source: src/molecule.cpp@ 9879f6

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 9879f6 was 9879f6, checked in by Frederik Heber <heber@…>, 15 years ago

Huge Refactoring due to class molecule now being an STL container.

  • molecule::start and molecule::end were dropped. Hence, the usual construct Walker = start while (Walker->next != end) {

Walker = walker->next
...

}
was changed to
for (molecule::iterator iter = begin(); iter != end(); ++iter) {

...

}
and (*iter) used instead of Walker.

  • Two build errors remain (beside some more in folder Actions, Patterns and unittest) in molecule_pointcloud.cpp and molecule.cpp
  • lists.cpp was deleted as specialization of atom* was not needed anymore
  • link, unlink, add, remove, removewithoutcheck all are not needed for atoms anymore, just for bonds (where first, last entries remain in molecule)
  • CreateFatherLookupTable() was put back into class molecule.
  • molecule::InternalPointer is now an iterator
  • class PointCloud: GoToPrevious() and GetTerminalPoint() were dropped as not needed.
  • some new STL functions in class molecule: size(), empty(), erase(), find() and insert()
  • Property mode set to 100755
File size: 46.1 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include <cstring>
8#include <boost/bind.hpp>
9
10#include "World.hpp"
11#include "atom.hpp"
12#include "bond.hpp"
13#include "config.hpp"
14#include "element.hpp"
15#include "graph.hpp"
16#include "helpers.hpp"
17#include "leastsquaremin.hpp"
18#include "linkedcell.hpp"
19#include "lists.hpp"
20#include "log.hpp"
21#include "molecule.hpp"
22#include "memoryallocator.hpp"
23#include "periodentafel.hpp"
24#include "stackclass.hpp"
25#include "tesselation.hpp"
26#include "vector.hpp"
27
28/************************************* Functions for class molecule *********************************/
29
30/** Constructor of class molecule.
31 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
32 */
33molecule::molecule(const periodentafel * const teil) : elemente(teil)
34 first(new bond(0, 0, 1, -1)), last(new bond(0, 0, 1, -1)), MDSteps(0), AtomCount(0),
35 BondCount(0), ElementCount(0), NoNonHydrogen(0), NoNonBonds(0), NoCyclicBonds(0), BondDistance(0.),
36 ActiveFlag(false), IndexNr(-1),
37 formula(this,boost::bind(&molecule::calcFormula,this)),
38 last_atom(0),
39 InternalPointer(begin())
40{
41 // init bond chain list
42 link(first,last);
43
44 // other stuff
45 for(int i=MAX_ELEMENTS;i--;)
46 ElementsInMolecule[i] = 0;
47 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
48 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
49 strcpy(name,"none");
50};
51
52molecule *NewMolecule(){
53 return new molecule(World::get()->getPeriode());
54}
55
56/** Destructor of class molecule.
57 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
58 */
59molecule::~molecule()
60{
61 CleanupMolecule();
62 delete(first);
63 delete(last);
64};
65
66
67void DeleteMolecule(molecule *mol){
68 delete mol;
69}
70
71// getter and setter
72const std::string molecule::getName(){
73 return std::string(name);
74}
75
76void molecule::setName(const std::string _name){
77 OBSERVE;
78 strncpy(name,_name.c_str(),MAXSTRINGSIZE);
79}
80
81moleculeId_t molecule::getId(){
82 return id;
83}
84
85void molecule::setId(moleculeId_t _id){
86 id =_id;
87}
88
89const std::string molecule::getFormula(){
90 return *formula;
91}
92
93std::string molecule::calcFormula(){
94 int Counts[MAX_ELEMENTS];
95 stringstream sstr;
96 for (int j = 0; j<MAX_ELEMENTS;j++)
97 Counts[j] = 0;
98 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
99 Counts[(*iter)->type->Z]++;
100 }
101 for(element* Elemental = elemente->end; Elemental != elemente->start; Elemental = Elemental->previous) {
102 if (Counts[Elemental->Z] != 0)
103 sstr << Elemental->symbol << Counts[Elemental->Z];
104 }
105 return sstr.str();
106}
107
108/************************** Access to the List of Atoms ****************/
109
110
111molecule::iterator molecule::begin(){
112 return molecule::iterator(atoms.begin(),this);
113}
114
115molecule::const_iterator molecule::begin() const{
116 return atoms.begin();
117}
118
119molecule::iterator molecule::end(){
120 return molecule::iterator(atoms.end(),this);
121}
122
123molecule::const_iterator molecule::end() const{
124 return atoms.end();
125}
126
127bool molecule::empty() const
128{
129 return (begin() == end());
130}
131
132size_t molecule::size() const
133{
134 size_t counter = 0;
135 for (molecule::const_iterator iter = begin(); iter != end (); ++iter)
136 counter++;
137 return counter;
138}
139
140molecule::const_iterator molecule::erase( const_iterator loc )
141{
142 molecule::const_iterator iter = loc;
143 iter--;
144 atoms.erase( loc );
145 return iter;
146}
147
148molecule::const_iterator molecule::erase( atom *& key )
149{
150 molecule::const_iterator iter = find(key);
151 molecule::const_iterator runner = iter;
152 if (runner != begin()) {
153 runner--;
154 if (iter != end())
155 atoms.erase( key );
156 return runner;
157 } else
158 return end();
159}
160
161molecule::const_iterator molecule::find ( atom *& key ) const
162{
163 return atoms.find( key );
164}
165
166pair<molecule::iterator,bool> molecule::insert ( atom * const key )
167{
168 return atoms.insert(key);
169}
170
171/** Adds given atom \a *pointer from molecule list.
