[edb93c] | 1 | /** \file linkedcell.cpp
|
---|
| 2 | *
|
---|
| 3 | * Function implementations for the class LinkedCell.
|
---|
| 4 | *
|
---|
| 5 | */
|
---|
| 6 |
|
---|
[bf3817] | 7 | // include config.h
|
---|
| 8 | #ifdef HAVE_CONFIG_H
|
---|
| 9 | #include <config.h>
|
---|
| 10 | #endif
|
---|
| 11 |
|
---|
[112b09] | 12 | #include "Helpers/MemDebug.hpp"
|
---|
[edb93c] | 13 |
|
---|
[f66195] | 14 | #include "atom.hpp"
|
---|
[952f38] | 15 | #include "Helpers/helpers.hpp"
|
---|
[e1bc68] | 16 | #include "linkedcell.hpp"
|
---|
[952f38] | 17 | #include "Helpers/Verbose.hpp"
|
---|
| 18 | #include "Helpers/Log.hpp"
|
---|
[cee0b57] | 19 | #include "molecule.hpp"
|
---|
[357fba] | 20 | #include "tesselation.hpp"
|
---|
[57f243] | 21 | #include "LinearAlgebra/Vector.hpp"
|
---|
[357fba] | 22 |
|
---|
| 23 | // ========================================================= class LinkedCell ===========================================
|
---|
| 24 |
|
---|
[e1bc68] | 25 |
|
---|
| 26 | /** Constructor for class LinkedCell.
|
---|
| 27 | */
|
---|
[97b825] | 28 | LinkedCell::LinkedCell() :
|
---|
| 29 | LC(NULL),
|
---|
[ff58f1] | 30 | RADIUS(0.),
|
---|
| 31 | index(-1)
|
---|
[e1bc68] | 32 | {
|
---|
[042f82] | 33 | for(int i=0;i<NDIM;i++)
|
---|
| 34 | N[i] = 0;
|
---|
| 35 | max.Zero();
|
---|
| 36 | min.Zero();
|
---|
[e1bc68] | 37 | };
|
---|
| 38 |
|
---|
| 39 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
[357fba] | 40 | * \param *set LCNodeSet class with all LCNode's
|
---|
[e1bc68] | 41 | * \param RADIUS edge length of cells
|
---|
| 42 | */
|
---|
[97b825] | 43 | LinkedCell::LinkedCell(const PointCloud * const set, const double radius) :
|
---|
| 44 | LC(NULL),
|
---|
[ff58f1] | 45 | RADIUS(radius),
|
---|
[97b825] | 46 | index(-1)
|
---|
[e1bc68] | 47 | {
|
---|
[357fba] | 48 | TesselPoint *Walker = NULL;
|
---|
[e1bc68] | 49 |
|
---|
[042f82] | 50 | for(int i=0;i<NDIM;i++)
|
---|
| 51 | N[i] = 0;
|
---|
| 52 | max.Zero();
|
---|
| 53 | min.Zero();
|
---|
[a67d19] | 54 | DoLog(1) && (Log() << Verbose(1) << "Begin of LinkedCell" << endl);
|
---|
[caf4ba] | 55 | if ((set == NULL) || (set->IsEmpty())) {
|
---|
[58ed4a] | 56 | DoeLog(1) && (eLog()<< Verbose(1) << "set is NULL or contains no linked cell nodes!" << endl);
|
---|
[042f82] | 57 | return;
|
---|
| 58 | }
|
---|
| 59 | // 1. find max and min per axis of atoms
|
---|
[357fba] | 60 | set->GoToFirst();
|
---|
| 61 | Walker = set->GetPoint();
|
---|
[042f82] | 62 | for (int i=0;i<NDIM;i++) {
|
---|
[d74077] | 63 | max[i] = Walker->at(i);
|
---|
| 64 | min[i] = Walker->at(i);
|
---|
[042f82] | 65 | }
|
---|
[357fba] | 66 | set->GoToFirst();
|
---|
[1999d8] | 67 | while (!set->IsEnd()) {
|
---|
[357fba] | 68 | Walker = set->GetPoint();
|
---|
[042f82] | 69 | for (int i=0;i<NDIM;i++) {
|
---|
[d74077] | 70 | if (max[i] < Walker->at(i))
|
---|
