source: src/molecule_dynamics.cpp@ 1434c9

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 1434c9 was 55240c4, checked in by Frederik Heber <heber@…>, 15 years ago

Merge branch 'stable' into PcpAndMpqcParser

Conflicts:

molecuilder/src/Makefile.am

  • a single space after a "\"
  • Property mode set to 100644
File size: 34.7 KB
Line 
1/*
2 * molecule_dynamics.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
8#include "Helpers/MemDebug.hpp"
9
10#include "World.hpp"
11#include "atom.hpp"
12#include "config.hpp"
13#include "element.hpp"
14#include "info.hpp"
15#include "log.hpp"
16#include "memoryallocator.hpp"
17#include "molecule.hpp"
18#include "parser.hpp"
19#include "Plane.hpp"
20#include "ThermoStatContainer.hpp"
21
22/************************************* Functions for class molecule *********************************/
23
24/** Penalizes long trajectories.
25 * \param *Walker atom to check against others
26 * \param *mol molecule with other atoms
27 * \param &Params constraint potential parameters
28 * \return penalty times each distance
29 */
30double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
31{
32 gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
33 gsl_vector *x = gsl_vector_alloc(NDIM);
34 atom *Sprinter = NULL;
35 Vector trajectory1, trajectory2, normal, TestVector;
36 double Norm1, Norm2, tmp, result = 0.;
37
38 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
39 if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
40 break;
41 // determine normalized trajectories direction vector (n1, n2)
42 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
43 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep);
44 trajectory1.Normalize();
45 Norm1 = trajectory1.Norm();
46 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
47 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
48 trajectory2.Normalize();
49 Norm2 = trajectory1.Norm();
50 // check whether either is zero()
51 if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
52 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
53 } else if (Norm1 < MYEPSILON) {
54 Sprinter = Params.PermutationMap[Walker->nr]; // find first target point
55 trajectory1 = Sprinter->Trajectory.R.at(Params.endstep) - (*iter)->Trajectory.R.at(Params.startstep);
56 trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
57 trajectory1 -= trajectory2; // project the part in norm direction away
58 tmp = trajectory1.Norm(); // remaining norm is distance
59 } else if (Norm2 < MYEPSILON) {
60 Sprinter = Params.PermutationMap[(*iter)->nr]; // find second target point
61 trajectory2 = Sprinter->Trajectory.R.at(Params.endstep) - Walker->Trajectory.R.at(Params.startstep); // copy second offset
62 trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
63 trajectory2 -= trajectory1; // project the part in norm direction away
64 tmp = trajectory2.Norm(); // remaining norm is distance
65 } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
66 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
67 // Log() << Verbose(0) << trajectory1;
68 // Log() << Verbose(0) << " and ";
69 // Log() << Verbose(0) << trajectory2;
70 tmp = Walker->Trajectory.R.at(Params.startstep).distance((*iter)->Trajectory.R.at(Params.startstep));
71 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
72 } else { // determine distance by finding minimum distance
73 // Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent ";
74 // Log() << Verbose(0) << endl;
75 // Log() << Verbose(0) << "First Trajectory: ";
76 // Log() << Verbose(0) << trajectory1 << endl;
77 // Log() << Verbose(0) << "Second Trajectory: ";
78 // Log() << Verbose(0) << trajectory2 << endl;
79 // determine normal vector for both
80 normal = Plane(trajectory1, trajectory2,0).getNormal();
81 // print all vectors for debugging
82 // Log() << Verbose(0) << "Normal vector in between: ";
83 // Log() << Verbose(0) << normal << endl;
84 // setup matrix
85 for (int i=NDIM;i--;) {
86 gsl_matrix_set(A, 0, i, trajectory1[i]);
87 gsl_matrix_set(A, 1, i, trajectory2[i]);
88 gsl_matrix_set(A, 2, i, normal[i]);
89 gsl_vector_set(x,i, (Walker->Trajectory.R.at(Params.startstep)[i] - (*iter)->Trajectory.R.at(Params.startstep)[i]));
90 }
91 // solve the linear system by Householder transformations
92 gsl_linalg_HH_svx(A, x);
93 // distance from last component
94 tmp = gsl_vector_get(x,2);
95 // Log() << Verbose(0) << " with distance " << tmp << "." << endl;
96 // test whether we really have the intersection (by checking on c_1 and c_2)
97 trajectory1.Scale(gsl_vector_get(x,0));
98 trajectory2.Scale(gsl_vector_get(x,1));
99 normal.Scale(gsl_vector_get(x,2));
100 TestVector = (*iter)->Trajectory.R.at(Params.startstep) + trajectory2 + normal
101 - (Walker->Trajectory.R.at(Params.startstep) + trajectory1);
102 if (TestVector.Norm() < MYEPSILON) {
103 // Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
104 } else {
105 // Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
106 // Log() << Verbose(0) << TestVector;
107 // Log() << Verbose(0) << "." << endl;
108 }
109 }
110 // add up
111 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
112 if (fabs(tmp) > MYEPSILON) {
113 result += Params.PenaltyConstants[1] * 1./tmp;
114 //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
115 }
116 }
117 return result;
118};
119
120/** Penalizes atoms heading to same target.
