source: src/ellipsoid.cpp@ f8456c

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since f8456c was 8f4df1, checked in by Frederik Heber <heber@…>, 15 years ago

Merge branch 'AtomicPositionEncapsulation' into stable

Conflicts:

src/Actions/AtomAction/ChangeElementAction.cpp
src/Actions/WorldAction/RemoveSphereOfAtomsAction.cpp
src/Makefile.am
src/UIElements/TextUI/TextDialog.cpp
src/analysis_correlation.hpp
src/atom.cpp
src/atom_atominfo.hpp
src/bond.cpp
src/boundary.cpp
src/molecule_geometry.cpp
src/tesselation.cpp
src/tesselationhelpers.cpp
src/triangleintersectionlist.cpp
src/unittests/Makefile.am

  • fixed #includes due to moves to Helpers and LinearAlgebra
  • moved VectorInterface.* and vector_ops.* to LinearAlgebra
  • no more direct access of atom::node, remapped to set/getPosition()
  • no more direct access to atom::type, remapped to set/getType() (also in atom due to derivation and atominfo::AtomicElement is private not protected).
  • Property mode set to 100644
File size: 17.1 KB
RevLine 
[6ac7ee]1/*
2 * ellipsoid.cpp
3 *
[042f82]4 * Created on: Jan 20, 2009
5 * Author: heber
[6ac7ee]6 */
7
[112b09]8#include "Helpers/MemDebug.hpp"
9
[357fba]10#include <gsl/gsl_multimin.h>
11#include <gsl/gsl_vector.h>
12
[f66195]13#include <iomanip>
14
15#include <set>
16
[d74077]17#include "BoundaryPointSet.hpp"
[357fba]18#include "boundary.hpp"
[6ac7ee]19#include "ellipsoid.hpp"
[f66195]20#include "linkedcell.hpp"
[952f38]21#include "Helpers/Log.hpp"
[f66195]22#include "tesselation.hpp"
[57f243]23#include "LinearAlgebra/Vector.hpp"
24#include "LinearAlgebra/Matrix.hpp"
[952f38]25#include "Helpers/Verbose.hpp"
[6ac7ee]26
27/** Determines squared distance for a given point \a x to surface of ellipsoid.
28 * \param x given point
29 * \param EllipsoidCenter center of ellipsoid
30 * \param EllipsoidLength[3] three lengths of half axis of ellipsoid
31 * \param EllipsoidAngle[3] three rotation angles of ellipsoid
32 * \return squared distance from point to surface
33 */
34double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
35{
[042f82]36 Vector helper, RefPoint;
37 double distance = -1.;
[c94eeb]38 Matrix Matrix;
[042f82]39 double InverseLength[3];
40 double psi,theta,phi; // euler angles in ZX'Z'' convention
41
[e138de]42 //Log() << Verbose(3) << "Begin of SquaredDistanceToEllipsoid" << endl;
[042f82]43
44 for(int i=0;i<3;i++)
45 InverseLength[i] = 1./EllipsoidLength[i];
46
47 // 1. translate coordinate system so that ellipsoid center is in origin
[273382]48 RefPoint = helper = x - EllipsoidCenter;
[e138de]49 //Log() << Verbose(4) << "Translated given point is at " << RefPoint << "." << endl;
[042f82]50
51 // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
52 psi = EllipsoidAngle[0];
53 theta = EllipsoidAngle[1];
54 phi = EllipsoidAngle[2];
[a679d1]55 Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
56 Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
57 Matrix.set(2,0, sin(psi)*sin(theta));
58 Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
59 Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
60 Matrix.set(2,1, -cos(psi)*sin(theta));
61 Matrix.set(0,2, sin(theta)*sin(phi));
62 Matrix.set(1,2, sin(theta)*cos(phi));
63 Matrix.set(2,2, cos(theta));
[5108e1]64 helper *= Matrix;
[1bd79e]65 helper.ScaleAll(InverseLength);
[e138de]66 //Log() << Verbose(4) << "Transformed RefPoint is at " << helper << "." << endl;
[042f82]67
68 // 3. construct intersection point with unit sphere and ray between origin and x
