| 1 | /** \file linkedcell.cpp
 | 
|---|
| 2 |  *
 | 
|---|
| 3 |  * Function implementations for the class LinkedCell.
 | 
|---|
| 4 |  *
 | 
|---|
| 5 |  */
 | 
|---|
| 6 | 
 | 
|---|
| 7 | #include "Helpers/MemDebug.hpp"
 | 
|---|
| 8 | 
 | 
|---|
| 9 | #include "atom.hpp"
 | 
|---|
| 10 | #include "Helpers/helpers.hpp"
 | 
|---|
| 11 | #include "linkedcell.hpp"
 | 
|---|
| 12 | #include "Helpers/Verbose.hpp"
 | 
|---|
| 13 | #include "Helpers/Log.hpp"
 | 
|---|
| 14 | #include "molecule.hpp"
 | 
|---|
| 15 | #include "tesselation.hpp"
 | 
|---|
| 16 | #include "LinearAlgebra/Vector.hpp"
 | 
|---|
| 17 | 
 | 
|---|
| 18 | // ========================================================= class LinkedCell ===========================================
 | 
|---|
| 19 | 
 | 
|---|
| 20 | 
 | 
|---|
| 21 | /** Constructor for class LinkedCell.
 | 
|---|
| 22 |  */
 | 
|---|
| 23 | LinkedCell::LinkedCell() :
 | 
|---|
| 24 |   LC(NULL),
 | 
|---|
| 25 |   index(-1),
 | 
|---|
| 26 |   RADIUS(0.)
 | 
|---|
| 27 | {
 | 
|---|
| 28 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 29 |     N[i] = 0;
 | 
|---|
| 30 |   max.Zero();
 | 
|---|
| 31 |   min.Zero();
 | 
|---|
| 32 | };
 | 
|---|
| 33 | 
 | 
|---|
| 34 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
 | 
|---|
| 35 |  * \param *set LCNodeSet class with all LCNode's
 | 
|---|
| 36 |  * \param RADIUS edge length of cells
 | 
|---|
| 37 |  */
 | 
|---|
| 38 | LinkedCell::LinkedCell(const PointCloud * const set, const double radius) :
 | 
|---|
| 39 |   RADIUS(radius),
 | 
|---|
| 40 |   LC(NULL),
 | 
|---|
| 41 |   index(-1)
 | 
|---|
| 42 | {
 | 
|---|
| 43 |   TesselPoint *Walker = NULL;
 | 
|---|
| 44 | 
 | 
|---|
| 45 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 46 |     N[i] = 0;
 | 
|---|
| 47 |   max.Zero();
 | 
|---|
| 48 |   min.Zero();
 | 
|---|
| 49 |   DoLog(1) && (Log() << Verbose(1) << "Begin of LinkedCell" << endl);
 | 
|---|
| 50 |   if ((set == NULL) || (set->IsEmpty())) {
 | 
|---|
| 51 |     DoeLog(1) && (eLog()<< Verbose(1) << "set is NULL or contains no linked cell nodes!" << endl);
 | 
|---|
| 52 |     return;
 | 
|---|
| 53 |   }
 | 
|---|
| 54 |   // 1. find max and min per axis of atoms
 | 
|---|
| 55 |   set->GoToFirst();
 | 
|---|
| 56 |   Walker = set->GetPoint();
 | 
|---|
| 57 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 58 |     max[i] = Walker->at(i);
 | 
|---|
| 59 |     min[i] = Walker->at(i);
 | 
|---|
| 60 |   }
 | 
|---|
| 61 |   set->GoToFirst();
 | 
|---|
| 62 |   while (!set->IsEnd()) {
 | 
|---|
| 63 |     Walker = set->GetPoint();
 | 
|---|
| 64 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
| 65 |       if (max[i] < Walker->at(i))
 | 
|---|
| 66 |         max[i] = Walker->at(i);
 | 
|---|
| 67 |       if (min[i] > Walker->at(i))
 | 
|---|
| 68 |         min[i] = Walker->at(i);
 | 
|---|
| 69 |     }
 | 
|---|
| 70 |     set->GoToNext();
 | 
|---|
| 71 |   }
 | 
|---|
| 72 |   DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl);
 | 
|---|
| 73 | 
 | 
|---|
| 74 |   // 2. find then number of cells per axis
 | 
|---|
| 75 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 76 |     N[i] = static_cast<int>(floor((max[i] - min[i])/RADIUS)+1);
 | 
|---|
| 77 |   }
 | 
|---|
| 78 |   DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl);
 | 
|---|
| 79 | 
 | 
|---|
| 80 |   // 3. allocate the lists
 | 
