| [5d30c1] | 1 | //
 | 
|---|
 | 2 | // tetra.cc
 | 
|---|
 | 3 | //
 | 
|---|
 | 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
 | 5 | //
 | 
|---|
 | 6 | // Author: Edward Seidl <seidl@janed.com>
 | 
|---|
 | 7 | // Maintainer: LPS
 | 
|---|
 | 8 | //
 | 
|---|
 | 9 | // This file is part of the SC Toolkit.
 | 
|---|
 | 10 | //
 | 
|---|
 | 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
 | 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
 | 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
 | 14 | // any later version.
 | 
|---|
 | 15 | //
 | 
|---|
 | 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
 | 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 19 | // GNU Library General Public License for more details.
 | 
|---|
 | 20 | //
 | 
|---|
 | 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
 | 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
 | 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
 | 24 | //
 | 
|---|
 | 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
 | 26 | //
 | 
|---|
 | 27 | 
 | 
|---|
 | 28 | #include <util/misc/math.h>
 | 
|---|
 | 29 | #include <string.h>
 | 
|---|
 | 30 | 
 | 
|---|
 | 31 | #include <math/symmetry/pointgrp.h>
 | 
|---|
 | 32 | 
 | 
|---|
 | 33 | using namespace sc;
 | 
|---|
 | 34 | 
 | 
|---|
 | 35 | // these are the operations which make up T
 | 
|---|
 | 36 | static void
 | 
|---|
 | 37 | t_ops(SymmetryOperation *symop)
 | 
|---|
 | 38 | {
 | 
|---|
 | 39 |   // identity
 | 
|---|
 | 40 |   symop[0].E();
 | 
|---|
 | 41 | 
 | 
|---|
 | 42 |   // C2(x)
 | 
|---|
 | 43 |   symop[9].c2_x();
 | 
|---|
 | 44 | 
 | 
|---|
 | 45 |   // C2(y)
 | 
|---|
 | 46 |   symop[10].c2_y();
 | 
|---|
 | 47 | 
 | 
|---|
 | 48 |   // C2(z)
 | 
|---|
 | 49 |   symop[11].rotation((double)M_PI);
 | 
|---|
 | 50 | 
 | 
|---|
 | 51 |   // a = ( 1, 1, 1)
 | 
|---|
 | 52 |   // b = (-1,-1, 1)
 | 
|---|
 | 53 |   // c = ( 1,-1,-1)
 | 
|---|
 | 54 |   // d = (-1, 1,-1)
 | 
|---|
 | 55 |   // C3 (a)
 | 
|---|
 | 56 |   symop[1][0][2] =  1.0;
 | 
|---|
 | 57 |   symop[1][1][0] =  1.0;
 | 
|---|
 | 58 |   symop[1][2][1] =  1.0;
 | 
|---|
 | 59 | 
 | 
|---|
 | 60 |   // C3 (b)
 | 
|---|
 | 61 |   symop[2] = symop[1].transform(symop[11]);
 | 
|---|
 | 62 | 
 | 
|---|
 | 63 |   // C3 (c)
 | 
|---|
 | 64 |   symop[3] = symop[1].transform(symop[9]);
 | 
|---|
 | 65 | 
 | 
|---|
 | 66 |   // C3 (d)
 | 
|---|
 | 67 |   symop[4] = symop[1].transform(symop[10]);
 | 
|---|
 | 68 | 
 | 
|---|
 | 69 |   // C3^2 (a)
 | 
|---|
 | 70 |   symop[5][0][1] =  1.0;
 | 
|---|
 | 71 |   symop[5][1][2] =  1.0;
 | 
|---|
 | 72 |   symop[5][2][0] =  1.0;
 | 
|---|
 | 73 | 
 | 
|---|
 | 74 |   // C3^2 (b)
 | 
|---|
 | 75 |   symop[6] = symop[5].transform(symop[11]);
 | 
|---|
 | 76 | 
 | 
|---|
 | 77 |   // C3^2 (c)
 | 
|---|
 | 78 |   symop[7] = symop[5].transform(symop[9]);
 | 
|---|
 | 79 | 
 | 
|---|
 | 80 |   // C3^2 (d)
 | 
|---|
 | 81 |   symop[8] = symop[5].transform(symop[10]);
 | 
|---|
 | 82 | }
 | 
|---|
 | 83 | 
 | 
|---|
 | 84 | // this gives us the operations in Td which aren't in T.
