[6ac7ee] | 1 | /*
|
---|
| 2 | * ellipsoid.cpp
|
---|
| 3 | *
|
---|
[042f82] | 4 | * Created on: Jan 20, 2009
|
---|
| 5 | * Author: heber
|
---|
[6ac7ee] | 6 | */
|
---|
| 7 |
|
---|
[bf3817] | 8 | // include config.h
|
---|
| 9 | #ifdef HAVE_CONFIG_H
|
---|
| 10 | #include <config.h>
|
---|
| 11 | #endif
|
---|
| 12 |
|
---|
[112b09] | 13 | #include "Helpers/MemDebug.hpp"
|
---|
| 14 |
|
---|
[357fba] | 15 | #include <gsl/gsl_multimin.h>
|
---|
| 16 | #include <gsl/gsl_vector.h>
|
---|
| 17 |
|
---|
[f66195] | 18 | #include <iomanip>
|
---|
| 19 |
|
---|
| 20 | #include <set>
|
---|
| 21 |
|
---|
[d74077] | 22 | #include "BoundaryPointSet.hpp"
|
---|
[357fba] | 23 | #include "boundary.hpp"
|
---|
[6ac7ee] | 24 | #include "ellipsoid.hpp"
|
---|
[f66195] | 25 | #include "linkedcell.hpp"
|
---|
[952f38] | 26 | #include "Helpers/Log.hpp"
|
---|
[f66195] | 27 | #include "tesselation.hpp"
|
---|
[57f243] | 28 | #include "LinearAlgebra/Vector.hpp"
|
---|
| 29 | #include "LinearAlgebra/Matrix.hpp"
|
---|
[952f38] | 30 | #include "Helpers/Verbose.hpp"
|
---|
[6ac7ee] | 31 |
|
---|
| 32 | /** Determines squared distance for a given point \a x to surface of ellipsoid.
|
---|
| 33 | * \param x given point
|
---|
| 34 | * \param EllipsoidCenter center of ellipsoid
|
---|
| 35 | * \param EllipsoidLength[3] three lengths of half axis of ellipsoid
|
---|
| 36 | * \param EllipsoidAngle[3] three rotation angles of ellipsoid
|
---|
| 37 | * \return squared distance from point to surface
|
---|
| 38 | */
|
---|
| 39 | double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
|
---|
| 40 | {
|
---|
[042f82] | 41 | Vector helper, RefPoint;
|
---|
| 42 | double distance = -1.;
|
---|
[c94eeb] | 43 | Matrix Matrix;
|
---|
[042f82] | 44 | double InverseLength[3];
|
---|
| 45 | double psi,theta,phi; // euler angles in ZX'Z'' convention
|
---|
| 46 |
|
---|
[e138de] | 47 | //Log() << Verbose(3) << "Begin of SquaredDistanceToEllipsoid" << endl;
|
---|
[042f82] | 48 |
|
---|
| 49 | for(int i=0;i<3;i++)
|
---|
| 50 | InverseLength[i] = 1./EllipsoidLength[i];
|
---|
| 51 |
|
---|
| 52 | // 1. translate coordinate system so that ellipsoid center is in origin
|
---|
[273382] | 53 | RefPoint = helper = x - EllipsoidCenter;
|
---|
[e138de] | 54 | //Log() << Verbose(4) << "Translated given point is at " << RefPoint << "." << endl;
|
---|
[042f82] | 55 |
|
---|
| 56 | // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
|
---|
| 57 | psi = EllipsoidAngle[0];
|
---|
| 58 | theta = EllipsoidAngle[1];
|
---|
| 59 | phi = EllipsoidAngle[2];
|
---|
[a679d1] | 60 | Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
|
---|
| 61 | Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
|
---|
| 62 | Matrix.set(2,0, sin(psi)*sin(theta));
|
---|
| 63 | Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
|
---|
| 64 | Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
|
---|
| 65 | Matrix.set(2,1, -cos(psi)*sin(theta));
|
---|
| 66 | Matrix.set(0,2, sin(theta)*sin(phi));
|
---|
| 67 | Matrix.set(1,2, sin(theta)*cos(phi));
|
---|
| 68 | Matrix.set(2,2, cos(theta));
|
---|
[5108e1] | 69 | helper *= Matrix;
|
---|
[1bd79e] | 70 | helper.ScaleAll(InverseLength);
|
---|
[e138de] | 71 | //Log() << Verbose(4) << "Transformed RefPoint is at " << helper << "." << endl;
|
---|
[042f82] | 72 |
|
---|
| 73 | // 3. construct intersection point with unit sphere and ray between origin and x
|
---|
| 74 | helper.Normalize(); // is simply normalizes vector in distance direction
|
---|