121 * \param *Walker atom to check against others
122 * \param *mol molecule with other atoms
123 * \param &Params constrained potential parameters
124 * \return \a penalty times the number of equal targets
125 */
126double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
127{
128 double result = 0.;
129 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
130 if ((Params.PermutationMap[Walker->nr] == Params.PermutationMap[(*iter)->nr]) && (Walker->nr < (*iter)->nr)) {
131 // atom *Sprinter = PermutationMap[Walker->nr];
132 // Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at ";
133 // Log() << Verbose(0) << Sprinter->Trajectory.R.at(endstep);
134 // Log() << Verbose(0) << ", penalting." << endl;
135 result += Params.PenaltyConstants[2];
136 //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
137 }
138 }
139 return result;
140};
141
142/** Evaluates the potential energy used for constrained molecular dynamics.
143 * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
144 * where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
145 * trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
146 * Note that for the second term we have to solve the following linear system:
147 * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
148 * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
149 * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
150 * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
151 * \param *out output stream for debugging
152 * \param &Params constrained potential parameters
153 * \return potential energy
154 * \note This routine is scaling quadratically which is not optimal.
155 * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
156 */
157double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
158{
159 double tmp = 0.;
160 double result = 0.;
161 // go through every atom
162 atom *Runner = NULL;
163 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
164 // first term: distance to target
165 Runner = Params.PermutationMap[(*iter)->nr]; // find target point
166 tmp = ((*iter)->Trajectory.R.at(Params.startstep).distance(Runner->Trajectory.R.at(Params.endstep)));
167 tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
168 result += Params.PenaltyConstants[0] * tmp;
169 //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
170
171 // second term: sum of distances to other trajectories
172 result += SumDistanceOfTrajectories((*iter), this, Params);
173
174 // third term: penalty for equal targets
175 result += PenalizeEqualTargets((*iter), this, Params);
176 }
177
178 return result;
179};
180
181/** print the current permutation map.
182 * \param *out output stream for debugging
183 * \param &Params constrained potential parameters
184 * \param AtomCount number of atoms
185 */
186void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
187{
188 stringstream zeile1, zeile2;
189 int *DoubleList = new int[AtomCount];
190 for(int i=0;i<AtomCount;i++)
191 DoubleList[i] = 0;
192 int doubles = 0;
193 zeile1 << "PermutationMap: ";
194 zeile2 << " ";
195 for (int i=0;i<AtomCount;i++) {
196 Params.DoubleList[Params.PermutationMap[i]->nr]++;
197 zeile1 << i << " ";
198 zeile2 << Params.PermutationMap[i]->nr << " ";
199 }
200 for (int i=0;i<AtomCount;i++)
201 if (Params.DoubleList[i] > 1)
202 doubles++;
203 if (doubles >0)
204 DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
205 delete[](DoubleList);
206// Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
207};
208
209/** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
210 * \param *mol molecule to scan distances in
211 * \param &Params constrained potential parameters
212 */
213void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
214{
215 for (int i=mol->getAtomCount(); i--;) {
216 Params.DistanceList[i] = new DistanceMap; // is the distance sorted target list per atom
217 Params.DistanceList[i]->clear();
218 }
219
220 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
221 for (molecule::const_iterator runner = mol->begin(); runner != mol->end(); ++runner) {
222 Params.DistanceList[(*iter)->nr]->insert( DistancePair((*iter)->Trajectory.R.at(Params.startstep).distance((*runner)->Trajectory.R.at(Params.endstep)), (*runner)) );
223 }
224 }
225};
226
227/** initialize lists.
