| 1 | /*
 | 
|---|
| 2 |  * Project: MoleCuilder
 | 
|---|
| 3 |  * Description: creates and alters molecular systems
 | 
|---|
| 4 |  * Copyright (C)  2010 University of Bonn. All rights reserved.
 | 
|---|
| 5 |  * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
 | 
|---|
| 6 |  */
 | 
|---|
| 7 | 
 | 
|---|
| 8 | /*
 | 
|---|
| 9 |  * molecule_dynamics.cpp
 | 
|---|
| 10 |  *
 | 
|---|
| 11 |  *  Created on: Oct 5, 2009
 | 
|---|
| 12 |  *      Author: heber
 | 
|---|
| 13 |  */
 | 
|---|
| 14 | 
 | 
|---|
| 15 | // include config.h
 | 
|---|
| 16 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 17 | #include <config.h>
 | 
|---|
| 18 | #endif
 | 
|---|
| 19 | 
 | 
|---|
| 20 | #include "CodePatterns/MemDebug.hpp"
 | 
|---|
| 21 | 
 | 
|---|
| 22 | #include "World.hpp"
 | 
|---|
| 23 | #include "atom.hpp"
 | 
|---|
| 24 | #include "config.hpp"
 | 
|---|
| 25 | #include "element.hpp"
 | 
|---|
| 26 | #include "CodePatterns/Info.hpp"
 | 
|---|
| 27 | #include "CodePatterns/Verbose.hpp"
 | 
|---|
| 28 | #include "CodePatterns/Log.hpp"
 | 
|---|
| 29 | #include "molecule.hpp"
 | 
|---|
| 30 | #include "parser.hpp"
 | 
|---|
| 31 | #include "LinearAlgebra/Plane.hpp"
 | 
|---|
| 32 | #include "ThermoStatContainer.hpp"
 | 
|---|
| 33 | #include "Thermostats/Berendsen.hpp"
 | 
|---|
| 34 | 
 | 
|---|
| 35 | #include "CodePatterns/enumeration.hpp"
 | 
|---|
| 36 | 
 | 
|---|
| 37 | #include <gsl/gsl_matrix.h>
 | 
|---|
| 38 | #include <gsl/gsl_vector.h>
 | 
|---|
| 39 | #include <gsl/gsl_linalg.h>
 | 
|---|
| 40 | 
 | 
|---|
| 41 | /************************************* Functions for class molecule *********************************/
 | 
|---|
| 42 | 
 | 
|---|
| 43 | /** Penalizes long trajectories.
 | 
|---|
| 44 |  * \param *Walker atom to check against others
 | 
|---|
| 45 |  * \param *mol molecule with other atoms
 | 
|---|
| 46 |  * \param &Params constraint potential parameters
 | 
|---|
| 47 |  * \return penalty times each distance
 | 
|---|
| 48 |  */
 | 
|---|
| 49 | double SumDistanceOfTrajectories(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 50 | {
 | 
|---|
| 51 |   gsl_matrix *A = gsl_matrix_alloc(NDIM,NDIM);
 | 
|---|
| 52 |   gsl_vector *x = gsl_vector_alloc(NDIM);
 | 
|---|
| 53 |   atom *Sprinter = NULL;
 | 
|---|
| 54 |   Vector trajectory1, trajectory2, normal, TestVector;
 | 
|---|
| 55 |   double Norm1, Norm2, tmp, result = 0.;
 | 
|---|
| 56 | 
 | 
|---|
| 57 |   for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
 | 
|---|
| 58 |     if ((*iter) == Walker) // hence, we only go up to the Walker, not beyond (similar to i=0; i<j; i++)
 | 
|---|
| 59 |       break;
 | 
|---|
| 60 |     // determine normalized trajectories direction vector (n1, n2)
 | 
|---|
| 61 |     Sprinter = Params.PermutationMap[Walker->getNr()];   // find first target point
 | 
|---|
| 62 |     trajectory1 = Sprinter->getPositionAtStep(Params.endstep) - Walker->getPositionAtStep(Params.startstep);
 | 
|---|
| 63 |     trajectory1.Normalize();
 | 
|---|
| 64 |     Norm1 = trajectory1.Norm();
 | 
|---|
| 65 |     Sprinter = Params.PermutationMap[(*iter)->getNr()];   // find second target point
 | 
|---|
| 66 |     trajectory2 = Sprinter->getPositionAtStep(Params.endstep) - (*iter)->getPositionAtStep(Params.startstep);
 | 
|---|
| 67 |     trajectory2.Normalize();
 | 
|---|
| 68 |     Norm2 = trajectory1.Norm();
 | 
|---|
| 69 |     // check whether either is zero()
 | 
|---|
| 70 |     if ((Norm1 < MYEPSILON) && (Norm2 < MYEPSILON)) {
 | 
|---|
| 71 |       tmp = Walker->getPositionAtStep(Params.startstep).distance((*iter)->getPositionAtStep(Params.startstep));
 | 
|---|
| 72 |     } else if (Norm1 < MYEPSILON) {
 | 
|---|
| 73 |       Sprinter = Params.PermutationMap[Walker->getNr()];   // find first target point
 | 
|---|
| 74 |       trajectory1 = Sprinter->getPositionAtStep(Params.endstep) - (*iter)->getPositionAtStep(Params.startstep);
 | 
|---|
| 75 |       trajectory2 *= trajectory1.ScalarProduct(trajectory2); // trajectory2 is scaled to unity, hence we don't need to divide by anything
 | 
|---|
| 76 |       trajectory1 -= trajectory2;   // project the part in norm direction away
 | 
|---|
| 77 |       tmp = trajectory1.Norm();  // remaining norm is distance
 | 
|---|
| 78 |     } else if (Norm2 < MYEPSILON) {
 | 
|---|
| 79 |       Sprinter = Params.PermutationMap[(*iter)->getNr()];   // find second target point
 | 
|---|
| 80 |       trajectory2 = Sprinter->getPositionAtStep(Params.endstep) - Walker->getPositionAtStep(Params.startstep);  // copy second offset
 | 
|---|
| 81 |       trajectory1 *= trajectory2.ScalarProduct(trajectory1); // trajectory1 is scaled to unity, hence we don't need to divide by anything
 | 
|---|
| 82 |       trajectory2 -= trajectory1;   // project the part in norm direction away
 | 
|---|
| 83 |       tmp = trajectory2.Norm();  // remaining norm is distance
 | 
|---|
| 84 |     } else if ((fabs(trajectory1.ScalarProduct(trajectory2)/Norm1/Norm2) - 1.) < MYEPSILON) { // check whether they're linear dependent
 | 
|---|
| 85 |   //        Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *Runner << " are linear dependent: ";
 | 
|---|
| 86 |   //        Log() << Verbose(0) << trajectory1;
 | 
|---|
| 87 |   //        Log() << Verbose(0) << " and ";
 | 
|---|
| 88 |   //        Log() << Verbose(0) << trajectory2;
 | 
|---|
