source: src/ellipsoid.cpp@ febef3

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since febef3 was a5028f, checked in by Frederik Heber <heber@…>, 14 years ago

RandomNumberGeneratorFactory is now used instead of rand() throughout the code.

  • FillVoidWithMolecule(): this is not sensible for all distributions. Maybe so, for now this is just to test the dipole angular correlation implementation. Here, one should rather hard-code one.
  • Property mode set to 100644
File size: 18.7 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * ellipsoid.cpp
10 *
11 * Created on: Jan 20, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <gsl/gsl_multimin.h>
23#include <gsl/gsl_vector.h>
24
25#include <iomanip>
26
27#include <set>
28
29#include "BoundaryPointSet.hpp"
30#include "boundary.hpp"
31#include "ellipsoid.hpp"
32#include "linkedcell.hpp"
33#include "CodePatterns/Log.hpp"
34#include "tesselation.hpp"
35#include "LinearAlgebra/Vector.hpp"
36#include "LinearAlgebra/RealSpaceMatrix.hpp"
37#include "CodePatterns/Verbose.hpp"
38
39#include "RandomNumbers/RandomNumberGeneratorFactory.hpp"
40#include "RandomNumbers/RandomNumberGenerator.hpp"
41
42/** Determines squared distance for a given point \a x to surface of ellipsoid.
43 * \param x given point
44 * \param EllipsoidCenter center of ellipsoid
45 * \param EllipsoidLength[3] three lengths of half axis of ellipsoid
46 * \param EllipsoidAngle[3] three rotation angles of ellipsoid
47 * \return squared distance from point to surface
48 */
49double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
50{
51 Vector helper, RefPoint;
52 double distance = -1.;
53 RealSpaceMatrix Matrix;
54 double InverseLength[3];
55 double psi,theta,phi; // euler angles in ZX'Z'' convention
56
57 //Log() << Verbose(3) << "Begin of SquaredDistanceToEllipsoid" << endl;
58
59 for(int i=0;i<3;i++)
60 InverseLength[i] = 1./EllipsoidLength[i];
61
62 // 1. translate coordinate system so that ellipsoid center is in origin
63 RefPoint = helper = x - EllipsoidCenter;
64 //Log() << Verbose(4) << "Translated given point is at " << RefPoint << "." << endl;
65
66 // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
67 psi = EllipsoidAngle[0];
68 theta = EllipsoidAngle[1];
69 phi = EllipsoidAngle[2];
70 Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
71 Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
72 Matrix.set(2,0, sin(psi)*sin(theta));
73 Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
74 Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
75 Matrix.set(2,1, -cos(psi)*sin(theta));
76 Matrix.set(0,2, sin(theta)*sin(phi));
77 Matrix.set(1,2, sin(theta)*cos(phi));
78 Matrix.set(2,2, cos(theta));
79 helper *= Matrix;
80 helper.ScaleAll(InverseLength);
81 //Log() << Verbose(4) << "Transformed RefPoint is at " << helper << "." << endl;
82
83 // 3. construct intersection point with unit sphere and ray between origin and x
84 helper.Normalize(); // is simply normalizes vector in distance direction
85 //Log() << Verbose(4) << "Transformed intersection is at " << helper << "." << endl;
86
87 // 4. transform back the constructed intersection point
88 psi = -EllipsoidAngle[0];
89 theta = -EllipsoidAngle[1];
90 phi = -EllipsoidAngle[2];
91 helper.ScaleAll(EllipsoidLength);
92 Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
93 Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
94 Matrix.set(2,0, sin(psi)*sin(theta));
95 Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
96 Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
97 Matrix.set(2,1, -cos(psi)*sin(theta));
98 Matrix.set(0,2, sin(theta)*sin(phi));
99 Matrix.set(1,2, sin(theta)*cos(phi));
100 Matrix.set(2,2, cos(theta));
101 helper *= Matrix;
102 //Log() << Verbose(4) << "Intersection is at " << helper << "." << endl;
103
104 // 5. determine distance between backtransformed point and x
105 distance = RefPoint.DistanceSquared(helper);
106 //Log() << Verbose(4) << "Squared distance between intersection and RefPoint is " << distance << "." << endl;
107
108 return distance;
109 //Log() << Verbose(3) << "End of SquaredDistanceToEllipsoid" << endl;
110};
111
112/** structure for ellipsoid minimisation containing points to fit to.
113 */
114struct EllipsoidMinimisation {
115 int N; //!< dimension of vector set
116 Vector *x; //!< array of vectors
117};
118
119/** Sum of squared distance to ellipsoid to be minimised.