| 71 | max[i] = Walker->at(i);
|
---|
| 72 | if (min[i] > Walker->at(i))
|
---|
| 73 | min[i] = Walker->at(i);
|
---|
[042f82] | 74 | }
|
---|
[357fba] | 75 | set->GoToNext();
|
---|
[042f82] | 76 | }
|
---|
[a67d19] | 77 | DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl);
|
---|
[6ac7ee] | 78 |
|
---|
[357fba] | 79 | // 2. find then number of cells per axis
|
---|
[042f82] | 80 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 81 | N[i] = static_cast<int>(floor((max[i] - min[i])/RADIUS)+1);
|
---|
[042f82] | 82 | }
|
---|
[a67d19] | 83 | DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl);
|
---|
[6ac7ee] | 84 |
|
---|
[042f82] | 85 | // 3. allocate the lists
|
---|
[a67d19] | 86 | DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... ");
|
---|
[042f82] | 87 | if (LC != NULL) {
|
---|
[58ed4a] | 88 | DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
|
---|
[042f82] | 89 | return;
|
---|
| 90 | }
|
---|
[357fba] | 91 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
[042f82] | 92 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
| 93 | LC [index].clear();
|
---|
| 94 | }
|
---|
[a67d19] | 95 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
[6ac7ee] | 96 |
|
---|
[042f82] | 97 | // 4. put each atom into its respective cell
|
---|
[a67d19] | 98 | DoLog(2) && (Log() << Verbose(2) << "Filling cells ... ");
|
---|
[357fba] | 99 | set->GoToFirst();
|
---|
[1999d8] | 100 | while (!set->IsEnd()) {
|
---|
[357fba] | 101 | Walker = set->GetPoint();
|
---|
[042f82] | 102 | for (int i=0;i<NDIM;i++) {
|
---|
[d74077] | 103 | n[i] = static_cast<int>(floor((Walker->at(i) - min[i])/RADIUS));
|
---|
[042f82] | 104 | }
|
---|
| 105 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 106 | LC[index].push_back(Walker);
|
---|
[e138de] | 107 | //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
[357fba] | 108 | set->GoToNext();
|
---|
[042f82] | 109 | }
|
---|
[a67d19] | 110 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
| 111 | DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl);
|
---|
[e1bc68] | 112 | };
|
---|
| 113 |
|
---|
[8cd903] | 114 |
|
---|
| 115 | /** Puts all atoms in \a *mol into a linked cell list with cell's lengths of \a RADIUS
|
---|
| 116 | * \param *set LCNodeSet class with all LCNode's
|
---|
| 117 | * \param RADIUS edge length of cells
|
---|
| 118 | */
|
---|
[97b825] | 119 | LinkedCell::LinkedCell(LinkedNodes *set, const double radius) :
|
---|
| 120 | LC(NULL),
|
---|
[ff58f1] | 121 | RADIUS(radius),
|
---|
[97b825] | 122 | index(-1)
|
---|
[8cd903] | 123 | {
|
---|
| 124 | class TesselPoint *Walker = NULL;
|
---|
| 125 | for(int i=0;i<NDIM;i++)
|
---|
| 126 | N[i] = 0;
|
---|
| 127 | max.Zero();
|
---|
| 128 | min.Zero();
|
---|
[a67d19] | 129 | DoLog(1) && (Log() << Verbose(1) << "Begin of LinkedCell" << endl);
|
---|
[8cd903] | 130 | if (set->empty()) {
|
---|
