source: src/molecule_geometry.cpp@ c49c96

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since c49c96 was 5108e1, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Removed MatrixMultiplication() method from Vector class

  • Property mode set to 100644
File size: 18.2 KB
RevLine 
[cee0b57]1/*
2 * molecule_geometry.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
[112b09]8#include "Helpers/MemDebug.hpp"
9
[f66195]10#include "atom.hpp"
11#include "bond.hpp"
[cee0b57]12#include "config.hpp"
[f66195]13#include "element.hpp"
14#include "helpers.hpp"
15#include "leastsquaremin.hpp"
[e138de]16#include "log.hpp"
[cee0b57]17#include "memoryallocator.hpp"
18#include "molecule.hpp"
[b34306]19#include "World.hpp"
[ccf826]20#include "Plane.hpp"
[c94eeb]21#include "Matrix.hpp"
[76c0d6]22#include <boost/foreach.hpp>
23
[cee0b57]24
25/************************************* Functions for class molecule *********************************/
26
27
28/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
29 * \param *out output stream for debugging
30 */
[e138de]31bool molecule::CenterInBox()
[cee0b57]32{
33 bool status = true;
[e138de]34 const Vector *Center = DetermineCenterOfAll();
[eddea2]35 const Vector *CenterBox = DetermineCenterOfBox();
[5f612ee]36 double * const cell_size = World::getInstance().getDomain();
[d10eb6]37 Matrix M = ReturnFullMatrixforSymmetric(cell_size);
[d0f111]38 Matrix Minv = M.invert();
[cee0b57]39
40 // go through all atoms
[273382]41 ActOnAllVectors( &Vector::SubtractVector, *Center);
[eddea2]42 ActOnAllVectors( &Vector::SubtractVector, *CenterBox);
[d0f111]43 BOOST_FOREACH(atom* iter, atoms){
44 iter->node->WrapPeriodically(M, Minv);
45 }
[cee0b57]46
47 delete(Center);
48 return status;
49};
50
51
52/** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths.
53 * \param *out output stream for debugging
54 */
[e138de]55bool molecule::BoundInBox()
[cee0b57]56{
57 bool status = true;
[5f612ee]58 double * const cell_size = World::getInstance().getDomain();
[d10eb6]59 Matrix M = ReturnFullMatrixforSymmetric(cell_size);
[d0f111]60 Matrix Minv = M.invert();
[cee0b57]61
62 // go through all atoms
[d0f111]63 BOOST_FOREACH(atom* iter, atoms){
64 iter->node->WrapPeriodically(M, Minv);
65 }
[cee0b57]66
67 return status;
68};
69
70/** Centers the edge of the atoms at (0,0,0).
71 * \param *out output stream for debugging
72 * \param *max coordinates of other edge, specifying box dimensions.
73 */
[e138de]74void molecule::CenterEdge(Vector *max)
[cee0b57]75{
76 Vector *min = new Vector;
77
[e138de]78// Log() << Verbose(3) << "Begin of CenterEdge." << endl;
[9879f6]79 molecule::const_iterator iter = begin(); // start at first in list
80 if (iter != end()) { //list not empty?
[cee0b57]81 for (int i=NDIM;i--;) {
[a7b761b]82 max->at(i) = (*iter)->x[i];
83 min->at(i) = (*iter)->x[i];
[cee0b57]84 }
[9879f6]85 for (; iter != end(); ++iter) {// continue with second if present
86 //(*iter)->Output(1,1,out);
[cee0b57]87 for (int i=NDIM;i--;) {
[a7b761b]88 max->at(i) = (max->at(i) < (*iter)->x[i]) ? (*iter)->x[i] : max->at(i);
89 min->at(i) = (min->at(i) > (*iter)->x[i]) ? (*iter)->x[i] : min->at(i);
[cee0b57]90 }
91 }
[e138de]92// Log() << Verbose(4) << "Maximum is ";
[cee0b57]93// max->Output(out);
[e138de]94// Log() << Verbose(0) << ", Minimum is ";
[cee0b57]95// min->Output(out);
[e138de]96// Log() << Verbose(0) << endl;
[cee0b57]97 min->Scale(-1.);
[273382]98 (*max) += (*min);
[cee0b57]99 Translate(min);
100 Center.Zero();
101 }
102 delete(min);
[e138de]103// Log() << Verbose(3) << "End of CenterEdge." << endl;
[cee0b57]104};
105
106/** Centers the center of the atoms at (0,0,0).