228 * \param *out output stream for debugging
229 * \param *mol molecule to scan distances in
230 * \param &Params constrained potential parameters
231 */
232void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
233{
234 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
235 Params.StepList[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // stores the step to the next iterator that could be a possible next target
236 Params.PermutationMap[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin()->second; // always pick target with the smallest distance
237 Params.DoubleList[Params.DistanceList[(*iter)->nr]->begin()->second->nr]++; // increase this target's source count (>1? not injective)
238 Params.DistanceIterators[(*iter)->nr] = Params.DistanceList[(*iter)->nr]->begin(); // and remember which one we picked
239 DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << Params.DistanceList[(*iter)->nr]->begin()->first << "." << endl);
240 }
241};
242
243/** Try the next nearest neighbour in order to make the permutation map injective.
244 * \param *out output stream for debugging
245 * \param *mol molecule
246 * \param *Walker atom to change its target
247 * \param &OldPotential old value of constraint potential to see if we do better with new target
248 * \param &Params constrained potential parameters
249 */
250double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
251{
252 double Potential = 0;
253 DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->nr]; // store old base
254 do {
255 NewBase++; // take next further distance in distance to targets list that's a target of no one
256 } while ((Params.DoubleList[NewBase->second->nr] != 0) && (NewBase != Params.DistanceList[Walker->nr]->end()));
257 if (NewBase != Params.DistanceList[Walker->nr]->end()) {
258 Params.PermutationMap[Walker->nr] = NewBase->second;
259 Potential = fabs(mol->ConstrainedPotential(Params));
260 if (Potential > OldPotential) { // undo
261 Params.PermutationMap[Walker->nr] = Params.DistanceIterators[Walker->nr]->second;
262 } else { // do
263 Params.DoubleList[Params.DistanceIterators[Walker->nr]->second->nr]--; // decrease the old entry in the doubles list
264 Params.DoubleList[NewBase->second->nr]++; // increase the old entry in the doubles list
265 Params.DistanceIterators[Walker->nr] = NewBase;
266 OldPotential = Potential;
267 DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
268 }
269 }
270 return Potential;
271};
272
273/** Permutes \a **&PermutationMap until the penalty is below constants[2].
274 * \param *out output stream for debugging
275 * \param *mol molecule to scan distances in
276 * \param &Params constrained potential parameters
277 */
278void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
279{
280 molecule::const_iterator iter = mol->begin();
281 DistanceMap::iterator NewBase;
282 double Potential = fabs(mol->ConstrainedPotential(Params));
283
284 if (mol->empty()) {
285 eLog() << Verbose(1) << "Molecule is empty." << endl;
286 return;
287 }
288 while ((Potential) > Params.PenaltyConstants[2]) {
289 PrintPermutationMap(mol->getAtomCount(), Params);
290 iter++;
291 if (iter == mol->end()) // round-robin at the end
292 iter = mol->begin();
293 if (Params.DoubleList[Params.DistanceIterators[(*iter)->nr]->second->nr] <= 1) // no need to make those injective that aren't
294 continue;
295 // now, try finding a new one
296 Potential = TryNextNearestNeighbourForInjectivePermutation(mol, (*iter), Potential, Params);
297 }
298 for (int i=mol->getAtomCount(); i--;) // now each single entry in the DoubleList should be <=1
299 if (Params.DoubleList[i] > 1) {
300 DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
301 performCriticalExit();
302 }
303 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
304};
305
306/** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
307 * We do the following:
308 * -# Generate a distance list from all source to all target points
309 * -# Sort this per source point
310 * -# Take for each source point the target point with minimum distance, use this as initial permutation
311 * -# check whether molecule::ConstrainedPotential() is greater than injective penalty
312 * -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
313 * -# Next, we only apply transformations that keep the injectivity of the permutations list.
