source: src/linkedcell.cpp@ 57f243

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 57f243 was 57f243, checked in by Frederik Heber <heber@…>, 14 years ago

Created libMolecuilderLinearAlgebra.

  • is shared.
  • contains the following classes: Line, Plane, Space, Vector, Matrix, gslvector, gslmatrix, linearsystemofequations
  • had to change include path almost everywhere
  • change linkin in src/ and src/unittests/Makefile.am
  • Property mode set to 100644
File size: 14.0 KB
Line 
1/** \file linkedcell.cpp
2 *
3 * Function implementations for the class LinkedCell.
4 *
5 */
6
7#include "Helpers/MemDebug.hpp"
8
9#include "atom.hpp"
10#include "helpers.hpp"
11#include "linkedcell.hpp"
12#include "verbose.hpp"
13#include "log.hpp"
14#include "molecule.hpp"
15#include "tesselation.hpp"
16#include "LinearAlgebra/Vector.hpp"
17
18// ========================================================= class LinkedCell ===========================================
19
20
21/** Constructor for class LinkedCell.
22 */
23LinkedCell::LinkedCell()
24{
25 LC = NULL;
26 for(int i=0;i<NDIM;i++)
27 N[i] = 0;
28 index = -1;
29 RADIUS = 0.;
30 max.Zero();
31 min.Zero();
32};
33
34/** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
35 * \param *set LCNodeSet class with all LCNode's
36 * \param RADIUS edge length of cells
37 */
38LinkedCell::LinkedCell(const PointCloud * const set, const double radius)
39{
40 TesselPoint *Walker = NULL;
41
42 RADIUS = radius;
43 LC = NULL;
44 for(int i=0;i<NDIM;i++)
45 N[i] = 0;
46 index = -1;
47 max.Zero();
48 min.Zero();
49 DoLog(1) && (Log() << Verbose(1) << "Begin of LinkedCell" << endl);
50 if ((set == NULL) || (set->IsEmpty())) {
51 DoeLog(1) && (eLog()<< Verbose(1) << "set is NULL or contains no linked cell nodes!" << endl);
52 return;
53 }
54 // 1. find max and min per axis of atoms
55 set->GoToFirst();
56 Walker = set->GetPoint();
57 for (int i=0;i<NDIM;i++) {
58 max[i] = Walker->node->at(i);
59 min[i] = Walker->node->at(i);
60 }
61 set->GoToFirst();
62 while (!set->IsEnd()) {
63 Walker = set->GetPoint();
64 for (int i=0;i<NDIM;i++) {
65 if (max[i] < Walker->node->at(i))
66 max[i] = Walker->node->at(i);
67 if (min[i] > Walker->node->at(i))
68 min[i] = Walker->node->at(i);
69 }
70 set->GoToNext();
71 }
72 DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl);
73
74 // 2. find then number of cells per axis
75 for (int i=0;i<NDIM;i++) {
76 N[i] = static_cast<int>(floor((max[i] - min[i])/RADIUS)+1);
77 }
78 DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl);
79
80 // 3. allocate the lists
81 DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... ");
82 if (LC != NULL) {
83 DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
84 return;
85 }
86 LC = new LinkedNodes[N[0]*N[1]*N[2]];
87 for (index=0;index<N[0]*N[1]*N[2];index++) {
88 LC [index].clear();
89 }
90 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
91
92 // 4. put each atom into its respective cell
93 DoLog(2) && (Log() << Verbose(2) << "Filling cells ... ");
94 set->GoToFirst();
95 while (!set->IsEnd()) {
96 Walker = set->GetPoint();
97 for (int i=0;i<NDIM;i++) {
98 n[i] = static_cast<int>(floor((Walker->node->at(i) - min[i])/RADIUS));
99 }
100 index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
101 LC[index].push_back(Walker);
102 //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
103 set->GoToNext();
104 }
105 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
106 DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl);
107};
108
109