 | 
|---|
 | 85 | static void
 | 
|---|
 | 86 | td_ops(SymmetryOperation *symop)
 | 
|---|
 | 87 | {
 | 
|---|
 | 88 |   // S4 (x)
 | 
|---|
 | 89 |   symop[0][0][0] = -1.0;
 | 
|---|
 | 90 |   symop[0][1][2] = -1.0;
 | 
|---|
 | 91 |   symop[0][2][1] =  1.0;
 | 
|---|
 | 92 | 
 | 
|---|
 | 93 |   // S4^3 (x)
 | 
|---|
 | 94 |   symop[1][0][0] = -1.0;
 | 
|---|
 | 95 |   symop[1][1][2] =  1.0;
 | 
|---|
 | 96 |   symop[1][2][1] = -1.0;
 | 
|---|
 | 97 | 
 | 
|---|
 | 98 |   // S4 (y)
 | 
|---|
 | 99 |   symop[2][0][2] =  1.0;
 | 
|---|
 | 100 |   symop[2][1][1] = -1.0;
 | 
|---|
 | 101 |   symop[2][2][0] = -1.0;
 | 
|---|
 | 102 | 
 | 
|---|
 | 103 |   // S4^3 (y)
 | 
|---|
 | 104 |   symop[3][0][2] = -1.0;
 | 
|---|
 | 105 |   symop[3][1][1] = -1.0;
 | 
|---|
 | 106 |   symop[3][2][0] =  1.0;
 | 
|---|
 | 107 | 
 | 
|---|
 | 108 |   // S4 (z)
 | 
|---|
 | 109 |   symop[4][0][1] = -1.0;
 | 
|---|
 | 110 |   symop[4][1][0] =  1.0;
 | 
|---|
 | 111 |   symop[4][2][2] = -1.0;
 | 
|---|
 | 112 | 
 | 
|---|
 | 113 |   // S4^3 (z)
 | 
|---|
 | 114 |   symop[5][0][1] =  1.0;
 | 
|---|
 | 115 |   symop[5][1][0] = -1.0;
 | 
|---|
 | 116 |   symop[5][2][2] = -1.0;
 | 
|---|
 | 117 | 
 | 
|---|
 | 118 |   // a = ( 1, 1, 1)
 | 
|---|
 | 119 |   // b = (-1,-1, 1)
 | 
|---|
 | 120 |   // c = ( 1,-1,-1)
 | 
|---|
 | 121 |   // d = (-1, 1,-1)
 | 
|---|
 | 122 |   // sigma (ac)
 | 
|---|
 | 123 |   symop[6][0][0] =  1.0;
 | 
|---|
 | 124 |   symop[6][1][2] =  1.0;
 | 
|---|
 | 125 |   symop[6][2][1] =  1.0;
 | 
|---|
 | 126 | 
 | 
|---|
 | 127 |   // sigma (bd)
 | 
|---|
 | 128 |   symop[7][0][0] =  1.0;
 | 
|---|
 | 129 |   symop[7][1][2] = -1.0;
 | 
|---|
 | 130 |   symop[7][2][1] = -1.0;
 | 
|---|
 | 131 | 
 | 
|---|
 | 132 |   // sigma (ad)
 | 
|---|
 | 133 |   symop[8][0][2] =  1.0;
 | 
|---|
 | 134 |   symop[8][1][1] =  1.0;
 | 
|---|
 | 135 |   symop[8][2][0] =  1.0;
 | 
|---|
 | 136 | 
 | 
|---|
 | 137 |   // sigma (bc)
 | 
|---|
 | 138 |   symop[9][0][2] = -1.0;
 | 
|---|
 | 139 |   symop[9][1][1] =  1.0;
 | 
|---|
 | 140 |   symop[9][2][0] = -1.0;
 | 
|---|
 | 141 | 
 | 
|---|
 | 142 |   // sigma (ab)
 | 
|---|
 | 143 |   symop[10][0][1] =  1.0;
 | 
|---|
 | 144 |   symop[10][1][0] =  1.0;
 | 
|---|
 | 145 |   symop[10][2][2] =  1.0;
 | 
|---|
 | 146 | 
 | 
|---|
 | 147 |   // sigma (dc)
 | 
|---|
 | 148 |   symop[11][0][1] = -1.0;
 | 
|---|
 | 149 |   symop[11][1][0] = -1.0;
 | 
|---|
 | 150 |   symop[11][2][2] =  1.0;
 | 
|---|
 | 151 | }
 | 
|---|
 | 152 | 
 | 
|---|
 | 153 | ////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 154 | 
 | 
|---|
 | 155 | void
 | 
|---|
 | 156 | CharacterTable::t()
 | 
|---|
 | 157 | {
 | 
|---|
 | 158 |   // t_ops gives us all the symmetry operations we need
 | 
|---|
 | 159 |   t_ops(symop);
 | 
|---|
 | 160 | 
 | 
|---|
 | 161 |   int i;
 | 
|---|
 | 162 | 
 | 
|---|