107 * \param *out output stream for debugging
108 * \param *center return vector for translation vector
109 */
[e138de]110void molecule::CenterOrigin()
[cee0b57]111{
112 int Num = 0;
[9879f6]113 molecule::const_iterator iter = begin(); // start at first in list
[cee0b57]114
115 Center.Zero();
116
[9879f6]117 if (iter != end()) { //list not empty?
118 for (; iter != end(); ++iter) { // continue with second if present
[cee0b57]119 Num++;
[a7b761b]120 Center += (*iter)->x;
[cee0b57]121 }
122 Center.Scale(-1./Num); // divide through total number (and sign for direction)
123 Translate(&Center);
124 Center.Zero();
125 }
126};
127
128/** Returns vector pointing to center of all atoms.
129 * \return pointer to center of all vector
130 */
[e138de]131Vector * molecule::DetermineCenterOfAll() const
[cee0b57]132{
[9879f6]133 molecule::const_iterator iter = begin(); // start at first in list
[cee0b57]134 Vector *a = new Vector();
135 double Num = 0;
136
137 a->Zero();
138
[9879f6]139 if (iter != end()) { //list not empty?
140 for (; iter != end(); ++iter) { // continue with second if present
[15b670]141 Num++;
[1024cb]142 (*a) += (*iter)->x;
[cee0b57]143 }
144 a->Scale(1./Num); // divide through total mass (and sign for direction)
145 }
146 return a;
147};
148
[eddea2]149/** Returns vector pointing to center of the domain.
150 * \return pointer to center of the domain
151 */
152Vector * molecule::DetermineCenterOfBox() const
153{
154 Vector *a = new Vector(0.5,0.5,0.5);
155
156 const double *cell_size = World::getInstance().getDomain();
[d10eb6]157 Matrix M = ReturnFullMatrixforSymmetric(cell_size);
[5108e1]158 (*a) *= M;
[eddea2]159
160 return a;
161};
162
[cee0b57]163/** Returns vector pointing to center of gravity.
164 * \param *out output stream for debugging
165 * \return pointer to center of gravity vector
166 */
[e138de]167Vector * molecule::DetermineCenterOfGravity()
[cee0b57]168{
[9879f6]169 molecule::const_iterator iter = begin(); // start at first in list
[cee0b57]170 Vector *a = new Vector();
171 Vector tmp;
172 double Num = 0;
173
174 a->Zero();
175
[9879f6]176 if (iter != end()) { //list not empty?
177 for (; iter != end(); ++iter) { // continue with second if present
178 Num += (*iter)->type->mass;
[a7b761b]179 tmp = (*iter)->type->mass * (*iter)->x;
[273382]180 (*a) += tmp;
[cee0b57]181 }
[15b670]182 a->Scale(1./Num); // divide through total mass (and sign for direction)
[cee0b57]183 }
[e138de]184// Log() << Verbose(1) << "Resulting center of gravity: ";
[cee0b57]185// a->Output(out);
[e138de]186// Log() << Verbose(0) << endl;
[cee0b57]187 return a;
188};
189
190/** Centers the center of gravity of the atoms at (0,0,0).
191 * \param *out output stream for debugging
192 * \param *center return vector for translation vector
193 */
[e138de]194void molecule::CenterPeriodic()
[cee0b57]195{
196 DeterminePeriodicCenter(Center);
197};
198
199
200/** Centers the center of gravity of the atoms at (0,0,0).
201 * \param *out output stream for debugging
202 * \param *center return vector for translation vector
203 */
[e138de]204void molecule::CenterAtVector(Vector *newcenter)
[cee0b57]205{
[273382]206 Center = *newcenter;
[cee0b57]207};
208
209
210/** Scales all atoms by \a *factor.
211 * \param *factor pointer to scaling factor
[1bd79e]212 *
213 * TODO: Is this realy what is meant, i.e.