172 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
173 * \param *pointer allocated and set atom
174 * \return true - succeeded, false - atom not found in list
175 */
176bool molecule::AddAtom(atom *pointer)
177{
178 OBSERVE;
179 if (pointer != NULL) {
180 pointer->sort = &pointer->nr;
181 AtomCount++;
182 if (pointer->type != NULL) {
183 if (ElementsInMolecule[pointer->type->Z] == 0)
184 ElementCount++;
185 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
186 if (pointer->type->Z != 1)
187 NoNonHydrogen++;
188 if (pointer->Name == NULL) {
189 Free(&pointer->Name);
190 pointer->Name = Malloc<char>(6, "molecule::AddAtom: *pointer->Name");
191 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
192 }
193 }
194 insert(pointer);
195 }
196 return true;
197};
198
199/** Adds a copy of the given atom \a *pointer from molecule list.
200 * Increases molecule::last_atom and gives last number to added atom.
201 * \param *pointer allocated and set atom
202 * \return pointer to the newly added atom
203 */
204atom * molecule::AddCopyAtom(atom *pointer)
205{
206 atom *retval = NULL;
207 OBSERVE;
208 if (pointer != NULL) {
209 atom *walker = pointer->clone();
210 walker->Name = Malloc<char>(strlen(pointer->Name) + 1, "atom::atom: *Name");
211 strcpy (walker->Name, pointer->Name);
212 insert(walker);
213 if ((pointer->type != NULL) && (pointer->type->Z != 1))
214 NoNonHydrogen++;
215 AtomCount++;
216 retval=walker;
217 }
218 return retval;
219};
220
221/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
222 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
223 * a different scheme when adding \a *replacement atom for the given one.
224 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
225 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
226 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector().
227 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
228 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
229 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
230 * hydrogens forming this angle with *origin.
231 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
232 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
233 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
234 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
235 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
236 * \f]
237 * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates
238 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
239 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
240 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
241 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
242 * \f]
243 * as the coordination of all three atoms in the coordinate system of these three vectors:
244 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
245 *
246 * \param *out output stream for debugging
247 * \param *Bond pointer to bond between \a *origin and \a *replacement
248 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
249 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
250 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
251 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
252 * \return number of atoms added, if < bond::BondDegree then something went wrong
253 * \todo double and triple bonds splitting (always use the tetraeder angle!)
254 */
255bool molecule::AddHydrogenReplacementAtom(bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bool IsAngstroem)
256{
257 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
258 OBSERVE;
259 double bondlength; // bond length of the bond to be replaced/cut
260 double bondangle; // bond angle of the bond to be replaced/cut
261 double BondRescale; // rescale value for the hydrogen bond length
262 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
263 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
264 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
265 Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
266 Vector InBondvector; // vector in direction of *Bond
267 double *matrix = NULL;
268 bond *Binder = NULL;
269
270// Log() << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
271 // create vector in direction of bond
272 InBondvector.CopyVector(&TopReplacement->x);
273 InBondvector.SubtractVector(&TopOrigin->x);
274 bondlength = InBondvector.Norm();
275
276 // is greater than typical bond distance? Then we have to correct periodically
277 // the problem is not the H being out of the box, but InBondvector have the wrong direction
278 // due to TopReplacement or Origin being on the wrong side!
279 if (bondlength > BondDistance) {
280// Log() << Verbose(4) << "InBondvector is: ";
281// InBondvector.Output(out);
282// Log() << Verbose(0) << endl;
283 Orthovector1.Zero();
284 for (int i=NDIM;i--;) {
285 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
286 if (fabs(l) > BondDistance) { // is component greater than bond distance
287 Orthovector1.x[i] = (l < 0) ? -1. : +1.;
288 } // (signs are correct, was tested!)