[58ed4a] | 131 | DoeLog(1) && (eLog()<< Verbose(1) << "set contains no linked cell nodes!" << endl);
|
---|
[8cd903] | 132 | return;
|
---|
| 133 | }
|
---|
| 134 | // 1. find max and min per axis of atoms
|
---|
| 135 | LinkedNodes::iterator Runner = set->begin();
|
---|
| 136 | for (int i=0;i<NDIM;i++) {
|
---|
[d74077] | 137 | max[i] = (*Runner)->at(i);
|
---|
| 138 | min[i] = (*Runner)->at(i);
|
---|
[8cd903] | 139 | }
|
---|
| 140 | for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
|
---|
| 141 | Walker = *Runner;
|
---|
| 142 | for (int i=0;i<NDIM;i++) {
|
---|
[d74077] | 143 | if (max[i] < Walker->at(i))
|
---|
| 144 | max[i] = Walker->at(i);
|
---|
| 145 | if (min[i] > Walker->at(i))
|
---|
| 146 | min[i] = Walker->at(i);
|
---|
[8cd903] | 147 | }
|
---|
| 148 | }
|
---|
[a67d19] | 149 | DoLog(2) && (Log() << Verbose(2) << "Bounding box is " << min << " and " << max << "." << endl);
|
---|
[8cd903] | 150 |
|
---|
| 151 | // 2. find then number of cells per axis
|
---|
| 152 | for (int i=0;i<NDIM;i++) {
|
---|
[0a4f7f] | 153 | N[i] = static_cast<int>(floor((max[i] - min[i])/RADIUS)+1);
|
---|
[8cd903] | 154 | }
|
---|
[a67d19] | 155 | DoLog(2) && (Log() << Verbose(2) << "Number of cells per axis are " << N[0] << ", " << N[1] << " and " << N[2] << "." << endl);
|
---|
[8cd903] | 156 |
|
---|
| 157 | // 3. allocate the lists
|
---|
[a67d19] | 158 | DoLog(2) && (Log() << Verbose(2) << "Allocating cells ... ");
|
---|
[8cd903] | 159 | if (LC != NULL) {
|
---|
[58ed4a] | 160 | DoeLog(1) && (eLog()<< Verbose(1) << "Linked Cell list is already allocated, I do nothing." << endl);
|
---|
[8cd903] | 161 | return;
|
---|
| 162 | }
|
---|
| 163 | LC = new LinkedNodes[N[0]*N[1]*N[2]];
|
---|
| 164 | for (index=0;index<N[0]*N[1]*N[2];index++) {
|
---|
| 165 | LC [index].clear();
|
---|
| 166 | }
|
---|
[a67d19] | 167 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
[8cd903] | 168 |
|
---|
| 169 | // 4. put each atom into its respective cell
|
---|
[a67d19] | 170 | DoLog(2) && (Log() << Verbose(2) << "Filling cells ... ");
|
---|
[8cd903] | 171 | for (LinkedNodes::iterator Runner = set->begin(); Runner != set->end(); Runner++) {
|
---|
| 172 | Walker = *Runner;
|
---|
| 173 | for (int i=0;i<NDIM;i++) {
|
---|
[d74077] | 174 | n[i] = static_cast<int>(floor((Walker->at(i) - min[i])/RADIUS));
|
---|
[8cd903] | 175 | }
|
---|
| 176 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 177 | LC[index].push_back(Walker);
|
---|
[e138de] | 178 | //Log() << Verbose(2) << *Walker << " goes into cell " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
[8cd903] | 179 | }
|
---|
[a67d19] | 180 | DoLog(0) && (Log() << Verbose(0) << "done." << endl);
|
---|
| 181 | DoLog(1) && (Log() << Verbose(1) << "End of LinkedCell" << endl);
|
---|
[8cd903] | 182 | };
|
---|
| 183 |
|
---|
[e1bc68] | 184 | /** Destructor for class LinkedCell.