[e138de] | 75 | //Log() << Verbose(4) << "Transformed intersection is at " << helper << "." << endl;
|
---|
[042f82] | 76 |
|
---|
| 77 | // 4. transform back the constructed intersection point
|
---|
| 78 | psi = -EllipsoidAngle[0];
|
---|
| 79 | theta = -EllipsoidAngle[1];
|
---|
| 80 | phi = -EllipsoidAngle[2];
|
---|
[1bd79e] | 81 | helper.ScaleAll(EllipsoidLength);
|
---|
[a679d1] | 82 | Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
|
---|
| 83 | Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
|
---|
| 84 | Matrix.set(2,0, sin(psi)*sin(theta));
|
---|
| 85 | Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
|
---|
| 86 | Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
|
---|
| 87 | Matrix.set(2,1, -cos(psi)*sin(theta));
|
---|
| 88 | Matrix.set(0,2, sin(theta)*sin(phi));
|
---|
| 89 | Matrix.set(1,2, sin(theta)*cos(phi));
|
---|
| 90 | Matrix.set(2,2, cos(theta));
|
---|
[5108e1] | 91 | helper *= Matrix;
|
---|
[e138de] | 92 | //Log() << Verbose(4) << "Intersection is at " << helper << "." << endl;
|
---|
[042f82] | 93 |
|
---|
| 94 | // 5. determine distance between backtransformed point and x
|
---|
[273382] | 95 | distance = RefPoint.DistanceSquared(helper);
|
---|
[e138de] | 96 | //Log() << Verbose(4) << "Squared distance between intersection and RefPoint is " << distance << "." << endl;
|
---|
[042f82] | 97 |
|
---|
| 98 | return distance;
|
---|
[e138de] | 99 | //Log() << Verbose(3) << "End of SquaredDistanceToEllipsoid" << endl;
|
---|
[6ac7ee] | 100 | };
|
---|
| 101 |
|
---|
| 102 | /** structure for ellipsoid minimisation containing points to fit to.
|
---|
| 103 | */
|
---|
| 104 | struct EllipsoidMinimisation {
|
---|
[042f82] | 105 | int N; //!< dimension of vector set
|
---|
| 106 | Vector *x; //!< array of vectors
|
---|
[6ac7ee] | 107 | };
|
---|
| 108 |
|
---|
| 109 | /** Sum of squared distance to ellipsoid to be minimised.
|
---|
| 110 | * \param *x parameters for the ellipsoid
|
---|
| 111 | * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
|
---|
| 112 | * \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
|
---|
| 113 | */
|
---|
| 114 | double SumSquaredDistance (const gsl_vector * x, void * params)
|
---|
| 115 | {
|
---|
[042f82] | 116 | Vector *set= ((struct EllipsoidMinimisation *)params)->x;
|
---|
| 117 | int N = ((struct EllipsoidMinimisation *)params)->N;
|
---|
| 118 | double SumDistance = 0.;
|
---|
| 119 | double distance;
|
---|
| 120 | Vector Center;
|
---|
| 121 | double EllipsoidLength[3], EllipsoidAngle[3];
|
---|
| 122 |
|
---|
| 123 | // put parameters into suitable ellipsoid form
|
---|
| 124 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 125 | Center[i] = gsl_vector_get(x, i+0);
|
---|
[042f82] | 126 | EllipsoidLength[i] = gsl_vector_get(x, i+3);
|
---|
| 127 | EllipsoidAngle[i] = gsl_vector_get(x, i+6);
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | // go through all points and sum distance
|
---|
| 131 | for (int i=0;i<N;i++) {
|
---|
| 132 | distance = SquaredDistanceToEllipsoid(set[i], Center, EllipsoidLength, EllipsoidAngle);
|
---|
| 133 | if (!isnan(distance)) {
|
---|
| 134 | SumDistance += distance;
|
---|
| 135 | } else {
|
---|
| 136 | SumDistance = GSL_NAN;
|
---|
| 137 | break;
|
---|
| 138 | }
|
---|
| 139 | }
|
---|
| 140 |
|
---|
[e138de] | 141 | //Log() << Verbose(0) << "Current summed distance is " << SumDistance << "." << endl;
|
---|
[042f82] | 142 | return SumDistance;
|
---|
[6ac7ee] | 143 | };
|
---|
| 144 |
|
---|
| 145 | /** Finds best fitting ellipsoid parameter set in Least square sense for a given point set.