| 89 |       tmp = Walker->getPositionAtStep(Params.startstep).distance((*iter)->getPositionAtStep(Params.startstep));
 | 
|---|
| 90 |   //        Log() << Verbose(0) << " with distance " << tmp << "." << endl;
 | 
|---|
| 91 |     } else { // determine distance by finding minimum distance
 | 
|---|
| 92 |   //        Log() << Verbose(3) << "Both trajectories of " << *Walker << " and " << *(*iter) << " are linear independent ";
 | 
|---|
| 93 |   //        Log() << Verbose(0) << endl;
 | 
|---|
| 94 |   //        Log() << Verbose(0) << "First Trajectory: ";
 | 
|---|
| 95 |   //        Log() << Verbose(0) << trajectory1 << endl;
 | 
|---|
| 96 |   //        Log() << Verbose(0) << "Second Trajectory: ";
 | 
|---|
| 97 |   //        Log() << Verbose(0) << trajectory2 << endl;
 | 
|---|
| 98 |       // determine normal vector for both
 | 
|---|
| 99 |       normal = Plane(trajectory1, trajectory2,0).getNormal();
 | 
|---|
| 100 |       // print all vectors for debugging
 | 
|---|
| 101 |   //        Log() << Verbose(0) << "Normal vector in between: ";
 | 
|---|
| 102 |   //        Log() << Verbose(0) << normal << endl;
 | 
|---|
| 103 |       // setup matrix
 | 
|---|
| 104 |       for (int i=NDIM;i--;) {
 | 
|---|
| 105 |         gsl_matrix_set(A, 0, i, trajectory1[i]);
 | 
|---|
| 106 |         gsl_matrix_set(A, 1, i, trajectory2[i]);
 | 
|---|
| 107 |         gsl_matrix_set(A, 2, i, normal[i]);
 | 
|---|
| 108 |         gsl_vector_set(x,i, (Walker->getPositionAtStep(Params.startstep)[i] - (*iter)->getPositionAtStep(Params.startstep)[i]));
 | 
|---|
| 109 |       }
 | 
|---|
| 110 |       // solve the linear system by Householder transformations
 | 
|---|
| 111 |       gsl_linalg_HH_svx(A, x);
 | 
|---|
| 112 |       // distance from last component
 | 
|---|
| 113 |       tmp = gsl_vector_get(x,2);
 | 
|---|
| 114 |   //        Log() << Verbose(0) << " with distance " << tmp << "." << endl;
 | 
|---|
| 115 |       // test whether we really have the intersection (by checking on c_1 and c_2)
 | 
|---|
| 116 |       trajectory1.Scale(gsl_vector_get(x,0));
 | 
|---|
| 117 |       trajectory2.Scale(gsl_vector_get(x,1));
 | 
|---|
| 118 |       normal.Scale(gsl_vector_get(x,2));
 | 
|---|
| 119 |       TestVector = (*iter)->getPositionAtStep(Params.startstep) + trajectory2 + normal
 | 
|---|
| 120 |                    - (Walker->getPositionAtStep(Params.startstep) + trajectory1);
 | 
|---|
| 121 |       if (TestVector.Norm() < MYEPSILON) {
 | 
|---|
| 122 |   //          Log() << Verbose(2) << "Test: ok.\tDistance of " << tmp << " is correct." << endl;
 | 
|---|
| 123 |       } else {
 | 
|---|
| 124 |   //          Log() << Verbose(2) << "Test: failed.\tIntersection is off by ";
 | 
|---|
| 125 |   //          Log() << Verbose(0) << TestVector;
 | 
|---|
| 126 |   //          Log() << Verbose(0) << "." << endl;
 | 
|---|
| 127 |       }
 | 
|---|
| 128 |     }
 | 
|---|
| 129 |     // add up
 | 
|---|
| 130 |     tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
 | 
|---|
| 131 |     if (fabs(tmp) > MYEPSILON) {
 | 
|---|
| 132 |       result += Params.PenaltyConstants[1] * 1./tmp;
 | 
|---|
| 133 |       //Log() << Verbose(4) << "Adding " << 1./tmp*constants[1] << "." << endl;
 | 
|---|
| 134 |     }
 | 
|---|
| 135 |   }
 | 
|---|
| 136 |   return result;
 | 
|---|
| 137 | };
 | 
|---|
| 138 | 
 | 
|---|
| 139 | /** Penalizes atoms heading to same target.
 | 
|---|
| 140 |  * \param *Walker atom to check against others
 | 
|---|
| 141 |  * \param *mol molecule with other atoms
 | 
|---|
| 142 |  * \param &Params constrained potential parameters
 | 
|---|
| 143 |  * \return \a penalty times the number of equal targets
 | 
|---|
| 144 |  */
 | 
|---|
| 145 | double PenalizeEqualTargets(atom *Walker, molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 146 | {
 | 
|---|
| 147 |   double result = 0.;
 | 
|---|
| 148 |   for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
 | 
|---|
| 149 |     if ((Params.PermutationMap[Walker->getNr()] == Params.PermutationMap[(*iter)->getNr()]) && (Walker->getNr() < (*iter)->getNr())) {
 | 
|---|
| 150 |   //    atom *Sprinter = PermutationMap[Walker->getNr()];
 | 
|---|
| 151 |   //        Log() << Verbose(0) << *Walker << " and " << *(*iter) << " are heading to the same target at ";
 | 
|---|
| 152 |   //        Log() << Verbose(0) << Sprinter->getPosition(endstep);
 | 
|---|
| 153 |   //        Log() << Verbose(0) << ", penalting." << endl;
 | 
|---|
| 154 |       result += Params.PenaltyConstants[2];
 | 
|---|
| 155 |       //Log() << Verbose(4) << "Adding " << constants[2] << "." << endl;
 | 
|---|
| 156 |     }
 | 
|---|
| 157 |   }
 | 
|---|
| 158 |   return result;
 | 
|---|
| 159 | };
 | 
|---|
| 160 | 
 | 
|---|
| 161 | /** Evaluates the potential energy used for constrained molecular dynamics.
 | 
|---|
| 162 |  * \f$V_i^{con} = c^{bond} \cdot | r_{P(i)} - R_i | + sum_{i \neq j} C^{min} \cdot \frac{1}{C_{ij}} + C^{inj} \Bigl (1 - \theta \bigl (\prod_{i \neq j} (P(i) - P(j)) \bigr ) \Bigr )\f$
 | 
|---|
| 163 |  *     where the first term points to the target in minimum distance, the second is a penalty for trajectories lying too close to each other (\f$C_{ij}\f$ is minimum distance between
 | 
|---|
| 164 |  *     trajectories i and j) and the third term is a penalty for two atoms trying to each the same target point.
