix); | 
|---|
| 294 | Center += Testvector; | 
|---|
| 295 | Log() << Verbose(1) << "vector is: " << Testvector << endl; | 
|---|
| 296 | #ifdef ADDHYDROGEN | 
|---|
| 297 | // now also change all hydrogens | 
|---|
| 298 | for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) { | 
|---|
| 299 | if ((*Runner)->GetOtherAtom(Walker)->type->Z == 1) { | 
|---|
| 300 | Testvector = (*Runner)->GetOtherAtom(Walker)->x; | 
|---|
| 301 | Testvector.MatrixMultiplication(inversematrix); | 
|---|
| 302 | Testvector += Translationvector; | 
|---|
| 303 | Testvector.MatrixMultiplication(matrix); | 
|---|
| 304 | Center += Testvector; | 
|---|
| 305 | Log() << Verbose(1) << "Hydrogen vector is: " << Testvector << endl; | 
|---|
| 306 | } | 
|---|
| 307 | } | 
|---|
| 308 | } | 
|---|
| 309 | #endif | 
|---|
| 310 | } | 
|---|
| 311 | } while (!flag); | 
|---|
| 312 | Free(&matrix); | 
|---|
| 313 | Free(&inversematrix); | 
|---|
| 314 |  | 
|---|
| 315 | Center.Scale(1./(double)AtomCount); | 
|---|
| 316 | }; | 
|---|
| 317 |  | 
|---|
| 318 | /** Transforms/Rotates the given molecule into its principal axis system. | 
|---|
| 319 | * \param *out output stream for debugging | 
|---|
| 320 | * \param DoRotate whether to rotate (true) or only to determine the PAS. | 
|---|
| 321 | * TODO treatment of trajetories missing | 
|---|
| 322 | */ | 
|---|
| 323 | void molecule::PrincipalAxisSystem(bool DoRotate) | 
|---|
| 324 | { | 
|---|
| 325 | atom *ptr = start;  // start at first in list | 
|---|
| 326 | double InertiaTensor[NDIM*NDIM]; | 
|---|
| 327 | Vector *CenterOfGravity = DetermineCenterOfGravity(); | 
|---|
| 328 |  | 
|---|
| 329 | CenterPeriodic(); | 
|---|
| 330 |  | 
|---|
| 331 | // reset inertia tensor | 
|---|
| 332 | for(int i=0;i<NDIM*NDIM;i++) | 
|---|
| 333 | InertiaTensor[i] = 0.; | 
|---|
| 334 |  | 
|---|
| 335 | // sum up inertia tensor | 
|---|
| 336 | while (ptr->next != end) { | 
|---|
| 337 | ptr = ptr->next; | 
|---|
| 338 | Vector x = ptr->x; | 
|---|
| 339 | //x.SubtractVector(CenterOfGravity); | 
|---|
| 340 | InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]); | 
|---|
| 341 | InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]); | 
|---|
| 342 | InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]); | 
|---|
| 343 | InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]); | 
|---|
| 344 | InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]); | 
|---|
| 345 | InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]); | 
|---|
| 346 | InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]); | 
|---|
| 347 | InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]); | 
|---|
| 348 | InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]); | 
|---|
| 349 | } | 
|---|
| 350 | // print InertiaTensor for debugging | 
|---|
| 351 | DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl); | 
|---|
| 352 | for(int i=0;i<NDIM;i++) { | 
|---|
| 353 | for(int j=0;j<NDIM;j++) | 
|---|
| 354 | DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " "); | 
|---|
| 355 | DoLog(0) && (Log() << Verbose(0) << endl); | 
|---|
| 356 | } | 
|---|
| 357 | DoLog(0) && (Log() << Verbose(0) << endl); | 
|---|
| 358 |  | 
|---|
| 359 | // diagonalize to determine principal axis system | 
|---|
| 360 | gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM); | 
|---|
| 361 | gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM); | 
|---|