214 * x=(x[0]*factor[0],x[1]*factor[1],x[2]*factor[2]) (current impl)
215 * or rather
216 * x=(**factor) * x (as suggested by comment)
[cee0b57]217 */
[776b64]218void molecule::Scale(const double ** const factor)
[cee0b57]219{
[9879f6]220 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
[cee0b57]221 for (int j=0;j<MDSteps;j++)
[a7b761b]222 (*iter)->Trajectory.R.at(j).ScaleAll(*factor);
223 (*iter)->x.ScaleAll(*factor);
[cee0b57]224 }
225};
226
227/** Translate all atoms by given vector.
228 * \param trans[] translation vector.
229 */
230void molecule::Translate(const Vector *trans)
231{
[9879f6]232 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
[cee0b57]233 for (int j=0;j<MDSteps;j++)
[a7b761b]234 (*iter)->Trajectory.R.at(j) += (*trans);
235 (*iter)->x += (*trans);
[cee0b57]236 }
237};
238
239/** Translate the molecule periodically in the box.
240 * \param trans[] translation vector.
241 * TODO treatment of trajetories missing
242 */
243void molecule::TranslatePeriodically(const Vector *trans)
244{
[5f612ee]245 double * const cell_size = World::getInstance().getDomain();
[d10eb6]246 Matrix M = ReturnFullMatrixforSymmetric(cell_size);
[d0f111]247 Matrix Minv = M.invert();
[cee0b57]248
249 // go through all atoms
[eddea2]250 ActOnAllVectors( &Vector::AddVector, *trans);
[d0f111]251 BOOST_FOREACH(atom* iter, atoms){
252 iter->node->WrapPeriodically(M, Minv);
253 }
[cee0b57]254
255};
256
257
258/** Mirrors all atoms against a given plane.
259 * \param n[] normal vector of mirror plane.
260 */
261void molecule::Mirror(const Vector *n)
262{
[76c0d6]263 OBSERVE;
[ccf826]264 Plane p(*n,0);
[d0f111]265 BOOST_FOREACH(atom* iter, atoms ){
[76c0d6]266 (*iter->node) = p.mirrorVector(*iter->node);
[ccf826]267 }
[cee0b57]268};
269
270/** Determines center of molecule (yet not considering atom masses).
271 * \param center reference to return vector
272 */
273void molecule::DeterminePeriodicCenter(Vector &center)
274{
[5f612ee]275 double * const cell_size = World::getInstance().getDomain();
[d10eb6]276 Matrix matrix = ReturnFullMatrixforSymmetric(cell_size);
[c94eeb]277 Matrix inversematrix = matrix.invert();
[cee0b57]278 double tmp;
279 bool flag;
280 Vector Testvector, Translationvector;
281
282 do {
283 Center.Zero();
284 flag = true;
[9879f6]285 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
[cee0b57]286#ifdef ADDHYDROGEN
[9879f6]287 if ((*iter)->type->Z != 1) {
[cee0b57]288#endif
[5108e1]289 Testvector = inversematrix * (*iter)->x;
[cee0b57]290 Translationvector.Zero();
[9879f6]291 for (BondList::const_iterator Runner = (*iter)->ListOfBonds.begin(); Runner != (*iter)->ListOfBonds.end(); (++Runner)) {
292 if ((*iter)->nr < (*Runner)->GetOtherAtom((*iter))->nr) // otherwise we shift one to, the other fro and gain nothing
[cee0b57]293 for (int j=0;j<NDIM;j++) {
[a7b761b]294 tmp = (*iter)->x[j] - (*Runner)->GetOtherAtom(*iter)->x[j];
[cee0b57]295 if ((fabs(tmp)) > BondDistance) {
296 flag = false;
[a7b761b]297 DoLog(0) && (Log() << Verbose(0) << "Hit: atom " << (*iter)->getName() << " in bond " << *(*Runner) << " has to be shifted due to " << tmp << "." << endl);
[cee0b57]298 if (tmp > 0)
[0a4f7f]299 Translationvector[j] -= 1.;
[cee0b57]300 else
[0a4f7f]301 Translationvector[j] += 1.;
[cee0b57]302 }
303 }
304 }
[273382]305 Testvector += Translationvector;
[5108e1]306 Testvector *= matrix;
[273382]307 Center += Testvector;
[0a4f7f]308 Log() << Verbose(1) << "vector is: " << Testvector << endl;
[cee0b57]309#ifdef ADDHYDROGEN
310 // now also change all hydrogens
[9879f6]311 for (BondList::const_iterator Runner = (*iter)->ListOfBonds.begin(); Runner != (*iter)->ListOfBonds.end(); (++Runner)) {
312 if ((*Runner)->GetOtherAtom((*iter))->type->Z == 1) {
[5108e1]313 Testvector = inversematrix * (*Runner)->GetOtherAtom((*iter))->x;
[273382]314 Testvector += Translationvector;
[5108e1]315 Testvector *= matrix;
[273382]316 Center += Testvector;
[0a4f7f]317 Log() << Verbose(1) << "Hydrogen vector is: " << Testvector << endl;
[cee0b57]318 }
319 }
320 }
321#endif
322 }
323 } while (!flag);
[1614174]324
[ea7176]325 Center.Scale(1./static_cast<double>(getAtomCount()));
[cee0b57]326};
327
328/** Transforms/Rotates the given molecule into its principal axis system.