|
---|
| 185 | */
|
---|
| 186 | LinkedCell::~LinkedCell()
|
---|
| 187 | {
|
---|
[042f82] | 188 | if (LC != NULL)
|
---|
| 189 | for (index=0;index<N[0]*N[1]*N[2];index++)
|
---|
| 190 | LC[index].clear();
|
---|
| 191 | delete[](LC);
|
---|
| 192 | for(int i=0;i<NDIM;i++)
|
---|
| 193 | N[i] = 0;
|
---|
| 194 | index = -1;
|
---|
[e1bc68] | 195 | };
|
---|
| 196 |
|
---|
| 197 | /** Checks whether LinkedCell::n[] is each within [0,N[]].
|
---|
| 198 | * \return if all in intervals - true, else -false
|
---|
| 199 | */
|
---|
[776b64] | 200 | bool LinkedCell::CheckBounds() const
|
---|
[e1bc68] | 201 | {
|
---|
[042f82] | 202 | bool status = true;
|
---|
| 203 | for(int i=0;i<NDIM;i++)
|
---|
| 204 | status = status && ((n[i] >=0) && (n[i] < N[i]));
|
---|
[bdc91e] | 205 | // if (!status)
|
---|
| 206 | // DoeLog(1) && (eLog()<< Verbose(1) << "indices are out of bounds!" << endl);
|
---|
[042f82] | 207 | return status;
|
---|
[e1bc68] | 208 | };
|
---|
| 209 |
|
---|
[07051c] | 210 | /** Checks whether LinkedCell::n[] plus relative offset is each within [0,N[]].
|
---|
[266237] | 211 | * Note that for this check we don't admonish if out of bounds.
|
---|
[07051c] | 212 | * \param relative[NDIM] relative offset to current cell
|
---|
| 213 | * \return if all in intervals - true, else -false
|
---|
| 214 | */
|
---|
[776b64] | 215 | bool LinkedCell::CheckBounds(const int relative[NDIM]) const
|
---|
[07051c] | 216 | {
|
---|
| 217 | bool status = true;
|
---|
| 218 | for(int i=0;i<NDIM;i++)
|
---|
| 219 | status = status && ((n[i]+relative[i] >=0) && (n[i]+relative[i] < N[i]));
|
---|
| 220 | return status;
|
---|
| 221 | };
|
---|
| 222 |
|
---|
[e1bc68] | 223 |
|
---|
| 224 | /** Returns a pointer to the current cell.
|
---|
| 225 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[] are out of bounds.
|
---|
| 226 | */
|
---|
[734816] | 227 | const LinkedCell::LinkedNodes* LinkedCell::GetCurrentCell() const
|
---|
[e1bc68] | 228 | {
|
---|
[042f82] | 229 | if (CheckBounds()) {
|
---|
| 230 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 231 | return (&(LC[index]));
|
---|
| 232 | } else {
|
---|
| 233 | return NULL;
|
---|
| 234 | }
|
---|
[e1bc68] | 235 | };
|
---|
| 236 |
|
---|
[07051c] | 237 | /** Returns a pointer to the current cell.
|
---|
| 238 | * \param relative[NDIM] offset for each axis with respect to the current cell LinkedCell::n[NDIM]
|
---|
| 239 | * \return LinkedAtoms pointer to current cell, NULL if LinkedCell::n[]+relative[] are out of bounds.
|
---|
| 240 | */
|
---|
[734816] | 241 | const LinkedCell::LinkedNodes* LinkedCell::GetRelativeToCurrentCell(const int relative[NDIM]) const
|
---|
[07051c] | 242 | {
|
---|
| 243 | if (CheckBounds(relative)) {
|
---|
| 244 | index = (n[0]+relative[0]) * N[1] * N[2] + (n[1]+relative[1]) * N[2] + (n[2]+relative[2]);
|
---|
| 245 | return (&(LC[index]));
|
---|
| 246 | } else {
|
---|
| 247 | return NULL;
|
---|
| 248 | }
|
---|
| 249 | };
|
---|
| 250 |
|
---|
[893bea] | 251 | /** Set the index to the cell containing a given Vector *x.