120 * \param *x parameters for the ellipsoid
121 * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
122 * \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
123 */
124double SumSquaredDistance (const gsl_vector * x, void * params)
125{
126 Vector *set= ((struct EllipsoidMinimisation *)params)->x;
127 int N = ((struct EllipsoidMinimisation *)params)->N;
128 double SumDistance = 0.;
129 double distance;
130 Vector Center;
131 double EllipsoidLength[3], EllipsoidAngle[3];
132
133 // put parameters into suitable ellipsoid form
134 for (int i=0;i<3;i++) {
135 Center[i] = gsl_vector_get(x, i+0);
136 EllipsoidLength[i] = gsl_vector_get(x, i+3);
137 EllipsoidAngle[i] = gsl_vector_get(x, i+6);
138 }
139
140 // go through all points and sum distance
141 for (int i=0;i<N;i++) {
142 distance = SquaredDistanceToEllipsoid(set[i], Center, EllipsoidLength, EllipsoidAngle);
143 if (!isnan(distance)) {
144 SumDistance += distance;
145 } else {
146 SumDistance = GSL_NAN;
147 break;
148 }
149 }
150
151 //Log() << Verbose(0) << "Current summed distance is " << SumDistance << "." << endl;
152 return SumDistance;
153};
154
155/** Finds best fitting ellipsoid parameter set in Least square sense for a given point set.
156 * \param *out output stream for debugging
157 * \param *set given point set
158 * \param N number of points in set
159 * \param EllipsoidParamter[3] three parameters in ellipsoid equation
160 * \return true - fit successful, false - fit impossible
161 */
162bool FitPointSetToEllipsoid(Vector *set, int N, Vector *EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
163{
164 int status = GSL_SUCCESS;
165 DoLog(2) && (Log() << Verbose(2) << "Begin of FitPointSetToEllipsoid " << endl);
166 if (N >= 3) { // check that enough points are given (9 d.o.f.)
167 struct EllipsoidMinimisation par;
168 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
169 gsl_multimin_fminimizer *s = NULL;
170 gsl_vector *ss, *x;
171 gsl_multimin_function minex_func;
172
173 size_t iter = 0;
174 double size;
175
176 /* Starting point */
177 x = gsl_vector_alloc (9);
178 for (int i=0;i<3;i++) {
179 gsl_vector_set (x, i+0, EllipsoidCenter->at(i));
180 gsl_vector_set (x, i+3, EllipsoidLength[i]);
181 gsl_vector_set (x, i+6, EllipsoidAngle[i]);
182 }
183 par.x = set;
184 par.N = N;
185
186 /* Set initial step sizes */
187 ss = gsl_vector_alloc (9);
188 for (int i=0;i<3;i++) {
189 gsl_vector_set (ss, i+0, 0.1);
190 gsl_vector_set (ss, i+3, 1.0);
191 gsl_vector_set (ss, i+6, M_PI/20.);
192 }
193
194 /* Initialize method and iterate */
195 minex_func.n = 9;
196 minex_func.f = &SumSquaredDistance;
197 minex_func.params = (void *)&par;
198
199 s = gsl_multimin_fminimizer_alloc (T, 9);
200 gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
201
202 do {
203 iter++;
204 status = gsl_multimin_fminimizer_iterate(s);
205
206 if (status)
207 break;
208
209 size = gsl_multimin_fminimizer_size (s);
210 status = gsl_multimin_test_size (size, 1e-2);
211
212 if (status == GSL_SUCCESS) {
213 for (int i=0;i<3;i++) {
214 EllipsoidCenter->at(i) = gsl_vector_get (s->x,i+0);
215 EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
216 EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
217 }
218 DoLog(4) && (Log() << Verbose(4) << setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << "." << endl);
219 }
220
221 } while (status == GSL_CONTINUE && iter < 1000);
222
223 gsl_vector_free(x);
224 gsl_vector_free(ss);
225 gsl_multimin_fminimizer_free (s);
226
227 } else {
228 DoLog(3) && (Log() << Verbose(3) << "Not enough points provided for fit to ellipsoid." << endl);
229 return false;
230 }
231 DoLog(2) && (Log() << Verbose(2) << "End of FitPointSetToEllipsoid" << endl);
232 if (status == GSL_SUCCESS)
233 return true;
234 else
235 return false;
236};
237
238/** Picks a number of random points from a LC neighbourhood as a fitting set.
239 * \param *out output stream for debugging
240 * \param *T Tesselation containing boundary points
241 * \param *LC linked cell list of all atoms
242 * \param *&x random point set on return (not allocated!)
