source: src/molecule.cpp@ d74077

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since d74077 was d74077, checked in by Frederik Heber <heber@…>, 15 years ago

Member variable Vector and element of class atom are now private.

  • Property mode set to 100755
File size: 44.0 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#ifdef HAVE_CONFIG_H
8#include <config.h>
9#endif
10
11#include "Helpers/MemDebug.hpp"
12
13#include <cstring>
14#include <boost/bind.hpp>
15#include <boost/foreach.hpp>
16
17#include <gsl/gsl_inline.h>
18#include <gsl/gsl_heapsort.h>
19
20#include "World.hpp"
21#include "atom.hpp"
22#include "bond.hpp"
23#include "config.hpp"
24#include "element.hpp"
25#include "graph.hpp"
26#include "helpers.hpp"
27#include "leastsquaremin.hpp"
28#include "linkedcell.hpp"
29#include "lists.hpp"
30#include "log.hpp"
31#include "molecule.hpp"
32
33#include "periodentafel.hpp"
34#include "stackclass.hpp"
35#include "tesselation.hpp"
36#include "vector.hpp"
37#include "Matrix.hpp"
38#include "World.hpp"
39#include "Box.hpp"
40#include "Plane.hpp"
41#include "Exceptions/LinearDependenceException.hpp"
42
43
44/************************************* Functions for class molecule *********************************/
45
46/** Constructor of class molecule.
47 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
48 */
49molecule::molecule(const periodentafel * const teil) :
50 Observable("molecule"),
51 elemente(teil), MDSteps(0), BondCount(0), NoNonHydrogen(0), NoNonBonds(0),
52 NoCyclicBonds(0), BondDistance(0.), ActiveFlag(false), IndexNr(-1),
53 AtomCount(this,boost::bind(&molecule::doCountAtoms,this),"AtomCount"), last_atom(0), InternalPointer(atoms.begin())
54{
55
56 strcpy(name,World::getInstance().getDefaultName().c_str());
57};
58
59molecule *NewMolecule(){
60 return new molecule(World::getInstance().getPeriode());
61}
62
63/** Destructor of class molecule.
64 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
65 */
66molecule::~molecule()
67{
68 CleanupMolecule();
69};
70
71
72void DeleteMolecule(molecule *mol){
73 delete mol;
74}
75
76// getter and setter
77const std::string molecule::getName(){
78 return std::string(name);
79}
80
81int molecule::getAtomCount() const{
82 return *AtomCount;
83}
84
85void molecule::setName(const std::string _name){
86 OBSERVE;
87 cout << "Set name of molecule " << getId() << " to " << _name << endl;
88 strncpy(name,_name.c_str(),MAXSTRINGSIZE);
89}
90
91moleculeId_t molecule::getId(){
92 return id;
93}
94
95void molecule::setId(moleculeId_t _id){
96 id =_id;
97}
98
99const Formula &molecule::getFormula(){
100 return formula;
101}
102
103unsigned int molecule::getElementCount(){
104 return formula.getElementCount();
105}
106
107bool molecule::hasElement(const element *element) const{
108 return formula.hasElement(element);
109}
110
111bool molecule::hasElement(atomicNumber_t Z) const{
112 return formula.hasElement(Z);
113}
114
115bool molecule::hasElement(const string &shorthand) const{
116 return formula.hasElement(shorthand);
117}
118
119/************************** Access to the List of Atoms ****************/
120
121
122molecule::iterator molecule::begin(){
123 return molecule::iterator(atoms.begin(),this);
124}
125
126molecule::const_iterator molecule::begin() const{
127 return atoms.begin();
128}
129
130molecule::iterator molecule::end(){
131 return molecule::iterator(atoms.end(),this);
132}
133
134molecule::const_iterator molecule::end() const{
135 return atoms.end();
136}
137
138bool molecule::empty() const
139{
140 return (begin() == end());
141}
142
143size_t molecule::size() const
144{
145 size_t counter = 0;
146 for (molecule::const_iterator iter = begin(); iter != end (); ++iter)
147 counter++;
148 return counter;
149}
150
151molecule::const_iterator molecule::erase( const_iterator loc )
152{
153 molecule::const_iterator iter = loc;
154 iter--;
155 atom* atom = *loc;
156 atomIds.erase( atom->getId() );
157 atoms.remove( atom );
158 atom->removeFromMolecule();
159 return iter;
160}
161
162molecule::const_iterator molecule::erase( atom * key )
163{
164 molecule::const_iterator iter = find(key);
165 if (iter != end()){
166 atomIds.erase( key->getId() );
167 atoms.remove( key );
168 key->removeFromMolecule();
169 }
170 return iter;
171}
172
173molecule::const_iterator molecule::find ( atom * key ) const
174{
175 molecule::const_iterator iter;
176 for (molecule::const_iterator Runner = begin(); Runner != end(); ++Runner) {
177 if (*Runner == key)
178 return molecule::const_iterator(Runner);
179 }
180 return molecule::const_iterator(atoms.end());
181}
182
183pair<molecule::iterator,bool> molecule::insert ( atom * const key )
184{
185 pair<atomIdSet::iterator,bool> res = atomIds.insert(key->getId());
186 if (res.second) { // push atom if went well
187 atoms.push_back(key);
188 return pair<iterator,bool>(molecule::iterator(--end()),res.second);
189 } else {
190 return pair<iterator,bool>(molecule::iterator(end()),res.second);
191 }
192}
193
194bool molecule::containsAtom(atom* key){
195 return (find(key) != end());
196}
197
198/** Adds given atom \a *pointer from molecule list.