|---|
| 81 |   DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... ");
 | 
|---|
| 82 |   if (LC != NULL) {
 | 
|---|
| 83 |     DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
 | 
|---|
| 84 |     return;
 | 
|---|
| 85 |   }
 | 
|---|
| 86 |   LC = new LinkedNodes[N[0]*N[1]*N[2]];
 | 
|---|
| 87 |   for (index=0;index<N[0]*N[1]*N[2];index++) {
 | 
|---|
| 88 |     LC [index].clear();
 | 
|---|
| 89 |   }
 | 
|---|
| 90 |   DoLog(0) && (Log() << Verbose(0) << "done."  << endl);
 | 
|---|
| 91 | 
 | 
|---|
| 92 |   // 4. put each atom into its respective cell
 | 
|---|
| 93 |   DoLog(2) && (Log() << Verbose(2) << "Filling cells ... ");
 | 
|---|
| 94 |   set->GoToFirst();
 | 
|---|
| 95 |   while (!set->IsEnd()) {
 | 
|---|
| 96 |     Walker = set->GetPoint();
 | 
|---|
| 97 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
| 98 |       n[i] = static_cast<int>(floor((Walker->at(i) - min[i])/RADIUS));
 | 
|---|
| 99 |     }
 | 
|---|
| 100 |     index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
 | 
|---|
| 101 |     LC[index].push_back(Walker);
 | 
|---|
| 102 |     //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
 | 
|---|
| 103 |     set->GoToNext();
 | 
|---|
| 104 |   }
 | 
|---|
| 105 |   DoLog(0) && (Log() << Verbose(0) << "done."  << endl);
 | 
|---|
| 106 |   DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl);
 | 
|---|
| 107 | };
 | 
|---|
| 108 | 
 | 
|---|
| 109 | 
 | 
|---|
| 110 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
 | 
|---|
| 111 |  * \param *set LCNodeSet class with all LCNode's
 | 
|---|
| 112 |  * \param RADIUS edge length of cells
 | 
|---|
| 113 |  */
 | 
|---|
| 114 | LinkedCell::LinkedCell(LinkedNodes *set, const double radius) :
 | 
|---|
| 115 |   RADIUS(radius),
 | 
|---|
| 116 |   LC(NULL),
 | 
|---|
| 117 |   index(-1)
 | 
|---|
| 118 | {
 | 
|---|
| 119 |   class TesselPoint *Walker = NULL;
 | 
|---|
| 120 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 121 |     N[i] = 0;
 | 
|---|
| 122 |   max.Zero();
 | 
|---|
| 123 |   min.Zero();
 | 
|---|
| 124 |   DoLog(1) && (Log() << Verbose(1) << "Begin of LinkedCell" << endl);
 | 
|---|
| 125 |   if (set->empty()) {
 | 
|---|
| 126 |     DoeLog(1) && (eLog()<< Verbose(1) << "set contains no linked cell nodes!" << endl);
 | 
|---|
| 127 |     return;
 | 
|---|
| 128 |   }
 | 
|---|
| 129 |   // 1. find max and min per axis of atoms
 | 
|---|
| 130 |   LinkedNodes::iterator Runner = set->begin();
 | 
|---|
| 131 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 132 |     max[i] = (*Runner)->at(i);
 | 
|---|
| 133 |     min[i] = (*Runner)->at(i);
 | 
|---|
| 134 |   }
 | 
|---|
| 135 |   for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
 | 
|---|
| 136 |     Walker = *Runner;
 | 
|---|
| 137 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
| 138 |       if (max[i] < Walker->at(i))
 | 
|---|
| 139 |         max[i] = Walker->at(i);
 | 
|---|
| 140 |       if (min[i] > Walker->at(i))
 | 
|---|
| 141 |         min[i] = Walker->at(i);
 | 
|---|
| 142 |     }
 | 
|---|
| 143 |   }
 | 
|---|
| 144 |   DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl);
 | 
|---|
| 145 | 
 | 
|---|
| 146 |   // 2. find then number of cells per axis
 | 
|---|
| 147 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 148 |     N[i] = static_cast<int>(floor((max[i] - min[i])/RADIUS)+1);
 | 
|---|