289 }
290 matrix = ReturnFullMatrixforSymmetric(cell_size);
291 Orthovector1.MatrixMultiplication(matrix);
292 InBondvector.SubtractVector(&Orthovector1); // subtract just the additional translation
293 Free(&matrix);
294 bondlength = InBondvector.Norm();
295// Log() << Verbose(4) << "Corrected InBondvector is now: ";
296// InBondvector.Output(out);
297// Log() << Verbose(0) << endl;
298 } // periodic correction finished
299
300 InBondvector.Normalize();
301 // get typical bond length and store as scale factor for later
302 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
303 if (BondRescale == -1) {
304 eLog() << Verbose(1) << "There is no typical hydrogen bond distance in replacing bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
305 return false;
306 BondRescale = bondlength;
307 } else {
308 if (!IsAngstroem)
309 BondRescale /= (1.*AtomicLengthToAngstroem);
310 }
311
312 // discern single, double and triple bonds
313 switch(TopBond->BondDegree) {
314 case 1:
315 FirstOtherAtom = World::get()->createAtom(); // new atom
316 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
317 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
318 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
319 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
320 FirstOtherAtom->father = TopReplacement;
321 BondRescale = bondlength;
322 } else {
323 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
324 }
325 InBondvector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
326 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
327 FirstOtherAtom->x.AddVector(&InBondvector); // ... and add distance vector to replacement atom
328 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
329// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
330// FirstOtherAtom->x.Output(out);
331// Log() << Verbose(0) << endl;
332 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
333 Binder->Cyclic = false;
334 Binder->Type = TreeEdge;
335 break;
336 case 2:
337 // determine two other bonds (warning if there are more than two other) plus valence sanity check
338 for (BondList::const_iterator Runner = TopOrigin->ListOfBonds.begin(); Runner != TopOrigin->ListOfBonds.end(); (++Runner)) {
339 if ((*Runner) != TopBond) {
340 if (FirstBond == NULL) {
341 FirstBond = (*Runner);
342 FirstOtherAtom = (*Runner)->GetOtherAtom(TopOrigin);
343 } else if (SecondBond == NULL) {
344 SecondBond = (*Runner);
345 SecondOtherAtom = (*Runner)->GetOtherAtom(TopOrigin);
346 } else {
347 eLog() << Verbose(2) << "Detected more than four bonds for atom " << TopOrigin->Name;
348 }
349 }
350 }
351 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
352 SecondBond = TopBond;
353 SecondOtherAtom = TopReplacement;
354 }
355 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
356// Log() << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
357
358 // determine the plane of these two with the *origin
359 AllWentWell = AllWentWell && Orthovector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
360 } else {
361 Orthovector1.GetOneNormalVector(&InBondvector);
362 }
363 //Log() << Verbose(3)<< "Orthovector1: ";
364 //Orthovector1.Output(out);
365 //Log() << Verbose(0) << endl;
366 // orthogonal vector and bond vector between origin and replacement form the new plane
367 Orthovector1.MakeNormalVector(&InBondvector);
368 Orthovector1.Normalize();
369 //Log() << Verbose(3) << "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "." << endl;
370
371 // create the two Hydrogens ...
372 FirstOtherAtom = World::get()->createAtom();
373 SecondOtherAtom = World::get()->createAtom();
374 FirstOtherAtom->type = elemente->FindElement(1);
375 SecondOtherAtom->type = elemente->FindElement(1);
376 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
377 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
378 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
379 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
380 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
381 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
382 bondangle = TopOrigin->type->HBondAngle[1];
383 if (bondangle == -1) {
384 eLog() << Verbose(1) << "There is no typical hydrogen bond angle in replacing bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
385 return false;
386 bondangle = 0;
387 }
388 bondangle *= M_PI/180./2.;
389// Log() << Verbose(3) << "ReScaleCheck: InBondvector ";
390// InBondvector.Output(out);
391// Log() << Verbose(0) << endl;
392// Log() << Verbose(3) << "ReScaleCheck: Orthovector ";
393// Orthovector1.Output(out);
394// Log() << Verbose(0) << endl;
395// Log() << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
396 FirstOtherAtom->x.Zero();
397 SecondOtherAtom->x.Zero();
398 for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
399 FirstOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (sin(bondangle));
400 SecondOtherAtom->x.x[i] = InBondvector.x[i] * cos(bondangle) + Orthovector1.x[i] * (-sin(bondangle));
401 }
402 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
403 SecondOtherAtom->x.Scale(&BondRescale);
404 //Log() << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
405 for(int i=NDIM;i--;) { // and make relative to origin atom
406 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
407 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
408 }
409 // ... and add to molecule
410 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
411 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
412// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
413// FirstOtherAtom->x.Output(out);
414// Log() << Verbose(0) << endl;
415// Log() << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
416// SecondOtherAtom->x.Output(out);
417// Log() << Verbose(0) << endl;
418 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
419 Binder->Cyclic = false;
420 Binder->Type = TreeEdge;
421 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
422 Binder->Cyclic = false;
423 Binder->Type = TreeEdge;
424 break;
425 case 3:
426 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
427 FirstOtherAtom = World::get()->createAtom();
428 SecondOtherAtom = World::get()->createAtom();
429 ThirdOtherAtom = World::get()->createAtom();
430 FirstOtherAtom->type = elemente->FindElement(1);
431 SecondOtherAtom->type = elemente->FindElement(1);
432 ThirdOtherAtom->type = elemente->FindElement(1);
433 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
434 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
435 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
436 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
437 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