 | 
|---|
| 165 |  * Note that for the second term we have to solve the following linear system:
 | 
|---|
| 166 |  * \f$-c_1 \cdot n_1 + c_2 \cdot n_2 + C \cdot n_3 = - p_2 + p_1\f$, where \f$c_1\f$, \f$c_2\f$ and \f$C\f$ are constants,
 | 
|---|
| 167 |  * offset vector \f$p_1\f$ in direction \f$n_1\f$, offset vector \f$p_2\f$ in direction \f$n_2\f$,
 | 
|---|
| 168 |  * \f$n_3\f$ is the normal vector to both directions. \f$C\f$ would be the minimum distance between the two lines.
 | 
|---|
| 169 |  * \sa molecule::MinimiseConstrainedPotential(), molecule::VerletForceIntegration()
 | 
|---|
| 170 |  * \param *out output stream for debugging
 | 
|---|
| 171 |  * \param &Params constrained potential parameters
 | 
|---|
| 172 |  * \return potential energy
 | 
|---|
| 173 |  * \note This routine is scaling quadratically which is not optimal.
 | 
|---|
| 174 |  * \todo There's a bit double counting going on for the first time, bu nothing to worry really about.
 | 
|---|
| 175 |  */
 | 
|---|
| 176 | double molecule::ConstrainedPotential(struct EvaluatePotential &Params)
 | 
|---|
| 177 | {
 | 
|---|
| 178 |   double tmp = 0.;
 | 
|---|
| 179 |   double result = 0.;
 | 
|---|
| 180 |   // go through every atom
 | 
|---|
| 181 |   atom *Runner = NULL;
 | 
|---|
| 182 |   for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
 | 
|---|
| 183 |     // first term: distance to target
 | 
|---|
| 184 |     Runner = Params.PermutationMap[(*iter)->getNr()];   // find target point
 | 
|---|
| 185 |     tmp = ((*iter)->getPositionAtStep(Params.startstep).distance(Runner->getPositionAtStep(Params.endstep)));
 | 
|---|
| 186 |     tmp *= Params.IsAngstroem ? 1. : 1./AtomicLengthToAngstroem;
 | 
|---|
| 187 |     result += Params.PenaltyConstants[0] * tmp;
 | 
|---|
| 188 |     //Log() << Verbose(4) << "Adding " << tmp*constants[0] << "." << endl;
 | 
|---|
| 189 | 
 | 
|---|
| 190 |     // second term: sum of distances to other trajectories
 | 
|---|
| 191 |     result += SumDistanceOfTrajectories((*iter), this, Params);
 | 
|---|
| 192 | 
 | 
|---|
| 193 |     // third term: penalty for equal targets
 | 
|---|
| 194 |     result += PenalizeEqualTargets((*iter), this, Params);
 | 
|---|
| 195 |   }
 | 
|---|
| 196 | 
 | 
|---|
| 197 |   return result;
 | 
|---|
| 198 | };
 | 
|---|
| 199 | 
 | 
|---|
| 200 | /** print the current permutation map.
 | 
|---|
| 201 |  * \param *out output stream for debugging
 | 
|---|
| 202 |  * \param &Params constrained potential parameters
 | 
|---|
| 203 |  * \param AtomCount number of atoms
 | 
|---|
| 204 |  */
 | 
|---|
| 205 | void PrintPermutationMap(int AtomCount, struct EvaluatePotential &Params)
 | 
|---|
| 206 | {
 | 
|---|
| 207 |   stringstream zeile1, zeile2;
 | 
|---|
| 208 |   int *DoubleList = new int[AtomCount];
 | 
|---|
| 209 |   for(int i=0;i<AtomCount;i++)
 | 
|---|
| 210 |     DoubleList[i] = 0;
 | 
|---|
| 211 |   int doubles = 0;
 | 
|---|
| 212 |   zeile1 << "PermutationMap: ";
 | 
|---|
| 213 |   zeile2 << "                ";
 | 
|---|
| 214 |   for (int i=0;i<AtomCount;i++) {
 | 
|---|
| 215 |     Params.DoubleList[Params.PermutationMap[i]->getNr()]++;
 | 
|---|
| 216 |     zeile1 << i << " ";
 | 
|---|
| 217 |     zeile2 << Params.PermutationMap[i]->getNr() << " ";
 | 
|---|
| 218 |   }
 | 
|---|
| 219 |   for (int i=0;i<AtomCount;i++)
 | 
|---|
| 220 |     if (Params.DoubleList[i] > 1)
 | 
|---|
| 221 |     doubles++;
 | 
|---|
| 222 |   if (doubles >0)
 | 
|---|
| 223 |     DoLog(2) && (Log() << Verbose(2) << "Found " << doubles << " Doubles." << endl);
 | 
|---|
| 224 |   delete[](DoubleList);
 | 
|---|
| 225 | //  Log() << Verbose(2) << zeile1.str() << endl << zeile2.str() << endl;
 | 
|---|
| 226 | };
 | 
|---|
| 227 | 
 | 
|---|
| 228 | /** \f$O(N^2)\f$ operation of calculation distance between each atom pair and putting into DistanceList.
 | 
|---|
| 229 |  * \param *mol molecule to scan distances in
 | 
|---|
| 230 |  * \param &Params constrained potential parameters
 | 
|---|
| 231 |  */
 | 
|---|
| 232 | void FillDistanceList(molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 233 | {
 | 
|---|
| 234 |   for (int i=mol->getAtomCount(); i--;) {
 | 
|---|
| 235 |     Params.DistanceList[i] = new DistanceMap;    // is the distance sorted target list per atom
 | 
|---|
| 236 |     Params.DistanceList[i]->clear();
 | 
|---|
| 237 |   }
 | 
|---|
| 238 | 
 | 
|---|
| 239 |   for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
 | 
|---|
| 240 |     for (molecule::const_iterator runner = mol->begin(); runner != mol->end(); ++runner) {
 | 
|---|
| 241 |       Params.DistanceList[(*iter)->getNr()]->insert( DistancePair((*iter)->getPositionAtStep(Params.startstep).distance((*runner)->getPositionAtStep(Params.endstep)), (*runner)) );
 | 
|---|
| 242 |     }
 | 
|---|
| 243 |   }
 | 
|---|
| 244 | };
 | 
|---|
| 245 | 
 | 
|---|
| 246 | /** initialize lists.
