source: src/molecule_dynamics.cpp@ 492279

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 492279 was 112b09, checked in by Tillmann Crueger <crueger@…>, 15 years ago

Added #include "Helpers/MemDebug.hpp" to all .cpp files

  • Property mode set to 100644
File size: 34.6 KB
Line 
1/*
2 * molecule_dynamics.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "Helpers/MemDebug.hpp"
9
10#include "World.hpp"
11#include "atom.hpp"
12#include "config.hpp"
13#include "element.hpp"
14#include "info.hpp"
15#include "log.hpp"
16#include "memoryallocator.hpp"
17#include "molecule.hpp"
18#include "parser.hpp"
19#include "Plane.hpp"
20
21/************************************* Functions for class molecule *********************************/
22
23/** Penalizes long trajectories.
24 * \param *Walker atom to check against others
25 * \param *mol molecule with other atoms
26 * \param &Params constraint potential parameters
27 * \return penalty times each distance
28 */
29double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
30{
31 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
32 gsl_vector *x = gsl_vector_alloc(NDIM);
33 atom *Sprinter = NULL;
34 Vector trajectory1, trajectory2, normal, TestVector;
35 double Norm1, Norm2, tmp, result = 0.;
36
37 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
38 if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
39 break;
40 // determine normalized trajectories direction vector (n1, n2)
41 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
42 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);
43 trajectory1.Normalize();
44 Norm1 = trajectory1.Norm();
45 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
46 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
47 trajectory2.Normalize();
48 Norm2 = trajectory1.Norm();
49 // check whether either is zero()
50 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
51 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
52 } else if (Norm1 < MYEPSILON) {
53 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
54 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
55 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
56 trajectory1 -= trajectory2; // project the part in norm direction away
57 tmp = trajectory1.Norm(); // remaining norm is distance
58 } else if (Norm2 < MYEPSILON) {
59 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
60 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep); // copy second offset
61 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
62 trajectory2 -= trajectory1; // project the part in norm direction away
63 tmp = trajectory2.Norm(); // remaining norm is distance
64 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
65 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
66 // Log() << Verbose(0) << trajectory1;
67 // Log() << Verbose(0) << " and ";
68 // Log() << Verbose(0) << trajectory2;
69 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
70 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
71 } else { // determine distance by finding minimum distance
72 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent ";
73 // Log() << Verbose(0) << endl;
74 // Log() << Verbose(0) << "First Trajectory: ";
75 // Log() << Verbose(0) << trajectory1 << endl;
76 // Log() << Verbose(0) << "Second Trajectory: ";
77 // Log() << Verbose(0) << trajectory2 << endl;
78 // determine normal vector for both
79 normal = Plane(trajectory1, trajectory2,0).getNormal();
80 // print all vectors for debugging
81 // Log() << Verbose(0) << "Normal vector in between: ";
82 // Log() << Verbose(0) << normal << endl;
83 // setup matrix
84 for (int i=NDIM;i--;) {
85 gsl_matrix_set(A, 0, i, trajectory1[i]);
86 gsl_matrix_set(A, 1, i, trajectory2[i]);
87 gsl_matrix_set(A, 2, i, normal[i]);
88 gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep)[i] - (*iter)->Trajectory.R.at(Params.startstep)[i]));
89 }
90 // solve the linear system by Householder transformations
91 gsl_linalg_HH_svx(A, x);
92 // distance from last component
93 tmp = gsl_vector_get(x,2);
94 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
95 // test whether we really have the intersection (by checking on c_1 and c_2)
96 trajectory1.Scale(gsl_vector_get(x,0));
97 trajectory2.Scale(gsl_vector_get(x,1));
98 normal.Scale(gsl_vector_get(x,2));
99 TestVector = (*iter)->Trajectory.R.at(Params.startstep) + trajectory2 + normal
100 - (Walker->Trajectory.R.at(Params.startstep) + trajectory1);
101 if (TestVector.Norm() < MYEPSILON) {
102 // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
103 } else {
104 // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
105 // Log() << Verbose(0) << TestVector;
106 // Log() << Verbose(0) << "." << endl;
107 }
108 }
109 // add up
110 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
111 if (fabs(tmp) > MYEPSILON) {
112 result += Params.PenaltyConstants[1] * 1./tmp;
113 //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
114 }
115 }
116 return result;
117};
118
119/** Penalizes atoms heading to same target.