| 149 |   }
 | 
|---|
| 150 |   DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl);
 | 
|---|
| 151 | 
 | 
|---|
| 152 |   // 3. allocate the lists
 | 
|---|
| 153 |   DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... ");
 | 
|---|
| 154 |   if (LC != NULL) {
 | 
|---|
| 155 |     DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
 | 
|---|
| 156 |     return;
 | 
|---|
| 157 |   }
 | 
|---|
| 158 |   LC = new LinkedNodes[N[0]*N[1]*N[2]];
 | 
|---|
| 159 |   for (index=0;index<N[0]*N[1]*N[2];index++) {
 | 
|---|
| 160 |     LC [index].clear();
 | 
|---|
| 161 |   }
 | 
|---|
| 162 |   DoLog(0) && (Log() << Verbose(0) << "done."  << endl);
 | 
|---|
| 163 | 
 | 
|---|
| 164 |   // 4. put each atom into its respective cell
 | 
|---|
| 165 |   DoLog(2) && (Log() << Verbose(2) << "Filling cells ... ");
 | 
|---|
| 166 |   for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
 | 
|---|
| 167 |     Walker = *Runner;
 | 
|---|
| 168 |     for (int i=0;i<NDIM;i++) {
 | 
|---|
| 169 |       n[i] = static_cast<int>(floor((Walker->at(i) - min[i])/RADIUS));
 | 
|---|
| 170 |     }
 | 
|---|
| 171 |     index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
 | 
|---|
| 172 |     LC[index].push_back(Walker);
 | 
|---|
| 173 |     //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
 | 
|---|
| 174 |   }
 | 
|---|
| 175 |   DoLog(0) && (Log() << Verbose(0) << "done."  << endl);
 | 
|---|
| 176 |   DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl);
 | 
|---|
| 177 | };
 | 
|---|
| 178 | 
 | 
|---|
| 179 | /** Destructor for class LinkedCell.
 | 
|---|
| 180 |  */
 | 
|---|
| 181 | LinkedCell::~LinkedCell()
 | 
|---|
| 182 | {
 | 
|---|
| 183 |   if (LC != NULL)
 | 
|---|
| 184 |   for (index=0;index<N[0]*N[1]*N[2];index++)
 | 
|---|
| 185 |     LC[index].clear();
 | 
|---|
| 186 |   delete[](LC);
 | 
|---|
| 187 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 188 |     N[i] = 0;
 | 
|---|
| 189 |   index = -1;
 | 
|---|
| 190 | };
 | 
|---|
| 191 | 
 | 
|---|
| 192 | /** Checks whether LinkedCell::n[] is each within [0,N[]].
 | 
|---|
| 193 |  * \return if all in intervals - true, else -false
 | 
|---|
| 194 |  */
 | 
|---|
| 195 | bool LinkedCell::CheckBounds() const
 | 
|---|
| 196 | {
 | 
|---|
| 197 |   bool status = true;
 | 
|---|
| 198 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 199 |     status = status && ((n[i] >=0) && (n[i] < N[i]));
 | 
|---|
| 200 | //  if (!status)
 | 
|---|
| 201 | //    DoeLog(1) && (eLog()<< Verbose(1) << "indices are out of bounds!" << endl);
 | 
|---|
| 202 |   return status;
 | 
|---|
| 203 | };
 | 
|---|
| 204 | 
 | 
|---|
| 205 | /** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]].
 | 
|---|
| 206 |  * Note that for this check we don't admonish if out of bounds.
 | 
|---|
| 207 |  * \param relative[NDIM] relative offset to current cell
 | 
|---|
| 208 |  * \return if all in intervals - true, else -false
 | 
|---|
| 209 |  */
 | 
|---|
| 210 | bool LinkedCell::CheckBounds(const int relative[NDIM]) const
 | 
|---|
| 211 | {
 | 
|---|
| 212 |   bool status = true;
 | 
|---|
| 213 |   for(int i=0;i<NDIM;i++)
 | 
|---|
| 214 |     status = status && ((n[i]+relative[i] >=0) && (n[i]+relative[i] < N[i]));
 | 
|---|
| 215 |   return status;
 | 
|---|
| 216 | };
 | 
|---|
| 217 | 
 | 
|---|
| 218 | 
 | 
|---|
| 219 | /** Returns a pointer to the current cell.