 | 
|---|
| 247 |  * \param *out output stream for debugging
 | 
|---|
| 248 |  * \param *mol molecule to scan distances in
 | 
|---|
| 249 |  * \param &Params constrained potential parameters
 | 
|---|
| 250 |  */
 | 
|---|
| 251 | void CreateInitialLists(molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 252 | {
 | 
|---|
| 253 |   for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
 | 
|---|
| 254 |     Params.StepList[(*iter)->getNr()] = Params.DistanceList[(*iter)->getNr()]->begin();    // stores the step to the next iterator that could be a possible next target
 | 
|---|
| 255 |     Params.PermutationMap[(*iter)->getNr()] = Params.DistanceList[(*iter)->getNr()]->begin()->second;   // always pick target with the smallest distance
 | 
|---|
| 256 |     Params.DoubleList[Params.DistanceList[(*iter)->getNr()]->begin()->second->getNr()]++;            // increase this target's source count (>1? not injective)
 | 
|---|
| 257 |     Params.DistanceIterators[(*iter)->getNr()] = Params.DistanceList[(*iter)->getNr()]->begin();    // and remember which one we picked
 | 
|---|
| 258 |     DoLog(2) && (Log() << Verbose(2) << **iter << " starts with distance " << Params.DistanceList[(*iter)->getNr()]->begin()->first << "." << endl);
 | 
|---|
| 259 |   }
 | 
|---|
| 260 | };
 | 
|---|
| 261 | 
 | 
|---|
| 262 | /** Try the next nearest neighbour in order to make the permutation map injective.
 | 
|---|
| 263 |  * \param *out output stream for debugging
 | 
|---|
| 264 |  * \param *mol molecule
 | 
|---|
| 265 |  * \param *Walker atom to change its target
 | 
|---|
| 266 |  * \param &OldPotential old value of constraint potential to see if we do better with new target
 | 
|---|
| 267 |  * \param &Params constrained potential parameters
 | 
|---|
| 268 |  */
 | 
|---|
| 269 | double TryNextNearestNeighbourForInjectivePermutation(molecule *mol, atom *Walker, double &OldPotential, struct EvaluatePotential &Params)
 | 
|---|
| 270 | {
 | 
|---|
| 271 |   double Potential = 0;
 | 
|---|
| 272 |   DistanceMap::iterator NewBase = Params.DistanceIterators[Walker->getNr()];  // store old base
 | 
|---|
| 273 |   do {
 | 
|---|
| 274 |     NewBase++;  // take next further distance in distance to targets list that's a target of no one
 | 
|---|
| 275 |   } while ((Params.DoubleList[NewBase->second->getNr()] != 0) && (NewBase != Params.DistanceList[Walker->getNr()]->end()));
 | 
|---|
| 276 |   if (NewBase != Params.DistanceList[Walker->getNr()]->end()) {
 | 
|---|
| 277 |     Params.PermutationMap[Walker->getNr()] = NewBase->second;
 | 
|---|
| 278 |     Potential = fabs(mol->ConstrainedPotential(Params));
 | 
|---|
| 279 |     if (Potential > OldPotential) { // undo
 | 
|---|
| 280 |       Params.PermutationMap[Walker->getNr()] = Params.DistanceIterators[Walker->getNr()]->second;
 | 
|---|
| 281 |     } else {  // do
 | 
|---|
| 282 |       Params.DoubleList[Params.DistanceIterators[Walker->getNr()]->second->getNr()]--;  // decrease the old entry in the doubles list
 | 
|---|
| 283 |       Params.DoubleList[NewBase->second->getNr()]++;    // increase the old entry in the doubles list
 | 
|---|
| 284 |       Params.DistanceIterators[Walker->getNr()] = NewBase;
 | 
|---|
| 285 |       OldPotential = Potential;
 | 
|---|
| 286 |       DoLog(3) && (Log() << Verbose(3) << "Found a new permutation, new potential is " << OldPotential << "." << endl);
 | 
|---|
| 287 |     }
 | 
|---|
| 288 |   }
 | 
|---|
| 289 |   return Potential;
 | 
|---|
| 290 | };
 | 
|---|
| 291 | 
 | 
|---|
| 292 | /** Permutes \a **&PermutationMap until the penalty is below constants[2].
 | 
|---|
| 293 |  * \param *out output stream for debugging
 | 
|---|
| 294 |  * \param *mol molecule to scan distances in
 | 
|---|
| 295 |  * \param &Params constrained potential parameters
 | 
|---|
| 296 |  */
 | 
|---|
| 297 | void MakeInjectivePermutation(molecule *mol, struct EvaluatePotential &Params)
 | 
|---|
| 298 | {
 | 
|---|
| 299 |   molecule::const_iterator iter = mol->begin();
 | 
|---|
| 300 |   DistanceMap::iterator NewBase;
 | 
|---|
| 301 |   double Potential = fabs(mol->ConstrainedPotential(Params));
 | 
|---|
| 302 | 
 | 
|---|
| 303 |   if (mol->empty()) {
 | 
|---|
| 304 |     eLog() << Verbose(1) << "Molecule is empty." << endl;
 | 
|---|
| 305 |     return;
 | 
|---|
| 306 |   }
 | 
|---|
| 307 |   while ((Potential) > Params.PenaltyConstants[2]) {
 | 
|---|
| 308 |     PrintPermutationMap(mol->getAtomCount(), Params);
 | 
|---|
| 309 |     iter++;
 | 
|---|
| 310 |     if (iter == mol->end()) // round-robin at the end
 | 
|---|
| 311 |       iter = mol->begin();
 | 
|---|
| 312 |     if (Params.DoubleList[Params.DistanceIterators[(*iter)->getNr()]->second->getNr()] <= 1)  // no need to make those injective that aren't
 | 
|---|
| 313 |       continue;
 | 
|---|
| 314 |     // now, try finding a new one
 | 
|---|
| 315 |     Potential = TryNextNearestNeighbourForInjectivePermutation(mol, (*iter), Potential, Params);
 | 
|---|
| 316 |   }
 | 
|---|
| 317 |   for (int i=mol->getAtomCount(); i--;) // now each single entry in the DoubleList should be <=1
 | 
|---|
| 318 |     if (Params.DoubleList[i] > 1) {
 | 
|---|
| 319 |       DoeLog(0) && (eLog()<< Verbose(0) << "Failed to create an injective PermutationMap!" << endl);
 | 
|---|
| 320 |       performCriticalExit();
 | 
|---|
| 321 |     }
 | 
|---|
| 322 |   DoLog(1) && (Log() << Verbose(1) << "done." << endl);
 | 
|---|
| 323 | };
 | 
|---|
| 324 | 
 | 
|---|
| 325 | /** Minimises the extra potential for constrained molecular dynamics and gives forces and the constrained potential energy.