 | 163 |   gamma_[0].init(g,1,"A");
 | 
|---|
 | 164 |   for (i=0; i < g; i++)
 | 
|---|
 | 165 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
 | 166 | 
 | 
|---|
 | 167 |   IrreducibleRepresentation& ire = gamma_[1];
 | 
|---|
 | 168 |   ire.init(g,2,"E");
 | 
|---|
 | 169 |   ire.complex_=1;
 | 
|---|
 | 170 | 
 | 
|---|
 | 171 |   IrreducibleRepresentation& irt = gamma_[2];
 | 
|---|
 | 172 |   irt.init(g,3,"T");
 | 
|---|
 | 173 |   irt.nrot_ = 1;
 | 
|---|
 | 174 |   irt.ntrans_ = 1;
 | 
|---|
 | 175 | 
 | 
|---|
 | 176 |   // the symmetry operation matrices give us a basis for irrep T
 | 
|---|
 | 177 |   for (i=0; i < g; i++)
 | 
|---|
 | 178 |     irt.rep[i] = symop[i];
 | 
|---|
 | 179 | 
 | 
|---|
 | 180 |   // identity
 | 
|---|
 | 181 |   ire.rep[0].E();
 | 
|---|
 | 182 | 
 | 
|---|
 | 183 |   // 4 C3's
 | 
|---|
 | 184 |   ire.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
 | 185 |   ire.rep[2] = ire.rep[1];
 | 
|---|
 | 186 |   ire.rep[3] = ire.rep[1];
 | 
|---|
 | 187 |   ire.rep[4] = ire.rep[1];
 | 
|---|
 | 188 | 
 | 
|---|
 | 189 |   ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
 | 
|---|
 | 190 |   ire.rep[6] = ire.rep[5];
 | 
|---|
 | 191 |   ire.rep[7] = ire.rep[5];
 | 
|---|
 | 192 |   ire.rep[8] = ire.rep[5];
 | 
|---|
 | 193 |   
 | 
|---|
 | 194 |   // 3 C2's
 | 
|---|
 | 195 |   ire.rep[9].unit();
 | 
|---|
 | 196 |   ire.rep[10].unit();
 | 
|---|
 | 197 |   ire.rep[11].unit();
 | 
|---|
 | 198 | 
 | 
|---|
 | 199 | }
 | 
|---|
 | 200 | 
 | 
|---|
 | 201 | void
 | 
|---|
 | 202 | CharacterTable::th()
 | 
|---|
 | 203 | {
 | 
|---|
 | 204 |   int i,j;
 | 
|---|
 | 205 | 
 | 
|---|
 | 206 |   SymmetryOperation so;
 | 
|---|
 | 207 |   so.i();
 | 
|---|
 | 208 |   
 | 
|---|
 | 209 |   t_ops(symop);
 | 
|---|
 | 210 |   for (i=0; i < 12; i++)
 | 
|---|
 | 211 |     symop[i+12] = symop[i].operate(so);
 | 
|---|
 | 212 |   
 | 
|---|
 | 213 |   gamma_[0].init(g,1,"Ag");
 | 
|---|
 | 214 |   gamma_[1].init(g,1,"Au");
 | 
|---|
 | 215 | 
 | 
|---|
 | 216 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 217 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
 | 218 |     gamma_[1].rep[i][0][0] = 1.0;
 | 
|---|
 | 219 | 
 | 
|---|
 | 220 |     gamma_[0].rep[i+12][0][0] =  1.0;
 | 
|---|
 | 221 |     gamma_[1].rep[i+12][0][0] = -1.0;
 | 
|---|
 | 222 |   }
 | 
|---|
 | 223 | 
 | 
|---|
 | 224 |   IrreducibleRepresentation& ireg = gamma_[2];
 | 
|---|
 | 225 |   IrreducibleRepresentation& ireu = gamma_[3];
 | 
|---|
 | 226 | 
 | 
|---|
 | 227 |   IrreducibleRepresentation& irtg = gamma_[4];
 | 
|---|
 | 228 |   IrreducibleRepresentation& irtu = gamma_[5];
 | 
|---|
 | 229 | 
 | 
|---|
 | 230 |   ireg.init(g,2,"Eg");
 | 
|---|
 | 231 |   ireu.init(g,2,"Eu");
 | 
|---|
 | 232 |   ireg.complex_=1;
 | 
|---|
 | 233 |   ireu.complex_=1;
 | 
|---|
 | 234 | 
 | 
|---|
