| [fcf7f6] | 1 | /*
|
|---|
| 2 | * vmg - a versatile multigrid solver
|
|---|
| 3 | * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
|
|---|
| 4 | *
|
|---|
| 5 | * vmg is free software: you can redistribute it and/or modify
|
|---|
| 6 | * it under the terms of the GNU General Public License as published by
|
|---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
|---|
| 8 | * (at your option) any later version.
|
|---|
| 9 | *
|
|---|
| 10 | * vmg is distributed in the hope that it will be useful,
|
|---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|---|
| 13 | * GNU General Public License for more details.
|
|---|
| 14 | *
|
|---|
| 15 | * You should have received a copy of the GNU General Public License
|
|---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|---|
| 17 | */
|
|---|
| 18 |
|
|---|
| [dfed1c] | 19 | /**
|
|---|
| 20 | * @file grid_index_translations.cpp
|
|---|
| 21 | * @author Julian Iseringhausen <isering@ins.uni-bonn.de>
|
|---|
| 22 | * @date Tue May 17 11:46:37 2011
|
|---|
| 23 | *
|
|---|
| 24 | * @brief Class to convert different representations of grid
|
|---|
| 25 | * indices.
|
|---|
| 26 | *
|
|---|
| 27 | */
|
|---|
| 28 |
|
|---|
| 29 | #ifdef HAVE_CONFIG_H
|
|---|
| 30 | #include <config.h>
|
|---|
| 31 | #endif
|
|---|
| 32 |
|
|---|
| 33 | #include "base/helper.hpp"
|
|---|
| [6e10f33] | 34 | #include "comm/comm.hpp"
|
|---|
| [8180d8] | 35 | #include "grid/grid_double_iterator.hpp"
|
|---|
| [dfed1c] | 36 | #include "grid/grid_index_translations.hpp"
|
|---|
| 37 | #include "grid/grid.hpp"
|
|---|
| 38 | #include "grid/multigrid.hpp"
|
|---|
| [e85cfd] | 39 | #include "mg.hpp"
|
|---|
| [dfed1c] | 40 |
|
|---|
| 41 | using namespace VMG;
|
|---|
| 42 |
|
|---|
| [8180d8] | 43 | bool GridIndexTranslations::IsGridPointOf(const Grid& grid, const Index& index_finest)
|
|---|
| [dfed1c] | 44 | {
|
|---|
| [e85cfd] | 45 | const int max_level = MG::GetSol()->MaxLevel();
|
|---|
| 46 | return index_finest[0] % Helper::intpow(2, max_level - grid.Level()) == 0 &&
|
|---|
| 47 | index_finest[1] % Helper::intpow(2, max_level - grid.Level()) == 0 &&
|
|---|
| 48 | index_finest[2] % Helper::intpow(2, max_level - grid.Level()) == 0;
|
|---|
| [dfed1c] | 49 | }
|
|---|
| 50 |
|
|---|
| [8180d8] | 51 | Index GridIndexTranslations::LocalToGlobal(const Grid& grid, const Index& index_local)
|
|---|
| [dfed1c] | 52 | {
|
|---|
| [6e10f33] | 53 | return index_local - grid.Local().HaloSize1() + grid.Global().LocalBegin();
|
|---|
| [dfed1c] | 54 | }
|
|---|
| 55 |
|
|---|
| [8180d8] | 56 | Index GridIndexTranslations::LocalToGlobalFinest(const Grid& grid, const Index& index_local)
|
|---|
| [dfed1c] | 57 | {
|
|---|
| [8180d8] | 58 | return GlobalToGlobalFinest(grid, LocalToGlobal(grid, index_local));
|
|---|
| [dfed1c] | 59 | }
|
|---|
| 60 |
|
|---|
| [8180d8] | 61 | Index GridIndexTranslations::GlobalToLocal(const Grid& grid, const Index& index_global)
|
|---|
| [dfed1c] | 62 | {
|
|---|
| [6e10f33] | 63 | return index_global - grid.Global().LocalBegin() + grid.Local().HaloSize1();
|
|---|
| [dfed1c] | 64 | }
|
|---|
| 65 |
|
|---|
| [8180d8] | 66 | Index GridIndexTranslations::GlobalToGlobalFinest(const Grid& grid, const Index& index_global)
|
|---|
| [dfed1c] | 67 | {
|
|---|
| [e85cfd] | 68 | return Helper::intpow(2, MG::GetSol()->MaxLevel() - grid.Level()) * index_global;
|
|---|