199 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
200 * \param *pointer allocated and set atom
201 * \return true - succeeded, false - atom not found in list
202 */
203bool molecule::AddAtom(atom *pointer)
204{
205 OBSERVE;
206 if (pointer != NULL) {
207 pointer->sort = &pointer->nr;
208 if (pointer->getType() != NULL) {
209 formula += pointer->getType();
210 if (pointer->getType()->Z != 1)
211 NoNonHydrogen++;
212 if(pointer->getName() == "Unknown"){
213 stringstream sstr;
214 sstr << pointer->getType()->symbol << pointer->nr+1;
215 pointer->setName(sstr.str());
216 }
217 }
218 insert(pointer);
219 pointer->setMolecule(this);
220 }
221 return true;
222};
223
224/** Adds a copy of the given atom \a *pointer from molecule list.
225 * Increases molecule::last_atom and gives last number to added atom.
226 * \param *pointer allocated and set atom
227 * \return pointer to the newly added atom
228 */
229atom * molecule::AddCopyAtom(atom *pointer)
230{
231 atom *retval = NULL;
232 OBSERVE;
233 if (pointer != NULL) {
234 atom *walker = pointer->clone();
235 walker->setName(pointer->getName());
236 walker->nr = last_atom++; // increase number within molecule
237 insert(walker);
238 if ((pointer->getType() != NULL) && (pointer->getType()->Z != 1))
239 NoNonHydrogen++;
240 retval=walker;
241 }
242 return retval;
243};
244
245/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
246 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
247 * a different scheme when adding \a *replacement atom for the given one.
248 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
249 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
250 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalvector().
251 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
252 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
253 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
254 * hydrogens forming this angle with *origin.
255 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
256 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
257 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
258 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
259 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
260 * \f]
261 * vector::GetNormalvector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalvector creates
262 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
263 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
264 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
265 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
266 * \f]
267 * as the coordination of all three atoms in the coordinate system of these three vectors:
268 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
269 *
270 * \param *out output stream for debugging
271 * \param *Bond pointer to bond between \a *origin and \a *replacement
272 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
273 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
274 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
275 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
276 * \return number of atoms added, if < bond::BondDegree then something went wrong
277 * \todo double and triple bonds splitting (always use the tetraeder angle!)
278 */
279bool molecule::AddHydrogenReplacementAtom(bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bool IsAngstroem)
280{
281 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
282 OBSERVE;
283 double bondlength; // bond length of the bond to be replaced/cut
284 double bondangle; // bond angle of the bond to be replaced/cut
285 double BondRescale; // rescale value for the hydrogen bond length
286 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
287 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
288 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
289 Vector Orthovector1, Orthovector2; // temporary vectors in coordination construction
290 Vector InBondvector; // vector in direction of *Bond
291 const Matrix &matrix = World::getInstance().getDomain().getM();
292 bond *Binder = NULL;
293
294// Log() << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
295 // create vector in direction of bond
296 InBondvector = TopReplacement->getPosition() - TopOrigin->getPosition();
297 bondlength = InBondvector.Norm();
298
299 // is greater than typical bond distance? Then we have to correct periodically
300 // the problem is not the H being out of the box, but InBondvector have the wrong direction
301 // due to TopReplacement or Origin being on the wrong side!
302 if (bondlength > BondDistance) {
303// Log() << Verbose(4) << "InBondvector is: ";
304// InBondvector.Output(out);
305// Log() << Verbose(0) << endl;
306 Orthovector1.Zero();
307 for (int i=NDIM;i--;) {
308 l = TopReplacement->at(i) - TopOrigin->at(i);
309 if (fabs(l) > BondDistance) { // is component greater than bond distance
310 Orthovector1[i] = (l < 0) ? -1. : +1.;
311 } // (signs are correct, was tested!)
312 }
313 Orthovector1 *= matrix;
314 InBondvector -= Orthovector1; // subtract just the additional translation
315 bondlength = InBondvector.Norm();
316// Log() << Verbose(4) << "Corrected InBondvector is now: ";
317// InBondvector.Output(out);
318// Log() << Verbose(0) << endl;
319 } // periodic correction finished
320
321 InBondvector.Normalize();
322 // get typical bond length and store as scale factor for later
323 ASSERT(TopOrigin->getType() != NULL, "AddHydrogenReplacementAtom: element of TopOrigin is not given.");
324 BondRescale = TopOrigin->getType()->HBondDistance[TopBond->BondDegree-1];
325 if (BondRescale == -1) {
326 DoeLog(1) && (eLog()<< Verbose(1) << "There is no typical hydrogen bond distance in replacing bond (" << TopOrigin->getName() << "<->" << TopReplacement->getName() << ") of degree " << TopBond->BondDegree << "!" << endl);
327 return false;
328 BondRescale = bondlength;
329 } else {
330 if (!IsAngstroem)
331 BondRescale /= (1.*AtomicLengthToAngstroem);