314 * -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
315 * point and try to change it for one with lesser distance, or for the next one with greater distance, but only
316 * if this decreases the conditional potential.
317 * -# finished.
318 * -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
319 * that the total force is always pointing in direction of the constraint force (ensuring that we move in the
320 * right direction).
321 * -# Finally, we calculate the potential energy and return.
322 * \param *out output stream for debugging
323 * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
324 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
325 * \param endstep step giving final position in constrained MD
326 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
327 * \sa molecule::VerletForceIntegration()
328 * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
329 * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
330 * to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
331 * \bug this all is not O(N log N) but O(N^2)
332 */
333double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
334{
335 double Potential, OldPotential, OlderPotential;
336 struct EvaluatePotential Params;
337 Params.PermutationMap = new atom *[getAtomCount()];
338 Params.DistanceList = new DistanceMap *[getAtomCount()];
339 Params.DistanceIterators = new DistanceMap::iterator[getAtomCount()];
340 Params.DoubleList = new int[getAtomCount()];
341 Params.StepList = new DistanceMap::iterator[getAtomCount()];
342 int round;
343 atom *Sprinter = NULL;
344 DistanceMap::iterator Rider, Strider;
345
346 // set to zero
347 for (int i=0;i<getAtomCount();i++) {
348 Params.PermutationMap[i] = NULL;
349 Params.DoubleList[i] = 0;
350 }
351
352 /// Minimise the potential
353 // set Lagrange multiplier constants
354 Params.PenaltyConstants[0] = 10.;
355 Params.PenaltyConstants[1] = 1.;
356 Params.PenaltyConstants[2] = 1e+7; // just a huge penalty
357 // generate the distance list
358 DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
359 FillDistanceList(this, Params);
360
361 // create the initial PermutationMap (source -> target)
362 CreateInitialLists(this, Params);
363
364 // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
365 DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
366 MakeInjectivePermutation(this, Params);
367 delete[](Params.DoubleList);
368
369 // argument minimise the constrained potential in this injective PermutationMap
370 DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
371 OldPotential = 1e+10;
372 round = 0;
373 do {
374 DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
375 OlderPotential = OldPotential;
376 molecule::const_iterator iter;
377 do {
378 iter = begin();
379 for (; iter != end(); ++iter) {
380 PrintPermutationMap(getAtomCount(), Params);
381 Sprinter = Params.DistanceIterators[(*iter)->nr]->second; // store initial partner
382 Strider = Params.DistanceIterators[(*iter)->nr]; //remember old iterator
383 Params.DistanceIterators[(*iter)->nr] = Params.StepList[(*iter)->nr];
384 if (Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->end()) {// stop, before we run through the list and still on
385 Params.DistanceIterators[(*iter)->nr] == Params.DistanceList[(*iter)->nr]->begin();
386 break;
387 }
388 //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)->nr]->second << "." << endl;
389 // find source of the new target
390 molecule::const_iterator runner = begin();
391 for (; runner != end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
392 if (Params.PermutationMap[(*runner)->nr] == Params.DistanceIterators[(*iter)->nr]->second) {
393 //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)->nr] << "." << endl;
394 break;
395 }
396 }
397 if (runner != end()) { // we found the other source
398 // then look in its distance list for Sprinter
399 Rider = Params.DistanceList[(*runner)->nr]->begin();
400 for (; Rider != Params.DistanceList[(*runner)->nr]->end(); Rider++)
401 if (Rider->second == Sprinter)
402 break;
403 if (Rider != Params.DistanceList[(*runner)->nr]->end()) { // if we have found one
404 //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)->nr] << "/" << *Rider->second << "." << endl;
405 // exchange both
406 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // put next farther distance into PermutationMap
407 Params.PermutationMap[(*runner)->nr] = Sprinter; // and hand the old target to its respective owner
408 PrintPermutationMap(getAtomCount(), Params);
409 // calculate the new potential
410 //Log() << Verbose(2) << "Checking new potential ..." << endl;
411 Potential = ConstrainedPotential(Params);
412 if (Potential > OldPotential) { // we made everything worse! Undo ...
