1 | /*
|
---|
2 | * gslmatrix.cpp
|
---|
3 | *
|
---|
4 | * Created on: Jan 8, 2010
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | using namespace std;
|
---|
9 |
|
---|
10 | #include "gslmatrix.hpp"
|
---|
11 | #include "helpers.hpp"
|
---|
12 | #include "Helpers/fast_functions.hpp"
|
---|
13 |
|
---|
14 | #include <cassert>
|
---|
15 | #include <gsl/gsl_linalg.h>
|
---|
16 |
|
---|
17 | /** Constructor of class GSLMatrix.
|
---|
18 | * Allocates GSL structures
|
---|
19 | * \param m dimension of matrix
|
---|
20 | */
|
---|
21 | GSLMatrix::GSLMatrix(size_t m, size_t n) : rows(m), columns(n)
|
---|
22 | {
|
---|
23 | matrix = gsl_matrix_calloc(rows, columns);
|
---|
24 | };
|
---|
25 |
|
---|
26 | /** Copy constructor of class GSLMatrix.
|
---|
27 | * Allocates GSL structures and copies components from \a *src.
|
---|
28 | * \param *src source matrix
|
---|
29 | */
|
---|
30 | GSLMatrix::GSLMatrix(const GSLMatrix * const src) : rows(src->rows), columns(src->columns)
|
---|
31 | {
|
---|
32 | matrix = gsl_matrix_alloc(rows, columns);
|
---|
33 | gsl_matrix_memcpy (matrix, src->matrix);
|
---|
34 | };
|
---|
35 |
|
---|
36 | /** Destructor of class GSLMatrix.
|
---|
37 | * Frees GSL structures
|
---|
38 | */
|
---|
39 | GSLMatrix::~GSLMatrix()
|
---|
40 | {
|
---|
41 | gsl_matrix_free(matrix);
|
---|
42 | rows = 0;
|
---|
43 | columns = 0;
|
---|
44 | };
|
---|
45 |
|
---|
46 | /** Assignment operator.
|
---|
47 | * \param &rhs right hand side
|
---|
48 | * \return object itself
|
---|
49 | */
|
---|
50 | GSLMatrix& GSLMatrix::operator=(const GSLMatrix& rhs)
|
---|
51 | {
|
---|
52 | if (this == &rhs) // not necessary here, but identity assignment check is generally a good idea
|
---|
53 | return *this;
|
---|
54 | assert(rows == rhs.rows && columns == rhs.columns && "Number of rows and columns do not match!");
|
---|
55 |
|
---|
56 | gsl_matrix_memcpy (matrix, rhs.matrix);
|
---|
57 |
|
---|
58 | return *this;
|
---|
59 | };
|
---|
60 |
|
---|
61 | /* ============================ Accessing =============================== */
|
---|
62 | /** This function sets the matrix from a double array.
|
---|
63 | * Creates a matrix view of the array and performs a memcopy.
|
---|
64 | * \param *x array of values (no dimension check is performed)
|
---|
65 | */
|
---|
66 | void GSLMatrix::SetFromDoubleArray(double * x)
|
---|
67 | {
|
---|
68 | gsl_matrix_view m = gsl_matrix_view_array (x, rows, columns);
|
---|
69 | gsl_matrix_memcpy (matrix, &m.matrix);
|
---|
70 | };
|
---|
71 |
|
---|
72 | /** This function returns the i-th element of a matrix.
|
---|
73 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and 0 is returned.
|
---|
74 | * \param m row index
|
---|
75 | * \param n colum index
|
---|
76 | * \return (m,n)-th element of matrix
|
---|
77 | */
|
---|
78 | double GSLMatrix::Get(size_t m, size_t n)
|
---|
79 | {
|
---|
80 | return gsl_matrix_get (matrix, m, n);
|
---|
81 | };
|
---|
82 |
|
---|
83 | /** This function sets the value of the \a m -th element of a matrix to \a x.
|
---|
84 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked.