| [dfed1c] | 69 | }
|
|---|
| 70 |
|
|---|
| [8180d8] | 71 | Index GridIndexTranslations::GlobalFinestToLocal(const Grid& grid, const Index& index_finest)
|
|---|
| [dfed1c] | 72 | {
|
|---|
| [8180d8] | 73 | return GlobalToLocal(grid, GlobalFinestToGlobal(grid, index_finest));
|
|---|
| [dfed1c] | 74 | }
|
|---|
| 75 |
|
|---|
| [8180d8] | 76 | Index GridIndexTranslations::GlobalFinestToGlobal(const Grid& grid, const Index& index_finest)
|
|---|
| [dfed1c] | 77 | {
|
|---|
| [8180d8] | 78 | assert(IsGridPointOf(grid, index_finest));
|
|---|
| [e85cfd] | 79 | return index_finest / Helper::intpow(2, MG::GetSol()->MaxLevel() - grid.Level());
|
|---|
| [dfed1c] | 80 | }
|
|---|
| 81 |
|
|---|
| [8180d8] | 82 | void GridIndexTranslations::GlobalCoarseToFine(Index& begin, Index& end)
|
|---|
| [dfed1c] | 83 | {
|
|---|
| [8180d8] | 84 | for (int j=0; j<3; ++j) {
|
|---|
| 85 | begin[j] = 2 * begin[j];
|
|---|
| 86 | end[j] = 2 * (end[j]-1) + 1;
|
|---|
| 87 | }
|
|---|
| [dfed1c] | 88 | }
|
|---|
| 89 |
|
|---|
| [8180d8] | 90 | void GridIndexTranslations::GlobalFineToCoarse(Index& begin, Index& end)
|
|---|
| [dfed1c] | 91 | {
|
|---|
| [8180d8] | 92 | for (int j=0; j<3; ++j) {
|
|---|
| 93 | begin[j] = Helper::RoundUpToNextMultiple(begin[j], 2) / 2;
|
|---|
| 94 | end[j] = Helper::RoundDownToNextMultiple(end[j]-1, 2) / 2 + 1;
|
|---|
| 95 | }
|
|---|
| [dfed1c] | 96 | }
|
|---|
| 97 |
|
|---|
| [8180d8] | 98 | void GridIndexTranslations::GetGridAlignment(const Grid& grid_1, GridIteratorSet& bounds_1,
|
|---|
| [e85cfd] | 99 | const Grid& grid_2, GridIteratorSet& bounds_2)
|
|---|
| [dfed1c] | 100 | {
|
|---|
| [6e10f33] | 101 | const Boundary& boundary = MG::GetComm()->BoundaryConditions();
|
|---|
| 102 |
|
|---|
| [8180d8] | 103 | if (grid_1.Level() == grid_2.Level()) {
|
|---|
| [6e10f33] | 104 | Index begin_global = grid_1.Global()
|
|---|
| 105 | .LocalBegin()
|
|---|
| 106 | .Clamp(grid_2.Global().LocalBegin(), grid_2.Global().LocalEnd());
|
|---|
| [dfed1c] | 107 |
|
|---|
| [6e10f33] | 108 | Index end_global = grid_1.Global()
|
|---|
| 109 | .LocalEnd()
|
|---|
| 110 | .Clamp(grid_2.Global().LocalBegin(), grid_2.Global().LocalEnd());
|
|---|
| 111 |
|
|---|
| 112 | for (int j=0; j<3; ++j) {
|
|---|
| 113 | if (boundary[j] == Dirichlet || boundary[j] == Open) {
|
|---|
| 114 | if (begin_global[j] == grid_1.Global().GlobalBegin()[j] || begin_global[j] == grid_2.Global().GlobalBegin()[j])
|
|---|
| 115 | begin_global[j] += 1;
|
|---|
| 116 | if (end_global[j] == grid_1.Global().GlobalEnd()[j] || end_global[j] == grid_2.Global().GlobalEnd()[j])
|
|---|
| 117 | end_global[j] -= 1;
|
|---|
| 118 | }
|
|---|
| 119 | }
|
|---|
| [dfed1c] | 120 |
|
|---|
| [8180d8] | 121 | bounds_1 = GridIteratorSet(GlobalToLocal(grid_1, begin_global), GlobalToLocal(grid_2, end_global));
|
|---|
| 122 | bounds_2 = GridIteratorSet(GlobalToLocal(grid_2, begin_global), GlobalToLocal(grid_2, end_global));
|
|---|
| [dfed1c] | 123 |
|
|---|
| [8180d8] | 124 | } else {
|
|---|
| [dfed1c] | 125 |
|
|---|
| [8180d8] | 126 | const Grid& grid_c = (grid_1.Level() < grid_2.Level() ? grid_1 : grid_2);
|
|---|
| [e85cfd] | 127 | const int global_mult = Helper::intpow(2, MG::GetSol()->MaxLevel() - grid_c.Level());
|
|---|
| [dfed1c] | 128 |
|
|---|
| [8180d8] | 129 | Index begin_finest = GlobalToGlobalFinest(grid_1, grid_1.Global().LocalBegin())
|
|---|