 | 
|---|
| 220 |  * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
 | 
|---|
| 221 |  */
 | 
|---|
| 222 | const LinkedCell::LinkedNodes* LinkedCell::GetCurrentCell() const
 | 
|---|
| 223 | {
 | 
|---|
| 224 |   if (CheckBounds()) {
 | 
|---|
| 225 |     index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
 | 
|---|
| 226 |     return (&(LC[index]));
 | 
|---|
| 227 |   } else {
 | 
|---|
| 228 |     return NULL;
 | 
|---|
| 229 |   }
 | 
|---|
| 230 | };
 | 
|---|
| 231 | 
 | 
|---|
| 232 | /** Returns a pointer to the current cell.
 | 
|---|
| 233 |  * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM]
 | 
|---|
| 234 |  * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds.
 | 
|---|
| 235 |  */
 | 
|---|
| 236 | const LinkedCell::LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const
 | 
|---|
| 237 | {
 | 
|---|
| 238 |   if (CheckBounds(relative)) {
 | 
|---|
| 239 |     index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
 | 
|---|
| 240 |     return (&(LC[index]));
 | 
|---|
| 241 |   } else {
 | 
|---|
| 242 |     return NULL;
 | 
|---|
| 243 |   }
 | 
|---|
| 244 | };
 | 
|---|
| 245 | 
 | 
|---|
| 246 | /** Set the index to the cell containing a given Vector *x.
 | 
|---|
| 247 |  * \param *x Vector with coordinates
 | 
|---|
| 248 |  * \return Vector is inside bounding box - true, else - false
 | 
|---|
| 249 |  */
 | 
|---|
| 250 | bool LinkedCell::SetIndexToVector(const Vector & x) const
 | 
|---|
| 251 | {
 | 
|---|
| 252 |   for (int i=0;i<NDIM;i++)
 | 
|---|
| 253 |     n[i] = (int)floor((x.at(i) - min[i])/RADIUS);
 | 
|---|
| 254 | 
 | 
|---|
| 255 |   return CheckBounds();
 | 
|---|
| 256 | };
 | 
|---|
| 257 | 
 | 
|---|
| 258 | /** Calculates the index for a given LCNode *Walker.
 | 
|---|
| 259 |  * \param *Walker LCNode to set index tos
 | 
|---|
| 260 |  * \return if the atom is also found in this cell - true, else - false
 | 
|---|
| 261 |  */
 | 
|---|
| 262 | bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const
 | 
|---|
| 263 | {
 | 
|---|
| 264 |   bool status = false;
 | 
|---|
| 265 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 266 |     n[i] = static_cast<int>(floor((Walker->at(i) - min[i])/RADIUS));
 | 
|---|
| 267 |   }
 | 
|---|
| 268 |   index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
 | 
|---|
| 269 |   if (CheckBounds()) {
 | 
|---|
| 270 |     for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
 | 
|---|
| 271 |       status = status || ((*Runner) == Walker);
 | 
|---|
| 272 |     return status;
 | 
|---|
| 273 |   } else {
 | 
|---|
| 274 |     DoeLog(1) && (eLog()<< Verbose(1) << "Node at " << *Walker << " is out of bounds." << endl);
 | 
|---|
| 275 |     return false;
 | 
|---|
| 276 |   }
 | 
|---|
| 277 | };
 | 
|---|
| 278 | 
 | 
|---|
| 279 | /** Calculates the interval bounds of the linked cell grid.
 | 
|---|
| 280 |  * \param lower lower bounds
 | 
|---|
| 281 |  * \param upper upper bounds
 | 
|---|
| 282 |  * \param step how deep to check the neighbouring cells (i.e. number of layers to check)
 | 
|---|
| 283 |  */
 | 
|---|
| 284 | void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM], int step) const
 | 
|---|
| 285 | {
 | 
|---|
| 286 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 287 |     lower[i] = n[i]-step;
 | 
|---|
| 288 |     if (lower[i] < 0)
 | 
|---|
| 289 |       lower[i] = 0;
 | 
|---|
| 290 |     if (lower[i] >= N[i])
 | 
|---|
| 291 |       lower[i] = N[i]-1;
 | 
|---|
| 292 |     upper[i] = n[i]+step;
 | 
|---|
| 293 |     if (upper[i] >= N[i])
 | 
|---|
| 294 |       upper[i] = N[i]-1;
 | 
|---|
| 295 |     if (upper[i] < 0)
 | 
|---|
| 296 |       upper[i] = 0;
 | 
|---|
| 297 |     //Log() << Verbose(0) << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
 | 
|---|
| 298 |   }
 | 
|---|
| 299 | };
 | 
|---|
| 300 | 
 | 
|---|
| 301 | /** Returns a list with all neighbours from the current LinkedCell::index.