| 362 | gsl_vector *eval = gsl_vector_alloc(NDIM); | 
|---|
| 363 | gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM); | 
|---|
| 364 | gsl_eigen_symmv(&m.matrix, eval, evec, T); | 
|---|
| 365 | gsl_eigen_symmv_free(T); | 
|---|
| 366 | gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC); | 
|---|
| 367 |  | 
|---|
| 368 | for(int i=0;i<NDIM;i++) { | 
|---|
| 369 | DoLog(1) && (Log() << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i)); | 
|---|
| 370 | DoLog(0) && (Log() << Verbose(0) << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl); | 
|---|
| 371 | } | 
|---|
| 372 |  | 
|---|
| 373 | // check whether we rotate or not | 
|---|
| 374 | if (DoRotate) { | 
|---|
| 375 | DoLog(1) && (Log() << Verbose(1) << "Transforming molecule into PAS ... "); | 
|---|
| 376 | // the eigenvectors specify the transformation matrix | 
|---|
| 377 | ActOnAllVectors( &Vector::MatrixMultiplication, (const double *) evec->data ); | 
|---|
| 378 | DoLog(0) && (Log() << Verbose(0) << "done." << endl); | 
|---|
| 379 |  | 
|---|
| 380 | // summing anew for debugging (resulting matrix has to be diagonal!) | 
|---|
| 381 | // reset inertia tensor | 
|---|
| 382 | for(int i=0;i<NDIM*NDIM;i++) | 
|---|
| 383 | InertiaTensor[i] = 0.; | 
|---|
| 384 |  | 
|---|
| 385 | // sum up inertia tensor | 
|---|
| 386 | ptr = start; | 
|---|
| 387 | while (ptr->next != end) { | 
|---|
| 388 | ptr = ptr->next; | 
|---|
| 389 | Vector x = ptr->x; | 
|---|
| 390 | //x.SubtractVector(CenterOfGravity); | 
|---|
| 391 | InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]); | 
|---|
| 392 | InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]); | 
|---|
| 393 | InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]); | 
|---|
| 394 | InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]); | 
|---|
| 395 | InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]); | 
|---|
| 396 | InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]); | 
|---|
| 397 | InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]); | 
|---|
| 398 | InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]); | 
|---|
| 399 | InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]); | 
|---|
| 400 | } | 
|---|
| 401 | // print InertiaTensor for debugging | 
|---|
| 402 | DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl); | 
|---|
| 403 | for(int i=0;i<NDIM;i++) { | 
|---|
| 404 | for(int j=0;j<NDIM;j++) | 
|---|
| 405 | DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " "); | 
|---|
| 406 | DoLog(0) && (Log() << Verbose(0) << endl); | 
|---|
| 407 | } | 
|---|
| 408 | DoLog(0) && (Log() << Verbose(0) << endl); | 
|---|
| 409 | } | 
|---|
| 410 |  | 
|---|
| 411 | // free everything | 
|---|
| 412 | delete(CenterOfGravity); | 
|---|
| 413 | gsl_vector_free(eval); | 
|---|
| 414 | gsl_matrix_free(evec); | 
|---|
| 415 | }; | 
|---|
| 416 |  | 
|---|
| 417 |  | 
|---|
| 418 | /** Align all atoms in such a manner that given vector \a *n is along z axis. | 
|---|
| 419 | * \param n[] alignment vector. | 
|---|
| 420 | */ | 
|---|
| 421 | void molecule::Align(Vector *n) | 
|---|
| 422 | { | 
|---|
| 423 | atom *ptr = start; | 
|---|
| 424 | double alpha, tmp; | 
|---|
| 425 | Vector z_axis; | 
|---|
| 426 | z_axis[0] = 0.; | 
|---|
| 427 | z_axis[1] = 0.; | 
|---|
| 428 | z_axis[2] = 1.; | 
|---|
| 429 |  | 
|---|
| 430 | // rotate on z-x plane | 
|---|