329 * \param *out output stream for debugging
330 * \param DoRotate whether to rotate (true) or only to determine the PAS.
331 * TODO treatment of trajetories missing
332 */
[e138de]333void molecule::PrincipalAxisSystem(bool DoRotate)
[cee0b57]334{
335 double InertiaTensor[NDIM*NDIM];
[e138de]336 Vector *CenterOfGravity = DetermineCenterOfGravity();
[cee0b57]337
[e138de]338 CenterPeriodic();
[cee0b57]339
340 // reset inertia tensor
341 for(int i=0;i<NDIM*NDIM;i++)
342 InertiaTensor[i] = 0.;
343
344 // sum up inertia tensor
[9879f6]345 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
[a7b761b]346 Vector x = (*iter)->x;
[cee0b57]347 //x.SubtractVector(CenterOfGravity);
[a7b761b]348 InertiaTensor[0] += (*iter)->type->mass*(x[1]*x[1] + x[2]*x[2]);
349 InertiaTensor[1] += (*iter)->type->mass*(-x[0]*x[1]);
350 InertiaTensor[2] += (*iter)->type->mass*(-x[0]*x[2]);
351 InertiaTensor[3] += (*iter)->type->mass*(-x[1]*x[0]);
352 InertiaTensor[4] += (*iter)->type->mass*(x[0]*x[0] + x[2]*x[2]);
353 InertiaTensor[5] += (*iter)->type->mass*(-x[1]*x[2]);
354 InertiaTensor[6] += (*iter)->type->mass*(-x[2]*x[0]);
355 InertiaTensor[7] += (*iter)->type->mass*(-x[2]*x[1]);
356 InertiaTensor[8] += (*iter)->type->mass*(x[0]*x[0] + x[1]*x[1]);
[cee0b57]357 }
358 // print InertiaTensor for debugging
[a67d19]359 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl);
[cee0b57]360 for(int i=0;i<NDIM;i++) {
361 for(int j=0;j<NDIM;j++)
[a67d19]362 DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ");
363 DoLog(0) && (Log() << Verbose(0) << endl);
[cee0b57]364 }
[a67d19]365 DoLog(0) && (Log() << Verbose(0) << endl);
[cee0b57]366
367 // diagonalize to determine principal axis system
368 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
369 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
370 gsl_vector *eval = gsl_vector_alloc(NDIM);
371 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
372 gsl_eigen_symmv(&m.matrix, eval, evec, T);
373 gsl_eigen_symmv_free(T);
374 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
375
376 for(int i=0;i<NDIM;i++) {
[a67d19]377 DoLog(1) && (Log() << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i));
378 DoLog(0) && (Log() << Verbose(0) << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl);
[cee0b57]379 }
380
381 // check whether we rotate or not
382 if (DoRotate) {
[a67d19]383 DoLog(1) && (Log() << Verbose(1) << "Transforming molecule into PAS ... ");
[cee0b57]384 // the eigenvectors specify the transformation matrix
[c94eeb]385 Matrix M = Matrix(evec->data);
[5108e1]386 BOOST_FOREACH(atom* iter, atoms){
387 (*iter->node) *= M;
388 }
[a67d19]389 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
[cee0b57]390
391 // summing anew for debugging (resulting matrix has to be diagonal!)