243 * \param PointsToPick number of points in set to pick
244 */
245void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell *LC, Vector *&x, size_t PointsToPick)
246{
247 size_t PointsLeft = 0;
248 size_t PointsPicked = 0;
249 int Nlower[NDIM], Nupper[NDIM];
250 set<int> PickedAtomNrs; // ordered list of picked atoms
251 set<int>::iterator current;
252 int index;
253 TesselPoint *Candidate = NULL;
254 DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
255
256 // allocate array
257 if (x == NULL) {
258 x = new Vector[PointsToPick];
259 } else {
260 DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
261 }
262
263 RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator("mt19937", "uniform_int");
264 // check that random number generator's bounds are ok
265 ASSERT(random.min() == 0,
266 "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's min "
267 +toString(random.min())+" is not 0!");
268 ASSERT(random.max() >= LC->N[0],
269 "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
270 +toString(random.max())+" is too small"+toString(LC->N[0])
271 +" for axis 0!");
272 ASSERT(random.max() >= LC->N[1],
273 "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
274 +toString(random.max())+" is too small"+toString(LC->N[1])
275 +" for axis 1!");
276 ASSERT(random.max() >= LC->N[2],
277 "PickRandomNeighbouredPointSet: Chosen RandomNumberGenerator's max "
278 +toString(random.max())+" is too small"+toString(LC->N[2])
279 +" for axis 2!");
280
281 do {
282 for(int i=0;i<NDIM;i++) // pick three random indices
283 LC->n[i] = ((int)random() % LC->N[i]);
284 DoLog(2) && (Log() << Verbose(2) << "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " ... ");
285 // get random cell
286 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
287 if (List == NULL) { // set index to it
288 continue;
289 }
290 DoLog(2) && (Log() << Verbose(2) << "with No. " << LC->index << "." << endl);
291
292 DoLog(2) && (Log() << Verbose(2) << "LC Intervals:");
293 for (int i=0;i<NDIM;i++) {
294 Nlower[i] = ((LC->n[i]-1) >= 0) ? LC->n[i]-1 : 0;
295 Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
296 DoLog(0) && (Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ");
297 }
298 DoLog(0) && (Log() << Verbose(0) << endl);
299
300 // count whether there are sufficient atoms in this cell+neighbors
301 PointsLeft=0;
302 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
303 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
304 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
305 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
306 PointsLeft += List->size();
307 }
308 DoLog(2) && (Log() << Verbose(2) << "There are " << PointsLeft << " atoms in this neighbourhood." << endl);
309 if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all.
310 continue;
311 }
312
313 // pre-pick a fixed number of atoms
314 PickedAtomNrs.clear();
315 do {
316 index = (((int)random()) % PointsLeft);
317 current = PickedAtomNrs.find(index); // not present?
318 if (current == PickedAtomNrs.end()) {
319 //Log() << Verbose(2) << "Picking atom nr. " << index << "." << endl;
320 PickedAtomNrs.insert(index);
321 }
322 } while (PickedAtomNrs.size() < PointsToPick);
323
324 index = 0; // now go through all and pick those whose from PickedAtomsNr
325 PointsPicked=0;
326 current = PickedAtomNrs.begin();
327 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
328 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
329 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
330 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
331// Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
332 if (List != NULL) {
333// if (List->begin() != List->end())
334// Log() << Verbose(2) << "Going through candidates ... " << endl;
335// else
336// Log() << Verbose(2) << "Cell is empty ... " << endl;
337 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
338 if ((current != PickedAtomNrs.end()) && (*current == index)) {
339 Candidate = (*Runner);
340 DoLog(2) && (Log() << Verbose(2) << "Current picked node is " << (*Runner)->getName() << " with index " << index << "." << endl);
341 x[PointsPicked++] = Candidate->getPosition(); // we have one more atom picked
342 current++; // next pre-picked atom
343 }
344 index++; // next atom nr.
345 }
346// } else {
347// Log() << Verbose(2) << "List for this index not allocated!" << endl;
348 }
349 }
350 DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
351 for (size_t i=0;i<PointsPicked;i++)
352 DoLog(2) && (Log() << Verbose(2) << x[i] << endl);
353 if (PointsPicked == PointsToPick) // break out of loop if we have all
354 break;
355 } while(1);
356
357 DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
358};
359
360/** Picks a number of random points from a set of boundary points as a fitting set.
361 * \param *out output stream for debugging
362 * \param *T Tesselation containing boundary points
363 * \param *&x random point set on return (not allocated!)