|
---|
| 252 | * \param *x Vector with coordinates
|
---|
| 253 | * \return Vector is inside bounding box - true, else - false
|
---|
| 254 | */
|
---|
[d74077] | 255 | bool LinkedCell::SetIndexToVector(const Vector & x) const
|
---|
[893bea] | 256 | {
|
---|
| 257 | for (int i=0;i<NDIM;i++)
|
---|
[d74077] | 258 | n[i] = (int)floor((x.at(i) - min[i])/RADIUS);
|
---|
[893bea] | 259 |
|
---|
| 260 | return CheckBounds();
|
---|
| 261 | };
|
---|
| 262 |
|
---|
[357fba] | 263 | /** Calculates the index for a given LCNode *Walker.
|
---|
| 264 | * \param *Walker LCNode to set index tos
|
---|
[e1bc68] | 265 | * \return if the atom is also found in this cell - true, else - false
|
---|
| 266 | */
|
---|
[776b64] | 267 | bool LinkedCell::SetIndexToNode(const TesselPoint * const Walker) const
|
---|
[e1bc68] | 268 | {
|
---|
[042f82] | 269 | bool status = false;
|
---|
| 270 | for (int i=0;i<NDIM;i++) {
|
---|
[d74077] | 271 | n[i] = static_cast<int>(floor((Walker->at(i) - min[i])/RADIUS));
|
---|
[042f82] | 272 | }
|
---|
| 273 | index = n[0] * N[1] * N[2] + n[1] * N[2] + n[2];
|
---|
| 274 | if (CheckBounds()) {
|
---|
[357fba] | 275 | for (LinkedNodes::iterator Runner = LC[index].begin(); Runner != LC[index].end(); Runner++)
|
---|
[042f82] | 276 | status = status || ((*Runner) == Walker);
|
---|
| 277 | return status;
|
---|
| 278 | } else {
|
---|
[58ed4a] | 279 | DoeLog(1) && (eLog()<< Verbose(1) << "Node at " << *Walker << " is out of bounds." << endl);
|
---|
[042f82] | 280 | return false;
|
---|
| 281 | }
|
---|
[e1bc68] | 282 | };
|
---|
| 283 |
|
---|
[0f4538] | 284 | /** Calculates the interval bounds of the linked cell grid.
|
---|
[bdc91e] | 285 | * \param lower lower bounds
|
---|
| 286 | * \param upper upper bounds
|
---|
[061b06] | 287 | * \param step how deep to check the neighbouring cells (i.e. number of layers to check)
|
---|
[0f4538] | 288 | */
|
---|
[893bea] | 289 | void LinkedCell::GetNeighbourBounds(int lower[NDIM], int upper[NDIM], int step) const
|
---|
[0f4538] | 290 | {
|
---|
| 291 | for (int i=0;i<NDIM;i++) {
|
---|
[bdc91e] | 292 | lower[i] = n[i]-step;
|
---|
| 293 | if (lower[i] < 0)
|
---|
| 294 | lower[i] = 0;
|
---|
| 295 | if (lower[i] >= N[i])
|
---|
| 296 | lower[i] = N[i]-1;
|
---|
| 297 | upper[i] = n[i]+step;
|
---|
| 298 | if (upper[i] >= N[i])
|
---|
| 299 | upper[i] = N[i]-1;
|
---|
| 300 | if (upper[i] < 0)
|
---|
| 301 | upper[i] = 0;
|
---|
[e138de] | 302 | //Log() << Verbose(0) << "axis " << i << " has bounds [" << lower[i] << "," << upper[i] << "]" << endl;
|
---|
[0f4538] | 303 | }
|
---|
| 304 | };
|
---|
| 305 |
|
---|
[734816] | 306 | /** Returns a list with all neighbours from the current LinkedCell::index.