|
---|
| 146 | * \param *out output stream for debugging
|
---|
| 147 | * \param *set given point set
|
---|
| 148 | * \param N number of points in set
|
---|
| 149 | * \param EllipsoidParamter[3] three parameters in ellipsoid equation
|
---|
| 150 | * \return true - fit successful, false - fit impossible
|
---|
| 151 | */
|
---|
[e138de] | 152 | bool FitPointSetToEllipsoid(Vector *set, int N, Vector *EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
|
---|
[6ac7ee] | 153 | {
|
---|
[042f82] | 154 | int status = GSL_SUCCESS;
|
---|
[a67d19] | 155 | DoLog(2) && (Log() << Verbose(2) << "Begin of FitPointSetToEllipsoid " << endl);
|
---|
[042f82] | 156 | if (N >= 3) { // check that enough points are given (9 d.o.f.)
|
---|
| 157 | struct EllipsoidMinimisation par;
|
---|
| 158 | const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
|
---|
| 159 | gsl_multimin_fminimizer *s = NULL;
|
---|
| 160 | gsl_vector *ss, *x;
|
---|
| 161 | gsl_multimin_function minex_func;
|
---|
| 162 |
|
---|
| 163 | size_t iter = 0;
|
---|
| 164 | double size;
|
---|
| 165 |
|
---|
| 166 | /* Starting point */
|
---|
| 167 | x = gsl_vector_alloc (9);
|
---|
| 168 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 169 | gsl_vector_set (x, i+0, EllipsoidCenter->at(i));
|
---|
[042f82] | 170 | gsl_vector_set (x, i+3, EllipsoidLength[i]);
|
---|
| 171 | gsl_vector_set (x, i+6, EllipsoidAngle[i]);
|
---|
| 172 | }
|
---|
| 173 | par.x = set;
|
---|
| 174 | par.N = N;
|
---|
| 175 |
|
---|
| 176 | /* Set initial step sizes */
|
---|
| 177 | ss = gsl_vector_alloc (9);
|
---|
| 178 | for (int i=0;i<3;i++) {
|
---|
| 179 | gsl_vector_set (ss, i+0, 0.1);
|
---|
| 180 | gsl_vector_set (ss, i+3, 1.0);
|
---|
| 181 | gsl_vector_set (ss, i+6, M_PI/20.);
|
---|
| 182 | }
|
---|
| 183 |
|
---|
| 184 | /* Initialize method and iterate */
|
---|
| 185 | minex_func.n = 9;
|
---|
| 186 | minex_func.f = &SumSquaredDistance;
|
---|
| 187 | minex_func.params = (void *)∥
|
---|
| 188 |
|
---|
| 189 | s = gsl_multimin_fminimizer_alloc (T, 9);
|
---|
| 190 | gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
|
---|
| 191 |
|
---|
| 192 | do {
|
---|
| 193 | iter++;
|
---|
| 194 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
| 195 |
|
---|
| 196 | if (status)
|
---|
| 197 | break;
|
---|
| 198 |
|
---|
| 199 | size = gsl_multimin_fminimizer_size (s);
|
---|
| 200 | status = gsl_multimin_test_size (size, 1e-2);
|
---|
| 201 |
|
---|
| 202 | if (status == GSL_SUCCESS) {
|
---|
| 203 | for (int i=0;i<3;i++) {
|
---|
[0a4f7f] | 204 | EllipsoidCenter->at(i) = gsl_vector_get (s->x,i+0);
|
---|
[042f82] | 205 | EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
|
---|
| 206 | EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
|
---|
| 207 | }
|
---|
[a67d19] | 208 | DoLog(4) && (Log() << Verbose(4) << setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << "." << endl);
|
---|
[042f82] | 209 | }
|
---|
| 210 |
|
---|
| 211 | } while (status == GSL_CONTINUE && iter < 1000);
|
---|
| 212 |
|
---|
| 213 | gsl_vector_free(x);
|
---|
| 214 | gsl_vector_free(ss);
|
---|
| 215 | gsl_multimin_fminimizer_free (s);
|
---|
| 216 |
|
---|
| 217 | } else {
|
---|
[a67d19] | 218 | DoLog(3) && (Log() << Verbose(3) << "Not enough points provided for fit to ellipsoid." << endl);
|
---|
[042f82] | 219 | return false;
|
---|
| 220 | }
|
---|
[a67d19] | 221 | DoLog(2) && (Log() << Verbose(2) << "End of FitPointSetToEllipsoid" << endl);
|
---|
[042f82] | 222 | if (status == GSL_SUCCESS)
|
---|
| 223 | return true;
|
---|
| 224 | else
|
---|
| 225 | return false;
|
---|
[6ac7ee] | 226 | };
|
---|
| 227 |
|
---|
| 228 | /** Picks a number of random points from a LC neighbourhood as a fitting set.