69 helper.Normalize(); // is simply normalizes vector in distance direction
[e138de]70 //Log() << Verbose(4) << "Transformed intersection is at " << helper << "." << endl;
[042f82]71
72 // 4. transform back the constructed intersection point
73 psi = -EllipsoidAngle[0];
74 theta = -EllipsoidAngle[1];
75 phi = -EllipsoidAngle[2];
[1bd79e]76 helper.ScaleAll(EllipsoidLength);
[a679d1]77 Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
78 Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
79 Matrix.set(2,0, sin(psi)*sin(theta));
80 Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
81 Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
82 Matrix.set(2,1, -cos(psi)*sin(theta));
83 Matrix.set(0,2, sin(theta)*sin(phi));
84 Matrix.set(1,2, sin(theta)*cos(phi));
85 Matrix.set(2,2, cos(theta));
[5108e1]86 helper *= Matrix;
[e138de]87 //Log() << Verbose(4) << "Intersection is at " << helper << "." << endl;
[042f82]88
89 // 5. determine distance between backtransformed point and x
[273382]90 distance = RefPoint.DistanceSquared(helper);
[e138de]91 //Log() << Verbose(4) << "Squared distance between intersection and RefPoint is " << distance << "." << endl;
[042f82]92
93 return distance;
[e138de]94 //Log() << Verbose(3) << "End of SquaredDistanceToEllipsoid" << endl;
[6ac7ee]95};
96
97/** structure for ellipsoid minimisation containing points to fit to.
98 */
99struct EllipsoidMinimisation {
[042f82]100 int N; //!< dimension of vector set
101 Vector *x; //!< array of vectors
[6ac7ee]102};
103
104/** Sum of squared distance to ellipsoid to be minimised.
105 * \param *x parameters for the ellipsoid
106 * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
107 * \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
108 */
109double SumSquaredDistance (const gsl_vector * x, void * params)
110{
[042f82]111 Vector *set= ((struct EllipsoidMinimisation *)params)->x;
112 int N = ((struct EllipsoidMinimisation *)params)->N;
113 double SumDistance = 0.;
114 double distance;
115 Vector Center;
116 double EllipsoidLength[3], EllipsoidAngle[3];
117
118 // put parameters into suitable ellipsoid form
119 for (int i=0;i<3;i++) {
[0a4f7f]120 Center[i] = gsl_vector_get(x, i+0);
[042f82]121 EllipsoidLength[i] = gsl_vector_get(x, i+3);
122 EllipsoidAngle[i] = gsl_vector_get(x, i+6);
123 }
124
125 // go through all points and sum distance
126 for (int i=0;i<N;i++) {
127 distance = SquaredDistanceToEllipsoid(set[i], Center, EllipsoidLength, EllipsoidAngle);
128 if (!isnan(distance)) {
129 SumDistance += distance;
130 } else {
131 SumDistance = GSL_NAN;
132 break;
133 }
134 }
135
[e138de]136 //Log() << Verbose(0) << "Current summed distance is " << SumDistance << "." << endl;
[042f82]137 return SumDistance;
[6ac7ee]138};
139
140/** Finds best fitting ellipsoid parameter set in Least square sense for a given point set.
141 * \param *out output stream for debugging
142 * \param *set given point set
143 * \param N number of points in set
144 * \param EllipsoidParamter[3] three parameters in ellipsoid equation
145 * \return true - fit successful, false - fit impossible
146 */
[e138de]147bool FitPointSetToEllipsoid(Vector *set, int N, Vector *EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
[6ac7ee]148{
[042f82]149 int status = GSL_SUCCESS;
[a67d19]150 DoLog(2) && (Log() << Verbose(2) << "Begin of FitPointSetToEllipsoid " << endl);
[042f82]151 if (N >= 3) { // check that enough points are given (9 d.o.f.)