 | 235 |   irtg.init(g,3,"Tg");
 | 
|---|
 | 236 |   irtu.init(g,3,"Tu");
 | 
|---|
 | 237 |   irtg.nrot_=1;
 | 
|---|
 | 238 |   irtu.ntrans_=1;
 | 
|---|
 | 239 | 
 | 
|---|
 | 240 |   // the symmetry operation matrices form a basis for Tu.  Tg(g)=Tu(g) for
 | 
|---|
 | 241 |   // the proper rotations, and = -Tu(g) for the improper ones
 | 
|---|
 | 242 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 243 |     irtg.rep[i] = symop[i];
 | 
|---|
 | 244 |     irtu.rep[i] = symop[i];
 | 
|---|
 | 245 | 
 | 
|---|
 | 246 |     irtg.rep[i+12] = symop[i];
 | 
|---|
 | 247 |     irtu.rep[i+12] = symop[i+12];
 | 
|---|
 | 248 |   }
 | 
|---|
 | 249 |     
 | 
|---|
 | 250 |   // identity
 | 
|---|
 | 251 |   ireg.rep[0].E();
 | 
|---|
 | 252 |   
 | 
|---|
 | 253 |   // 4 C3's
 | 
|---|
 | 254 |   ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
 | 255 |   ireg.rep[2] = ireg.rep[1];
 | 
|---|
 | 256 |   ireg.rep[3] = ireg.rep[1];
 | 
|---|
 | 257 |   ireg.rep[4] = ireg.rep[1];
 | 
|---|
 | 258 | 
 | 
|---|
 | 259 |   // 4 C3^2's
 | 
|---|
 | 260 |   ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
 | 
|---|
 | 261 |   ireg.rep[6] = ireg.rep[5];
 | 
|---|
 | 262 |   ireg.rep[7] = ireg.rep[5];
 | 
|---|
 | 263 |   ireg.rep[8] = ireg.rep[5];
 | 
|---|
 | 264 | 
 | 
|---|
 | 265 |   // 3 C2's
 | 
|---|
 | 266 |   ireg.rep[9].unit();
 | 
|---|
 | 267 |   ireg.rep[10].unit();
 | 
|---|
 | 268 |   ireg.rep[11].unit();
 | 
|---|
 | 269 | 
 | 
|---|
 | 270 |   SymRep sr(2);
 | 
|---|
 | 271 |   sr.i();
 | 
|---|
 | 272 |   
 | 
|---|
 | 273 |   for (j=0; j < 12; j++) {
 | 
|---|
 | 274 |     ireu.rep[j] = ireg.rep[j];
 | 
|---|
 | 275 |     ireg.rep[j+12] = ireg.rep[j];
 | 
|---|
 | 276 |     ireu.rep[j+12] = ireg.rep[j].operate(sr);
 | 
|---|
 | 277 |   }
 | 
|---|
 | 278 | }
 | 
|---|
 | 279 | 
 | 
|---|
 | 280 | void
 | 
|---|
 | 281 | CharacterTable::td()
 | 
|---|
 | 282 | {
 | 
|---|
 | 283 |   // first get the T operations, then the Td operations
 | 
|---|
 | 284 |   t_ops(symop);
 | 
|---|
 | 285 |   td_ops(&symop[12]);
 | 
|---|
 | 286 |   
 | 
|---|
 | 287 |   int i;
 | 
|---|
 | 288 |   
 | 
|---|
 | 289 |   gamma_[0].init(g,1,"A1");
 | 
|---|
 | 290 |   gamma_[1].init(g,1,"A2");
 | 
|---|
 | 291 | 
 | 
|---|
 | 292 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 293 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
 | 294 |     gamma_[1].rep[i][0][0] = 1.0;
 | 
|---|
 | 295 | 
 | 
|---|
 | 296 |     gamma_[0].rep[i+12][0][0] =  1.0;
 | 
|---|
 | 297 |     gamma_[1].rep[i+12][0][0] = -1.0;
 | 
|---|
 | 298 |   }
 | 
|---|
 | 299 | 
 | 
|---|
 | 300 |   IrreducibleRepresentation& ire = gamma_[2];
 | 
|---|
 | 301 |   ire.init(g,2,"E");
 | 
|---|
 | 302 | 
 | 
|---|
 | 303 |   IrreducibleRepresentation& irt1 = gamma_[3];
 | 
|---|
 | 304 |   IrreducibleRepresentation& irt2 = gamma_[4];
 | 
|---|