392 // reset inertia tensor
393 for(int i=0;i<NDIM*NDIM;i++)
394 InertiaTensor[i] = 0.;
395
396 // sum up inertia tensor
[9879f6]397 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
[a7b761b]398 Vector x = (*iter)->x;
399 InertiaTensor[0] += (*iter)->type->mass*(x[1]*x[1] + x[2]*x[2]);
400 InertiaTensor[1] += (*iter)->type->mass*(-x[0]*x[1]);
401 InertiaTensor[2] += (*iter)->type->mass*(-x[0]*x[2]);
402 InertiaTensor[3] += (*iter)->type->mass*(-x[1]*x[0]);
403 InertiaTensor[4] += (*iter)->type->mass*(x[0]*x[0] + x[2]*x[2]);
404 InertiaTensor[5] += (*iter)->type->mass*(-x[1]*x[2]);
405 InertiaTensor[6] += (*iter)->type->mass*(-x[2]*x[0]);
406 InertiaTensor[7] += (*iter)->type->mass*(-x[2]*x[1]);
407 InertiaTensor[8] += (*iter)->type->mass*(x[0]*x[0] + x[1]*x[1]);
[cee0b57]408 }
409 // print InertiaTensor for debugging
[a67d19]410 DoLog(0) && (Log() << Verbose(0) << "The inertia tensor is:" << endl);
[cee0b57]411 for(int i=0;i<NDIM;i++) {
412 for(int j=0;j<NDIM;j++)
[a67d19]413 DoLog(0) && (Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ");
414 DoLog(0) && (Log() << Verbose(0) << endl);
[cee0b57]415 }
[a67d19]416 DoLog(0) && (Log() << Verbose(0) << endl);
[cee0b57]417 }
418
419 // free everything
420 delete(CenterOfGravity);
421 gsl_vector_free(eval);
422 gsl_matrix_free(evec);
423};
424
425
426/** Align all atoms in such a manner that given vector \a *n is along z axis.
427 * \param n[] alignment vector.
428 */
429void molecule::Align(Vector *n)
430{
431 double alpha, tmp;
432 Vector z_axis;
[0a4f7f]433 z_axis[0] = 0.;
434 z_axis[1] = 0.;
435 z_axis[2] = 1.;
[cee0b57]436
437 // rotate on z-x plane
[a67d19]438 DoLog(0) && (Log() << Verbose(0) << "Begin of Aligning all atoms." << endl);
[0a4f7f]439 alpha = atan(-n->at(0)/n->at(2));
[a67d19]440 DoLog(1) && (Log() << Verbose(1) << "Z-X-angle: " << alpha << " ... ");
[9879f6]441 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
[a7b761b]442 tmp = (*iter)->x[0];
443 (*iter)->x[0] = cos(alpha) * tmp + sin(alpha) * (*iter)->x[2];
444 (*iter)->x[2] = -sin(alpha) * tmp + cos(alpha) * (*iter)->x[2];
[cee0b57]445 for (int j=0;j<MDSteps;j++) {
[a7b761b]446 tmp = (*iter)->Trajectory.R.at(j)[0];
447 (*iter)->Trajectory.R.at(j)[0] = cos(alpha) * tmp + sin(alpha) * (*iter)->Trajectory.R.at(j)[2];
448 (*iter)->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * (*iter)->Trajectory.R.at(j)[2];
[cee0b57]449 }
450 }
451 // rotate n vector
[0a4f7f]452 tmp = n->at(0);
453 n->at(0) = cos(alpha) * tmp + sin(alpha) * n->at(2);
454 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
[8cbb97]455 DoLog(1) && (Log() << Verbose(1) << "alignment vector after first rotation: " << n << endl);
[cee0b57]456
457 // rotate on z-y plane
[0a4f7f]458 alpha = atan(-n->at(1)/n->at(2));
[a67d19]459 DoLog(1) && (Log() << Verbose(1) << "Z-Y-angle: " << alpha << " ... ");
[9879f6]460 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
[a7b761b]461 tmp = (*iter)->x[1];
462 (*iter)->x[1] = cos(alpha) * tmp + sin(alpha) * (*iter)->x[2];
463 (*iter)->x[2] = -sin(alpha) * tmp + cos(alpha) * (*iter)->x[2];
[cee0b57]464 for (int j=0;j<MDSteps;j++) {
[a7b761b]465 tmp = (*iter)->Trajectory.R.at(j)[1];
466 (*iter)->Trajectory.R.at(j)[1] = cos(alpha) * tmp + sin(alpha) * (*iter)->Trajectory.R.at(j)[2];
467 (*iter)->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * (*iter)->Trajectory.R.at(j)[2];
[cee0b57]468 }
469 }
470 // rotate n vector (for consistency check)
[0a4f7f]471 tmp = n->at(1);
472 n->at(1) = cos(alpha) * tmp + sin(alpha) * n->at(2);
473 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
[cee0b57]474
475
[8cbb97]476 DoLog(1) && (Log() << Verbose(1) << "alignment vector after second rotation: " << n << endl);
[a67d19]477 DoLog(0) && (Log() << Verbose(0) << "End of Aligning all atoms." << endl);
[cee0b57]478};
479
480
481/** Calculates sum over least square distance to line hidden in \a *x.