|
---|
| 229 | * \param *out output stream for debugging
|
---|
| 230 | * \param *T Tesselation containing boundary points
|
---|
| 231 | * \param *LC linked cell list of all atoms
|
---|
| 232 | * \param *&x random point set on return (not allocated!)
|
---|
| 233 | * \param PointsToPick number of points in set to pick
|
---|
| 234 | */
|
---|
[e138de] | 235 | void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell *LC, Vector *&x, size_t PointsToPick)
|
---|
[6ac7ee] | 236 | {
|
---|
[70c333f] | 237 | size_t PointsLeft = 0;
|
---|
| 238 | size_t PointsPicked = 0;
|
---|
[042f82] | 239 | int Nlower[NDIM], Nupper[NDIM];
|
---|
| 240 | set<int> PickedAtomNrs; // ordered list of picked atoms
|
---|
| 241 | set<int>::iterator current;
|
---|
| 242 | int index;
|
---|
[357fba] | 243 | TesselPoint *Candidate = NULL;
|
---|
[a67d19] | 244 | DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
|
---|
[042f82] | 245 |
|
---|
| 246 | // allocate array
|
---|
| 247 | if (x == NULL) {
|
---|
| 248 | x = new Vector[PointsToPick];
|
---|
| 249 | } else {
|
---|
[58ed4a] | 250 | DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
|
---|
[042f82] | 251 | }
|
---|
| 252 |
|
---|
| 253 | do {
|
---|
| 254 | for(int i=0;i<NDIM;i++) // pick three random indices
|
---|
| 255 | LC->n[i] = (rand() % LC->N[i]);
|
---|
[a67d19] | 256 | DoLog(2) && (Log() << Verbose(2) << "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " ... ");
|
---|
[042f82] | 257 | // get random cell
|
---|
[734816] | 258 | const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
|
---|
[042f82] | 259 | if (List == NULL) { // set index to it
|
---|
| 260 | continue;
|
---|
| 261 | }
|
---|
[a67d19] | 262 | DoLog(2) && (Log() << Verbose(2) << "with No. " << LC->index << "." << endl);
|
---|
[042f82] | 263 |
|
---|
[a67d19] | 264 | DoLog(2) && (Log() << Verbose(2) << "LC Intervals:");
|
---|
[042f82] | 265 | for (int i=0;i<NDIM;i++) {
|
---|
| 266 | Nlower[i] = ((LC->n[i]-1) >= 0) ? LC->n[i]-1 : 0;
|
---|
| 267 | Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
|
---|
[a67d19] | 268 | DoLog(0) && (Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ");
|
---|
[042f82] | 269 | }
|
---|
[a67d19] | 270 | DoLog(0) && (Log() << Verbose(0) << endl);
|
---|
[042f82] | 271 |
|
---|
| 272 | // count whether there are sufficient atoms in this cell+neighbors
|
---|
| 273 | PointsLeft=0;
|
---|
| 274 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 275 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 276 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[734816] | 277 | const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
|
---|
[042f82] | 278 | PointsLeft += List->size();
|
---|
| 279 | }
|
---|
[a67d19] | 280 | DoLog(2) && (Log() << Verbose(2) << "There are " << PointsLeft << " atoms in this neighbourhood." << endl);
|
---|
[042f82] | 281 | if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all.
|
---|
| 282 | continue;
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | // pre-pick a fixed number of atoms
|
---|
| 286 | PickedAtomNrs.clear();
|
---|
| 287 | do {
|
---|
| 288 | index = (rand() % PointsLeft);
|
---|
| 289 | current = PickedAtomNrs.find(index); // not present?