 | 305 | 
 | 
|---|
 | 306 |   irt1.init(g,3,"T1");
 | 
|---|
 | 307 |   irt2.init(g,3,"T2");
 | 
|---|
 | 308 |   irt1.nrot_ = 1;
 | 
|---|
 | 309 |   irt2.ntrans_ = 1;
 | 
|---|
 | 310 | 
 | 
|---|
 | 311 |   // the symmetry operation matrices form a basis for T2.  T1(g)=T2(g) for
 | 
|---|
 | 312 |   // the proper rotations, and = -T2(g) for the improper ones
 | 
|---|
 | 313 |   SymmetryOperation so;
 | 
|---|
 | 314 |   so.i();
 | 
|---|
 | 315 |   
 | 
|---|
 | 316 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 317 |     irt1.rep[i] = symop[i];
 | 
|---|
 | 318 |     irt2.rep[i] = symop[i];
 | 
|---|
 | 319 |     irt1.rep[i+12] = symop[i+12].operate(so);
 | 
|---|
 | 320 |     irt2.rep[i+12] = symop[i+12];
 | 
|---|
 | 321 |   }
 | 
|---|
 | 322 |   
 | 
|---|
 | 323 |   // identity
 | 
|---|
 | 324 |   ire.rep[0].E();
 | 
|---|
 | 325 | 
 | 
|---|
 | 326 |   // 4 C3's
 | 
|---|
 | 327 |   ire.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
 | 328 |   ire.rep[2] = ire.rep[1];
 | 
|---|
 | 329 |   ire.rep[3] = ire.rep[1];
 | 
|---|
 | 330 |   ire.rep[4] = ire.rep[1];
 | 
|---|
 | 331 | 
 | 
|---|
 | 332 |   // 4 C3^2's
 | 
|---|
 | 333 |   ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
 | 
|---|
 | 334 |   ire.rep[6] = ire.rep[5];
 | 
|---|
 | 335 |   ire.rep[7] = ire.rep[5];
 | 
|---|
 | 336 |   ire.rep[8] = ire.rep[5];
 | 
|---|
 | 337 | 
 | 
|---|
 | 338 |   // 3 C2's
 | 
|---|
 | 339 |   ire.rep[9].unit();
 | 
|---|
 | 340 |   ire.rep[10].unit();
 | 
|---|
 | 341 |   ire.rep[11].unit();
 | 
|---|
 | 342 | 
 | 
|---|
 | 343 |   // 6 S4's
 | 
|---|
 | 344 |   ire.rep[12].c2_x();
 | 
|---|
 | 345 |   ire.rep[13].c2_x();
 | 
|---|
 | 346 | 
 | 
|---|
 | 347 |   ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
 | 
|---|
 | 348 |   ire.rep[15] = ire.rep[14];
 | 
|---|
 | 349 |   
 | 
|---|
 | 350 |   ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
 | 
|---|
 | 351 |   ire.rep[17] = ire.rep[16];
 | 
|---|
 | 352 | 
 | 
|---|
 | 353 |   for (i=18; i < 24; i++)
 | 
|---|
 | 354 |     ire.rep[i] = ire.rep[i-6];
 | 
|---|
 | 355 | }
 | 
|---|
 | 356 | 
 | 
|---|
 | 357 | void
 | 
|---|
 | 358 | CharacterTable::o()
 | 
|---|
 | 359 | {
 | 
|---|
 | 360 |   int i;
 | 
|---|
 | 361 |   
 | 
|---|
 | 362 |   // first get the T operations, then the O operations
 | 
|---|
 | 363 |   t_ops(symop);
 | 
|---|
 | 364 |   td_ops(&symop[12]);
 | 
|---|
 | 365 |   
 | 
|---|
 | 366 |   SymmetryOperation so;
 | 
|---|
 | 367 |   so.i();
 | 
|---|
 | 368 | 
 | 
|---|
 | 369 |   for (i=12; i < 24; i++)
 | 
|---|
 | 370 |     symop[i] = symop[i].operate(so);
 | 
|---|
 | 371 |   
 | 
|---|
 | 372 |   gamma_[0].init(g,1,"A1");
 | 
|---|
 | 373 |   gamma_[1].init(g,1,"A2");
 | 
|---|
 | 374 | 
 | 
|---|
 | 375 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 376 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