 | 
|---|
| 302 |  * \param distance (if no distance, then adjacent cells are taken)
 | 
|---|
| 303 |  * \return list of tesselpoints
 | 
|---|
| 304 |  */
 | 
|---|
| 305 | LinkedCell::LinkedNodes* LinkedCell::GetallNeighbours(const double distance) const
 | 
|---|
| 306 | {
 | 
|---|
| 307 |   int Nlower[NDIM], Nupper[NDIM];
 | 
|---|
| 308 |   TesselPoint *Walker = NULL;
 | 
|---|
| 309 |   LinkedNodes *TesselList = new LinkedNodes;
 | 
|---|
| 310 | 
 | 
|---|
| 311 |   // then go through the current and all neighbouring cells and check the contained points for possible candidates
 | 
|---|
| 312 |   const int step = (distance == 0) ? 1 : (int)floor(distance/RADIUS + 1.);
 | 
|---|
| 313 |   GetNeighbourBounds(Nlower, Nupper, step);
 | 
|---|
| 314 | 
 | 
|---|
| 315 |   //Log() << Verbose(0) << endl;
 | 
|---|
| 316 |   for (n[0] = Nlower[0]; n[0] <= Nupper[0]; n[0]++)
 | 
|---|
| 317 |     for (n[1] = Nlower[1]; n[1] <= Nupper[1]; n[1]++)
 | 
|---|
| 318 |       for (n[2] = Nlower[2]; n[2] <= Nupper[2]; n[2]++) {
 | 
|---|
| 319 |         const LinkedNodes *List = GetCurrentCell();
 | 
|---|
| 320 |         //Log() << Verbose(1) << "Current cell is " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
 | 
|---|
| 321 |         if (List != NULL) {
 | 
|---|
| 322 |           for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
 | 
|---|
| 323 |             Walker = *Runner;
 | 
|---|
| 324 |             TesselList->push_back(Walker);
 | 
|---|
| 325 |           }
 | 
|---|
| 326 |         }
 | 
|---|
| 327 |       }
 | 
|---|
| 328 |   return TesselList;
 | 
|---|
| 329 | };
 | 
|---|
| 330 | 
 | 
|---|
| 331 | /** Set the index to the cell containing a given Vector *x, which is not inside the LinkedCell's domain
 | 
|---|
| 332 |  * Note that as we have to check distance from every corner of the closest cell, this function is faw more
 | 
|---|
| 333 |  * expensive and if Vector is known to be inside LinkedCell's domain, then SetIndexToVector() should be used.
 | 
|---|
| 334 |  * \param *x Vector with coordinates
 | 
|---|
| 335 |  * \return minimum squared distance of cell to given vector (if inside of domain, distance is 0)
 | 
|---|
| 336 |  */
 | 
|---|
| 337 | double LinkedCell::SetClosestIndexToOutsideVector(const Vector * const x) const
 | 
|---|
| 338 | {
 | 
|---|
| 339 |   for (int i=0;i<NDIM;i++) {
 | 
|---|
| 340 |     n[i] = (int)floor((x->at(i) - min[i])/RADIUS);
 | 
|---|
| 341 |     if (n[i] < 0)
 | 
|---|
| 342 |       n[i] = 0;
 | 
|---|
| 343 |     if (n[i] >= N[i])
 | 
|---|
| 344 |       n[i] = N[i]-1;
 | 
|---|
| 345 |   }
 | 
|---|
| 346 | 
 | 
|---|
| 347 |   // calculate distance of cell to vector
 | 
|---|
| 348 |   double distanceSquared = 0.;
 | 
|---|
| 349 |   bool outside = true;  // flag whether x is found in- or outside of LinkedCell's domain/closest cell
 | 
|---|
| 350 |   Vector corner; // current corner of closest cell
 | 
|---|
| 351 |   Vector tester; // Vector pointing from corner to center of closest cell
 | 
|---|
| 352 |   Vector Distance;  // Vector from corner of closest cell to x
 | 
|---|
| 353 | 
 | 
|---|
| 354 |   Vector center;  // center of the closest cell
 | 
|---|
| 355 |   for (int i=0;i<NDIM;i++)
 | 
|---|
| 356 |     center[i] = min[i]+((double)n[i]+.5)*RADIUS;
 | 
|---|
| 357 | 
 | 
|---|
| 358 |   int c[NDIM];
 | 
|---|