110/** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
111 * \param *set LCNodeSet class with all LCNode's
112 * \param RADIUS edge length of cells
113 */
114LinkedCell::LinkedCell(LinkedNodes *set, const double radius)
115{
116 class TesselPoint *Walker = NULL;
117 RADIUS = radius;
118 LC = NULL;
119 for(int i=0;i<NDIM;i++)
120 N[i] = 0;
121 index = -1;
122 max.Zero();
123 min.Zero();
124 DoLog(1) && (Log() << Verbose(1) << "Begin of LinkedCell" << endl);
125 if (set->empty()) {
126 DoeLog(1) && (eLog()<< Verbose(1) << "set contains no linked cell nodes!" << endl);
127 return;
128 }
129 // 1. find max and min per axis of atoms
130 LinkedNodes::iterator Runner = set->begin();
131 for (int i=0;i<NDIM;i++) {
132 max[i] = (*Runner)->node->at(i);
133 min[i] = (*Runner)->node->at(i);
134 }
135 for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
136 Walker = *Runner;
137 for (int i=0;i<NDIM;i++) {
138 if (max[i] < Walker->node->at(i))
139 max[i] = Walker->node->at(i);
140 if (min[i] > Walker->node->at(i))
141 min[i] = Walker->node->at(i);
142 }
143 }
144 DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl);
145
146 // 2. find then number of cells per axis
147 for (int i=0;i<NDIM;i++) {
148 N[i] = static_cast<int>(floor((max[i] - min[i])/RADIUS)+1);
149 }
150 DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl);
151
152 // 3. allocate the lists
153 DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... ");
154 if (LC != NULL) {
155 DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
156 return;
157 }
158 LC = new LinkedNodes[N[0]*N[1]*N[2]];
159 for (index=0;index<N[0]*N[1]*N[2];index++) {
160 LC [index].clear();
161 }
162 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
163
164 // 4. put each atom into its respective cell
165 DoLog(2) && (Log() << Verbose(2) << "Filling cells ... ");
166 for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
167 Walker = *Runner;
168 for (int i=0;i<NDIM;i++) {
169 n[i] = static_cast<int>(floor((Walker->node->at(i) - min[i])/RADIUS));
170 }
171 index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
172 LC[index].push_back(Walker);
173 //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
174 }
175 DoLog(0) && (Log() << Verbose(0) << "done." << endl);
176 DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl);
177};
178
179/** Destructor for class LinkedCell.
180 */
181LinkedCell::~LinkedCell()
182{
183 if (LC != NULL)
184 for (index=0;index<N[0]*N[1]*N[2];index++)
185 LC[index].clear();
186 delete[](LC);
187 for(int i=0;i<NDIM;i++)
188 N[i] = 0;
189 index = -1;
190};
191
192/** Checks whether LinkedCell::n[] is each within [0,N[]].
193 * \return if all in intervals - true, else -false
194 */
195bool LinkedCell::CheckBounds() const
196{
197 bool status = true;
198 for(int i=0;i<NDIM;i++)
199 status = status && ((n[i] >=0) && (n[i] < N[i]));
200// if (!status)
201// DoeLog(1) && (eLog()<< Verbose(1) << "indices are out of bounds!" << endl);
202 return status;
203};
204
205/** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]].
206 * Note that for this check we don't admonish if out of bounds.
207 * \param relative[NDIM] relative offset to current cell
208 * \return if all in intervals - true, else -false
209 */
210bool LinkedCell::CheckBounds(const int relative[NDIM]) const
211{
212 bool status = true;
213 for(int i=0;i<NDIM;i++)
214 status = status && ((n[i]+relative[i] >=0) && (n[i]+relative[i] < N[i]));
215 return status;
216};
217
218
219/** Returns a pointer to the current cell.