413 //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
414 //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *Params.DistanceIterators[(*runner)->nr]->second << "." << endl;
415 // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
416 Params.PermutationMap[(*runner)->nr] = Params.DistanceIterators[(*runner)->nr]->second;
417 // Undo for Walker
418 Params.DistanceIterators[(*iter)->nr] = Strider; // take next farther distance target
419 //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *Params.DistanceIterators[(*iter)->nr]->second << "." << endl;
420 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second;
421 } else {
422 Params.DistanceIterators[(*runner)->nr] = Rider; // if successful also move the pointer in the iterator list
423 DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
424 OldPotential = Potential;
425 }
426 if (Potential > Params.PenaltyConstants[2]) {
427 DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
428 exit(255);
429 }
430 //Log() << Verbose(0) << endl;
431 } else {
432 DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl);
433 exit(255);
434 }
435 } else {
436 Params.PermutationMap[(*iter)->nr] = Params.DistanceIterators[(*iter)->nr]->second; // new target has no source!
437 }
438 Params.StepList[(*iter)->nr]++; // take next farther distance target
439 }
440 } while (++iter != end());
441 } while ((OlderPotential - OldPotential) > 1e-3);
442 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
443
444
445 /// free memory and return with evaluated potential
446 for (int i=getAtomCount(); i--;)
447 Params.DistanceList[i]->clear();
448 delete[](Params.DistanceList);
449 delete[](Params.DistanceIterators);
450 return ConstrainedPotential(Params);
451};
452
453
454/** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
455 * \param *out output stream for debugging
456 * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
457 * \param endstep step giving final position in constrained MD
458 * \param **PermutationMap mapping between the atom label of the initial and the final configuration
459 * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
460 * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
461 */
462void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
463{
464 /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
465 DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
466 ActOnAllAtoms( &atom::EvaluateConstrainedForce, startstep, endstep, PermutationMap, Force );
467 DoLog(1) && (Log() << Verbose(1) << "done." << endl);
468};
469
470/** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
471 * Note, step number is config::MaxOuterStep
472 * \param *out output stream for debugging
473 * \param startstep stating initial configuration in molecule::Trajectories
474 * \param endstep stating final configuration in molecule::Trajectories
475 * \param &config configuration structure
476 * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
477 * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
478 */
479bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, const char *prefix, config &configuration, bool MapByIdentity)
480{
481 molecule *mol = NULL;
482 bool status = true;
483 int MaxSteps = configuration.MaxOuterStep;
484 MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
485 // Get the Permutation Map by MinimiseConstrainedPotential
486 atom **PermutationMap = NULL;
487 atom *Sprinter = NULL;
488 if (!MapByIdentity)
489 MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
490 else {
491 PermutationMap = new atom *[getAtomCount()];
492 SetIndexedArrayForEachAtomTo( PermutationMap, &atom::nr );
493 }
494
495 // check whether we have sufficient space in Trajectories for each atom
496 ActOnAllAtoms( &atom::ResizeTrajectory, MaxSteps );
497 // push endstep to last one
498 ActOnAllAtoms( &atom::CopyStepOnStep, MaxSteps, endstep );
499 endstep = MaxSteps;
500
501 // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
502 DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl);
503 for (int step = 0; step <= MaxSteps; step++) {
504 mol = World::getInstance().createMolecule();
505 MoleculePerStep->insert(mol);
506 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
507 // add to molecule list
508 Sprinter = mol->AddCopyAtom((*iter));
509 for (int n=NDIM;n--;) {
510 Sprinter->x[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
511 // add to Trajectories
512 //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
513 if (step < MaxSteps) {
514 (*iter)->Trajectory.R.at(step)[n] = (*iter)->Trajectory.R.at(startstep)[n] + (PermutationMap[(*iter)->nr]->Trajectory.R.at(endstep)[n] - (*iter)->Trajectory.R.at(startstep)[n])*((double)step/(double)MaxSteps);
515 (*iter)->Trajectory.U.at(step)[n] = 0.;
516 (*iter)->Trajectory.F.at(step)[n] = 0.;
517 }
518 }
519 }
520 }
521 MDSteps = MaxSteps+1; // otherwise new Trajectories' points aren't stored on save&exit
522
523 // store the list to single step files
524 int *SortIndex = new int[getAtomCount()];
525 for (int i=getAtomCount(); i--; )
526 SortIndex[i] = i;
527 status = MoleculePerStep->OutputConfigForListOfFragments(&configuration, SortIndex);
528 delete[](SortIndex);
529
530 // free and return
531 delete[](PermutationMap);
532 delete(MoleculePerStep);
533 return status;
534};
535
536/** Parses nuclear forces from file and performs Verlet integration.