|
---|
| 307 | * \param distance (if no distance, then adjacent cells are taken)
|
---|
| 308 | * \return list of tesselpoints
|
---|
| 309 | */
|
---|
[893bea] | 310 | LinkedCell::LinkedNodes* LinkedCell::GetallNeighbours(const double distance) const
|
---|
[734816] | 311 | {
|
---|
[893bea] | 312 | int Nlower[NDIM], Nupper[NDIM];
|
---|
[734816] | 313 | TesselPoint *Walker = NULL;
|
---|
| 314 | LinkedNodes *TesselList = new LinkedNodes;
|
---|
| 315 |
|
---|
| 316 | // then go through the current and all neighbouring cells and check the contained points for possible candidates
|
---|
[893bea] | 317 | const int step = (distance == 0) ? 1 : (int)floor(distance/RADIUS + 1.);
|
---|
| 318 | GetNeighbourBounds(Nlower, Nupper, step);
|
---|
| 319 |
|
---|
[734816] | 320 | //Log() << Verbose(0) << endl;
|
---|
| 321 | for (n[0] = Nlower[0]; n[0] <= Nupper[0]; n[0]++)
|
---|
| 322 | for (n[1] = Nlower[1]; n[1] <= Nupper[1]; n[1]++)
|
---|
| 323 | for (n[2] = Nlower[2]; n[2] <= Nupper[2]; n[2]++) {
|
---|
| 324 | const LinkedNodes *List = GetCurrentCell();
|
---|
| 325 | //Log() << Verbose(1) << "Current cell is " << n[0] << ", " << n[1] << ", " << n[2] << " with No. " << index << "." << endl;
|
---|
| 326 | if (List != NULL) {
|
---|
| 327 | for (LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
| 328 | Walker = *Runner;
|
---|
| 329 | TesselList->push_back(Walker);
|
---|
| 330 | }
|
---|
| 331 | }
|
---|
| 332 | }
|
---|
| 333 | return TesselList;
|
---|
| 334 | };
|
---|
| 335 |
|
---|
[ffe885] | 336 | /** Set the index to the cell containing a given Vector *x, which is not inside the LinkedCell's domain
|
---|
| 337 | * Note that as we have to check distance from every corner of the closest cell, this function is faw more
|
---|
| 338 | * expensive and if Vector is known to be inside LinkedCell's domain, then SetIndexToVector() should be used.
|
---|
| 339 | * \param *x Vector with coordinates
|
---|
| 340 | * \return minimum squared distance of cell to given vector (if inside of domain, distance is 0)
|
---|
| 341 | */
|
---|
| 342 | double LinkedCell::SetClosestIndexToOutsideVector(const Vector * const x) const
|
---|
| 343 | {
|
---|
| 344 | for (int i=0;i<NDIM;i++) {
|
---|
[8cbb97] | 345 | n[i] = (int)floor((x->at(i) - min[i])/RADIUS);
|
---|
[ffe885] | 346 | if (n[i] < 0)
|
---|
| 347 | n[i] = 0;
|
---|
| 348 | if (n[i] >= N[i])
|
---|
| 349 | n[i] = N[i]-1;
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 | // calculate distance of cell to vector
|
---|
| 353 | double distanceSquared = 0.;
|
---|
| 354 | bool outside = true; // flag whether x is found in- or outside of LinkedCell's domain/closest cell
|
---|
| 355 | Vector corner; // current corner of closest cell
|
---|
| 356 | Vector tester; // Vector pointing from corner to center of closest cell
|
---|
| 357 | Vector Distance; // Vector from corner of closest cell to x
|
---|
| 358 |
|
---|
| 359 | Vector center; // center of the closest cell
|
---|
| 360 | for (int i=0;i<NDIM;i++)
|
---|
[8cbb97] | 361 | center[i] = min[i]+((double)n[i]+.5)*RADIUS;
|
---|
[ffe885] | 362 |
|
---|
| 363 | int c[NDIM];
|
---|
| 364 | for (c[0]=0;c[0]<=1;c[0]++)
|
---|
| 365 | for (c[1]=0; c[1]<=1;c[1]++)
|
---|
| 366 | for (c[2]=0; c[2]<=1;c[2]++) {
|
---|
| 367 | // set up corner
|
---|
| 368 | for (int i=0;i<NDIM;i++)
|
---|
[8cbb97] | 369 | corner[i] = min[i]+RADIUS*((double)n[i]+c[i]);
|
---|
[ffe885] | 370 | // set up distance vector
|
---|
[8cbb97] | 371 | Distance = (*x) - corner;
|
---|
[ffe885] | 372 | const double dist = Distance.NormSquared();
|
---|
| 373 | // check whether distance is smaller
|
---|
| 374 | if (dist< distanceSquared)
|
---|
| 375 | distanceSquared = dist;
|
---|
| 376 | // check whether distance vector goes inside or outside
|
---|
[8cbb97] | 377 | tester = center -corner;
|
---|
| 378 | if (tester.ScalarProduct(Distance) < 0)
|
---|
[ffe885] | 379 | outside = false;
|
---|
| 380 | }
|
---|
| 381 | return (outside ? distanceSquared : 0.);
|
---|
| 382 | };
|
---|
[734816] | 383 |
|
---|
| 384 | /** Returns a list of all TesselPoint with distance less than \a radius to \a *Center.