332 }
333
334 // discern single, double and triple bonds
335 switch(TopBond->BondDegree) {
336 case 1:
337 FirstOtherAtom = World::getInstance().createAtom(); // new atom
338 FirstOtherAtom->setType(1); // element is Hydrogen
339 FirstOtherAtom->AtomicVelocity = TopReplacement->AtomicVelocity; // copy velocity
340 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
341 if (TopReplacement->getType()->Z == 1) { // neither rescale nor replace if it's already hydrogen
342 FirstOtherAtom->father = TopReplacement;
343 BondRescale = bondlength;
344 } else {
345 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
346 }
347 InBondvector *= BondRescale; // rescale the distance vector to Hydrogen bond length
348 FirstOtherAtom->setPosition(TopOrigin->getPosition() + InBondvector); // set coordination to origin and add distance vector to replacement atom
349 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
350// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
351// FirstOtherAtom->x.Output(out);
352// Log() << Verbose(0) << endl;
353 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
354 Binder->Cyclic = false;
355 Binder->Type = TreeEdge;
356 break;
357 case 2:
358 // determine two other bonds (warning if there are more than two other) plus valence sanity check
359 for (BondList::const_iterator Runner = TopOrigin->ListOfBonds.begin(); Runner != TopOrigin->ListOfBonds.end(); (++Runner)) {
360 if ((*Runner) != TopBond) {
361 if (FirstBond == NULL) {
362 FirstBond = (*Runner);
363 FirstOtherAtom = (*Runner)->GetOtherAtom(TopOrigin);
364 } else if (SecondBond == NULL) {
365 SecondBond = (*Runner);
366 SecondOtherAtom = (*Runner)->GetOtherAtom(TopOrigin);
367 } else {
368 DoeLog(2) && (eLog()<< Verbose(2) << "Detected more than four bonds for atom " << TopOrigin->getName());
369 }
370 }
371 }
372 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
373 SecondBond = TopBond;
374 SecondOtherAtom = TopReplacement;
375 }
376 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
377// Log() << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
378
379 // determine the plane of these two with the *origin
380 try {
381 Orthovector1 =Plane(TopOrigin->getPosition(), FirstOtherAtom->getPosition(), SecondOtherAtom->getPosition()).getNormal();
382 }
383 catch(LinearDependenceException &excp){
384 Log() << Verbose(0) << excp;
385 // TODO: figure out what to do with the Orthovector in this case
386 AllWentWell = false;
387 }
388 } else {
389 Orthovector1.GetOneNormalVector(InBondvector);
390 }
391 //Log() << Verbose(3)<< "Orthovector1: ";
392 //Orthovector1.Output(out);
393 //Log() << Verbose(0) << endl;
394 // orthogonal vector and bond vector between origin and replacement form the new plane
395 Orthovector1.MakeNormalTo(InBondvector);
396 Orthovector1.Normalize();
397 //Log() << Verbose(3) << "ReScaleCheck: " << Orthovector1.Norm() << " and " << InBondvector.Norm() << "." << endl;
398
399 // create the two Hydrogens ...
400 FirstOtherAtom = World::getInstance().createAtom();
401 SecondOtherAtom = World::getInstance().createAtom();
402 FirstOtherAtom->setType(1);
403 SecondOtherAtom->setType(1);
404 FirstOtherAtom->AtomicVelocity = TopReplacement->AtomicVelocity; // copy velocity
405 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
406 SecondOtherAtom->AtomicVelocity = TopReplacement->AtomicVelocity; // copy velocity
407 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
408 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
409 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
410 bondangle = TopOrigin->getType()->HBondAngle[1];
411 if (bondangle == -1) {
412 DoeLog(1) && (eLog()<< Verbose(1) << "There is no typical hydrogen bond angle in replacing bond (" << TopOrigin->getName() << "<->" << TopReplacement->getName() << ") of degree " << TopBond->BondDegree << "!" << endl);
413 return false;
414 bondangle = 0;
415 }
416 bondangle *= M_PI/180./2.;
417// Log() << Verbose(3) << "ReScaleCheck: InBondvector ";
418// InBondvector.Output(out);
419// Log() << Verbose(0) << endl;
420// Log() << Verbose(3) << "ReScaleCheck: Orthovector ";
421// Orthovector1.Output(out);
422// Log() << Verbose(0) << endl;
423// Log() << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
424 FirstOtherAtom->Zero();
425 SecondOtherAtom->Zero();
426 for(int i=NDIM;i--;) { // rotate by half the bond angle in both directions (InBondvector is bondangle = 0 direction)
427 FirstOtherAtom->set(i, InBondvector[i] * cos(bondangle) + Orthovector1[i] * (sin(bondangle)));
428 SecondOtherAtom->set(i, InBondvector[i] * cos(bondangle) + Orthovector1[i] * (-sin(bondangle)));
429 }
430 FirstOtherAtom->Scale(BondRescale); // rescale by correct BondDistance
431 SecondOtherAtom->Scale(BondRescale);
432 //Log() << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
433 *FirstOtherAtom += TopOrigin->getPosition();
434 *SecondOtherAtom += TopOrigin->getPosition();
435 // ... and add to molecule
436 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
437 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
438// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
439// FirstOtherAtom->x.Output(out);
440// Log() << Verbose(0) << endl;
441// Log() << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
442// SecondOtherAtom->x.Output(out);
443// Log() << Verbose(0) << endl;
444 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
445 Binder->Cyclic = false;
446 Binder->Type = TreeEdge;
447 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
448 Binder->Cyclic = false;
449 Binder->Type = TreeEdge;
450 break;
451 case 3:
452 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
453 FirstOtherAtom = World::getInstance().createAtom();
454 SecondOtherAtom = World::getInstance().createAtom();
455 ThirdOtherAtom = World::getInstance().createAtom();
456 FirstOtherAtom->setType(1);
457 SecondOtherAtom->setType(1);
458 ThirdOtherAtom->setType(1);