537 * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
538 * have to transform them).
539 * This adds a new MD step to the config file.
540 * \param *out output stream for debugging
541 * \param *file filename
542 * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
543 * \param delta_t time step width in atomic units
544 * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
545 * \param DoConstrained whether we perform a constrained (>0, target step in molecule::trajectories) or unconstrained (0) molecular dynamics, \sa molecule::MinimiseConstrainedPotential()
546 * \return true - file found and parsed, false - file not found or imparsable
547 * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
548 */
549bool molecule::VerletForceIntegration(char *file, config &configuration)
550{
551 Info FunctionInfo(__func__);
552 ifstream input(file);
553 string token;
554 stringstream item;
555 double IonMass, ConstrainedPotentialEnergy, ActualTemp;
556 Vector Velocity;
557 ForceMatrix Force;
558
559 CountElements(); // make sure ElementsInMolecule is up to date
560
561 // check file
562 if (input == NULL) {
563 return false;
564 } else {
565 // parse file into ForceMatrix
566 if (!Force.ParseMatrix(file, 0,0,0)) {
567 DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl);
568 performCriticalExit();
569 return false;
570 }
571 if (Force.RowCounter[0] != getAtomCount()) {
572 DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << getAtomCount() << "." << endl);
573 performCriticalExit();
574 return false;
575 }
576 // correct Forces
577 Velocity.Zero();
578 for(int i=0;i<getAtomCount();i++)
579 for(int d=0;d<NDIM;d++) {
580 Velocity[d] += Force.Matrix[0][i][d+5];
581 }
582 for(int i=0;i<getAtomCount();i++)
583 for(int d=0;d<NDIM;d++) {
584 Force.Matrix[0][i][d+5] -= Velocity[d]/static_cast<double>(getAtomCount());
585 }
586 // solve a constrained potential if we are meant to
587 if (configuration.DoConstrainedMD) {
588 // calculate forces and potential
589 atom **PermutationMap = NULL;
590 ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
591 EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
592 delete[](PermutationMap);
593 }
594
595 // and perform Verlet integration for each atom with position, velocity and force vector
596 // check size of vectors
597 //ActOnAllAtoms( &atom::ResizeTrajectory, MDSteps+10 );
598
599 ActOnAllAtoms( &atom::VelocityVerletUpdate, MDSteps+1, &configuration, &Force);
600 }
601 // correct velocities (rather momenta) so that center of mass remains motionless
602 Velocity.Zero();
603 IonMass = 0.;
604 ActOnAllAtoms ( &atom::SumUpKineticEnergy, MDSteps+1, &IonMass, &Velocity );
605
606 // correct velocities (rather momenta) so that center of mass remains motionless
607 Velocity.Scale(1./IonMass);
608 ActualTemp = 0.;
609 ActOnAllAtoms ( &atom::CorrectVelocity, &ActualTemp, MDSteps+1, &Velocity );
610 Thermostats(configuration, ActualTemp, Berendsen);
611 MDSteps++;
612
613 // exit
614 return true;
615};
616
617/** Implementation of various thermostats.