438 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
439 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
440 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
441 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
442
443 // we need to vectors orthonormal the InBondvector
444 AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(&InBondvector);
445// Log() << Verbose(3) << "Orthovector1: ";
446// Orthovector1.Output(out);
447// Log() << Verbose(0) << endl;
448 AllWentWell = AllWentWell && Orthovector2.MakeNormalVector(&InBondvector, &Orthovector1);
449// Log() << Verbose(3) << "Orthovector2: ";
450// Orthovector2.Output(out);
451// Log() << Verbose(0) << endl;
452
453 // create correct coordination for the three atoms
454 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
455 l = BondRescale; // desired bond length
456 b = 2.*l*sin(alpha); // base length of isosceles triangle
457 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
458 f = b/sqrt(3.); // length for Orthvector1
459 g = b/2.; // length for Orthvector2
460// Log() << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
461// Log() << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
462 factors[0] = d;
463 factors[1] = f;
464 factors[2] = 0.;
465 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
466 factors[1] = -0.5*f;
467 factors[2] = g;
468 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
469 factors[2] = -g;
470 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondvector, &Orthovector1, &Orthovector2, factors);
471
472 // rescale each to correct BondDistance
473// FirstOtherAtom->x.Scale(&BondRescale);
474// SecondOtherAtom->x.Scale(&BondRescale);
475// ThirdOtherAtom->x.Scale(&BondRescale);
476
477 // and relative to *origin atom
478 FirstOtherAtom->x.AddVector(&TopOrigin->x);
479 SecondOtherAtom->x.AddVector(&TopOrigin->x);
480 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
481
482 // ... and add to molecule
483 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
484 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
485 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
486// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
487// FirstOtherAtom->x.Output(out);
488// Log() << Verbose(0) << endl;
489// Log() << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
490// SecondOtherAtom->x.Output(out);
491// Log() << Verbose(0) << endl;
492// Log() << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
493// ThirdOtherAtom->x.Output(out);
494// Log() << Verbose(0) << endl;
495 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
496 Binder->Cyclic = false;
497 Binder->Type = TreeEdge;
498 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
499 Binder->Cyclic = false;
500 Binder->Type = TreeEdge;
501 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
502 Binder->Cyclic = false;
503 Binder->Type = TreeEdge;
504 break;
505 default:
506 eLog() << Verbose(1) << "BondDegree does not state single, double or triple bond!" << endl;
507 AllWentWell = false;
508 break;
509 }
510 Free(&matrix);
511
512// Log() << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
513 return AllWentWell;
514};
515
516/** Adds given atom \a *pointer from molecule list.
517 * Increases molecule::last_atom and gives last number to added atom.
518 * \param filename name and path of xyz file
519 * \return true - succeeded, false - file not found
520 */
521bool molecule::AddXYZFile(string filename)
522{
523
524 istringstream *input = NULL;
525 int NumberOfAtoms = 0; // atom number in xyz read
526 int i, j; // loop variables
527 atom *Walker = NULL; // pointer to added atom
528 char shorthand[3]; // shorthand for atom name
529 ifstream xyzfile; // xyz file
530 string line; // currently parsed line
531 double x[3]; // atom coordinates
532
533 xyzfile.open(filename.c_str());
534 if (!xyzfile)
535 return false;
536
537 OBSERVE;
538 getline(xyzfile,line,'\n'); // Read numer of atoms in file
539 input = new istringstream(line);
540 *input >> NumberOfAtoms;
541 Log() << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
542 getline(xyzfile,line,'\n'); // Read comment
543 Log() << Verbose(1) << "Comment: " << line << endl;
544
545 if (MDSteps == 0) // no atoms yet present
546 MDSteps++;
547 for(i=0;i<NumberOfAtoms;i++){
548 Walker = World::get()->createAtom();
549 getline(xyzfile,line,'\n');
550 istringstream *item = new istringstream(line);
551 //istringstream input(line);
552 //Log() << Verbose(1) << "Reading: " << line << endl;
553 *item >> shorthand;
554 *item >> x[0];
555 *item >> x[1];
556 *item >> x[2];
557 Walker->type = elemente->FindElement(shorthand);
558 if (Walker->type == NULL) {
559 eLog() << Verbose(1) << "Could not parse the element at line: '" << line << "', setting to H.";
560 Walker->type = elemente->FindElement(1);
561 }
562 if (Walker->Trajectory.R.size() <= (unsigned int)MDSteps) {
563 Walker->Trajectory.R.resize(MDSteps+10);
564 Walker->Trajectory.U.resize(MDSteps+10);
565 Walker->Trajectory.F.resize(MDSteps+10);
566 }
567 for(j=NDIM;j--;) {
568 Walker->x.x[j] = x[j];
569 Walker->Trajectory.R.at(MDSteps-1).x[j] = x[j];
570 Walker->Trajectory.U.at(MDSteps-1).x[j] = 0;
571 Walker->Trajectory.F.at(MDSteps-1).x[j] = 0;
572 }
573 AddAtom(Walker); // add to molecule
574 delete(item);
575 }
576 xyzfile.close();
577 delete(input);
578 return true;
579};
580
581/** Creates a copy of this molecule.
582 * \return copy of molecule
583 */
584molecule *molecule::CopyMolecule()
585{
586 molecule *copy = new molecule(elemente);
587 atom *LeftAtom = NULL, *RightAtom = NULL;
588
589 // copy all atoms
590 ActOnCopyWithEachAtom ( &molecule::AddCopyAtom, copy );
591
592 // copy all bonds
593 bond *Binder = first;
594 bond *NewBond = NULL;
595 while(Binder->next != last) {
596 Binder = Binder->next;
597
598 // get the pendant atoms of current bond in the copy molecule
599 copy->ActOnAllAtoms( &atom::EqualsFather, (const atom *)Binder->leftatom, (const atom **)&LeftAtom );
600 copy->ActOnAllAtoms( &atom::EqualsFather, (const atom *)Binder->rightatom, (const atom **)&RightAtom );
601
602 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
603 NewBond->Cyclic = Binder->Cyclic;
604 if (Binder->Cyclic)
605 copy->NoCyclicBonds++;
606 NewBond->Type = Binder->Type;
607 }
608 // correct fathers
609 ActOnAllAtoms( &atom::CorrectFather );
610
611 // copy values
612 copy->CountAtoms();
613 copy->CountElements();
614 if (first->next != last) { // if adjaceny list is present
615 copy->BondDistance = BondDistance;
616 }
617
618 return copy;
619};
620
621
622/**
623 * Copies all atoms of a molecule which are within the defined parallelepiped.