152 struct EllipsoidMinimisation par;
153 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
154 gsl_multimin_fminimizer *s = NULL;
155 gsl_vector *ss, *x;
156 gsl_multimin_function minex_func;
157
158 size_t iter = 0;
159 double size;
160
161 /* Starting point */
162 x = gsl_vector_alloc (9);
163 for (int i=0;i<3;i++) {
[0a4f7f]164 gsl_vector_set (x, i+0, EllipsoidCenter->at(i));
[042f82]165 gsl_vector_set (x, i+3, EllipsoidLength[i]);
166 gsl_vector_set (x, i+6, EllipsoidAngle[i]);
167 }
168 par.x = set;
169 par.N = N;
170
171 /* Set initial step sizes */
172 ss = gsl_vector_alloc (9);
173 for (int i=0;i<3;i++) {
174 gsl_vector_set (ss, i+0, 0.1);
175 gsl_vector_set (ss, i+3, 1.0);
176 gsl_vector_set (ss, i+6, M_PI/20.);
177 }
178
179 /* Initialize method and iterate */
180 minex_func.n = 9;
181 minex_func.f = &SumSquaredDistance;
182 minex_func.params = (void *)&par;
183
184 s = gsl_multimin_fminimizer_alloc (T, 9);
185 gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
186
187 do {
188 iter++;
189 status = gsl_multimin_fminimizer_iterate(s);
190
191 if (status)
192 break;
193
194 size = gsl_multimin_fminimizer_size (s);
195 status = gsl_multimin_test_size (size, 1e-2);
196
197 if (status == GSL_SUCCESS) {
198 for (int i=0;i<3;i++) {
[0a4f7f]199 EllipsoidCenter->at(i) = gsl_vector_get (s->x,i+0);
[042f82]200 EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
201 EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
202 }
[a67d19]203 DoLog(4) && (Log() << Verbose(4) << setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << "." << endl);
[042f82]204 }
205
206 } while (status == GSL_CONTINUE && iter < 1000);
207
208 gsl_vector_free(x);
209 gsl_vector_free(ss);
210 gsl_multimin_fminimizer_free (s);
211
212 } else {
[a67d19]213 DoLog(3) && (Log() << Verbose(3) << "Not enough points provided for fit to ellipsoid." << endl);
[042f82]214 return false;
215 }
[a67d19]216 DoLog(2) && (Log() << Verbose(2) << "End of FitPointSetToEllipsoid" << endl);
[042f82]217 if (status == GSL_SUCCESS)
218 return true;
219 else
220 return false;
[6ac7ee]221};
222
223/** Picks a number of random points from a LC neighbourhood as a fitting set.
224 * \param *out output stream for debugging
225 * \param *T Tesselation containing boundary points
226 * \param *LC linked cell list of all atoms
227 * \param *&x random point set on return (not allocated!)
228 * \param PointsToPick number of points in set to pick
229 */
[e138de]230void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell *LC, Vector *&x, size_t PointsToPick)
[6ac7ee]231{
[70c333f]232 size_t PointsLeft = 0;
233 size_t PointsPicked = 0;
[042f82]234 int Nlower[NDIM], Nupper[NDIM];
235 set<int> PickedAtomNrs; // ordered list of picked atoms
236 set<int>::iterator current;
237 int index;
[357fba]238 TesselPoint *Candidate = NULL;
[a67d19]239 DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
[042f82]240
241 // allocate array
242 if (x == NULL) {
243 x = new Vector[PointsToPick];
244 } else {
[58ed4a]245 DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
[042f82]246 }
247
248 do {
249 for(int i=0;i<NDIM;i++) // pick three random indices
250 LC->n[i] = (rand() % LC->N[i]);
[a67d19]251 DoLog(2) && (Log() << Verbose(2) << "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " ... ");
[042f82]252 // get random cell
[734816]253 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[042f82]254 if (List == NULL) { // set index to it
255 continue;
256 }
[a67d19]257 DoLog(2) && (Log() << Verbose(2) << "with No. " << LC->index << "." << endl);
[042f82]258
[a67d19]259 DoLog(2) && (Log() << Verbose(2) << "LC Intervals:");
[042f82]260 for (int i=0;i<NDIM;i++) {
261 Nlower[i] = ((LC->n[i]-1) >= 0) ? LC->n[i]-1 : 0;
262 Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
[a67d19]263 DoLog(0) && (Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ");
[042f82]264 }
[a67d19]265 DoLog(0) && (Log() << Verbose(0) << endl);
[042f82]266
267 // count whether there are sufficient atoms in this cell+neighbors
268 PointsLeft=0;
269 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
270 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
271 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]272 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[042f82]273 PointsLeft += List->size();
274 }
[a67d19]275 DoLog(2) && (Log() << Verbose(2) << "There are " << PointsLeft << " atoms in this neighbourhood." << endl);
[042f82]276 if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all.