220 * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
221 */
222const LinkedCell::LinkedNodes* LinkedCell::GetCurrentCell() const
223{
224 if (CheckBounds()) {
225 index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
226 return (&(LC[index]));
227 } else {
228 return NULL;
229 }
230};
231
232/** Returns a pointer to the current cell.
233 * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM]
234 * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds.
235 */
236const LinkedCell::LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const
237{
238 if (CheckBounds(relative)) {
239 index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
240 return (&(LC[index]));
241 } else {
242 return NULL;
243 }
244};
245
246/** Set the index to the cell containing a given Vector *x.
247 * \param *x Vector with coordinates
248 * \return Vector is inside bounding box - true, else - false
249 */
250bool LinkedCell::SetIndexToVector(const Vector * const x) const
251{
252 for (int i=0;i<NDIM;i++)
253 n[i] = (int)floor((x->at(i) - min[i])/RADIUS);
254
255 return CheckBounds();
256};
257
258/** Calculates the index for a given LCNode *Walker.
259 * \param *Walker LCNode to set index tos
260 * \return if the atom is also found in this cell - true, else - false
261 */
262bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const
263{
264 bool status = false;
265 for (int i=0;i<NDIM;i++) {
266 n[i] = static_cast<int>(floor((Walker->node->at(i) - min[i])/RADIUS));
267 }
268 index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
269 if (CheckBounds()) {
270 for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
271 status = status || ((*Runner) == Walker);
272 return status;
273 } else {
274 DoeLog(1) && (eLog()<< Verbose(1) << "Node at " << *Walker << " is out of bounds." << endl);
275 return false;
276 }
277};
278
279/** Calculates the interval bounds of the linked cell grid.
280 * \param lower lower bounds
281 * \param upper upper bounds
282 * \param step how deep to check the neighbouring cells (i.e. number of layers to check)
283 */
284void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM], int step) const
285{
286 for (int i=0;i<NDIM;i++) {
287 lower[i] = n[i]-step;
288 if (lower[i] < 0)
289 lower[i] = 0;
290 if (lower[i] >= N[i])
291 lower[i] = N[i]-1;
292 upper[i] = n[i]+step;
293 if (upper[i] >= N[i])
294 upper[i] = N[i]-1;
295 if (upper[i] < 0)
296 upper[i] = 0;
297 //Log() << Verbose(0) << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
298 }
299};
300
301/** Returns a list with all neighbours from the current LinkedCell::index.
302 * \param distance (if no distance, then adjacent cells are taken)
303 * \return list of tesselpoints
304 */
305LinkedCell::LinkedNodes* LinkedCell::GetallNeighbours(const double distance) const
306{
307 int Nlower[NDIM], Nupper[NDIM];
308 TesselPoint *Walker = NULL;
309 LinkedNodes *TesselList = new LinkedNodes;
310
311 // then go through the current and all neighbouring cells and check the contained points for possible candidates
312 const int step = (distance == 0) ? 1 : (int)floor(distance/RADIUS + 1.);
313 GetNeighbourBounds(Nlower, Nupper, step);
314
315 //Log() << Verbose(0) << endl;
316 for (n[0] = Nlower[0]; n[0] <= Nupper[0]; n[0]++)
317 for (n[1] = Nlower[1]; n[1] <= Nupper[1]; n[1]++)
318 for (n[2] = Nlower[2]; n[2] <= Nupper[2]; n[2]++) {
319 const LinkedNodes *List = GetCurrentCell();
320 //Log() << Verbose(1) << "Current cell is " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
321 if (List != NULL) {
322 for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
323 Walker = *Runner;
324 TesselList->push_back(Walker);
325 }
326 }
327 }
328 return TesselList;
329};
330
331/** Set the index to the cell containing a given Vector *x, which is not inside the LinkedCell's domain
332 * Note that as we have to check distance from every corner of the closest cell, this function is faw more
333 * expensive and if Vector is known to be inside LinkedCell's domain, then SetIndexToVector() should be used.