 | 377 |     gamma_[1].rep[i][0][0] = 1.0;
 | 
|---|
 | 378 | 
 | 
|---|
 | 379 |     gamma_[0].rep[i+12][0][0] =  1.0;
 | 
|---|
 | 380 |     gamma_[1].rep[i+12][0][0] = -1.0;
 | 
|---|
 | 381 |   }
 | 
|---|
 | 382 | 
 | 
|---|
 | 383 |   IrreducibleRepresentation& ire = gamma_[2];
 | 
|---|
 | 384 |   ire.init(g,2,"E");
 | 
|---|
 | 385 | 
 | 
|---|
 | 386 |   IrreducibleRepresentation& irt1 = gamma_[3];
 | 
|---|
 | 387 |   IrreducibleRepresentation& irt2 = gamma_[4];
 | 
|---|
 | 388 | 
 | 
|---|
 | 389 |   irt1.init(g,3,"T1");
 | 
|---|
 | 390 |   irt2.init(g,3,"T2");
 | 
|---|
 | 391 |   irt1.nrot_ = 1;
 | 
|---|
 | 392 |   irt1.ntrans_ = 1;
 | 
|---|
 | 393 | 
 | 
|---|
 | 394 |   // the symmetry operation matrices form a basis for T1.  T2(g)=T1(g) for
 | 
|---|
 | 395 |   // the proper rotations, and = -T1(g) for the improper ones
 | 
|---|
 | 396 |   
 | 
|---|
 | 397 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 398 |     irt1.rep[i] = symop[i];
 | 
|---|
 | 399 |     irt2.rep[i] = symop[i];
 | 
|---|
 | 400 |     irt1.rep[i+12] = symop[i+12];
 | 
|---|
 | 401 |     irt2.rep[i+12] = symop[i+12].operate(so);
 | 
|---|
 | 402 |   }
 | 
|---|
 | 403 |   
 | 
|---|
 | 404 |   // identity
 | 
|---|
 | 405 |   ire.rep[0].E();
 | 
|---|
 | 406 | 
 | 
|---|
 | 407 |   // 4 C3's
 | 
|---|
 | 408 |   ire.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
 | 409 |   ire.rep[2] = ire.rep[1];
 | 
|---|
 | 410 |   ire.rep[3] = ire.rep[1];
 | 
|---|
 | 411 |   ire.rep[4] = ire.rep[1];
 | 
|---|
 | 412 | 
 | 
|---|
 | 413 |   // 4 C3^2's
 | 
|---|
 | 414 |   ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
 | 
|---|
 | 415 |   ire.rep[6] = ire.rep[5];
 | 
|---|
 | 416 |   ire.rep[7] = ire.rep[5];
 | 
|---|
 | 417 |   ire.rep[8] = ire.rep[5];
 | 
|---|
 | 418 | 
 | 
|---|
 | 419 |   // 3 C2's
 | 
|---|
 | 420 |   ire.rep[9].unit();
 | 
|---|
 | 421 |   ire.rep[10].unit();
 | 
|---|
 | 422 |   ire.rep[11].unit();
 | 
|---|
 | 423 | 
 | 
|---|
 | 424 |   // 6 C4's
 | 
|---|
 | 425 |   ire.rep[12].c2_x();
 | 
|---|
 | 426 |   ire.rep[13].c2_x();
 | 
|---|
 | 427 | 
 | 
|---|
 | 428 |   ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
 | 
|---|
 | 429 |   ire.rep[15] = ire.rep[14];
 | 
|---|
 | 430 |   
 | 
|---|
 | 431 |   ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
 | 
|---|
 | 432 |   ire.rep[17] = ire.rep[16];
 | 
|---|
 | 433 | 
 | 
|---|
 | 434 |   // 6 C2's
 | 
|---|
 | 435 |   for (i=18; i < 24; i++)
 | 
|---|
 | 436 |     ire.rep[i] = ire.rep[i-6];
 | 
|---|
 | 437 | }
 | 
|---|
 | 438 | 
 | 
|---|
 | 439 | void CharacterTable::oh()
 | 
|---|
 | 440 | {
 | 
|---|
 | 441 |   int i,j;
 | 
|---|
 | 442 |   
 | 
|---|
 | 443 |   SymmetryOperation so;
 | 
|---|
 | 444 |   so.i();
 | 
|---|
 | 445 |   
 | 
|---|
 | 446 |   // first get the T operations, then the O operations, then the Th