364 * \param PointsToPick number of points in set to pick
365 */
366void PickRandomPointSet(class Tesselation *T, Vector *&x, size_t PointsToPick)
367{
368 size_t PointsLeft = (size_t) T->PointsOnBoundaryCount;
369 size_t PointsPicked = 0;
370 double value, threshold;
371 PointMap *List = &T->PointsOnBoundary;
372 DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
373
374 // allocate array
375 if (x == NULL) {
376 x = new Vector[PointsToPick];
377 } else {
378 DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
379 }
380
381 RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator("mt19937", "uniform_int");
382 const double rng_min = random.min();
383 const double rng_max = random.max();
384 if (List != NULL)
385 for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
386 threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
387 value = (double)random()/(double)(rng_max-rng_min);
388 //Log() << Verbose(3) << "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": ";
389 if (value > threshold) {
390 x[PointsPicked] = (Runner->second->node->getPosition());
391 PointsPicked++;
392 //Log() << Verbose(0) << "IN." << endl;
393 } else {
394 //Log() << Verbose(0) << "OUT." << endl;
395 }
396 PointsLeft--;
397 }
398 DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
399 for (size_t i=0;i<PointsPicked;i++)
400 DoLog(3) && (Log() << Verbose(3) << x[i] << endl);
401
402 DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
403};
404
405/** Finds best fitting ellipsoid parameter set in least square sense for a given point set.
406 * \param *out output stream for debugging
407 * \param *T Tesselation containing boundary points
408 * \param *LCList linked cell list of all atoms
409 * \param N number of unique points in ellipsoid fit, must be greater equal 6
410 * \param number of fits (i.e. parameter sets in output file)
411 * \param *filename name for output file
412 */
413void FindDistributionOfEllipsoids(class Tesselation *T, class LinkedCell *LCList, int N, int number, const char *filename)
414{
415 ofstream output;
416 Vector *x = NULL;
417 Vector Center;
418 Vector EllipsoidCenter;
419 double EllipsoidLength[3];
420 double EllipsoidAngle[3];
421 double distance, MaxDistance, MinDistance;
422 DoLog(0) && (Log() << Verbose(0) << "Begin of FindDistributionOfEllipsoids" << endl);
423
424 // construct center of gravity of boundary point set for initial ellipsoid center
425 Center.Zero();
426 for (PointMap::iterator Runner = T->PointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
427 Center += (Runner->second->node->getPosition());
428 Center.Scale(1./T->PointsOnBoundaryCount);
429 DoLog(1) && (Log() << Verbose(1) << "Center is at " << Center << "." << endl);
430
431 // Output header
432 output.open(filename, ios::trunc);
433 output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
434
435 // loop over desired number of parameter sets
436 for (;number >0;number--) {
437 DoLog(1) && (Log() << Verbose(1) << "Determining data set " << number << " ... " << endl);
438 // pick the point set
439 x = NULL;
440 //PickRandomPointSet(T, LCList, x, N);
441 PickRandomNeighbouredPointSet(T, LCList, x, N);
442
443 // calculate some sensible starting values for parameter fit
444 MaxDistance = 0.;
445 MinDistance = x[0].ScalarProduct(x[0]);
446 for (int i=0;i<N;i++) {
447 distance = x[i].ScalarProduct(x[i]);
448 if (distance > MaxDistance)
449 MaxDistance = distance;
450 if (distance < MinDistance)
451 MinDistance = distance;
452 }
453 //Log() << Verbose(2) << "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << "." << endl;
454 EllipsoidCenter = Center; // use Center of Gravity as initial center of ellipsoid
455 for (int i=0;i<3;i++)
456 EllipsoidAngle[i] = 0.;
457 EllipsoidLength[0] = sqrt(MaxDistance);
458 EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
459 EllipsoidLength[2] = sqrt(MinDistance);
460
461 // fit the parameters
462 if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
463 DoLog(1) && (Log() << Verbose(1) << "Picking succeeded!" << endl);
464 // output obtained parameter set
465 output << number << "\t";
466 for (int i=0;i<3;i++)
467 output << setprecision(9) << EllipsoidCenter[i] << "\t";
468 for (int i=0;i<3;i++)
469 output << setprecision(9) << EllipsoidLength[i] << "\t";
470 for (int i=0;i<3;i++)
471 output << setprecision(9) << EllipsoidAngle[i] << "\t";
472 output << endl;
473 } else { // increase N to pick one more
474 DoLog(1) && (Log() << Verbose(1) << "Picking failed!" << endl);
475 number++;
476 }
477 delete[](x); // free allocated memory for point set
478 }
479 // close output and finish
480 output.close();
481
482 DoLog(0) && (Log() << Verbose(0) << "End of FindDistributionOfEllipsoids" << endl);
483};
Note: See TracBrowser for help on using the repository browser.