| 431 | DoLog(0) && (Log() << Verbose(0) << "Begin of Aligning all atoms." << endl); | 
|---|
| 432 | alpha = atan(-n->at(0)/n->at(2)); | 
|---|
| 433 | DoLog(1) && (Log() << Verbose(1) << "Z-X-angle: " << alpha << " ... "); | 
|---|
| 434 | while (ptr->next != end) { | 
|---|
| 435 | ptr = ptr->next; | 
|---|
| 436 | tmp = ptr->x[0]; | 
|---|
| 437 | ptr->x[0] =  cos(alpha) * tmp + sin(alpha) * ptr->x[2]; | 
|---|
| 438 | ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2]; | 
|---|
| 439 | for (int j=0;j<MDSteps;j++) { | 
|---|
| 440 | tmp = ptr->Trajectory.R.at(j)[0]; | 
|---|
| 441 | ptr->Trajectory.R.at(j)[0] =  cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2]; | 
|---|
| 442 | ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2]; | 
|---|
| 443 | } | 
|---|
| 444 | } | 
|---|
| 445 | // rotate n vector | 
|---|
| 446 | tmp = n->at(0); | 
|---|
| 447 | n->at(0) =  cos(alpha) * tmp +  sin(alpha) * n->at(2); | 
|---|
| 448 | n->at(2) = -sin(alpha) * tmp +  cos(alpha) * n->at(2); | 
|---|
| 449 | DoLog(1) && (Log() << Verbose(1) << "alignment vector after first rotation: " << n << endl); | 
|---|
| 450 |  | 
|---|
| 451 | // rotate on z-y plane | 
|---|
| 452 | ptr = start; | 
|---|
| 453 | alpha = atan(-n->at(1)/n->at(2)); | 
|---|
| 454 | DoLog(1) && (Log() << Verbose(1) << "Z-Y-angle: " << alpha << " ... "); | 
|---|
| 455 | while (ptr->next != end) { | 
|---|
| 456 | ptr = ptr->next; | 
|---|
| 457 | tmp = ptr->x[1]; | 
|---|
| 458 | ptr->x[1] =  cos(alpha) * tmp + sin(alpha) * ptr->x[2]; | 
|---|
| 459 | ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2]; | 
|---|
| 460 | for (int j=0;j<MDSteps;j++) { | 
|---|
| 461 | tmp = ptr->Trajectory.R.at(j)[1]; | 
|---|
| 462 | ptr->Trajectory.R.at(j)[1] =  cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2]; | 
|---|
| 463 | ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2]; | 
|---|
| 464 | } | 
|---|
| 465 | } | 
|---|
| 466 | // rotate n vector (for consistency check) | 
|---|
| 467 | tmp = n->at(1); | 
|---|
| 468 | n->at(1) =  cos(alpha) * tmp +  sin(alpha) * n->at(2); | 
|---|
| 469 | n->at(2) = -sin(alpha) * tmp +  cos(alpha) * n->at(2); | 
|---|
| 470 |  | 
|---|
| 471 |  | 
|---|
| 472 | DoLog(1) && (Log() << Verbose(1) << "alignment vector after second rotation: " << n << endl); | 
|---|
| 473 | DoLog(0) && (Log() << Verbose(0) << "End of Aligning all atoms." << endl); | 
|---|
| 474 | }; | 
|---|
| 475 |  | 
|---|
| 476 |  | 
|---|
| 477 | /** Calculates sum over least square distance to line hidden in \a *x. | 
|---|
| 478 | * \param *x offset and direction vector | 
|---|
| 479 | * \param *params pointer to lsq_params structure | 
|---|
| 480 | * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$ | 
|---|
| 481 | */ | 
|---|
| 482 | double LeastSquareDistance (const gsl_vector * x, void * params) | 
|---|
| 483 | { | 
|---|
| 484 | double res = 0, t; | 
|---|
| 485 | Vector a,b,c,d; | 
|---|
| 486 | struct lsq_params *par = (struct lsq_params *)params; | 
|---|
| 487 | atom *ptr = par->mol->start; | 
|---|
| 488 |  | 
|---|
| 489 | // initialize vectors | 
|---|
| 490 | a[0] = gsl_vector_get(x,0); | 
|---|
| 491 | a[1] = gsl_vector_get(x,1); | 
|---|
| 492 | a[2] = gsl_vector_get(x,2); | 
|---|
| 493 | b[0] = gsl_vector_get(x,3); | 
|---|
| 494 | b[1] = gsl_vector_get(x,4); | 
|---|
| 495 | b[2] = gsl_vector_get(x,5); | 
|---|
| 496 | // go through all atoms | 
|---|
| 497 | while (ptr != par->mol->end) { | 