 | 
|---|
 | 447 |   // operations, then the Td operations
 | 
|---|
 | 448 |   t_ops(symop);
 | 
|---|
 | 449 |   td_ops(&symop[36]);
 | 
|---|
 | 450 | 
 | 
|---|
 | 451 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 452 |     symop[i+24] = symop[i].operate(so);
 | 
|---|
 | 453 |     symop[i+12] = symop[i+36].operate(so);
 | 
|---|
 | 454 |   }
 | 
|---|
 | 455 |   
 | 
|---|
 | 456 |   gamma_[0].init(g,1,"A1g");
 | 
|---|
 | 457 |   gamma_[1].init(g,1,"A2g");
 | 
|---|
 | 458 |   gamma_[5].init(g,1,"A1u");
 | 
|---|
 | 459 |   gamma_[6].init(g,1,"A2u");
 | 
|---|
 | 460 | 
 | 
|---|
 | 461 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 462 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
 | 463 |     gamma_[1].rep[i][0][0] = 1.0;
 | 
|---|
 | 464 |     gamma_[5].rep[i][0][0] = 1.0;
 | 
|---|
 | 465 |     gamma_[6].rep[i][0][0] = 1.0;
 | 
|---|
 | 466 | 
 | 
|---|
 | 467 |     gamma_[0].rep[i+12][0][0] =  1.0;
 | 
|---|
 | 468 |     gamma_[1].rep[i+12][0][0] = -1.0;
 | 
|---|
 | 469 |     gamma_[5].rep[i+12][0][0] =  1.0;
 | 
|---|
 | 470 |     gamma_[6].rep[i+12][0][0] = -1.0;
 | 
|---|
 | 471 | 
 | 
|---|
 | 472 |     gamma_[0].rep[i+24][0][0] =  1.0;
 | 
|---|
 | 473 |     gamma_[1].rep[i+24][0][0] =  1.0;
 | 
|---|
 | 474 |     gamma_[5].rep[i+24][0][0] = -1.0;
 | 
|---|
 | 475 |     gamma_[6].rep[i+24][0][0] = -1.0;
 | 
|---|
 | 476 | 
 | 
|---|
 | 477 |     gamma_[0].rep[i+36][0][0] =  1.0;
 | 
|---|
 | 478 |     gamma_[1].rep[i+36][0][0] = -1.0;
 | 
|---|
 | 479 |     gamma_[5].rep[i+36][0][0] = -1.0;
 | 
|---|
 | 480 |     gamma_[6].rep[i+36][0][0] =  1.0;
 | 
|---|
 | 481 |   }
 | 
|---|
 | 482 | 
 | 
|---|
 | 483 |   // the symmetry operation matrices form a basis for T1u.  T2u(g)=T1u(g) for
 | 
|---|
 | 484 |   // the proper rotations, and = -T1(g) for the improper ones.
 | 
|---|
 | 485 |   // T1g(g)=T1u(g) for the O part, and = -T1u(g) for the ixO part.
 | 
|---|
 | 486 |   // T2g(g)=T1g(g) for proper rotations and =-T1g(g) for improper
 | 
|---|
 | 487 | 
 | 
|---|
 | 488 |   gamma_[3].init(g,3,"T1g");
 | 
|---|
 | 489 |   gamma_[4].init(g,3,"T2g");
 | 
|---|
 | 490 |   gamma_[8].init(g,3,"T1u");
 | 
|---|
 | 491 |   gamma_[9].init(g,3,"T2u");
 | 
|---|
 | 492 | 
 | 
|---|
 | 493 |   gamma_[3].nrot_=1;
 | 
|---|
 | 494 |   gamma_[8].ntrans_=1;
 | 
|---|
 | 495 |   
 | 
|---|
 | 496 |   for (i=0; i < 12; i++) {
 | 
|---|
 | 497 |     gamma_[3].rep[i] = symop[i];
 | 
|---|
 | 498 |     gamma_[4].rep[i] = symop[i];
 | 
|---|
 | 499 |     gamma_[8].rep[i] = symop[i];
 | 
|---|
 | 500 |     gamma_[9].rep[i] = symop[i];
 | 
|---|
 | 501 |     
 | 
|---|
 | 502 |     gamma_[3].rep[i+12] = symop[i+12];
 | 
|---|
 | 503 |     gamma_[4].rep[i+12] = symop[i+12].operate(so);
 | 
|---|
 | 504 |     gamma_[8].rep[i+12] = symop[i+12];
 | 
|---|