|
---|
| 385 | * \param radius radius of sphere
|
---|
| 386 | * \param *center center of sphere
|
---|
| 387 | * \return list of all points inside sphere
|
---|
| 388 | */
|
---|
| 389 | LinkedCell::LinkedNodes* LinkedCell::GetPointsInsideSphere(const double radius, const Vector * const center) const
|
---|
| 390 | {
|
---|
| 391 | const double radiusSquared = radius*radius;
|
---|
| 392 | TesselPoint *Walker = NULL;
|
---|
| 393 | LinkedNodes *TesselList = new LinkedNodes;
|
---|
[893bea] | 394 | LinkedNodes *NeighbourList = NULL;
|
---|
[734816] | 395 |
|
---|
[893bea] | 396 | // set index of LC to center of sphere
|
---|
[ffe885] | 397 | const double dist = SetClosestIndexToOutsideVector(center);
|
---|
[061b06] | 398 | if (dist > 2.*radius) {
|
---|
[ffe885] | 399 | DoeLog(1) && (eLog()<< Verbose(1) << "Vector " << *center << " is too far away from any atom in LinkedCell's bounding box." << endl);
|
---|
[734816] | 400 | return TesselList;
|
---|
[061b06] | 401 | } else
|
---|
[a67d19] | 402 | DoLog(1) && (Log() << Verbose(1) << "Distance of closest cell to center of sphere with radius " << radius << " is " << dist << "." << endl);
|
---|
[893bea] | 403 |
|
---|
| 404 | // gather all neighbours first, then look who fulfills distance criteria
|
---|
[061b06] | 405 | NeighbourList = GetallNeighbours(2.*radius-dist);
|
---|
| 406 | //Log() << Verbose(1) << "I found " << NeighbourList->size() << " neighbours to check." << endl;
|
---|
[893bea] | 407 | if (NeighbourList != NULL) {
|
---|
| 408 | for (LinkedNodes::const_iterator Runner = NeighbourList->begin(); Runner != NeighbourList->end(); Runner++) {
|
---|
| 409 | Walker = *Runner;
|
---|
[061b06] | 410 | //Log() << Verbose(1) << "Current neighbour is at " << *Walker->node << "." << endl;
|
---|
[d74077] | 411 | if ((Walker->DistanceSquared(*center) - radiusSquared) < MYEPSILON) {
|
---|
[893bea] | 412 | TesselList->push_back(Walker);
|
---|
[734816] | 413 | }
|
---|
[893bea] | 414 | }
|
---|
| 415 | delete(NeighbourList);
|
---|
| 416 | } else
|
---|
| 417 | DoeLog(2) && (eLog()<< Verbose(2) << "Around vector " << *center << " there are no atoms." << endl);
|
---|
[734816] | 418 | return TesselList;
|
---|
| 419 | };
|
---|