120 * \param *Walker atom to check against others
121 * \param *mol molecule with other atoms
122 * \param &Params constrained potential parameters
123 * \return \a penalty times the number of equal targets
124 */
125double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
126{
127 double result = 0.;
128 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
129 if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[(*iter)->nr]) && (Walker->nr < (*iter)->nr)) {
130 // atom *Sprinter = PermutationMap[Walker->nr];
131 // Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at ";
132 // Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep);
133 // Log() << Verbose(0) << ", penalting." << endl;
134 result += Params.PenaltyConstants[2];
135 //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
136 }
137 }
138 return result;
139};
140
141/** Evaluates the potential energy used for constrained molecular dynamics.
142 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
143 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
144 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
145 * Note that for the second term we have to solve the following linear system:
146 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
147 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
148 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
149 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
150 * \param *out output stream for debugging
151 * \param &Params constrained potential parameters
152 * \return potential energy
153 * \note This routine is scaling quadratically which is not optimal.
154 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
155 */
156double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
157{
158 double tmp = 0.;
159 double result = 0.;
160 // go through every atom
161 atom *Runner = NULL;
162 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
163 // first term: distance to target
164 Runner = Params.PermutationMap[(*iter)->nr]; // find target point
165 tmp = ((*iter)->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)));
166 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
167 result += Params.PenaltyConstants[0] * tmp;
168 //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
169
170 // second term: sum of distances to other trajectories
171 result += SumDistanceOfTrajectories((*iter), this, Params);
172
173 // third term: penalty for equal targets
174 result += PenalizeEqualTargets((*iter), this, Params);
175 }
176
177 return result;
178};
179
180/** print the current permutation map.
181 * \param *out output stream for debugging
182 * \param &Params constrained potential parameters
183 * \param AtomCount number of atoms
184 */
185void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
186{
187 stringstream zeile1, zeile2;
188 int *DoubleList = new int[AtomCount];
189 for(int i=0;i<AtomCount;i++)
190 DoubleList[i] = 0;
191 int doubles = 0;
192 zeile1 << "PermutationMap: ";
193 zeile2 << " ";
194 for (int i=0;i<AtomCount;i++) {
195 Params.DoubleList[Params.PermutationMap[i]->nr]++;
196 zeile1 << i << " ";
197 zeile2 << Params.PermutationMap[i]->nr << " ";
198 }
199 for (int i=0;i<AtomCount;i++)
200 if (Params.DoubleList[i] > 1)
201 doubles++;
202 if (doubles >0)
203 DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
204 delete[](DoubleList);
205// Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
206};
207
208/** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
209 * \param *mol molecule to scan distances in
210 * \param &Params constrained potential parameters
211 */
212void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
213{
214 for (int i=mol->getAtomCount(); i--;) {
215 Params.DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
216 Params.DistanceList[i]->clear();
217 }
218
219 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
220 for (molecule::const_iterator runner = mol->begin(); runner != mol->end(); ++runner) {
221 Params.DistanceList[(*iter)->nr]->insert( DistancePair((*iter)->Trajectory.R.at(Params.startstep).distance((*runner)->Trajectory.R.at(Params.endstep)), (*runner)) );
222 }
223 }
224};
225
226/** initialize lists.