624 *
625 * @param offest for the origin of the parallelepiped
626 * @param three vectors forming the matrix that defines the shape of the parallelpiped
627 */
628molecule* molecule::CopyMoleculeFromSubRegion(const Vector offset, const double *parallelepiped) const {
629 molecule *copy = new molecule(elemente);
630
631 ActOnCopyWithEachAtomIfTrue ( &molecule::AddCopyAtom, copy, &atom::IsInParallelepiped, offset, parallelepiped );
632
633 //TODO: copy->BuildInducedSubgraph(this);
634
635 return copy;
636}
637
638/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
639 * Also updates molecule::BondCount and molecule::NoNonBonds.
640 * \param *first first atom in bond
641 * \param *second atom in bond
642 * \return pointer to bond or NULL on failure
643 */
644bond * molecule::AddBond(atom *atom1, atom *atom2, int degree)
645{
646 bond *Binder = NULL;
647 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
648 Binder = new bond(atom1, atom2, degree, BondCount++);
649 atom1->RegisterBond(Binder);
650 atom2->RegisterBond(Binder);
651 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
652 NoNonBonds++;
653 add(Binder, last);
654 } else {
655 eLog() << Verbose(1) << "Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
656 }
657 return Binder;
658};
659
660/** Remove bond from bond chain list and from the both atom::ListOfBonds.
661 * \todo Function not implemented yet
662 * \param *pointer bond pointer
663 * \return true - bound found and removed, false - bond not found/removed
664 */
665bool molecule::RemoveBond(bond *pointer)
666{
667 //eLog() << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
668 pointer->leftatom->RegisterBond(pointer);
669 pointer->rightatom->RegisterBond(pointer);
670 removewithoutcheck(pointer);
671 return true;
672};
673
674/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
675 * \todo Function not implemented yet
676 * \param *BondPartner atom to be removed
677 * \return true - bounds found and removed, false - bonds not found/removed
678 */
679bool molecule::RemoveBonds(atom *BondPartner)
680{
681 //eLog() << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
682 BondList::const_iterator ForeRunner;
683 while (!BondPartner->ListOfBonds.empty()) {
684 ForeRunner = BondPartner->ListOfBonds.begin();
685 RemoveBond(*ForeRunner);
686 }
687 return false;
688};
689
690/** Set molecule::name from the basename without suffix in the given \a *filename.
691 * \param *filename filename
692 */
693void molecule::SetNameFromFilename(const char *filename)
694{
695 int length = 0;
696 const char *molname = strrchr(filename, '/');
697 if (molname != NULL)
698 molname += sizeof(char); // search for filename without dirs
699 else
700 molname = filename; // contains no slashes
701 const char *endname = strchr(molname, '.');
702 if ((endname == NULL) || (endname < molname))
703 length = strlen(molname);
704 else
705 length = strlen(molname) - strlen(endname);
706 strncpy(name, molname, length);
707 name[length]='\0';
708};
709
710/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
711 * \param *dim vector class
712 */
713void molecule::SetBoxDimension(Vector *dim)
714{
715 cell_size[0] = dim->x[0];
716 cell_size[1] = 0.;
717 cell_size[2] = dim->x[1];
718 cell_size[3] = 0.;
719 cell_size[4] = 0.;
720 cell_size[5] = dim->x[2];
721};
722
723/** Removes atom from molecule list and deletes it.
724 * \param *pointer atom to be removed
725 * \return true - succeeded, false - atom not found in list
726 */
727bool molecule::RemoveAtom(atom *pointer)
728{
729 if (ElementsInMolecule[pointer->type->Z] != 0) { // this would indicate an error
730 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
731 AtomCount--;
732 } else
733 eLog() << Verbose(1) << "Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
734 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
735 ElementCount--;
736 RemoveBonds(pointer);
737 erase(pointer);
738 return true;
739};
740
741/** Removes atom from molecule list, but does not delete it.
742 * \param *pointer atom to be removed
743 * \return true - succeeded, false - atom not found in list
744 */
745bool molecule::UnlinkAtom(atom *pointer)
746{
747 if (pointer == NULL)
748 return false;
749 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
750 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
751 else
752 eLog() << Verbose(1) << "Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
753 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
754 ElementCount--;
755 erase(pointer);
756 return true;
757};
758
759/** Removes every atom from molecule list.
760 * \return true - succeeded, false - atom not found in list
761 */
762bool molecule::CleanupMolecule()
763{
764 for (molecule::iterator iter = begin(); !empty(); iter = begin())
765 erase(iter);
766 return (cleanup(first,last));
767};
768
769/** Finds an atom specified by its continuous number.