277 continue;
278 }
279
280 // pre-pick a fixed number of atoms
281 PickedAtomNrs.clear();
282 do {
283 index = (rand() % PointsLeft);
284 current = PickedAtomNrs.find(index); // not present?
285 if (current == PickedAtomNrs.end()) {
[e138de]286 //Log() << Verbose(2) << "Picking atom nr. " << index << "." << endl;
[042f82]287 PickedAtomNrs.insert(index);
288 }
289 } while (PickedAtomNrs.size() < PointsToPick);
290
291 index = 0; // now go through all and pick those whose from PickedAtomsNr
292 PointsPicked=0;
293 current = PickedAtomNrs.begin();
294 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
295 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
296 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]297 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[e138de]298// Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
[042f82]299 if (List != NULL) {
300// if (List->begin() != List->end())
[e138de]301// Log() << Verbose(2) << "Going through candidates ... " << endl;
[042f82]302// else
[e138de]303// Log() << Verbose(2) << "Cell is empty ... " << endl;
[734816]304 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[042f82]305 if ((current != PickedAtomNrs.end()) && (*current == index)) {
306 Candidate = (*Runner);
[d74077]307 DoLog(2) && (Log() << Verbose(2) << "Current picked node is " << (*Runner)->getName() << " with index " << index << "." << endl);
308 x[PointsPicked++] = Candidate->getPosition(); // we have one more atom picked
[042f82]309 current++; // next pre-picked atom
310 }
311 index++; // next atom nr.
312 }
313// } else {
[e138de]314// Log() << Verbose(2) << "List for this index not allocated!" << endl;
[042f82]315 }
316 }
[a67d19]317 DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
[042f82]318 for (size_t i=0;i<PointsPicked;i++)
[a67d19]319 DoLog(2) && (Log() << Verbose(2) << x[i] << endl);
[042f82]320 if (PointsPicked == PointsToPick) // break out of loop if we have all
321 break;
322 } while(1);
323
[a67d19]324 DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
[6ac7ee]325};
326
327/** Picks a number of random points from a set of boundary points as a fitting set.
328 * \param *out output stream for debugging
329 * \param *T Tesselation containing boundary points
330 * \param *&x random point set on return (not allocated!)
331 * \param PointsToPick number of points in set to pick
332 */
[e138de]333void PickRandomPointSet(class Tesselation *T, Vector *&x, size_t PointsToPick)
[6ac7ee]334{
[70c333f]335 size_t PointsLeft = (size_t) T->PointsOnBoundaryCount;
336 size_t PointsPicked = 0;
[042f82]337 double value, threshold;
338 PointMap *List = &T->PointsOnBoundary;
[a67d19]339 DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
[042f82]340
341 // allocate array
342 if (x == NULL) {
343 x = new Vector[PointsToPick];
344 } else {
[58ed4a]345 DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
[042f82]346 }
347
348 if (List != NULL)
349 for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
350 threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
351 value = (double)rand()/(double)RAND_MAX;
[e138de]352 //Log() << Verbose(3) << "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": ";
[042f82]353 if (value > threshold) {
[d74077]354 x[PointsPicked] = (Runner->second->node->getPosition());
[042f82]355 PointsPicked++;
[e138de]356 //Log() << Verbose(0) << "IN." << endl;
[042f82]357 } else {
[e138de]358 //Log() << Verbose(0) << "OUT." << endl;
[042f82]359 }
360 PointsLeft--;
361 }
[a67d19]362 DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
[042f82]363 for (size_t i=0;i<PointsPicked;i++)
[a67d19]364 DoLog(3) && (Log() << Verbose(3) << x[i] << endl);
[042f82]365
[a67d19]366 DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
[6ac7ee]367};
368
369/** Finds best fitting ellipsoid parameter set in least square sense for a given point set.