|
---|
85 | * \param m row index
|
---|
86 | * \param m column index
|
---|
87 | * \param x value to set element (m,n) to
|
---|
88 | */
|
---|
89 | void GSLMatrix::Set(size_t m, size_t n, double x)
|
---|
90 | {
|
---|
91 | gsl_matrix_set (matrix, m, n, x);
|
---|
92 | };
|
---|
93 |
|
---|
94 | /** These functions return a pointer to the \a m-th element of a matrix.
|
---|
95 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
96 | * \param m index
|
---|
97 | * \return pointer to \a m-th element
|
---|
98 | */
|
---|
99 | double *GSLMatrix::Pointer(size_t m, size_t n)
|
---|
100 | {
|
---|
101 | return gsl_matrix_ptr (matrix, m, n);
|
---|
102 | };
|
---|
103 |
|
---|
104 | /** These functions return a constant pointer to the \a m-th element of a matrix.
|
---|
105 | * If \a m or \a n lies outside the allowed range of 0 to GSLMatrix::dimension-1 then the error handler is invoked and a null pointer is returned.
|
---|
106 | * \param m index
|
---|
107 | * \return const pointer to \a m-th element
|
---|
108 | */
|
---|
109 | const double *GSLMatrix::const_Pointer(size_t m, size_t n)
|
---|
110 | {
|
---|
111 | return gsl_matrix_const_ptr (matrix, m, n);
|
---|
112 | };
|
---|
113 |
|
---|
114 | /* ========================== Initializing =============================== */
|
---|
115 | /** This function sets all the elements of the matrix to the value \a x.
|
---|
116 | * \param *x
|
---|
117 | */
|
---|
118 | void GSLMatrix::SetAll(double x)
|
---|
119 | {
|
---|
120 | gsl_matrix_set_all (matrix, x);
|
---|
121 | };
|
---|
122 |
|
---|
123 | /** This function sets all the elements of the matrix to zero.
|
---|
124 | */
|
---|
125 | void GSLMatrix::SetZero()
|
---|
126 | {
|
---|
127 | gsl_matrix_set_zero (matrix);
|
---|
128 | };
|
---|
129 |
|
---|
130 | /** This function sets the elements of the matrix to the corresponding elements of the identity matrix, \f$m(i,j) = \delta(i,j)\f$, i.e. a unit diagonal with all off-diagonal elements zero.
|
---|
131 | * This applies to both square and rectangular matrices.
|
---|
132 | */
|
---|
133 | void GSLMatrix::SetIdentity()
|
---|
134 | {
|
---|
135 | gsl_matrix_set_identity (matrix);
|
---|
136 | };
|
---|
137 |
|
---|
138 | /* ====================== Exchanging elements ============================ */
|
---|
139 | /** This function exchanges the \a i-th and \a j-th row of the matrix in-place.
|
---|
140 | * \param i i-th row to swap with ...
|
---|
141 | * \param j ... j-th row to swap against
|
---|
142 | */
|
---|
143 | bool GSLMatrix::SwapRows(size_t i, size_t j)
|
---|
144 | {
|
---|
145 | return (gsl_matrix_swap_rows (matrix, i, j) == GSL_SUCCESS);
|
---|
146 | };
|
---|
147 |
|
---|
148 | /** This function exchanges the \a i-th and \a j-th column of the matrix in-place.
|
---|
149 | * \param i i-th column to swap with ...
|
---|
150 | * \param j ... j-th column to swap against
|
---|
151 | */
|
---|
152 | bool GSLMatrix::SwapColumns(size_t i, size_t j)
|
---|
153 | {
|
---|
154 | return (gsl_matrix_swap_columns (matrix, i, j) == GSL_SUCCESS);
|
---|
155 | };
|
---|
156 |
|
---|
157 | /** This function exchanges the \a i-th row and \a j-th column of the matrix in-place.
|
---|
158 | * The matrix must be square for this operation to be possible.
|
---|
159 | * \param i i-th row to swap with ...
|
---|
160 | * \param j ... j-th column to swap against
|
---|
161 | */
|
---|
162 | bool GSLMatrix::SwapRowColumn(size_t i, size_t j)
|
---|
163 | {
|
---|
164 | assert (rows == columns && "The matrix must be square for swapping row against column to be possible.");
|
---|
165 | return (gsl_matrix_swap_rowcol (matrix, i, j) == GSL_SUCCESS);
|
---|
166 | };
|
---|
167 |
|
---|
168 | /** This function transposes the matrix.