 | 
|---|
| 326 |  * We do the following:
 | 
|---|
| 327 |  *  -# Generate a distance list from all source to all target points
 | 
|---|
| 328 |  *  -# Sort this per source point
 | 
|---|
| 329 |  *  -# Take for each source point the target point with minimum distance, use this as initial permutation
 | 
|---|
| 330 |  *  -# check whether molecule::ConstrainedPotential() is greater than injective penalty
 | 
|---|
| 331 |  *     -# If so, we go through each source point, stepping down in the sorted target point distance list and re-checking potential.
 | 
|---|
| 332 |  *  -# Next, we only apply transformations that keep the injectivity of the permutations list.
 | 
|---|
| 333 |  *  -# Hence, for one source point we step down the ladder and seek the corresponding owner of this new target
 | 
|---|
| 334 |  *     point and try to change it for one with lesser distance, or for the next one with greater distance, but only
 | 
|---|
| 335 |  *     if this decreases the conditional potential.
 | 
|---|
| 336 |  *  -# finished.
 | 
|---|
| 337 |  *  -# Then, we calculate the forces by taking the spatial derivative, where we scale the potential to such a degree,
 | 
|---|
| 338 |  *     that the total force is always pointing in direction of the constraint force (ensuring that we move in the
 | 
|---|
| 339 |  *     right direction).
 | 
|---|
| 340 |  *  -# Finally, we calculate the potential energy and return.
 | 
|---|
| 341 |  * \param *out output stream for debugging
 | 
|---|
| 342 |  * \param **PermutationMap on return: mapping between the atom label of the initial and the final configuration
 | 
|---|
| 343 |  * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
 | 
|---|
| 344 |  * \param endstep step giving final position in constrained MD
 | 
|---|
| 345 |  * \param IsAngstroem whether coordinates are in angstroem (true) or bohrradius (false)
 | 
|---|
| 346 |  * \sa molecule::VerletForceIntegration()
 | 
|---|
| 347 |  * \return potential energy (and allocated **PermutationMap (array of molecule::AtomCount ^2)
 | 
|---|
| 348 |  * \todo The constrained potential's constants are set to fixed values right now, but they should scale based on checks of the system in order
 | 
|---|
| 349 |  *       to ensure they're properties (e.g. constants[2] always greater than the energy of the system).
 | 
|---|
| 350 |  * \bug this all is not O(N log N) but O(N^2)
 | 
|---|
| 351 |  */
 | 
|---|
| 352 | double molecule::MinimiseConstrainedPotential(atom **&PermutationMap, int startstep, int endstep, bool IsAngstroem)
 | 
|---|
| 353 | {
 | 
|---|
| 354 |   double Potential, OldPotential, OlderPotential;
 | 
|---|
| 355 |   struct EvaluatePotential Params;
 | 
|---|
| 356 |   Params.PermutationMap = new atom *[getAtomCount()];
 | 
|---|
| 357 |   Params.DistanceList = new DistanceMap *[getAtomCount()];
 | 
|---|
| 358 |   Params.DistanceIterators = new DistanceMap::iterator[getAtomCount()];
 | 
|---|
| 359 |   Params.DoubleList = new int[getAtomCount()];
 | 
|---|
| 360 |   Params.StepList = new DistanceMap::iterator[getAtomCount()];
 | 
|---|
| 361 |   int round;
 | 
|---|
| 362 |   atom *Sprinter = NULL;
 | 
|---|
| 363 |   DistanceMap::iterator Rider, Strider;
 | 
|---|
| 364 | 
 | 
|---|
| 365 |   // set to zero
 | 
|---|
| 366 |   for (int i=0;i<getAtomCount();i++) {
 | 
|---|
| 367 |     Params.PermutationMap[i] = NULL;
 | 
|---|
| 368 |     Params.DoubleList[i] = 0;
 | 
|---|
| 369 |   }
 | 
|---|
| 370 | 
 | 
|---|
| 371 |   /// Minimise the potential
 | 
|---|
| 372 |   // set Lagrange multiplier constants
 | 
|---|
| 373 |   Params.PenaltyConstants[0] = 10.;
 | 
|---|
| 374 |   Params.PenaltyConstants[1] = 1.;
 | 
|---|
| 375 |   Params.PenaltyConstants[2] = 1e+7;    // just a huge penalty
 | 
|---|
| 376 |   // generate the distance list
 | 
|---|
| 377 |   DoLog(1) && (Log() << Verbose(1) << "Allocating, initializting and filling the distance list ... " << endl);
 | 
|---|
| 378 |   FillDistanceList(this, Params);
 | 
|---|
| 379 | 
 | 
|---|
| 380 |   // create the initial PermutationMap (source -> target)
 | 
|---|
| 381 |   CreateInitialLists(this, Params);
 | 
|---|
| 382 | 
 | 
|---|
| 383 |   // make the PermutationMap injective by checking whether we have a non-zero constants[2] term in it
 | 
|---|
| 384 |   DoLog(1) && (Log() << Verbose(1) << "Making the PermutationMap injective ... " << endl);
 | 
|---|
| 385 |   MakeInjectivePermutation(this, Params);
 | 
|---|
| 386 |   delete[](Params.DoubleList);
 | 
|---|
| 387 | 
 | 
|---|
| 388 |   // argument minimise the constrained potential in this injective PermutationMap
 | 
|---|
| 389 |   DoLog(1) && (Log() << Verbose(1) << "Argument minimising the PermutationMap." << endl);
 | 
|---|
| 390 |   OldPotential = 1e+10;
 | 
|---|
| 391 |   round = 0;
 | 
|---|
| 392 |   do {
 | 
|---|
| 393 |     DoLog(2) && (Log() << Verbose(2) << "Starting round " << ++round << ", at current potential " << OldPotential << " ... " << endl);
 | 
|---|
| 394 |     OlderPotential = OldPotential;
 | 
|---|
| 395 |     molecule::const_iterator iter;
 | 
|---|
| 396 |     do {
 | 
|---|
| 397 |       iter = begin();
 | 
|---|
| 398 |       for (; iter != end(); ++iter) {
 | 
|---|
| 399 |         PrintPermutationMap(getAtomCount(), Params);
 | 
|---|
| 400 |         Sprinter = Params.DistanceIterators[(*iter)->getNr()]->second;   // store initial partner
 | 
|---|
| 401 |         Strider = Params.DistanceIterators[(*iter)->getNr()];  //remember old iterator
 | 
|---|
| 402 |         Params.DistanceIterators[(*iter)->getNr()] = Params.StepList[(*iter)->getNr()];
 | 
|---|
| 403 |         if (Params.DistanceIterators[(*iter)->getNr()] == Params.DistanceList[(*iter)->getNr()]->end()) {// stop, before we run through the list and still on
 | 
|---|
| 404 |           Params.DistanceIterators[(*iter)->getNr()] == Params.DistanceList[(*iter)->getNr()]->begin();
 | 
|---|
| 405 |           break;
 | 
|---|
| 406 |         }
 | 
|---|