227 * \param *out output stream for debugging
228 * \param *mol molecule to scan distances in
229 * \param &Params constrained potential parameters
230 */
231void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
232{
233 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
234 Params.StepList[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // stores the step to the next iterator that could be a possible next target
235 Params.PermutationMap[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin()->second; // always pick target with the smallest distance
236 Params.DoubleList[Params.DistanceList[(*iter)->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
237 Params.DistanceIterators[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // and remember which one we picked
238 DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << Params.DistanceList[(*iter)->nr]->begin()->first << "." << endl);
239 }
240};
241
242/** Try the next nearest neighbour in order to make the permutation map injective.
243 * \param *out output stream for debugging
244 * \param *mol molecule
245 * \param *Walker atom to change its target
246 * \param &OldPotential old value of constraint potential to see if we do better with new target
247 * \param &Params constrained potential parameters
248 */
249double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
250{
251 double Potential = 0;
252 DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr]; // store old base
253 do {
254 NewBase++; // take next further distance in distance to targets list that's a target of no one
255 } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
256 if (NewBase != Params.DistanceList[Walker->nr]->end()) {
257 Params.PermutationMap[Walker->nr] = NewBase->second;
258 Potential = fabs(mol->ConstrainedPotential(Params));
259 if (Potential > OldPotential) { // undo
260 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
261 } else { // do
262 Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
263 Params.DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
264 Params.DistanceIterators[Walker->nr] = NewBase;
265 OldPotential = Potential;
266 DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
267 }
268 }
269 return Potential;
270};
271
272/** Permutes \a **&PermutationMap until the penalty is below constants[2].
273 * \param *out output stream for debugging
274 * \param *mol molecule to scan distances in
275 * \param &Params constrained potential parameters
276 */
277void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
278{
279 molecule::const_iterator iter = mol->begin();
280 DistanceMap::iterator NewBase;
281 double Potential = fabs(mol->ConstrainedPotential(Params));
282
283 if (mol->empty()) {
284 eLog() << Verbose(1) << "Molecule is empty." << endl;
285 return;
286 }
287 while ((Potential) > Params.PenaltyConstants[2]) {
288 PrintPermutationMap(mol->getAtomCount(), Params);
289 iter++;
290 if (iter == mol->end()) // round-robin at the end
291 iter = mol->begin();
292 if (Params.DoubleList[Params.DistanceIterators[(*iter)->nr]->second->nr] <= 1) // no need to make those injective that aren't
293 continue;
294 // now, try finding a new one
295 Potential = TryNextNearestNeighbourForInjectivePermutation(mol, (*iter), Potential, Params);
296 }
297 for (int i=mol->getAtomCount(); i--;) // now each single entry in the DoubleList should be <=1
298 if (Params.DoubleList[i] > 1) {
299 DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
300 performCriticalExit();
301 }
302 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
303};
304
305/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
306 * We do the following:
307 * -# Generate a distance list from all source to all target points
308 * -# Sort this per source point
309 * -# Take for each source point the target point with minimum distance, use this as initial permutation
310 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
311 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
312 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
313 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
314 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
315 * if this decreases the conditional potential.
316 * -# finished.
317 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
318 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
319 * right direction).
320 * -# Finally, we calculate the potential energy and return.