370 * \param *out output stream for debugging
371 * \param *T Tesselation containing boundary points
372 * \param *LCList linked cell list of all atoms
373 * \param N number of unique points in ellipsoid fit, must be greater equal 6
374 * \param number of fits (i.e. parameter sets in output file)
375 * \param *filename name for output file
376 */
[e138de]377void FindDistributionOfEllipsoids(class Tesselation *T, class LinkedCell *LCList, int N, int number, const char *filename)
[6ac7ee]378{
[042f82]379 ofstream output;
380 Vector *x = NULL;
381 Vector Center;
382 Vector EllipsoidCenter;
383 double EllipsoidLength[3];
384 double EllipsoidAngle[3];
385 double distance, MaxDistance, MinDistance;
[a67d19]386 DoLog(0) && (Log() << Verbose(0) << "Begin of FindDistributionOfEllipsoids" << endl);
[042f82]387
388 // construct center of gravity of boundary point set for initial ellipsoid center
389 Center.Zero();
390 for (PointMap::iterator Runner = T->PointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
[d74077]391 Center += (Runner->second->node->getPosition());
[042f82]392 Center.Scale(1./T->PointsOnBoundaryCount);
[a67d19]393 DoLog(1) && (Log() << Verbose(1) << "Center is at " << Center << "." << endl);
[042f82]394
395 // Output header
396 output.open(filename, ios::trunc);
397 output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
398
399 // loop over desired number of parameter sets
400 for (;number >0;number--) {
[a67d19]401 DoLog(1) && (Log() << Verbose(1) << "Determining data set " << number << " ... " << endl);
[042f82]402 // pick the point set
403 x = NULL;
[e138de]404 //PickRandomPointSet(T, LCList, x, N);
405 PickRandomNeighbouredPointSet(T, LCList, x, N);
[042f82]406
407 // calculate some sensible starting values for parameter fit
408 MaxDistance = 0.;
[273382]409 MinDistance = x[0].ScalarProduct(x[0]);
[042f82]410 for (int i=0;i<N;i++) {
[273382]411 distance = x[i].ScalarProduct(x[i]);
[042f82]412 if (distance > MaxDistance)
413 MaxDistance = distance;
414 if (distance < MinDistance)
415 MinDistance = distance;
416 }
[e138de]417 //Log() << Verbose(2) << "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << "." << endl;
[273382]418 EllipsoidCenter = Center; // use Center of Gravity as initial center of ellipsoid
[042f82]419 for (int i=0;i<3;i++)
420 EllipsoidAngle[i] = 0.;
421 EllipsoidLength[0] = sqrt(MaxDistance);
422 EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
423 EllipsoidLength[2] = sqrt(MinDistance);
424
425 // fit the parameters
[e138de]426 if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
[a67d19]427 DoLog(1) && (Log() << Verbose(1) << "Picking succeeded!" << endl);
[042f82]428 // output obtained parameter set
429 output << number << "\t";
430 for (int i=0;i<3;i++)
[0a4f7f]431 output << setprecision(9) << EllipsoidCenter[i] << "\t";
[042f82]432 for (int i=0;i<3;i++)
433 output << setprecision(9) << EllipsoidLength[i] << "\t";
434 for (int i=0;i<3;i++)
435 output << setprecision(9) << EllipsoidAngle[i] << "\t";
436 output << endl;
437 } else { // increase N to pick one more
[a67d19]438 DoLog(1) && (Log() << Verbose(1) << "Picking failed!" << endl);
[042f82]439 number++;
440 }
441 delete[](x); // free allocated memory for point set
442 }
443 // close output and finish
444 output.close();
445
[a67d19]446 DoLog(0) && (Log() << Verbose(0) << "End of FindDistributionOfEllipsoids" << endl);
[6ac7ee]447};
Note: See TracBrowser for help on using the repository browser.