618 * All these thermostats apply an additional force which has the following forms:
619 * -# Woodcock
620 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
621 * -# Gaussian
622 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
623 * -# Langevin
624 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
625 * -# Berendsen
626 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
627 * -# Nose-Hoover
628 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
629 * These Thermostats either simply rescale the velocities, thus this function should be called after ion velocities have been updated, and/or
630 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
631 * belatedly and the constraint force set.
632 * \param *P Problem at hand
633 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
634 * \sa InitThermostat()
635 */
636void molecule::Thermostats(config &configuration, double ActualTemp, int Thermostat)
637{
638 double ekin = 0.;
639 double E = 0., G = 0.;
640 double delta_alpha = 0.;
641 double ScaleTempFactor;
642 gsl_rng * r;
643 const gsl_rng_type * T;
644
645 // calculate scale configuration
646 ScaleTempFactor = configuration.Thermostats->TargetTemp/ActualTemp;
647
648 // differentating between the various thermostats
649 switch(Thermostat) {
650 case None:
651 DoLog(2) && (Log() << Verbose(2) << "Applying no thermostat..." << endl);
652 break;
653 case Woodcock:
654 if ((configuration.Thermostats->ScaleTempStep > 0) && ((MDSteps-1) % configuration.Thermostats->ScaleTempStep == 0)) {
655 DoLog(2) && (Log() << Verbose(2) << "Applying Woodcock thermostat..." << endl);
656 ActOnAllAtoms( &atom::Thermostat_Woodcock, sqrt(ScaleTempFactor), MDSteps, &ekin );
657 }
658 break;
659 case Gaussian:
660 DoLog(2) && (Log() << Verbose(2) << "Applying Gaussian thermostat..." << endl);
661 ActOnAllAtoms( &atom::Thermostat_Gaussian_init, MDSteps, &G, &E );
662
663 DoLog(1) && (Log() << Verbose(1) << "Gaussian Least Constraint constant is " << G/E << "." << endl);
664 ActOnAllAtoms( &atom::Thermostat_Gaussian_least_constraint, MDSteps, G/E, &ekin, &configuration);
665
666 break;
667 case Langevin:
668 DoLog(2) && (Log() << Verbose(2) << "Applying Langevin thermostat..." << endl);
669 // init random number generator
670 gsl_rng_env_setup();
671 T = gsl_rng_default;
672 r = gsl_rng_alloc (T);
673 // Go through each ion
674 ActOnAllAtoms( &atom::Thermostat_Langevin, MDSteps, r, &ekin, &configuration );
675 break;
676
677 case Berendsen:
678 DoLog(2) && (Log() << Verbose(2) << "Applying Berendsen-VanGunsteren thermostat..." << endl);
679 ActOnAllAtoms( &atom::Thermostat_Berendsen, MDSteps, ScaleTempFactor, &ekin, &configuration );
680 break;
681
682 case NoseHoover:
683 DoLog(2) && (Log() << Verbose(2) << "Applying Nose-Hoover thermostat..." << endl);
684 // dynamically evolve alpha (the additional degree of freedom)
685 delta_alpha = 0.;
686 ActOnAllAtoms( &atom::Thermostat_NoseHoover_init, MDSteps, &delta_alpha );
687 delta_alpha = (delta_alpha - (3.*getAtomCount()+1.) * configuration.Thermostats->TargetTemp)/(configuration.Thermostats->HooverMass*Units2Electronmass);
688 configuration.Thermostats->alpha += delta_alpha*configuration.Deltat;
689 DoLog(3) && (Log() << Verbose(3) << "alpha = " << delta_alpha << " * " << configuration.Deltat << " = " << configuration.Thermostats->alpha << "." << endl);
690 // apply updated alpha as additional force
691 ActOnAllAtoms( &atom::Thermostat_NoseHoover_scale, MDSteps, &ekin, &configuration );
692 break;
693 }
694 DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl);
695};
Note: See TracBrowser for help on using the repository browser.