321 * \param *out output stream for debugging
322 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
323 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
324 * \param endstep step giving final position in constrained MD
325 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
326 * \sa molecule::VerletForceIntegration()
327 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
328 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
329 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
330 * \bug this all is not O(N log N) but O(N^2)
331 */
332double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
333{
334 double Potential, OldPotential, OlderPotential;
335 struct EvaluatePotential Params;
336 Params.PermutationMap = new atom *[getAtomCount()];
337 Params.DistanceList = new DistanceMap *[getAtomCount()];
338 Params.DistanceIterators = new DistanceMap::iterator[getAtomCount()];
339 Params.DoubleList = new int[getAtomCount()];
340 Params.StepList = new DistanceMap::iterator[getAtomCount()];
341 int round;
342 atom *Sprinter = NULL;
343 DistanceMap::iterator Rider, Strider;
344
345 // set to zero
346 for (int i=0;i<getAtomCount();i++) {
347 Params.PermutationMap[i] = NULL;
348 Params.DoubleList[i] = 0;
349 }
350
351 /// Minimise the potential
352 // set Lagrange multiplier constants
353 Params.PenaltyConstants[0] = 10.;
354 Params.PenaltyConstants[1] = 1.;
355 Params.PenaltyConstants[2] = 1e+7; // just a huge penalty
356 // generate the distance list
357 DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
358 FillDistanceList(this, Params);
359
360 // create the initial PermutationMap (source -> target)
361 CreateInitialLists(this, Params);
362
363 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
364 DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
365 MakeInjectivePermutation(this, Params);
366 delete[](Params.DoubleList);
367
368 // argument minimise the constrained potential in this injective PermutationMap
369 DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
370 OldPotential = 1e+10;
371 round = 0;
372 do {
373 DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
374 OlderPotential = OldPotential;
375 molecule::const_iterator iter;
376 do {
377 iter = begin();
378 for (; iter != end(); ++iter) {
379 PrintPermutationMap(getAtomCount(), Params);
380 Sprinter = Params.DistanceIterators[(*iter)->nr]->second; // store initial partner
381 Strider = Params.DistanceIterators[(*iter)->nr]; //remember old iterator
382 Params.DistanceIterators[(*iter)->nr] = Params.StepList[(*iter)->nr];
383 if (Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->end()) {// stop, before we run through the list and still on
384 Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->begin();
385 break;
386 }
387 //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)->nr]->second << "." << endl;
388 // find source of the new target
389 molecule::const_iterator runner = begin();
390 for (; runner != end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
391 if (Params.PermutationMap[(*runner)->nr] == Params.DistanceIterators[(*iter)->nr]->second) {
392 //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)->nr] << "." << endl;
393 break;
394 }
395 }
396 if (runner != end()) { // we found the other source
397 // then look in its distance list for Sprinter
398 Rider = Params.DistanceList[(*runner)->nr]->begin();
399 for (; Rider != Params.DistanceList[(*runner)->nr]->end(); Rider++)
400 if (Rider->second == Sprinter)
401 break;
402 if (Rider != Params.DistanceList[(*runner)->nr]->end()) { // if we have found one
403 //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)->nr] << "/" << *Rider->second << "." << endl;
404 // exchange both
405 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // put next farther distance into PermutationMap
406 Params.PermutationMap[(*runner)->nr] = Sprinter; // and hand the old target to its respective owner
407 PrintPermutationMap(getAtomCount(), Params);
408 // calculate the new potential
409 //Log() << Verbose(2) << "Checking new potential ..." << endl;
410 Potential = ConstrainedPotential(Params);
411 if (Potential > OldPotential) { // we made everything worse! Undo ...
412 //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
413 //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *Params.DistanceIterators[(*runner)->nr]->second << "." << endl;
414 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
415 Params.PermutationMap[(*runner)->nr] = Params.DistanceIterators[(*runner)->nr]->second;
416 // Undo for Walker
417 Params.DistanceIterators[(*iter)->nr] = Strider; // take next farther distance target
418 //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *Params.DistanceIterators[(*iter)->nr]->second << "." << endl;
419 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second;
420 } else {
421 Params.DistanceIterators[(*runner)->nr] = Rider; // if successful also move the pointer in the iterator list
422 DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
423 OldPotential = Potential;
424 }
425 if (Potential > Params.PenaltyConstants[2]) {
426 DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
427 exit(255);
428 }
429 //Log() << Verbose(0) << endl;
430 } else {
431 DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl);
432 exit(255);
433 }
434 } else {
435 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // new target has no source!