|
---|
169 | * Note that the function is extended to the non-square case, where the matrix is re-allocated and copied.
|
---|
170 | */
|
---|
171 | bool GSLMatrix::Transpose()
|
---|
172 | {
|
---|
173 | if (rows == columns)// if square, use GSL
|
---|
174 | return (gsl_matrix_transpose (matrix) == GSL_SUCCESS);
|
---|
175 | else { // otherwise we have to copy a bit
|
---|
176 | gsl_matrix *dest = gsl_matrix_alloc(columns, rows);
|
---|
177 | for (size_t i=0;i<rows; i++)
|
---|
178 | for (size_t j=0;j<columns;j++) {
|
---|
179 | gsl_matrix_set(dest, j,i, gsl_matrix_get(matrix, i,j) );
|
---|
180 | }
|
---|
181 | gsl_matrix_free(matrix);
|
---|
182 | matrix = dest;
|
---|
183 | flip(rows, columns);
|
---|
184 | return true;
|
---|
185 | }
|
---|
186 | };
|
---|
187 |
|
---|
188 | /* ============================ Properties ============================== */
|
---|
189 | /** Checks whether matrix' elements are strictly null.
|
---|
190 | * \return true - is null, false - else
|
---|
191 | */
|
---|
192 | bool GSLMatrix::IsNull()
|
---|
193 | {
|
---|
194 | return gsl_matrix_isnull (matrix);
|
---|
195 | };
|
---|
196 |
|
---|
197 | /** Checks whether matrix' elements are strictly positive.
|
---|
198 | * \return true - is positive, false - else
|
---|
199 | */
|
---|
200 | bool GSLMatrix::IsPositive()
|
---|
201 | {
|
---|
202 | return gsl_matrix_ispos (matrix);
|
---|
203 | };
|
---|
204 |
|
---|
205 | /** Checks whether matrix' elements are strictly negative.
|
---|
206 | * \return true - is negative, false - else
|
---|
207 | */
|
---|
208 | bool GSLMatrix::IsNegative()
|
---|
209 | {
|
---|
210 | return gsl_matrix_isneg (matrix);
|
---|
211 | };
|
---|
212 |
|
---|
213 | /** Checks whether matrix' elements are strictly non-negative.
|
---|
214 | * \return true - is non-negative, false - else
|
---|
215 | */
|
---|
216 | bool GSLMatrix::IsNonNegative()
|
---|
217 | {
|
---|
218 | return gsl_matrix_isnonneg (matrix);
|
---|
219 | };
|
---|
220 |
|
---|
221 | /** This function performs a Cholesky decomposition to determine whether matrix is positive definite.
|
---|
222 | * We check whether GSL returns GSL_EDOM as error, indicating that decomposition failed due to matrix not being positive-definite.
|
---|
223 | * \return true - matrix is positive-definite, false - else
|
---|
224 | */
|
---|
225 | bool GSLMatrix::IsPositiveDefinite()
|
---|
226 | {
|
---|
227 | if (rows != columns) // only possible for square matrices.
|
---|
228 | return false;
|
---|
229 | else
|
---|
230 | return (gsl_linalg_cholesky_decomp (matrix) != GSL_EDOM);
|
---|
231 | };
|
---|
232 |
|
---|
233 |
|
---|
234 | /** Calculates the determinant of the matrix.
|
---|
235 | * if matrix is square, uses LU decomposition.
|
---|
236 | */
|
---|
237 | double GSLMatrix::Determinant()
|
---|
238 | {
|
---|
239 | int signum = 0;
|
---|
240 | assert (rows == columns && "Determinant can only be calculated for square matrices.");
|
---|
241 | gsl_permutation *p = gsl_permutation_alloc(rows);
|
---|
242 | gsl_linalg_LU_decomp(matrix, p, &signum);
|
---|
243 | gsl_permutation_free(p);
|
---|
244 | return gsl_linalg_LU_det(matrix, signum);
|
---|
245 | };
|
---|
246 |
|
---|