| 407 |         //Log() << Verbose(2) << "Current Walker: " << *(*iter) << " with old/next candidate " << *Sprinter << "/" << *DistanceIterators[(*iter)->getNr()]->second << "." << endl;
 | 
|---|
| 408 |         // find source of the new target
 | 
|---|
| 409 |         molecule::const_iterator runner = begin();
 | 
|---|
| 410 |         for (; runner != end(); ++runner) { // find the source whose toes we might be stepping on (Walker's new target should be in use by another already)
 | 
|---|
| 411 |           if (Params.PermutationMap[(*runner)->getNr()] == Params.DistanceIterators[(*iter)->getNr()]->second) {
 | 
|---|
| 412 |             //Log() << Verbose(2) << "Found the corresponding owner " << *(*runner) << " to " << *PermutationMap[(*runner)->getNr()] << "." << endl;
 | 
|---|
| 413 |             break;
 | 
|---|
| 414 |           }
 | 
|---|
| 415 |         }
 | 
|---|
| 416 |         if (runner != end()) { // we found the other source
 | 
|---|
| 417 |           // then look in its distance list for Sprinter
 | 
|---|
| 418 |           Rider = Params.DistanceList[(*runner)->getNr()]->begin();
 | 
|---|
| 419 |           for (; Rider != Params.DistanceList[(*runner)->getNr()]->end(); Rider++)
 | 
|---|
| 420 |             if (Rider->second == Sprinter)
 | 
|---|
| 421 |               break;
 | 
|---|
| 422 |           if (Rider != Params.DistanceList[(*runner)->getNr()]->end()) { // if we have found one
 | 
|---|
| 423 |             //Log() << Verbose(2) << "Current Other: " << *(*runner) << " with old/next candidate " << *PermutationMap[(*runner)->getNr()] << "/" << *Rider->second << "." << endl;
 | 
|---|
| 424 |             // exchange both
 | 
|---|
| 425 |             Params.PermutationMap[(*iter)->getNr()] = Params.DistanceIterators[(*iter)->getNr()]->second; // put next farther distance into PermutationMap
 | 
|---|
| 426 |             Params.PermutationMap[(*runner)->getNr()] = Sprinter;  // and hand the old target to its respective owner
 | 
|---|
| 427 |             PrintPermutationMap(getAtomCount(), Params);
 | 
|---|
| 428 |             // calculate the new potential
 | 
|---|
| 429 |             //Log() << Verbose(2) << "Checking new potential ..." << endl;
 | 
|---|
| 430 |             Potential = ConstrainedPotential(Params);
 | 
|---|
| 431 |             if (Potential > OldPotential) { // we made everything worse! Undo ...
 | 
|---|
| 432 |               //Log() << Verbose(3) << "Nay, made the potential worse: " << Potential << " vs. " << OldPotential << "!" << endl;
 | 
|---|
| 433 |               //Log() << Verbose(3) << "Setting " << *(*runner) << "'s source to " << *Params.DistanceIterators[(*runner)->getNr()]->second << "." << endl;
 | 
|---|
| 434 |               // Undo for Runner (note, we haven't moved the iteration yet, we may use this)
 | 
|---|
| 435 |               Params.PermutationMap[(*runner)->getNr()] = Params.DistanceIterators[(*runner)->getNr()]->second;
 | 
|---|
| 436 |               // Undo for Walker
 | 
|---|
| 437 |               Params.DistanceIterators[(*iter)->getNr()] = Strider;  // take next farther distance target
 | 
|---|
| 438 |               //Log() << Verbose(3) << "Setting " << *(*iter) << "'s source to " << *Params.DistanceIterators[(*iter)->getNr()]->second << "." << endl;
 | 
|---|
| 439 |               Params.PermutationMap[(*iter)->getNr()] = Params.DistanceIterators[(*iter)->getNr()]->second;
 | 
|---|
| 440 |             } else {
 | 
|---|
| 441 |               Params.DistanceIterators[(*runner)->getNr()] = Rider;  // if successful also move the pointer in the iterator list
 | 
|---|
| 442 |               DoLog(3) && (Log() << Verbose(3) << "Found a better permutation, new potential is " << Potential << " vs." << OldPotential << "." << endl);
 | 
|---|
| 443 |               OldPotential = Potential;
 | 
|---|
| 444 |             }
 | 
|---|
| 445 |             if (Potential > Params.PenaltyConstants[2]) {
 | 
|---|
| 446 |               DoeLog(1) && (eLog()<< Verbose(1) << "The two-step permutation procedure did not maintain injectivity!" << endl);
 | 
|---|
| 447 |               exit(255);
 | 
|---|
| 448 |             }
 | 
|---|
| 449 |             //Log() << Verbose(0) << endl;
 | 
|---|
| 450 |           } else {
 | 
|---|
| 451 |             DoeLog(1) && (eLog()<< Verbose(1) << **runner << " was not the owner of " << *Sprinter << "!" << endl);
 | 
|---|
| 452 |             exit(255);
 | 
|---|
| 453 |           }
 | 
|---|
| 454 |         } else {
 | 
|---|
| 455 |           Params.PermutationMap[(*iter)->getNr()] = Params.DistanceIterators[(*iter)->getNr()]->second; // new target has no source!
 | 
|---|
| 456 |         }
 | 
|---|
| 457 |         Params.StepList[(*iter)->getNr()]++; // take next farther distance target
 | 
|---|
| 458 |       }
 | 
|---|
| 459 |     } while (++iter != end());
 | 
|---|
| 460 |   } while ((OlderPotential - OldPotential) > 1e-3);
 | 
|---|
| 461 |   DoLog(1) && (Log() << Verbose(1) << "done." << endl);
 | 
|---|
| 462 | 
 | 
|---|
| 463 | 
 | 
|---|
| 464 |   /// free memory and return with evaluated potential
 | 
|---|
| 465 |   for (int i=getAtomCount(); i--;)
 | 
|---|
| 466 |     Params.DistanceList[i]->clear();
 | 
|---|
| 467 |   delete[](Params.DistanceList);
 | 
|---|
| 468 |   delete[](Params.DistanceIterators);
 | 
|---|
| 469 |   return ConstrainedPotential(Params);
 | 
|---|
| 470 | };
 | 
|---|
| 471 | 
 | 
|---|
| 472 | 
 | 
|---|
| 473 | /** Evaluates the (distance-related part) of the constrained potential for the constrained forces.
 | 
|---|
| 474 |  * \param *out output stream for debugging
 | 
|---|
| 475 |  * \param startstep current MD step giving initial position between which and \a endstep we perform the constrained MD (as further steps are always concatenated)
 | 
|---|
| 476 |  * \param endstep step giving final position in constrained MD
 | 
|---|
| 477 |  * \param **PermutationMap mapping between the atom label of the initial and the final configuration
 | 
|---|
| 478 |  * \param *Force ForceMatrix containing force vectors from the external energy functional minimisation.