482 * \param *x offset and direction vector
483 * \param *params pointer to lsq_params structure
484 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
485 */
486double LeastSquareDistance (const gsl_vector * x, void * params)
487{
488 double res = 0, t;
489 Vector a,b,c,d;
490 struct lsq_params *par = (struct lsq_params *)params;
491
492 // initialize vectors
[0a4f7f]493 a[0] = gsl_vector_get(x,0);
494 a[1] = gsl_vector_get(x,1);
495 a[2] = gsl_vector_get(x,2);
496 b[0] = gsl_vector_get(x,3);
497 b[1] = gsl_vector_get(x,4);
498 b[2] = gsl_vector_get(x,5);
[cee0b57]499 // go through all atoms
[9879f6]500 for (molecule::const_iterator iter = par->mol->begin(); iter != par->mol->end(); ++iter) {
501 if ((*iter)->type == ((struct lsq_params *)params)->type) { // for specific type
[a7b761b]502 c = (*iter)->x - a;
[273382]503 t = c.ScalarProduct(b); // get direction parameter
504 d = t*b; // and create vector
505 c -= d; // ... yielding distance vector
506 res += d.ScalarProduct(d); // add squared distance
[cee0b57]507 }
508 }
509 return res;
510};
511
512/** By minimizing the least square distance gains alignment vector.
513 * \bug this is not yet working properly it seems
514 */
515void molecule::GetAlignvector(struct lsq_params * par) const
516{
517 int np = 6;
518
519 const gsl_multimin_fminimizer_type *T =
520 gsl_multimin_fminimizer_nmsimplex;
521 gsl_multimin_fminimizer *s = NULL;
522 gsl_vector *ss;
523 gsl_multimin_function minex_func;
524
525 size_t iter = 0, i;
526 int status;
527 double size;
528
529 /* Initial vertex size vector */
530 ss = gsl_vector_alloc (np);
531
532 /* Set all step sizes to 1 */
533 gsl_vector_set_all (ss, 1.0);
534
535 /* Starting point */
536 par->x = gsl_vector_alloc (np);
537 par->mol = this;
538
539 gsl_vector_set (par->x, 0, 0.0); // offset
540 gsl_vector_set (par->x, 1, 0.0);
541 gsl_vector_set (par->x, 2, 0.0);
542 gsl_vector_set (par->x, 3, 0.0); // direction
543 gsl_vector_set (par->x, 4, 0.0);
544 gsl_vector_set (par->x, 5, 1.0);
545
546 /* Initialize method and iterate */
547 minex_func.f = &LeastSquareDistance;
548 minex_func.n = np;
549 minex_func.params = (void *)par;
550
551 s = gsl_multimin_fminimizer_alloc (T, np);
552 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
553
554 do
555 {
556 iter++;
557 status = gsl_multimin_fminimizer_iterate(s);
558
559 if (status)
560 break;
561
562 size = gsl_multimin_fminimizer_size (s);
563 status = gsl_multimin_test_size (size, 1e-2);
564
565 if (status == GSL_SUCCESS)
566 {
567 printf ("converged to minimum at\n");
568 }
569
570 printf ("%5d ", (int)iter);
571 for (i = 0; i < (size_t)np; i++)
572 {
573 printf ("%10.3e ", gsl_vector_get (s->x, i));
574 }
575 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
576 }
577 while (status == GSL_CONTINUE && iter < 100);
578
579 for (i=0;i<(size_t)np;i++)
580 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
581 //gsl_vector_free(par->x);
582 gsl_vector_free(ss);
583 gsl_multimin_fminimizer_free (s);
584};
Note: See TracBrowser for help on using the repository browser.