770 * \param Nr number of atom withim molecule
771 * \return pointer to atom or NULL
772 */
773atom * molecule::FindAtom(int Nr) const
774{
775 molecule::const_iterator iter = begin();
776 for (; iter != end(); ++iter)
777 if ((*iter)->nr == Nr)
778 break;
779 if (iter != end()) {
780 //Log() << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
781 return (*iter);
782 } else {
783 Log() << Verbose(0) << "Atom not found in list." << endl;
784 return NULL;
785 }
786};
787
788/** Asks for atom number, and checks whether in list.
789 * \param *text question before entering
790 */
791atom * molecule::AskAtom(string text)
792{
793 int No;
794 atom *ion = NULL;
795 do {
796 //Log() << Verbose(0) << "============Atom list==========================" << endl;
797 //mol->Output((ofstream *)&cout);
798 //Log() << Verbose(0) << "===============================================" << endl;
799 Log() << Verbose(0) << text;
800 cin >> No;
801 ion = this->FindAtom(No);
802 } while (ion == NULL);
803 return ion;
804};
805
806/** Checks if given coordinates are within cell volume.
807 * \param *x array of coordinates
808 * \return true - is within, false - out of cell
809 */
810bool molecule::CheckBounds(const Vector *x) const
811{
812 bool result = true;
813 int j =-1;
814 for (int i=0;i<NDIM;i++) {
815 j += i+1;
816 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
817 }
818 //return result;
819 return true; /// probably not gonna use the check no more
820};
821
822/** Prints molecule to *out.
823 * \param *out output stream
824 */
825bool molecule::Output(ofstream * const output)
826{
827 int ElementNo[MAX_ELEMENTS], AtomNo[MAX_ELEMENTS];
828 CountElements();
829
830 for (int i=0;i<MAX_ELEMENTS;++i) {
831 AtomNo[i] = 0;
832 ElementNo[i] = 0;
833 }
834 if (output == NULL) {
835 return false;
836 } else {
837 *output << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
838 SetIndexedArrayForEachAtomTo ( ElementNo, &element::Z, &AbsoluteValue, 1);
839 int current=1;
840 for (int i=0;i<MAX_ELEMENTS;++i) {
841 if (ElementNo[i] == 1)
842 ElementNo[i] = current++;
843 }
844 ActOnAllAtoms( &atom::OutputArrayIndexed, output, (const int *)ElementNo, (int *)AtomNo, (const char *) NULL );
845 return true;
846 }
847};
848
849/** Prints molecule with all atomic trajectory positions to *out.
850 * \param *out output stream
851 */
852bool molecule::OutputTrajectories(ofstream * const output)
853{
854 int ElementNo[MAX_ELEMENTS], AtomNo[MAX_ELEMENTS];
855 CountElements();
856
857 if (output == NULL) {
858 return false;
859 } else {
860 for (int step = 0; step < MDSteps; step++) {
861 if (step == 0) {
862 *output << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
863 } else {
864 *output << "# ====== MD step " << step << " =========" << endl;
865 }
866 for (int i=0;i<MAX_ELEMENTS;++i) {
867 AtomNo[i] = 0;
868 ElementNo[i] = 0;
869 }
870 SetIndexedArrayForEachAtomTo ( ElementNo, &element::Z, &AbsoluteValue, 1);
871 int current=1;
872 for (int i=0;i<MAX_ELEMENTS;++i) {
873 if (ElementNo[i] == 1)
874 ElementNo[i] = current++;
875 }
876 ActOnAllAtoms( &atom::OutputTrajectory, output, (const int *)ElementNo, AtomNo, (const int)step );
877 }
878 return true;
879 }
880};
881
882/** Outputs contents of each atom::ListOfBonds.
883 * \param *out output stream
884 */
885void molecule::OutputListOfBonds() const
886{
887 Log() << Verbose(2) << endl << "From Contents of ListOfBonds, all non-hydrogen atoms:" << endl;
888 ActOnAllAtoms (&atom::OutputBondOfAtom );
889 Log() << Verbose(0) << endl;
890};
891
892/** Output of element before the actual coordination list.
893 * \param *out stream pointer
894 */
895bool molecule::Checkout(ofstream * const output) const
896{
897 return elemente->Checkout(output, ElementsInMolecule);
898};
899
900/** Prints molecule with all its trajectories to *out as xyz file.
901 * \param *out output stream
902 */
903bool molecule::OutputTrajectoriesXYZ(ofstream * const output)
904{
905 time_t now;
906
907 if (output != NULL) {
908 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
909 for (int step=0;step<MDSteps;step++) {
910 *output << AtomCount << "\n\tCreated by molecuilder, step " << step << ", on " << ctime(&now);
911 ActOnAllAtoms( &atom::OutputTrajectoryXYZ, output, step );
912 }
913 return true;
914 } else
915 return false;
916};
917
918/** Prints molecule to *out as xyz file.
919* \param *out output stream
920 */
921bool molecule::OutputXYZ(ofstream * const output) const
922{
923 time_t now;
924
925 if (output != NULL) {
926 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
927 *output << AtomCount << "\n\tCreated by molecuilder on " << ctime(&now);
928 ActOnAllAtoms( &atom::OutputXYZLine, output );
929 return true;
930 } else
931 return false;
932};
933
934/** Brings molecule::AtomCount and atom::*Name up-to-date.