| 359 |   for (c[0]=0;c[0]<=1;c[0]++)
 | 
|---|
| 360 |     for (c[1]=0; c[1]<=1;c[1]++)
 | 
|---|
| 361 |       for (c[2]=0; c[2]<=1;c[2]++) {
 | 
|---|
| 362 |         // set up corner
 | 
|---|
| 363 |         for (int i=0;i<NDIM;i++)
 | 
|---|
| 364 |           corner[i] = min[i]+RADIUS*((double)n[i]+c[i]);
 | 
|---|
| 365 |         // set up distance vector
 | 
|---|
| 366 |         Distance = (*x) - corner;
 | 
|---|
| 367 |         const double dist = Distance.NormSquared();
 | 
|---|
| 368 |         // check whether distance is smaller
 | 
|---|
| 369 |         if (dist< distanceSquared)
 | 
|---|
| 370 |           distanceSquared = dist;
 | 
|---|
| 371 |         // check whether distance vector goes inside or outside
 | 
|---|
| 372 |         tester = center -corner;
 | 
|---|
| 373 |         if (tester.ScalarProduct(Distance) < 0)
 | 
|---|
| 374 |           outside = false;
 | 
|---|
| 375 |       }
 | 
|---|
| 376 |   return (outside ? distanceSquared : 0.);
 | 
|---|
| 377 | };
 | 
|---|
| 378 | 
 | 
|---|
| 379 | /** Returns a list of all TesselPoint with distance less than \a radius to \a *Center.
 | 
|---|
| 380 |  * \param radius radius of sphere
 | 
|---|
| 381 |  * \param *center center of sphere
 | 
|---|
| 382 |  * \return list of all points inside sphere
 | 
|---|
| 383 |  */
 | 
|---|
| 384 | LinkedCell::LinkedNodes* LinkedCell::GetPointsInsideSphere(const double radius, const Vector * const center) const
 | 
|---|
| 385 | {
 | 
|---|
| 386 |   const double radiusSquared = radius*radius;
 | 
|---|
| 387 |   TesselPoint *Walker = NULL;
 | 
|---|
| 388 |   LinkedNodes *TesselList = new LinkedNodes;
 | 
|---|
| 389 |   LinkedNodes *NeighbourList = NULL;
 | 
|---|
| 390 | 
 | 
|---|
| 391 |   // set index of LC to center of sphere
 | 
|---|
| 392 |   const double dist = SetClosestIndexToOutsideVector(center);
 | 
|---|
| 393 |   if (dist > 2.*radius) {
 | 
|---|
| 394 |     DoeLog(1) && (eLog()<< Verbose(1) << "Vector " << *center << " is too far away from any atom in LinkedCell's bounding box." << endl);
 | 
|---|
| 395 |     return TesselList;
 | 
|---|
| 396 |   } else
 | 
|---|
| 397 |     DoLog(1) && (Log() << Verbose(1) << "Distance of closest cell to center of sphere with radius " << radius << " is " << dist << "." << endl);
 | 
|---|
| 398 | 
 | 
|---|
| 399 |   // gather all neighbours first, then look who fulfills distance criteria
 | 
|---|
| 400 |   NeighbourList = GetallNeighbours(2.*radius-dist);
 | 
|---|
| 401 |   //Log() << Verbose(1) << "I found " << NeighbourList->size() << " neighbours to check." << endl;
 | 
|---|
| 402 |   if (NeighbourList != NULL) {
 | 
|---|
| 403 |     for (LinkedNodes::const_iterator Runner = NeighbourList->begin(); Runner != NeighbourList->end(); Runner++) {
 | 
|---|
| 404 |       Walker = *Runner;
 | 
|---|
| 405 |       //Log() << Verbose(1) << "Current neighbour is at " << *Walker->node << "." << endl;
 | 
|---|
| 406 |       if ((Walker->DistanceSquared(*center) - radiusSquared) < MYEPSILON) {
 | 
|---|
| 407 |         TesselList->push_back(Walker);
 | 
|---|
| 408 |       }
 | 
|---|
| 409 |     }
 | 
|---|
| 410 |     delete(NeighbourList);
 | 
|---|
| 411 |   } else
 | 
|---|
| 412 |     DoeLog(2) && (eLog()<< Verbose(2) << "Around vector " << *center << " there are no atoms." << endl);
 | 
|---|
| 413 |   return TesselList;
 | 
|---|
| 414 | };
 | 
|---|