459 FirstOtherAtom->AtomicVelocity = TopReplacement->AtomicVelocity; // copy velocity
460 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
461 SecondOtherAtom->AtomicVelocity = TopReplacement->AtomicVelocity; // copy velocity
462 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
463 ThirdOtherAtom->AtomicVelocity = TopReplacement->AtomicVelocity; // copy velocity
464 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
465 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
466 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
467 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
468
469 // we need to vectors orthonormal the InBondvector
470 AllWentWell = AllWentWell && Orthovector1.GetOneNormalVector(InBondvector);
471// Log() << Verbose(3) << "Orthovector1: ";
472// Orthovector1.Output(out);
473// Log() << Verbose(0) << endl;
474 try{
475 Orthovector2 = Plane(InBondvector, Orthovector1,0).getNormal();
476 }
477 catch(LinearDependenceException &excp) {
478 Log() << Verbose(0) << excp;
479 AllWentWell = false;
480 }
481// Log() << Verbose(3) << "Orthovector2: ";
482// Orthovector2.Output(out);
483// Log() << Verbose(0) << endl;
484
485 // create correct coordination for the three atoms
486 alpha = (TopOrigin->getType()->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
487 l = BondRescale; // desired bond length
488 b = 2.*l*sin(alpha); // base length of isosceles triangle
489 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
490 f = b/sqrt(3.); // length for Orthvector1
491 g = b/2.; // length for Orthvector2
492// Log() << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
493// Log() << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
494 factors[0] = d;
495 factors[1] = f;
496 factors[2] = 0.;
497 FirstOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
498 factors[1] = -0.5*f;
499 factors[2] = g;
500 SecondOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
501 factors[2] = -g;
502 ThirdOtherAtom->LinearCombinationOfVectors(InBondvector, Orthovector1, Orthovector2, factors);
503
504 // rescale each to correct BondDistance
505// FirstOtherAtom->x.Scale(&BondRescale);
506// SecondOtherAtom->x.Scale(&BondRescale);
507// ThirdOtherAtom->x.Scale(&BondRescale);
508
509 // and relative to *origin atom
510 *FirstOtherAtom += TopOrigin->getPosition();
511 *SecondOtherAtom += TopOrigin->getPosition();
512 *ThirdOtherAtom += TopOrigin->getPosition();
513
514 // ... and add to molecule
515 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
516 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
517 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
518// Log() << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
519// FirstOtherAtom->x.Output(out);
520// Log() << Verbose(0) << endl;
521// Log() << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
522// SecondOtherAtom->x.Output(out);
523// Log() << Verbose(0) << endl;
524// Log() << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
525// ThirdOtherAtom->x.Output(out);
526// Log() << Verbose(0) << endl;
527 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
528 Binder->Cyclic = false;
529 Binder->Type = TreeEdge;
530 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
531 Binder->Cyclic = false;
532 Binder->Type = TreeEdge;
533 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
534 Binder->Cyclic = false;
535 Binder->Type = TreeEdge;
536 break;
537 default:
538 DoeLog(1) && (eLog()<< Verbose(1) << "BondDegree does not state single, double or triple bond!" << endl);
539 AllWentWell = false;
540 break;
541 }
542
543// Log() << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
544 return AllWentWell;
545};
546
547/** Adds given atom \a *pointer from molecule list.
548 * Increases molecule::last_atom and gives last number to added atom.
549 * \param filename name and path of xyz file
550 * \return true - succeeded, false - file not found
551 */
552bool molecule::AddXYZFile(string filename)
553{
554
555 istringstream *input = NULL;
556 int NumberOfAtoms = 0; // atom number in xyz read
557 int i, j; // loop variables
558 atom *Walker = NULL; // pointer to added atom
559 char shorthand[3]; // shorthand for atom name
560 ifstream xyzfile; // xyz file
561 string line; // currently parsed line
562 double x[3]; // atom coordinates
563
564 xyzfile.open(filename.c_str());
565 if (!xyzfile)
566 return false;
567
568 OBSERVE;
569 getline(xyzfile,line,'\n'); // Read numer of atoms in file
570 input = new istringstream(line);
571 *input >> NumberOfAtoms;
572 DoLog(0) && (Log() << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl);
573 getline(xyzfile,line,'\n'); // Read comment
574 DoLog(1) && (Log() << Verbose(1) << "Comment: " << line << endl);
575
576 if (MDSteps == 0) // no atoms yet present
577 MDSteps++;
578 for(i=0;i<NumberOfAtoms;i++){
579 Walker = World::getInstance().createAtom();
580 getline(xyzfile,line,'\n');
581 istringstream *item = new istringstream(line);
582 //istringstream input(line);
583 //Log() << Verbose(1) << "Reading: " << line << endl;
584 *item >> shorthand;
585 *item >> x[0];
586 *item >> x[1];
587 *item >> x[2];
588 Walker->setType(elemente->FindElement(shorthand));
589 if (Walker->getType() == NULL) {
590 DoeLog(1) && (eLog()<< Verbose(1) << "Could not parse the element at line: '" << line << "', setting to H.");
591 Walker->setType(1);
592 }
593 if (Walker->Trajectory.R.size() <= (unsigned int)MDSteps) {
594 Walker->Trajectory.R.resize(MDSteps+10);
595 Walker->Trajectory.U.resize(MDSteps+10);
596 Walker->Trajectory.F.resize(MDSteps+10);
597 }
598 Walker->setPosition(Vector(x));
599 for(j=NDIM;j--;) {
600 Walker->Trajectory.R.at(MDSteps-1)[j] = x[j];
601 Walker->Trajectory.U.at(MDSteps-1)[j] = 0;
602 Walker->Trajectory.F.at(MDSteps-1)[j] = 0;
603 }
604 AddAtom(Walker); // add to molecule
605 delete(item);
606 }
607 xyzfile.close();
608 delete(input);
609 return true;
610};
611
612/** Creates a copy of this molecule.