 | 
|---|
| 479 |  * \todo the constant for the constrained potential distance part is hard-coded independently of the hard-coded value in MinimiseConstrainedPotential()
 | 
|---|
| 480 |  */
 | 
|---|
| 481 | void molecule::EvaluateConstrainedForces(int startstep, int endstep, atom **PermutationMap, ForceMatrix *Force)
 | 
|---|
| 482 | {
 | 
|---|
| 483 |   double constant = 10.;
 | 
|---|
| 484 | 
 | 
|---|
| 485 |   /// evaluate forces (only the distance to target dependent part) with the final PermutationMap
 | 
|---|
| 486 |   DoLog(1) && (Log() << Verbose(1) << "Calculating forces and adding onto ForceMatrix ... " << endl);
 | 
|---|
| 487 |   BOOST_FOREACH(atom *_atom, atoms) {
 | 
|---|
| 488 |     atom *Sprinter = PermutationMap[_atom->getNr()];
 | 
|---|
| 489 |     // set forces
 | 
|---|
| 490 |     for (int i=NDIM;i++;)
 | 
|---|
| 491 |       Force->Matrix[0][_atom->getNr()][5+i] += 2.*constant*sqrt(_atom->getPositionAtStep(startstep).distance(Sprinter->getPositionAtStep(endstep)));
 | 
|---|
| 492 |   }
 | 
|---|
| 493 |   DoLog(1) && (Log() << Verbose(1) << "done." << endl);
 | 
|---|
| 494 | };
 | 
|---|
| 495 | 
 | 
|---|
| 496 | /** Performs a linear interpolation between two desired atomic configurations with a given number of steps.
 | 
|---|
| 497 |  * Note, step number is config::MaxOuterStep
 | 
|---|
| 498 |  * \param *out output stream for debugging
 | 
|---|
| 499 |  * \param startstep stating initial configuration in molecule::Trajectories
 | 
|---|
| 500 |  * \param endstep stating final configuration in molecule::Trajectories
 | 
|---|
| 501 |  * \param &prefix path and prefix
 | 
|---|
| 502 |  * \param &config configuration structure
 | 
|---|
| 503 |  * \param MapByIdentity if true we just use the identity to map atoms in start config to end config, if not we find mapping by \sa MinimiseConstrainedPotential()
 | 
|---|
| 504 |  * \return true - success in writing step files, false - error writing files or only one step in molecule::Trajectories
 | 
|---|
| 505 |  */
 | 
|---|
| 506 | bool molecule::LinearInterpolationBetweenConfiguration(int startstep, int endstep, std::string prefix, config &configuration, bool MapByIdentity)
 | 
|---|
| 507 | {
 | 
|---|
| 508 |   // TODO: rewrite permutationMaps using enumeration objects
 | 
|---|
| 509 |   molecule *mol = NULL;
 | 
|---|
| 510 |   bool status = true;
 | 
|---|
| 511 |   int MaxSteps = configuration.MaxOuterStep;
 | 
|---|
| 512 |   MoleculeListClass *MoleculePerStep = new MoleculeListClass(World::getPointer());
 | 
|---|
| 513 |   // Get the Permutation Map by MinimiseConstrainedPotential
 | 
|---|
| 514 |   atom **PermutationMap = NULL;
 | 
|---|
| 515 |   atom *Sprinter = NULL;
 | 
|---|
| 516 |   if (!MapByIdentity)
 | 
|---|
| 517 |     MinimiseConstrainedPotential(PermutationMap, startstep, endstep, configuration.GetIsAngstroem());
 | 
|---|
| 518 |   else {
 | 
|---|
| 519 |     // TODO: construction of enumeration goes here
 | 
|---|
| 520 |     PermutationMap = new atom *[getAtomCount()];
 | 
|---|
| 521 |     for(internal_iterator iter = atoms.begin(); iter != atoms.end();++iter){
 | 
|---|
| 522 |       PermutationMap[(*iter)->getNr()] = (*iter);
 | 
|---|
| 523 |     }
 | 
|---|
| 524 |   }
 | 
|---|
| 525 | 
 | 
|---|
| 526 |   // check whether we have sufficient space in Trajectories for each atom
 | 
|---|
| 527 |   LOG(1, "STATUS: Extending each trajectory size to " << MaxSteps+1 << ".");
 | 
|---|
| 528 |   for_each(atoms.begin(),atoms.end(),bind2nd(mem_fun(&atom::ResizeTrajectory),MaxSteps+1));
 | 
|---|
| 529 |   // push endstep to last one
 | 
|---|
| 530 |   for_each(atoms.begin(),atoms.end(),boost::bind(&atom::CopyStepOnStep,_1,MaxSteps,endstep));
 | 
|---|
| 531 |   endstep = MaxSteps;
 | 
|---|
| 532 | 
 | 
|---|
| 533 |   // go through all steps and add the molecular configuration to the list and to the Trajectories of \a this molecule
 | 
|---|
| 534 |   DoLog(1) && (Log() << Verbose(1) << "Filling intermediate " << MaxSteps << " steps with MDSteps of " << MDSteps << "." << endl);
 | 
|---|
| 535 |   for (int step = 0; step <= MaxSteps; step++) {
 | 
|---|
| 536 |     mol = World::getInstance().createMolecule();
 | 
|---|
| 537 |     MoleculePerStep->insert(mol);
 | 
|---|
| 538 |     for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
 | 
|---|
| 539 |       // add to molecule list
 | 
|---|
| 540 |       Sprinter = mol->AddCopyAtom((*iter));
 | 
|---|
| 541 |       // add to Trajectories
 | 
|---|
| 542 |       Vector temp = (*iter)->getPositionAtStep(startstep) + (PermutationMap[(*iter)->getNr()]->getPositionAtStep(endstep) - (*iter)->getPositionAtStep(startstep))*((double)step/(double)MaxSteps);
 | 
|---|
| 543 |       Sprinter->setPosition(temp);
 | 
|---|
| 544 |       (*iter)->setAtomicVelocityAtStep(step, zeroVec);
 | 
|---|
| 545 |       (*iter)->setAtomicForceAtStep(step, zeroVec);
 | 
|---|
| 546 |       //Log() << Verbose(3) << step << ">=" << MDSteps-1 << endl;
 | 
|---|
| 547 |     }
 | 
|---|
| 548 |   }
 | 
|---|
| 549 |   MDSteps = MaxSteps+1;   // otherwise new Trajectories' points aren't stored on save&exit
 | 
|---|
| 550 | 
 | 
|---|
| 551 |   // store the list to single step files
 | 
|---|
| 552 |   int *SortIndex = new int[getAtomCount()];
 | 
|---|
| 553 |   for (int i=getAtomCount(); i--; )
 | 
|---|
| 554 |     SortIndex[i] = i;
 | 
|---|
| 555 | 
 | 
|---|
| 556 |   status = MoleculePerStep->OutputConfigForListOfFragments(prefix, SortIndex);
 | 
|---|
| 557 |   delete[](SortIndex);
 | 
|---|
| 558 | 
 | 
|---|
| 559 |   // free and return
 | 
|---|
| 560 |   delete[](PermutationMap);
 | 
|---|
| 561 |   delete(MoleculePerStep);
 | 
|---|
| 562 |   return status;
 | 
|---|
| 563 | };
 | 
|---|
| 564 | 
 | 
|---|
| 565 | /** Parses nuclear forces from file and performs Verlet integration.