935 * \param *out output stream for debugging
936 */
937void molecule::CountAtoms()
938{
939 int i = size();
940 if ((AtomCount == 0) || (i != AtomCount)) {
941 Log() << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
942 AtomCount = i;
943
944 // count NonHydrogen atoms and give each atom a unique name
945 if (AtomCount != 0) {
946 i=0;
947 NoNonHydrogen = 0;
948 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
949 (*iter)->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
950 if ((*iter)->type->Z != 1) // count non-hydrogen atoms whilst at it
951 NoNonHydrogen++;
952 Free(&(*iter)->Name);
953 (*iter)->Name = Malloc<char>(6, "molecule::CountAtoms: *walker->Name");
954 sprintf((*iter)->Name, "%2s%02d", (*iter)->type->symbol, (*iter)->nr+1);
955 Log() << Verbose(3) << "Naming atom nr. " << (*iter)->nr << " " << (*iter)->Name << "." << endl;
956 i++;
957 }
958 } else
959 Log() << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
960 }
961};
962
963/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
964 */
965void molecule::CountElements()
966{
967 for(int i=MAX_ELEMENTS;i--;)
968 ElementsInMolecule[i] = 0;
969 ElementCount = 0;
970
971 SetIndexedArrayForEachAtomTo ( ElementsInMolecule, &element::Z, &Increment, 1);
972
973 for(int i=MAX_ELEMENTS;i--;)
974 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
975};
976
977
978/** Counts necessary number of valence electrons and returns number and SpinType.
979 * \param configuration containing everything
980 */
981void molecule::CalculateOrbitals(class config &configuration)
982{
983 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
984 for(int i=MAX_ELEMENTS;i--;) {
985 if (ElementsInMolecule[i] != 0) {
986 //Log() << Verbose(0) << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
987 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
988 }
989 }
990 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
991 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
992 configuration.MaxPsiDouble /= 2;
993 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
994 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
995 configuration.ProcPEGamma /= 2;
996 configuration.ProcPEPsi *= 2;
997 } else {
998 configuration.ProcPEGamma *= configuration.ProcPEPsi;
999 configuration.ProcPEPsi = 1;
1000 }
1001 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1002};
1003
1004/** Determines whether two molecules actually contain the same atoms and coordination.
1005 * \param *out output stream for debugging
1006 * \param *OtherMolecule the molecule to compare this one to
1007 * \param threshold upper limit of difference when comparing the coordination.
1008 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
1009 */
1010int * molecule::IsEqualToWithinThreshold(molecule *OtherMolecule, double threshold)
1011{
1012 int flag;
1013 double *Distances = NULL, *OtherDistances = NULL;
1014 Vector CenterOfGravity, OtherCenterOfGravity;
1015 size_t *PermMap = NULL, *OtherPermMap = NULL;
1016 int *PermutationMap = NULL;
1017 bool result = true; // status of comparison
1018
1019 Log() << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
1020 /// first count both their atoms and elements and update lists thereby ...
1021 //Log() << Verbose(0) << "Counting atoms, updating list" << endl;
1022 CountAtoms();
1023 OtherMolecule->CountAtoms();
1024 CountElements();
1025 OtherMolecule->CountElements();
1026
1027 /// ... and compare:
1028 /// -# AtomCount
1029 if (result) {
1030 if (AtomCount != OtherMolecule->AtomCount) {
1031 Log() << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
1032 result = false;
1033 } else Log() << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
1034 }
1035 /// -# ElementCount
1036 if (result) {
1037 if (ElementCount != OtherMolecule->ElementCount) {
1038 Log() << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
1039 result = false;
1040 } else Log() << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
1041 }
1042 /// -# ElementsInMolecule
1043 if (result) {
1044 for (flag=MAX_ELEMENTS;flag--;) {
1045 //Log() << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
1046 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
1047 break;
1048 }
1049 if (flag < MAX_ELEMENTS) {
1050 Log() << Verbose(4) << "ElementsInMolecule don't match." << endl;
1051 result = false;
1052 } else Log() << Verbose(4) << "ElementsInMolecule match." << endl;
1053 }
1054 /// then determine and compare center of gravity for each molecule ...