436 }
437 Params.StepList[(*iter)->nr]++; // take next farther distance target
438 }
439 } while (++iter != end());
440 } while ((OlderPotential - OldPotential) > 1e-3);
441 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
442
443
444 /// free memory and return with evaluated potential
445 for (int i=getAtomCount(); i--;)
446 Params.DistanceList[i]->clear();
447 delete[](Params.DistanceList);
448 delete[](Params.DistanceIterators);
449 return ConstrainedPotential(Params);
450};
451
452
453/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
454 * \param *out output stream for debugging
455 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
456 * \param endstep step giving final position in constrained MD
457 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
458 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
459 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
460 */
461void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
462{
463 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
464 DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
465 ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force );
466 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
467};
468
469/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
470 * Note, step number is config::MaxOuterStep
471 * \param *out output stream for debugging
472 * \param startstep stating initial configuration in molecule::Trajectories
473 * \param endstep stating final configuration in molecule::Trajectories
474 * \param &config configuration structure
475 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
476 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
477 */
478bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity)
479{
480 molecule *mol = NULL;
481 bool status = true;
482 int MaxSteps = configuration.MaxOuterStep;
483 MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
484 // Get the Permutation Map by MinimiseConstrainedPotential
485 atom **PermutationMap = NULL;
486 atom *Sprinter = NULL;
487 if (!MapByIdentity)
488 MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
489 else {
490 PermutationMap = new atom *[getAtomCount()];
491 SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
492 }
493
494 // check whether we have sufficient space in Trajectories for each atom
495 ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
496 // push endstep to last one
497 ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
498 endstep = MaxSteps;
499
500 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
501 DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl);
502 for (int step = 0; step <= MaxSteps; step++) {
503 mol = World::getInstance().createMolecule();
504 MoleculePerStep->insert(mol);
505 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
506 // add to molecule list
507 Sprinter = mol->AddCopyAtom((*iter));
508 for (int n=NDIM;n--;) {
509 Sprinter->x[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
510 // add to Trajectories
511 //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
512 if (step < MaxSteps) {
513 (*iter)->Trajectory.R.at(step)[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
514 (*iter)->Trajectory.U.at(step)[n] = 0.;
515 (*iter)->Trajectory.F.at(step)[n] = 0.;
516 }
517 }
518 }
519 }
520 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
521
522 // store the list to single step files
523 int *SortIndex = new int[getAtomCount()];
524 for (int i=getAtomCount(); i--; )
525 SortIndex[i] = i;
526 status = MoleculePerStep->OutputConfigForListOfFragments(&configuration, SortIndex);
527 delete[](SortIndex);
528
529 // free and return
530 delete[](PermutationMap);
531 delete(MoleculePerStep);
532 return status;
533};
534
535/** Parses nuclear forces from file and performs Verlet integration.
536 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
537 * have to transform them).
538 * This adds a new MD step to the config file.