 | 
|---|
| 566 |  * Note that we assume the parsed forces to be in atomic units (hence, if coordinates are in angstroem, we
 | 
|---|
| 567 |  * have to transform them).
 | 
|---|
| 568 |  * This adds a new MD step to the config file.
 | 
|---|
| 569 |  * \param *file filename
 | 
|---|
| 570 |  * \param config structure with config::Deltat, config::IsAngstroem, config::DoConstrained
 | 
|---|
| 571 |  * \param offset offset in matrix file to the first force component
 | 
|---|
| 572 |  * \return true - file found and parsed, false - file not found or imparsable
 | 
|---|
| 573 |  * \todo This is not yet checked if it is correctly working with DoConstrained set to true.
 | 
|---|
| 574 |  */
 | 
|---|
| 575 | bool molecule::VerletForceIntegration(char *file, config &configuration, const size_t offset)
 | 
|---|
| 576 | {
 | 
|---|
| 577 |   Info FunctionInfo(__func__);
 | 
|---|
| 578 |   string token;
 | 
|---|
| 579 |   stringstream item;
 | 
|---|
| 580 |   double IonMass, ConstrainedPotentialEnergy, ActualTemp;
 | 
|---|
| 581 |   Vector Velocity;
 | 
|---|
| 582 |   ForceMatrix Force;
 | 
|---|
| 583 | 
 | 
|---|
| 584 |   const int AtomCount = getAtomCount();
 | 
|---|
| 585 |   // parse file into ForceMatrix
 | 
|---|
| 586 |   std::ifstream input(file);
 | 
|---|
| 587 |   if ((input.good()) && (!Force.ParseMatrix(input, 0,0,0))) {
 | 
|---|
| 588 |     DoeLog(0) && (eLog()<< Verbose(0) << "Could not parse Force Matrix file " << file << "." << endl);
 | 
|---|
| 589 |     performCriticalExit();
 | 
|---|
| 590 |     return false;
 | 
|---|
| 591 |   }
 | 
|---|
| 592 |   input.close();
 | 
|---|
| 593 |   if (Force.RowCounter[0] != AtomCount) {
 | 
|---|
| 594 |     DoeLog(0) && (eLog()<< Verbose(0) << "Mismatch between number of atoms in file " << Force.RowCounter[0] << " and in molecule " << getAtomCount() << "." << endl);
 | 
|---|
| 595 |     performCriticalExit();
 | 
|---|
| 596 |     return false;
 | 
|---|
| 597 |   }
 | 
|---|
| 598 |   // correct Forces
 | 
|---|
| 599 |   Velocity.Zero();
 | 
|---|
| 600 |   for(int i=0;i<AtomCount;i++)
 | 
|---|
| 601 |     for(int d=0;d<NDIM;d++) {
 | 
|---|
| 602 |       Velocity[d] += Force.Matrix[0][i][d+offset];
 | 
|---|
| 603 |     }
 | 
|---|
| 604 |   for(int i=0;i<AtomCount;i++)
 | 
|---|
| 605 |     for(int d=0;d<NDIM;d++) {
 | 
|---|
| 606 |       Force.Matrix[0][i][d+offset] -= Velocity[d]/static_cast<double>(AtomCount);
 | 
|---|
| 607 |     }
 | 
|---|
| 608 |   // solve a constrained potential if we are meant to
 | 
|---|
| 609 |   if (configuration.DoConstrainedMD) {
 | 
|---|
| 610 |     // calculate forces and potential
 | 
|---|
| 611 |     atom **PermutationMap = NULL;
 | 
|---|
| 612 |     ConstrainedPotentialEnergy = MinimiseConstrainedPotential(PermutationMap,configuration.DoConstrainedMD, 0, configuration.GetIsAngstroem());
 | 
|---|
| 613 |     EvaluateConstrainedForces(configuration.DoConstrainedMD, 0, PermutationMap, &Force);
 | 
|---|
| 614 |     delete[](PermutationMap);
 | 
|---|
| 615 |   }
 | 
|---|
| 616 | 
 | 
|---|
| 617 |   // and perform Verlet integration for each atom with position, velocity and force vector
 | 
|---|
| 618 |   // check size of vectors
 | 
|---|
| 619 |   BOOST_FOREACH(atom *_atom, atoms) {
 | 
|---|
| 620 |     _atom->VelocityVerletUpdate(_atom->getNr(), MDSteps+1, &configuration, &Force, (const size_t) 0);
 | 
|---|
| 621 |   }
 | 
|---|
| 622 | 
 | 
|---|
| 623 |   // correct velocities (rather momenta) so that center of mass remains motionless
 | 
|---|
| 624 |   Velocity = atoms.totalMomentumAtStep(MDSteps+1);
 | 
|---|
| 625 |   IonMass = atoms.totalMass();
 | 
|---|
| 626 | 
 | 
|---|
| 627 |   // correct velocities (rather momenta) so that center of mass remains motionless
 | 
|---|
| 628 |   Velocity *= 1./IonMass;
 | 
|---|
| 629 | 
 | 
|---|
| 630 |   atoms.addVelocityAtStep(-1*Velocity,MDSteps+1);
 | 
|---|
| 631 |   ActualTemp = atoms.totalTemperatureAtStep(MDSteps+1);
 | 
|---|
| 632 |   Berendsen berendsen = Berendsen();
 | 
|---|
| 633 |   berendsen.addToContainer(World::getInstance().getThermostats());
 | 
|---|
| 634 |   double ekin = berendsen.scaleAtoms(MDSteps,ActualTemp,atoms);
 | 
|---|
| 635 |   DoLog(1) && (Log() << Verbose(1) << "Kinetic energy is " << ekin << "." << endl);
 | 
|---|
| 636 |   MDSteps++;
 | 
|---|
| 637 | 
 | 
|---|
| 638 |   // exit
 | 
|---|
| 639 |   return true;
 | 
|---|
| 640 | };
 | 
|---|