613 * \return copy of molecule
614 */
615molecule *molecule::CopyMolecule()
616{
617 molecule *copy = World::getInstance().createMolecule();
618 atom *LeftAtom = NULL, *RightAtom = NULL;
619
620 // copy all atoms
621 ActOnCopyWithEachAtom ( &molecule::AddCopyAtom, copy );
622
623 // copy all bonds
624 bond *Binder = NULL;
625 bond *NewBond = NULL;
626 for(molecule::iterator AtomRunner = begin(); AtomRunner != end(); ++AtomRunner)
627 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); !(*AtomRunner)->ListOfBonds.empty(); BondRunner = (*AtomRunner)->ListOfBonds.begin())
628 if ((*BondRunner)->leftatom == *AtomRunner) {
629 Binder = (*BondRunner);
630
631 // get the pendant atoms of current bond in the copy molecule
632 copy->ActOnAllAtoms( &atom::EqualsFather, (const atom *)Binder->leftatom, (const atom **)&LeftAtom );
633 copy->ActOnAllAtoms( &atom::EqualsFather, (const atom *)Binder->rightatom, (const atom **)&RightAtom );
634
635 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
636 NewBond->Cyclic = Binder->Cyclic;
637 if (Binder->Cyclic)
638 copy->NoCyclicBonds++;
639 NewBond->Type = Binder->Type;
640 }
641 // correct fathers
642 ActOnAllAtoms( &atom::CorrectFather );
643
644 // copy values
645 if (hasBondStructure()) { // if adjaceny list is present
646 copy->BondDistance = BondDistance;
647 }
648
649 return copy;
650};
651
652
653/**
654 * Copies all atoms of a molecule which are within the defined parallelepiped.
655 *
656 * @param offest for the origin of the parallelepiped
657 * @param three vectors forming the matrix that defines the shape of the parallelpiped
658 */
659molecule* molecule::CopyMoleculeFromSubRegion(const Shape &region) const {
660 molecule *copy = World::getInstance().createMolecule();
661
662 BOOST_FOREACH(atom *iter,atoms){
663 if(iter->IsInShape(region)){
664 copy->AddCopyAtom(iter);
665 }
666 }
667
668 //TODO: copy->BuildInducedSubgraph(this);
669
670 return copy;
671}
672
673/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
674 * Also updates molecule::BondCount and molecule::NoNonBonds.
675 * \param *first first atom in bond
676 * \param *second atom in bond
677 * \return pointer to bond or NULL on failure
678 */
679bond * molecule::AddBond(atom *atom1, atom *atom2, int degree)
680{
681 OBSERVE;
682 bond *Binder = NULL;
683
684 // some checks to make sure we are able to create the bond
685 ASSERT(atom1, "First atom in bond-creation was an invalid pointer");
686 ASSERT(atom2, "Second atom in bond-creation was an invalid pointer");
687 ASSERT(FindAtom(atom1->nr),"First atom in bond-creation was not part of molecule");
688 ASSERT(FindAtom(atom2->nr),"Second atom in bond-creation was not parto of molecule");
689
690 Binder = new bond(atom1, atom2, degree, BondCount++);
691 atom1->RegisterBond(Binder);
692 atom2->RegisterBond(Binder);
693 if ((atom1->getType() != NULL) && (atom1->getType()->Z != 1) && (atom2->getType() != NULL) && (atom2->getType()->Z != 1))
694 NoNonBonds++;
695
696 return Binder;
697};
698
699/** Remove bond from bond chain list and from the both atom::ListOfBonds.
700 * \todo Function not implemented yet
701 * \param *pointer bond pointer
702 * \return true - bound found and removed, false - bond not found/removed
703 */
704bool molecule::RemoveBond(bond *pointer)
705{
706 //DoeLog(1) && (eLog()<< Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl);
707 delete(pointer);
708 return true;
709};
710
711/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
712 * \todo Function not implemented yet
713 * \param *BondPartner atom to be removed
714 * \return true - bounds found and removed, false - bonds not found/removed
715 */
716bool molecule::RemoveBonds(atom *BondPartner)
717{
718 //DoeLog(1) && (eLog()<< Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl);
719 BondList::const_iterator ForeRunner;
720 while (!BondPartner->ListOfBonds.empty()) {
721 ForeRunner = BondPartner->ListOfBonds.begin();
722 RemoveBond(*ForeRunner);
723 }
724 return false;
725};
726
727/** Set molecule::name from the basename without suffix in the given \a *filename.
728 * \param *filename filename
729 */
730void molecule::SetNameFromFilename(const char *filename)
731{
732 int length = 0;
733 const char *molname = strrchr(filename, '/');
734 if (molname != NULL)
735 molname += sizeof(char); // search for filename without dirs
736 else
737 molname = filename; // contains no slashes
738 const char *endname = strchr(molname, '.');
739 if ((endname == NULL) || (endname < molname))
740 length = strlen(molname);
741 else
742 length = strlen(molname) - strlen(endname);
743 cout << "Set name of molecule " << getId() << " to " << molname << endl;
744 strncpy(name, molname, length);
745 name[length]='\0';
746};
747
748/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
749 * \param *dim vector class
750 */
751void molecule::SetBoxDimension(Vector *dim)
752{
753 Matrix domain;
754 for(int i =0; i<NDIM;++i)
755 domain.at(i,i) = dim->at(i);
756 World::getInstance().setDomain(domain);
757};
758
759/** Removes atom from molecule list and deletes it.