 | 505 |     gamma_[9].rep[i+12] = symop[i+12].operate(so);
 | 
|---|
 | 506 |     
 | 
|---|
 | 507 |     gamma_[3].rep[i+24] = symop[i+24].operate(so);
 | 
|---|
 | 508 |     gamma_[4].rep[i+24] = symop[i+24].operate(so);
 | 
|---|
 | 509 |     gamma_[8].rep[i+24] = symop[i+24];
 | 
|---|
 | 510 |     gamma_[9].rep[i+24] = symop[i+24];
 | 
|---|
 | 511 |     
 | 
|---|
 | 512 |     gamma_[3].rep[i+36] = symop[i+36].operate(so);
 | 
|---|
 | 513 |     gamma_[4].rep[i+36] = symop[i+36];
 | 
|---|
 | 514 |     gamma_[8].rep[i+36] = symop[i+36];
 | 
|---|
 | 515 |     gamma_[9].rep[i+36] = symop[i+36].operate(so);
 | 
|---|
 | 516 |   }
 | 
|---|
 | 517 | 
 | 
|---|
 | 518 |   IrreducibleRepresentation& ireg = gamma_[2];
 | 
|---|
 | 519 |   IrreducibleRepresentation& ireu = gamma_[7];
 | 
|---|
 | 520 | 
 | 
|---|
 | 521 |   ireg.init(g,2,"Eg");
 | 
|---|
 | 522 |   ireu.init(g,2,"Eu");
 | 
|---|
 | 523 |     
 | 
|---|
 | 524 |   // identity
 | 
|---|
 | 525 |   ireg.rep[0].E();
 | 
|---|
 | 526 |   
 | 
|---|
 | 527 |   // 4 C3's
 | 
|---|
 | 528 |   ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
 | 529 |   ireg.rep[2] = ireg.rep[1];
 | 
|---|
 | 530 |   ireg.rep[3] = ireg.rep[1];
 | 
|---|
 | 531 |   ireg.rep[4] = ireg.rep[1];
 | 
|---|
 | 532 | 
 | 
|---|
 | 533 |   // 4 C3^2's
 | 
|---|
 | 534 |   ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
 | 
|---|
 | 535 |   ireg.rep[6] = ireg.rep[5];
 | 
|---|
 | 536 |   ireg.rep[7] = ireg.rep[5];
 | 
|---|
 | 537 |   ireg.rep[8] = ireg.rep[5];
 | 
|---|
 | 538 | 
 | 
|---|
 | 539 |   // 3 C2's
 | 
|---|
 | 540 |   ireg.rep[9].unit();
 | 
|---|
 | 541 |   ireg.rep[10].unit();
 | 
|---|
 | 542 |   ireg.rep[11].unit();
 | 
|---|
 | 543 | 
 | 
|---|
 | 544 |   // 6 C4's
 | 
|---|
 | 545 |   ireg.rep[12].c2_x();
 | 
|---|
 | 546 |   ireg.rep[13].c2_x();
 | 
|---|
 | 547 | 
 | 
|---|
 | 548 |   ireg.rep[14] = ireg.rep[12].operate(ireg.rep[1]);
 | 
|---|
 | 549 |   ireg.rep[15] = ireg.rep[14];
 | 
|---|
 | 550 |   
 | 
|---|
 | 551 |   ireg.rep[16] = ireg.rep[14].operate(ireg.rep[1]);
 | 
|---|
 | 552 |   ireg.rep[17] = ireg.rep[16];
 | 
|---|
 | 553 | 
 | 
|---|
 | 554 |   // 6 C2's
 | 
|---|
 | 555 |   for (i=18; i < 24; i++)
 | 
|---|
 | 556 |     ireg.rep[i] = ireg.rep[i-6];
 | 
|---|
 | 557 | 
 | 
|---|
 | 558 |   SymRep sr(2);
 | 
|---|
 | 559 |   sr.i();
 | 
|---|
 | 560 |   
 | 
|---|
 | 561 |   for (j=0; j < 24; j++) {
 | 
|---|
 | 562 |     ireu.rep[j] = ireg.rep[j];
 | 
|---|
 | 563 |     ireg.rep[j+24] = ireg.rep[j];
 | 
|---|
 | 564 |     ireu.rep[j+24] = ireg.rep[j].operate(sr);
 | 
|---|
 | 565 |   }
 | 
|---|
 | 566 | }
 | 
|---|
 | 567 | 
 | 
|---|
 | 568 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 569 | 
 | 
|---|
 | 570 | // Local Variables:
 | 
|---|
 | 571 | // mode: c++
 | 
|---|
 | 572 | // c-file-style: "ETS"
 | 
|---|
 | 573 | // End:
 | 
|---|