334 * \param *x Vector with coordinates
335 * \return minimum squared distance of cell to given vector (if inside of domain, distance is 0)
336 */
337double LinkedCell::SetClosestIndexToOutsideVector(const Vector * const x) const
338{
339 for (int i=0;i<NDIM;i++) {
340 n[i] = (int)floor((x->at(i) - min[i])/RADIUS);
341 if (n[i] < 0)
342 n[i] = 0;
343 if (n[i] >= N[i])
344 n[i] = N[i]-1;
345 }
346
347 // calculate distance of cell to vector
348 double distanceSquared = 0.;
349 bool outside = true; // flag whether x is found in- or outside of LinkedCell's domain/closest cell
350 Vector corner; // current corner of closest cell
351 Vector tester; // Vector pointing from corner to center of closest cell
352 Vector Distance; // Vector from corner of closest cell to x
353
354 Vector center; // center of the closest cell
355 for (int i=0;i<NDIM;i++)
356 center[i] = min[i]+((double)n[i]+.5)*RADIUS;
357
358 int c[NDIM];
359 for (c[0]=0;c[0]<=1;c[0]++)
360 for (c[1]=0; c[1]<=1;c[1]++)
361 for (c[2]=0; c[2]<=1;c[2]++) {
362 // set up corner
363 for (int i=0;i<NDIM;i++)
364 corner[i] = min[i]+RADIUS*((double)n[i]+c[i]);
365 // set up distance vector
366 Distance = (*x) - corner;
367 const double dist = Distance.NormSquared();
368 // check whether distance is smaller
369 if (dist< distanceSquared)
370 distanceSquared = dist;
371 // check whether distance vector goes inside or outside
372 tester = center -corner;
373 if (tester.ScalarProduct(Distance) < 0)
374 outside = false;
375 }
376 return (outside ? distanceSquared : 0.);
377};
378
379/** Returns a list of all TesselPoint with distance less than \a radius to \a *Center.
380 * \param radius radius of sphere
381 * \param *center center of sphere
382 * \return list of all points inside sphere
383 */
384LinkedCell::LinkedNodes* LinkedCell::GetPointsInsideSphere(const double radius, const Vector * const center) const
385{
386 const double radiusSquared = radius*radius;
387 TesselPoint *Walker = NULL;
388 LinkedNodes *TesselList = new LinkedNodes;
389 LinkedNodes *NeighbourList = NULL;
390
391 // set index of LC to center of sphere
392 const double dist = SetClosestIndexToOutsideVector(center);
393 if (dist > 2.*radius) {
394 DoeLog(1) && (eLog()<< Verbose(1) << "Vector " << *center << " is too far away from any atom in LinkedCell's bounding box." << endl);
395 return TesselList;
396 } else
397 DoLog(1) && (Log() << Verbose(1) << "Distance of closest cell to center of sphere with radius " << radius << " is " << dist << "." << endl);
398
399 // gather all neighbours first, then look who fulfills distance criteria
400 NeighbourList = GetallNeighbours(2.*radius-dist);
401 //Log() << Verbose(1) << "I found " << NeighbourList->size() << " neighbours to check." << endl;
402 if (NeighbourList != NULL) {
403 for (LinkedNodes::const_iterator Runner = NeighbourList->begin(); Runner != NeighbourList->end(); Runner++) {
404 Walker = *Runner;
405 //Log() << Verbose(1) << "Current neighbour is at " << *Walker->node << "." << endl;
406 if ((center->DistanceSquared(*Walker->node) - radiusSquared) < MYEPSILON) {
407 TesselList->push_back(Walker);
408 }
409 }
410 delete(NeighbourList);
411 } else
412 DoeLog(2) && (eLog()<< Verbose(2) << "Around vector " << *center << " there are no atoms." << endl);
413 return TesselList;
414};
Note: See TracBrowser for help on using the repository browser.