539 * \param *out output stream for debugging
540 * \param *file filename
541 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
542 * \param delta_t time step width in atomic units
543 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
544 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()
545 * \return true - file found and parsed, false - file not found or imparsable
546 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
547 */
548bool molecule::VerletForceIntegration(char *file, config &configuration)
549{
550 Info FunctionInfo(__func__);
551 ifstream input(file);
552 string token;
553 stringstream item;
554 double IonMass, ConstrainedPotentialEnergy, ActualTemp;
555 Vector Velocity;
556 ForceMatrix Force;
557
558 CountElements(); // make sure ElementsInMolecule is up to date
559
560 // check file
561 if (input == NULL) {
562 return false;
563 } else {
564 // parse file into ForceMatrix
565 if (!Force.ParseMatrix(file, 0,0,0)) {
566 DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl);
567 performCriticalExit();
568 return false;
569 }
570 if (Force.RowCounter[0] != getAtomCount()) {
571 DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << getAtomCount() << "." << endl);
572 performCriticalExit();
573 return false;
574 }
575 // correct Forces
576 Velocity.Zero();
577 for(int i=0;i<getAtomCount();i++)
578 for(int d=0;d<NDIM;d++) {
579 Velocity[d] += Force.Matrix[0][i][d+5];
580 }
581 for(int i=0;i<getAtomCount();i++)
582 for(int d=0;d<NDIM;d++) {
583 Force.Matrix[0][i][d+5] -= Velocity[d]/static_cast<double>(getAtomCount());
584 }
585 // solve a constrained potential if we are meant to
586 if (configuration.DoConstrainedMD) {
587 // calculate forces and potential
588 atom **PermutationMap = NULL;
589 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
590 EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
591 delete[](PermutationMap);
592 }
593
594 // and perform Verlet integration for each atom with position, velocity and force vector
595 // check size of vectors
596 //ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
597
598 ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps+1, &configuration, &Force);
599 }
600 // correct velocities (rather momenta) so that center of mass remains motionless
601 Velocity.Zero();
602 IonMass = 0.;
603 ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps+1, &IonMass, &Velocity );
604
605 // correct velocities (rather momenta) so that center of mass remains motionless
606 Velocity.Scale(1./IonMass);
607 ActualTemp = 0.;
608 ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps+1, &Velocity );
609 Thermostats(configuration, ActualTemp, Berendsen);
610 MDSteps++;
611
612 // exit
613 return true;
614};
615
616/** Implementation of various thermostats.
617 * All these thermostats apply an additional force which has the following forms:
618 * -# Woodcock
619 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
620 * -# Gaussian
621 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
622 * -# Langevin
623 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
624 * -# Berendsen
625 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
626 * -# Nose-Hoover
627 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
628 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or
629 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
630 * belatedly and the constraint force set.
631 * \param *P Problem at hand
632 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
633 * \sa InitThermostat()
634 */
635void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)
636{
637 double ekin = 0.;
638 double E = 0., G = 0.;
639 double delta_alpha = 0.;
640 double ScaleTempFactor;
641 gsl_rng * r;
642 const gsl_rng_type * T;
643
644 // calculate scale configuration
645 ScaleTempFactor = configuration.TargetTemp/ActualTemp;
646
647 // differentating between the various thermostats
648 switch(Thermostat) {
649 case None:
650 DoLog(2) && (Log() << Verbose(2) << "Applying no thermostat..." << endl);
651 break;
652 case Woodcock:
653 if ((configuration.ScaleTempStep > 0) && ((MDSteps-1) % configuration.ScaleTempStep == 0)) {
654 DoLog(2) && (Log() << Verbose(2) << "Applying Woodcock thermostat..." << endl);
655 ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
656 }
657 break;
658 case Gaussian:
659 DoLog(2) && (Log() << Verbose(2) << "Applying Gaussian thermostat..." << endl);
660 ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
661
662 DoLog(1) && (Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl);
663 ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
664
665 break;
666 case Langevin:
667 DoLog(2) && (Log() << Verbose(2) << "Applying Langevin thermostat..." << endl);
668 // init random number generator
669 gsl_rng_env_setup();
670 T = gsl_rng_default;
671 r = gsl_rng_alloc (T);
672 // Go through each ion
673 ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
674 break;
675
676 case Berendsen:
677 DoLog(2) && (Log() << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl);
678 ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
679 break;
680
681 case NoseHoover:
682 DoLog(2) && (Log() << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl);
683 // dynamically evolve alpha (the additional degree of freedom)
684 delta_alpha = 0.;
685 ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
686 delta_alpha = (delta_alpha - (3.*getAtomCount()+1.) * configuration.TargetTemp)/(configuration.HooverMass*Units2Electronmass);
687 configuration.alpha += delta_alpha*configuration.Deltat;
688 DoLog(3) && (Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.alpha << "." << endl);
689 // apply updated alpha as additional force
690 ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
691 break;
692 }
693 DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl);
694};
Note: See TracBrowser for help on using the repository browser.