760 * \param *pointer atom to be removed
761 * \return true - succeeded, false - atom not found in list
762 */
763bool molecule::RemoveAtom(atom *pointer)
764{
765 ASSERT(pointer, "Null pointer passed to molecule::RemoveAtom().");
766 OBSERVE;
767 formula-=pointer->getType();
768 RemoveBonds(pointer);
769 erase(pointer);
770 return true;
771};
772
773/** Removes atom from molecule list, but does not delete it.
774 * \param *pointer atom to be removed
775 * \return true - succeeded, false - atom not found in list
776 */
777bool molecule::UnlinkAtom(atom *pointer)
778{
779 if (pointer == NULL)
780 return false;
781 formula-=pointer->getType();
782 erase(pointer);
783 return true;
784};
785
786/** Removes every atom from molecule list.
787 * \return true - succeeded, false - atom not found in list
788 */
789bool molecule::CleanupMolecule()
790{
791 for (molecule::iterator iter = begin(); !empty(); iter = begin())
792 erase(iter);
793 return empty();
794};
795
796/** Finds an atom specified by its continuous number.
797 * \param Nr number of atom withim molecule
798 * \return pointer to atom or NULL
799 */
800atom * molecule::FindAtom(int Nr) const
801{
802 molecule::const_iterator iter = begin();
803 for (; iter != end(); ++iter)
804 if ((*iter)->nr == Nr)
805 break;
806 if (iter != end()) {
807 //Log() << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
808 return (*iter);
809 } else {
810 DoLog(0) && (Log() << Verbose(0) << "Atom not found in list." << endl);
811 return NULL;
812 }
813};
814
815/** Asks for atom number, and checks whether in list.
816 * \param *text question before entering
817 */
818atom * molecule::AskAtom(string text)
819{
820 int No;
821 atom *ion = NULL;
822 do {
823 //Log() << Verbose(0) << "============Atom list==========================" << endl;
824 //mol->Output((ofstream *)&cout);
825 //Log() << Verbose(0) << "===============================================" << endl;
826 DoLog(0) && (Log() << Verbose(0) << text);
827 cin >> No;
828 ion = this->FindAtom(No);
829 } while (ion == NULL);
830 return ion;
831};
832
833/** Checks if given coordinates are within cell volume.
834 * \param *x array of coordinates
835 * \return true - is within, false - out of cell
836 */
837bool molecule::CheckBounds(const Vector *x) const
838{
839 const Matrix &domain = World::getInstance().getDomain().getM();
840 bool result = true;
841 for (int i=0;i<NDIM;i++) {
842 result = result && ((x->at(i) >= 0) && (x->at(i) < domain.at(i,i)));
843 }
844 //return result;
845 return true; /// probably not gonna use the check no more
846};
847
848/** Prints molecule to *out.
849 * \param *out output stream
850 */
851bool molecule::Output(ofstream * const output)
852{
853 int ElementNo[MAX_ELEMENTS], AtomNo[MAX_ELEMENTS];
854
855 for (int i=0;i<MAX_ELEMENTS;++i) {
856 AtomNo[i] = 0;
857 ElementNo[i] = 0;
858 }
859 if (output == NULL) {
860 return false;
861 } else {
862 *output << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
863 SetIndexedArrayForEachAtomTo ( ElementNo, &element::Z, &AbsoluteValue, 1);
864 int current=1;
865 for (int i=0;i<MAX_ELEMENTS;++i) {
866 if (ElementNo[i] == 1)
867 ElementNo[i] = current++;
868 }
869 ActOnAllAtoms( &atom::OutputArrayIndexed, (ostream * const) output, (const int *)ElementNo, (int *)AtomNo, (const char *) NULL );
870 return true;
871 }
872};
873
874/** Prints molecule with all atomic trajectory positions to *out.
875 * \param *out output stream
876 */
877bool molecule::OutputTrajectories(ofstream * const output)
878{
879 int ElementNo[MAX_ELEMENTS], AtomNo[MAX_ELEMENTS];
880
881 if (output == NULL) {
882 return false;
883 } else {
884 for (int step = 0; step < MDSteps; step++) {
885 if (step == 0) {
886 *output << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
887 } else {
888 *output << "# ====== MD step " << step << " =========" << endl;
889 }
890 for (int i=0;i<MAX_ELEMENTS;++i) {
891 AtomNo[i] = 0;
892 ElementNo[i] = 0;
893 }
894 SetIndexedArrayForEachAtomTo ( ElementNo, &element::Z, &AbsoluteValue, 1);
895 int current=1;
896 for (int i=0;i<MAX_ELEMENTS;++i) {
897 if (ElementNo[i] == 1)
898 ElementNo[i] = current++;
899 }
900 ActOnAllAtoms( &atom::OutputTrajectory, output, (const int *)ElementNo, AtomNo, (const int)step );
901 }
902 return true;
903 }
904};
905
906/** Outputs contents of each atom::ListOfBonds.
907 * \param *out output stream
908 */
909void molecule::OutputListOfBonds() const
910{
911 DoLog(2) && (Log() << Verbose(2) << endl << "From Contents of ListOfBonds, all non-hydrogen atoms:" << endl);
912 ActOnAllAtoms (&atom::OutputBondOfAtom );
913 DoLog(0) && (Log() << Verbose(0) << endl);
914};
915
916/** Output of element before the actual coordination list.
917 * \param *out stream pointer
918 */
919bool molecule::Checkout(ofstream * const output) const
920{
921 return formula.checkOut(output);
922};
923
924/** Prints molecule with all its trajectories to *out as xyz file.