|---|
| 498 | ptr = ptr->next; | 
|---|
| 499 | if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type | 
|---|
| 500 | c = ptr->x - a; | 
|---|
| 501 | t = c.ScalarProduct(b);           // get direction parameter | 
|---|
| 502 | d = t*b;       // and create vector | 
|---|
| 503 | c -= d;   // ... yielding distance vector | 
|---|
| 504 | res += d.ScalarProduct(d);        // add squared distance | 
|---|
| 505 | } | 
|---|
| 506 | } | 
|---|
| 507 | return res; | 
|---|
| 508 | }; | 
|---|
| 509 |  | 
|---|
| 510 | /** By minimizing the least square distance gains alignment vector. | 
|---|
| 511 | * \bug this is not yet working properly it seems | 
|---|
| 512 | */ | 
|---|
| 513 | void molecule::GetAlignvector(struct lsq_params * par) const | 
|---|
| 514 | { | 
|---|
| 515 | int np = 6; | 
|---|
| 516 |  | 
|---|
| 517 | const gsl_multimin_fminimizer_type *T = | 
|---|
| 518 | gsl_multimin_fminimizer_nmsimplex; | 
|---|
| 519 | gsl_multimin_fminimizer *s = NULL; | 
|---|
| 520 | gsl_vector *ss; | 
|---|
| 521 | gsl_multimin_function minex_func; | 
|---|
| 522 |  | 
|---|
| 523 | size_t iter = 0, i; | 
|---|
| 524 | int status; | 
|---|
| 525 | double size; | 
|---|
| 526 |  | 
|---|
| 527 | /* Initial vertex size vector */ | 
|---|
| 528 | ss = gsl_vector_alloc (np); | 
|---|
| 529 |  | 
|---|
| 530 | /* Set all step sizes to 1 */ | 
|---|
| 531 | gsl_vector_set_all (ss, 1.0); | 
|---|
| 532 |  | 
|---|
| 533 | /* Starting point */ | 
|---|
| 534 | par->x = gsl_vector_alloc (np); | 
|---|
| 535 | par->mol = this; | 
|---|
| 536 |  | 
|---|
| 537 | gsl_vector_set (par->x, 0, 0.0);  // offset | 
|---|
| 538 | gsl_vector_set (par->x, 1, 0.0); | 
|---|
| 539 | gsl_vector_set (par->x, 2, 0.0); | 
|---|
| 540 | gsl_vector_set (par->x, 3, 0.0);  // direction | 
|---|
| 541 | gsl_vector_set (par->x, 4, 0.0); | 
|---|
| 542 | gsl_vector_set (par->x, 5, 1.0); | 
|---|
| 543 |  | 
|---|
| 544 | /* Initialize method and iterate */ | 
|---|
| 545 | minex_func.f = &LeastSquareDistance; | 
|---|
| 546 | minex_func.n = np; | 
|---|
| 547 | minex_func.params = (void *)par; | 
|---|
| 548 |  | 
|---|
| 549 | s = gsl_multimin_fminimizer_alloc (T, np); | 
|---|
| 550 | gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss); | 
|---|
| 551 |  | 
|---|
| 552 | do | 
|---|
| 553 | { | 
|---|
| 554 | iter++; | 
|---|
| 555 | status = gsl_multimin_fminimizer_iterate(s); | 
|---|
| 556 |  | 
|---|
| 557 | if (status) | 
|---|
| 558 | break; | 
|---|
| 559 |  | 
|---|
| 560 | size = gsl_multimin_fminimizer_size (s); | 
|---|
| 561 | status = gsl_multimin_test_size (size, 1e-2); | 
|---|
| 562 |  | 
|---|
| 563 | if (status == GSL_SUCCESS) | 
|---|
| 564 | { | 
|---|
| 565 | printf ("converged to minimum at\n"); | 
|---|
| 566 | } | 
|---|
| 567 |  | 
|---|
| 568 | printf ("%5d ", (int)iter); | 
|---|
| 569 | for (i = 0; i < (size_t)np; i++) | 
|---|
| 570 | { | 
|---|
| 571 | printf ("%10.3e ", gsl_vector_get (s->x, i)); | 
|---|
| 572 | } | 
|---|
| 573 | printf ("f() = %7.3f size = %.3f\n", s->fval, size); | 
|---|
| 574 | } | 
|---|
| 575 | while (status == GSL_CONTINUE && iter < 100); | 
|---|
| 576 |  | 
|---|
| 577 | for (i=0;i<(size_t)np;i++) | 
|---|
| 578 | gsl_vector_set(par->x, i, gsl_vector_get(s->x, i)); | 
|---|
| 579 | //gsl_vector_free(par->x); | 
|---|
| 580 | gsl_vector_free(ss); | 
|---|
| 581 | gsl_multimin_fminimizer_free (s); | 
|---|
| 582 | }; | 
|---|