| 130 | .Clamp(GlobalToGlobalFinest(grid_2, grid_2.Global().LocalBegin()),
|
|---|
| 131 | GlobalToGlobalFinest(grid_2, grid_2.Global().LocalEnd()-1));
|
|---|
| [dfed1c] | 132 |
|
|---|
| [8180d8] | 133 | Index end_finest = GlobalToGlobalFinest(grid_1, grid_1.Global().LocalEnd()-1)
|
|---|
| 134 | .Clamp(GlobalToGlobalFinest(grid_2, grid_2.Global().LocalBegin()),
|
|---|
| 135 | GlobalToGlobalFinest(grid_2, grid_2.Global().LocalEnd()-1));
|
|---|
| [dfed1c] | 136 |
|
|---|
| [8180d8] | 137 | for (int j=0; j<3; ++j) {
|
|---|
| 138 | begin_finest[j] = Helper::RoundUpToNextMultiple(begin_finest[j], global_mult);
|
|---|
| 139 | end_finest[j] = Helper::RoundDownToNextMultiple(end_finest[j], global_mult);
|
|---|
| 140 | }
|
|---|
| [dfed1c] | 141 |
|
|---|
| [6e10f33] | 142 | for (int j=0; j<3; ++j) {
|
|---|
| 143 | if (boundary[j] == Dirichlet || boundary[j] == Open) {
|
|---|
| 144 | if (grid_1.Global().LocalBegin()[j] == grid_1.Global().GlobalBegin()[j] || grid_2.Global().LocalBegin()[j] == grid_2.Global().GlobalBegin()[j])
|
|---|
| 145 | begin_finest[j] += global_mult;
|
|---|
| 146 | if (grid_1.Global().LocalEnd()[j] == grid_1.Global().GlobalEnd()[j] || grid_2.Global().LocalEnd()[j] == grid_2.Global().GlobalEnd()[j])
|
|---|
| 147 | end_finest[j] -= global_mult;
|
|---|
| 148 | }
|
|---|
| 149 | }
|
|---|
| 150 |
|
|---|
| [8180d8] | 151 | bounds_1 = GridIteratorSet(GlobalFinestToLocal(grid_1, begin_finest), GlobalFinestToLocal(grid_1, end_finest)+1);
|
|---|
| 152 | bounds_2 = GridIteratorSet(GlobalFinestToLocal(grid_2, begin_finest), GlobalFinestToLocal(grid_2, end_finest)+1);
|
|---|
| [dfed1c] | 153 |
|
|---|
| 154 | }
|
|---|
| 155 | }
|
|---|
| [6e10f33] | 156 |
|
|---|
| 157 | void GridIndexTranslations::GetInnerBoundary(const Grid& grid_c, Index& b1_c, Index& b2_c,
|
|---|
| [14d38c] | 158 | const Grid& grid_f, Index& b1_f, Index& b2_f)
|
|---|
| [6e10f33] | 159 | {
|
|---|
| 160 | if (grid_f.Global().BoundaryType() == LocallyRefined) {
|
|---|
| 161 |
|
|---|
| [14d38c] | 162 | const Boundary& bc = MG::GetComm()->BoundaryConditions();
|
|---|
| 163 |
|
|---|
| [6e10f33] | 164 | const int global_mult = Helper::intpow(2, MG::GetSol()->MaxLevel() - grid_c.Level());
|
|---|
| 165 |
|
|---|
| [14d38c] | 166 | for (int i=0; i<3; ++i) {
|
|---|
| 167 | if (bc[i] == Open) {
|
|---|
| 168 | int begin_f_global = grid_f.Global().LocalBegin()[i] + (grid_f.Global().LocalBegin()[i] % 2 == 0 ? 0 : 1);
|
|---|
| 169 | int end_f_global = grid_f.Global().LocalEnd()[i] + (grid_f.Global().LocalEnd()[i] % 2 == 0 ? 1 : 0);
|
|---|
| 170 | } else {
|
|---|
| 171 |
|
|---|
| 172 | }
|
|---|
| 173 | }
|
|---|
| 174 |
|
|---|
| [6e10f33] | 175 | Index begin_finest = GlobalToGlobalFinest(grid_c, grid_c.Global().LocalBegin())
|
|---|
| 176 | .Clamp(GlobalToGlobalFinest(grid_f, grid_f.Global().LocalBegin()),
|
|---|
| 177 | GlobalToGlobalFinest(grid_f, grid_f.Global().LocalEnd()-1));
|
|---|
| 178 |
|
|---|
| 179 | Index end_finest = GlobalToGlobalFinest(grid_c, grid_c.Global().LocalEnd()-1)
|
|---|
| 180 | .Clamp(GlobalToGlobalFinest(grid_f, grid_f.Global().LocalBegin()),
|
|---|
| 181 | GlobalToGlobalFinest(grid_f, grid_f.Global().LocalEnd()-1));
|
|---|
| 182 |
|
|---|
| 183 | } else {
|
|---|
| 184 | b1_c = -1;
|
|---|
| 185 | b2_c = -1;
|
|---|
| 186 | b1_f = -1;
|
|---|
| 187 | b2_f = -1;
|
|---|
| 188 | }
|
|---|
| 189 | }
|
|---|