925 * \param *out output stream
926 */
927bool molecule::OutputTrajectoriesXYZ(ofstream * const output)
928{
929 time_t now;
930
931 if (output != NULL) {
932 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
933 for (int step=0;step<MDSteps;step++) {
934 *output << getAtomCount() << "\n\tCreated by molecuilder, step " << step << ", on " << ctime(&now);
935 ActOnAllAtoms( &atom::OutputTrajectoryXYZ, output, step );
936 }
937 return true;
938 } else
939 return false;
940};
941
942/** Prints molecule to *out as xyz file.
943* \param *out output stream
944 */
945bool molecule::OutputXYZ(ofstream * const output) const
946{
947 time_t now;
948
949 if (output != NULL) {
950 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
951 *output << getAtomCount() << "\n\tCreated by molecuilder on " << ctime(&now);
952 ActOnAllAtoms( &atom::OutputXYZLine, output );
953 return true;
954 } else
955 return false;
956};
957
958/** Brings molecule::AtomCount and atom::*Name up-to-date.
959 * \param *out output stream for debugging
960 */
961int molecule::doCountAtoms()
962{
963 int res = size();
964 int i = 0;
965 NoNonHydrogen = 0;
966 for (molecule::const_iterator iter = atoms.begin(); iter != atoms.end(); ++iter) {
967 (*iter)->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
968 if ((*iter)->getType()->Z != 1) // count non-hydrogen atoms whilst at it
969 NoNonHydrogen++;
970 stringstream sstr;
971 sstr << (*iter)->getType()->symbol << (*iter)->nr+1;
972 (*iter)->setName(sstr.str());
973 DoLog(3) && (Log() << Verbose(3) << "Naming atom nr. " << (*iter)->nr << " " << (*iter)->getName() << "." << endl);
974 i++;
975 }
976 return res;
977};
978
979/** Determines whether two molecules actually contain the same atoms and coordination.
980 * \param *out output stream for debugging
981 * \param *OtherMolecule the molecule to compare this one to
982 * \param threshold upper limit of difference when comparing the coordination.
983 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
984 */
985int * molecule::IsEqualToWithinThreshold(molecule *OtherMolecule, double threshold)
986{
987 int flag;
988 double *Distances = NULL, *OtherDistances = NULL;
989 Vector CenterOfGravity, OtherCenterOfGravity;
990 size_t *PermMap = NULL, *OtherPermMap = NULL;
991 int *PermutationMap = NULL;
992 bool result = true; // status of comparison
993
994 DoLog(3) && (Log() << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl);
995 /// first count both their atoms and elements and update lists thereby ...
996 //Log() << Verbose(0) << "Counting atoms, updating list" << endl;
997
998 /// ... and compare:
999 /// -# AtomCount
1000 if (result) {
1001 if (getAtomCount() != OtherMolecule->getAtomCount()) {
1002 DoLog(4) && (Log() << Verbose(4) << "AtomCounts don't match: " << getAtomCount() << " == " << OtherMolecule->getAtomCount() << endl);
1003 result = false;
1004 } else Log() << Verbose(4) << "AtomCounts match: " << getAtomCount() << " == " << OtherMolecule->getAtomCount() << endl;
1005 }
1006 /// -# Formula
1007 if (result) {
1008 if (formula != OtherMolecule->formula) {
1009 DoLog(4) && (Log() << Verbose(4) << "Formulas don't match: " << formula << " == " << OtherMolecule->formula << endl);
1010 result = false;
1011 } else Log() << Verbose(4) << "Formulas match: " << formula << " == " << OtherMolecule->formula << endl;
1012 }
1013 /// then determine and compare center of gravity for each molecule ...
1014 if (result) {
1015 DoLog(5) && (Log() << Verbose(5) << "Calculating Centers of Gravity" << endl);
1016 DeterminePeriodicCenter(CenterOfGravity);
1017 OtherMolecule->DeterminePeriodicCenter(OtherCenterOfGravity);
1018 DoLog(5) && (Log() << Verbose(5) << "Center of Gravity: " << CenterOfGravity << endl);
1019 DoLog(5) && (Log() << Verbose(5) << "Other Center of Gravity: " << OtherCenterOfGravity << endl);
1020 if (CenterOfGravity.DistanceSquared(OtherCenterOfGravity) > threshold*threshold) {
1021 DoLog(4) && (Log() << Verbose(4) << "Centers of gravity don't match." << endl);
1022 result = false;
1023 }
1024 }
1025
1026 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
1027 if (result) {
1028 DoLog(5) && (Log() << Verbose(5) << "Calculating distances" << endl);
1029 Distances = new double[getAtomCount()];
1030 OtherDistances = new double[getAtomCount()];
1031 SetIndexedArrayForEachAtomTo ( Distances, &atom::nr, &atom::DistanceSquaredToVector, (const Vector &)CenterOfGravity);
1032 SetIndexedArrayForEachAtomTo ( OtherDistances, &atom::nr, &atom::DistanceSquaredToVector, (const Vector &)CenterOfGravity);
1033 for(int i=0;i<getAtomCount();i++) {
1034 Distances[i] = 0.;
1035 OtherDistances[i] = 0.;
1036 }
1037
1038 /// ... sort each list (using heapsort (o(N log N)) from GSL)
1039 DoLog(5) && (Log() << Verbose(5) << "Sorting distances" << endl);
1040 PermMap = new size_t[getAtomCount()];
1041 OtherPermMap = new size_t[getAtomCount()];