1055 if (result) {
1056 Log() << Verbose(5) << "Calculating Centers of Gravity" << endl;
1057 DeterminePeriodicCenter(CenterOfGravity);
1058 OtherMolecule->DeterminePeriodicCenter(OtherCenterOfGravity);
1059 Log() << Verbose(5) << "Center of Gravity: ";
1060 CenterOfGravity.Output();
1061 Log() << Verbose(0) << endl << Verbose(5) << "Other Center of Gravity: ";
1062 OtherCenterOfGravity.Output();
1063 Log() << Verbose(0) << endl;
1064 if (CenterOfGravity.DistanceSquared(&OtherCenterOfGravity) > threshold*threshold) {
1065 Log() << Verbose(4) << "Centers of gravity don't match." << endl;
1066 result = false;
1067 }
1068 }
1069
1070 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
1071 if (result) {
1072 Log() << Verbose(5) << "Calculating distances" << endl;
1073 Distances = Calloc<double>(AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
1074 OtherDistances = Calloc<double>(AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
1075 SetIndexedArrayForEachAtomTo ( Distances, &atom::nr, &atom::DistanceSquaredToVector, (const Vector &)CenterOfGravity);
1076 SetIndexedArrayForEachAtomTo ( OtherDistances, &atom::nr, &atom::DistanceSquaredToVector, (const Vector &)CenterOfGravity);
1077
1078 /// ... sort each list (using heapsort (o(N log N)) from GSL)
1079 Log() << Verbose(5) << "Sorting distances" << endl;
1080 PermMap = Calloc<size_t>(AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
1081 OtherPermMap = Calloc<size_t>(AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
1082 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
1083 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
1084 PermutationMap = Calloc<int>(AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
1085 Log() << Verbose(5) << "Combining Permutation Maps" << endl;
1086 for(int i=AtomCount;i--;)
1087 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
1088
1089 /// ... and compare them step by step, whether the difference is individually(!) below \a threshold for all
1090 Log() << Verbose(4) << "Comparing distances" << endl;
1091 flag = 0;
1092 for (int i=0;i<AtomCount;i++) {
1093 Log() << Verbose(5) << "Distances squared: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
1094 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold*threshold)
1095 flag = 1;
1096 }
1097
1098 // free memory
1099 Free(&PermMap);
1100 Free(&OtherPermMap);
1101 Free(&Distances);
1102 Free(&OtherDistances);
1103 if (flag) { // if not equal
1104 Free(&PermutationMap);
1105 result = false;
1106 }
1107 }
1108 /// return pointer to map if all distances were below \a threshold
1109 Log() << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
1110 if (result) {
1111 Log() << Verbose(3) << "Result: Equal." << endl;
1112 return PermutationMap;
1113 } else {
1114 Log() << Verbose(3) << "Result: Not equal." << endl;
1115 return NULL;
1116 }
1117};
1118
1119/** Returns an index map for two father-son-molecules.
1120 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
1121 * \param *out output stream for debugging
1122 * \param *OtherMolecule corresponding molecule with fathers
1123 * \return allocated map of size molecule::AtomCount with map
1124 * \todo make this with a good sort O(n), not O(n^2)
1125 */
1126int * molecule::GetFatherSonAtomicMap(molecule *OtherMolecule)
1127{
1128 Log() << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
1129 int *AtomicMap = Malloc<int>(AtomCount, "molecule::GetAtomicMap: *AtomicMap");
1130 for (int i=AtomCount;i--;)
1131 AtomicMap[i] = -1;
1132 if (OtherMolecule == this) { // same molecule
1133 for (int i=AtomCount;i--;) // no need as -1 means already that there is trivial correspondence
1134 AtomicMap[i] = i;
1135 Log() << Verbose(4) << "Map is trivial." << endl;
1136 } else {
1137 Log() << Verbose(4) << "Map is ";
1138 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
1139 if ((*iter)->father == NULL) {
1140 AtomicMap[(*iter)->nr] = -2;
1141 } else {
1142 for (molecule::const_iterator runner = OtherMolecule->begin(); runner != OtherMolecule->end(); ++runner) {
1143 //for (int i=0;i<AtomCount;i++) { // search atom
1144 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
1145 //Log() << Verbose(4) << "Comparing father " << (*iter)->father << " with the other one " << (*runner)->father << "." << endl;
1146 if ((*iter)->father == (*runner))
1147 AtomicMap[(*iter)->nr] = (*runner)->nr;
1148 }
1149 }
1150 Log() << Verbose(0) << AtomicMap[(*iter)->nr] << "\t";
1151 }
1152 Log() << Verbose(0) << endl;
1153 }
1154 Log() << Verbose(3) << "End of GetFatherAtomicMap." << endl;
1155 return AtomicMap;
1156};
1157
1158/** Stores the temperature evaluated from velocities in molecule::Trajectories.
1159 * We simply use the formula equivaleting temperature and kinetic energy:
1160 * \f$k_B T = \sum_i m_i v_i^2\f$
1161 * \param *output output stream of temperature file
1162 * \param startstep first MD step in molecule::Trajectories
1163 * \param endstep last plus one MD step in molecule::Trajectories
1164 * \return file written (true), failure on writing file (false)
1165 */
1166bool molecule::OutputTemperatureFromTrajectories(ofstream * const output, int startstep, int endstep)
1167{
1168 double temperature;
1169 // test stream
1170 if (output == NULL)
1171 return false;
1172 else
1173 *output << "# Step Temperature [K] Temperature [a.u.]" << endl;
1174 for (int step=startstep;step < endstep; step++) { // loop over all time steps
1175 temperature = 0.;
1176 ActOnAllAtoms( &TrajectoryParticle::AddKineticToTemperature, &temperature, step);
1177 *output << step << "\t" << temperature*AtomicEnergyToKelvin << "\t" << temperature << endl;
1178 }
1179 return true;
1180};
1181
1182void molecule::SetIndexedArrayForEachAtomTo ( atom **array, int ParticleInfo::*index) const
1183{
1184 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
1185 array[((*iter)->*index)] = (*iter);
1186 }
1187};
1188
1189void molecule::flipActiveFlag(){
1190 ActiveFlag = !ActiveFlag;
1191}
Note: See TracBrowser for help on using the repository browser.