1042 for(int i=0;i<getAtomCount();i++) {
1043 PermMap[i] = 0;
1044 OtherPermMap[i] = 0;
1045 }
1046 gsl_heapsort_index (PermMap, Distances, getAtomCount(), sizeof(double), CompareDoubles);
1047 gsl_heapsort_index (OtherPermMap, OtherDistances, getAtomCount(), sizeof(double), CompareDoubles);
1048 PermutationMap = new int[getAtomCount()];
1049 for(int i=0;i<getAtomCount();i++)
1050 PermutationMap[i] = 0;
1051 DoLog(5) && (Log() << Verbose(5) << "Combining Permutation Maps" << endl);
1052 for(int i=getAtomCount();i--;)
1053 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
1054
1055 /// ... and compare them step by step, whether the difference is individually(!) below \a threshold for all
1056 DoLog(4) && (Log() << Verbose(4) << "Comparing distances" << endl);
1057 flag = 0;
1058 for (int i=0;i<getAtomCount();i++) {
1059 DoLog(5) && (Log() << Verbose(5) << "Distances squared: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl);
1060 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold*threshold)
1061 flag = 1;
1062 }
1063
1064 // free memory
1065 delete[](PermMap);
1066 delete[](OtherPermMap);
1067 delete[](Distances);
1068 delete[](OtherDistances);
1069 if (flag) { // if not equal
1070 delete[](PermutationMap);
1071 result = false;
1072 }
1073 }
1074 /// return pointer to map if all distances were below \a threshold
1075 DoLog(3) && (Log() << Verbose(3) << "End of IsEqualToWithinThreshold." << endl);
1076 if (result) {
1077 DoLog(3) && (Log() << Verbose(3) << "Result: Equal." << endl);
1078 return PermutationMap;
1079 } else {
1080 DoLog(3) && (Log() << Verbose(3) << "Result: Not equal." << endl);
1081 return NULL;
1082 }
1083};
1084
1085/** Returns an index map for two father-son-molecules.
1086 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
1087 * \param *out output stream for debugging
1088 * \param *OtherMolecule corresponding molecule with fathers
1089 * \return allocated map of size molecule::AtomCount with map
1090 * \todo make this with a good sort O(n), not O(n^2)
1091 */
1092int * molecule::GetFatherSonAtomicMap(molecule *OtherMolecule)
1093{
1094 DoLog(3) && (Log() << Verbose(3) << "Begin of GetFatherAtomicMap." << endl);
1095 int *AtomicMap = new int[getAtomCount()];
1096 for (int i=getAtomCount();i--;)
1097 AtomicMap[i] = -1;
1098 if (OtherMolecule == this) { // same molecule
1099 for (int i=getAtomCount();i--;) // no need as -1 means already that there is trivial correspondence
1100 AtomicMap[i] = i;
1101 DoLog(4) && (Log() << Verbose(4) << "Map is trivial." << endl);
1102 } else {
1103 DoLog(4) && (Log() << Verbose(4) << "Map is ");
1104 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
1105 if ((*iter)->father == NULL) {
1106 AtomicMap[(*iter)->nr] = -2;
1107 } else {
1108 for (molecule::const_iterator runner = OtherMolecule->begin(); runner != OtherMolecule->end(); ++runner) {
1109 //for (int i=0;i<AtomCount;i++) { // search atom
1110 //for (int j=0;j<OtherMolecule->getAtomCount();j++) {
1111 //Log() << Verbose(4) << "Comparing father " << (*iter)->father << " with the other one " << (*runner)->father << "." << endl;
1112 if ((*iter)->father == (*runner))
1113 AtomicMap[(*iter)->nr] = (*runner)->nr;
1114 }
1115 }
1116 DoLog(0) && (Log() << Verbose(0) << AtomicMap[(*iter)->nr] << "\t");
1117 }
1118 DoLog(0) && (Log() << Verbose(0) << endl);
1119 }
1120 DoLog(3) && (Log() << Verbose(3) << "End of GetFatherAtomicMap." << endl);
1121 return AtomicMap;
1122};
1123
1124/** Stores the temperature evaluated from velocities in molecule::Trajectories.
1125 * We simply use the formula equivaleting temperature and kinetic energy:
1126 * \f$k_B T = \sum_i m_i v_i^2\f$
1127 * \param *output output stream of temperature file
1128 * \param startstep first MD step in molecule::Trajectories
1129 * \param endstep last plus one MD step in molecule::Trajectories
1130 * \return file written (true), failure on writing file (false)
1131 */
1132bool molecule::OutputTemperatureFromTrajectories(ofstream * const output, int startstep, int endstep)
1133{
1134 double temperature;
1135 // test stream
1136 if (output == NULL)
1137 return false;
1138 else
1139 *output << "# Step Temperature [K] Temperature [a.u.]" << endl;
1140 for (int step=startstep;step < endstep; step++) { // loop over all time steps
1141 temperature = 0.;
1142 ActOnAllAtoms( &TrajectoryParticle::AddKineticToTemperature, &temperature, step);
1143 *output << step << "\t" << temperature*AtomicEnergyToKelvin << "\t" << temperature << endl;
1144 }
1145 return true;
1146};
1147
1148void molecule::SetIndexedArrayForEachAtomTo ( atom **array, int ParticleInfo::*index) const
1149{
1150 for (molecule::const_iterator iter = begin(); iter != end(); ++iter) {
1151 array[((*iter)->*index)] = (*iter);
1152 }
1153};
1154
1155void molecule::flipActiveFlag(){
1156 ActiveFlag = !ActiveFlag;
1157}
Note: See TracBrowser for help on using the repository browser.