|
---|
| 290 | if (current == PickedAtomNrs.end()) {
|
---|
[e138de] | 291 | //Log() << Verbose(2) << "Picking atom nr. " << index << "." << endl;
|
---|
[042f82] | 292 | PickedAtomNrs.insert(index);
|
---|
| 293 | }
|
---|
| 294 | } while (PickedAtomNrs.size() < PointsToPick);
|
---|
| 295 |
|
---|
| 296 | index = 0; // now go through all and pick those whose from PickedAtomsNr
|
---|
| 297 | PointsPicked=0;
|
---|
| 298 | current = PickedAtomNrs.begin();
|
---|
| 299 | for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
|
---|
| 300 | for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
|
---|
| 301 | for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
|
---|
[734816] | 302 | const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
|
---|
[e138de] | 303 | // Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
|
---|
[042f82] | 304 | if (List != NULL) {
|
---|
| 305 | // if (List->begin() != List->end())
|
---|
[e138de] | 306 | // Log() << Verbose(2) << "Going through candidates ... " << endl;
|
---|
[042f82] | 307 | // else
|
---|
[e138de] | 308 | // Log() << Verbose(2) << "Cell is empty ... " << endl;
|
---|
[734816] | 309 | for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
[042f82] | 310 | if ((current != PickedAtomNrs.end()) && (*current == index)) {
|
---|
| 311 | Candidate = (*Runner);
|
---|
[d74077] | 312 | DoLog(2) && (Log() << Verbose(2) << "Current picked node is " << (*Runner)->getName() << " with index " << index << "." << endl);
|
---|
| 313 | x[PointsPicked++] = Candidate->getPosition(); // we have one more atom picked
|
---|
[042f82] | 314 | current++; // next pre-picked atom
|
---|
| 315 | }
|
---|
| 316 | index++; // next atom nr.
|
---|
| 317 | }
|
---|
| 318 | // } else {
|
---|
[e138de] | 319 | // Log() << Verbose(2) << "List for this index not allocated!" << endl;
|
---|
[042f82] | 320 | }
|
---|
| 321 | }
|
---|
[a67d19] | 322 | DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
|
---|
[042f82] | 323 | for (size_t i=0;i<PointsPicked;i++)
|
---|
[a67d19] | 324 | DoLog(2) && (Log() << Verbose(2) << x[i] << endl);
|
---|
[042f82] | 325 | if (PointsPicked == PointsToPick) // break out of loop if we have all
|
---|
| 326 | break;
|
---|
| 327 | } while(1);
|
---|
| 328 |
|
---|
[a67d19] | 329 | DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
|
---|
[6ac7ee] | 330 | };
|
---|
| 331 |
|
---|
| 332 | /** Picks a number of random points from a set of boundary points as a fitting set.
|
---|
| 333 | * \param *out output stream for debugging
|
---|
| 334 | * \param *T Tesselation containing boundary points
|
---|
| 335 | * \param *&x random point set on return (not allocated!)
|
---|
| 336 | * \param PointsToPick number of points in set to pick
|
---|
| 337 | */
|
---|
[e138de] | 338 | void PickRandomPointSet(class Tesselation *T, Vector *&x, size_t PointsToPick)
|
---|
[6ac7ee] | 339 | {
|
---|
[70c333f] | 340 | size_t PointsLeft = (size_t) T->PointsOnBoundaryCount;
|
---|
| 341 | size_t PointsPicked = 0;
|
---|
[042f82] | 342 | double value, threshold;
|
---|
| 343 | PointMap *List = &T->PointsOnBoundary;
|
---|
[a67d19] | 344 | DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
|
---|
[042f82] | 345 |
|
---|
| 346 | // allocate array
|
---|
| 347 | if (x == NULL) {
|
---|
| 348 | x = new Vector[PointsToPick];
|
---|
| 349 | } else {
|
---|
[58ed4a] | 350 | DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
|
---|
[042f82] | 351 | }
|
---|
| 352 |
|
---|
| 353 | if (List != NULL)
|
---|
| 354 | for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
|
---|
| 355 | threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
|
---|
| 356 | value = (double)rand()/(double)RAND_MAX;
|
---|
[e138de] | 357 | //Log() << Verbose(3) << "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": ";
|
---|
[042f82] | 358 | if (value > threshold) {
|
---|
[d74077] | 359 | x[PointsPicked] = (Runner->second->node->getPosition());
|
---|
[042f82] | 360 | PointsPicked++;
|
---|
[e138de] | 361 | //Log() << Verbose(0) << "IN." << endl;
|
---|
[042f82] | 362 | } else {
|
---|
[e138de] | 363 | //Log() << Verbose(0) << "OUT." << endl;
|
---|
[042f82] | 364 | }
|
---|
| 365 | PointsLeft--;
|
---|
| 366 | }
|
---|
[a67d19] | 367 | DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
|
---|
[042f82] | 368 | for (size_t i=0;i<PointsPicked;i++)
|
---|
[a67d19] | 369 | DoLog(3) && (Log() << Verbose(3) << x[i] << endl);
|
---|
[042f82] | 370 |
|
---|
[a67d19] | 371 | DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
|
---|
[6ac7ee] | 372 | };
|
---|
| 373 |
|
---|
| 374 | /** Finds best fitting ellipsoid parameter set in least square sense for a given point set.
|
---|
| 375 | * \param *out output stream for debugging
|
---|
| 376 | * \param *T Tesselation containing boundary points
|
---|
| 377 | * \param *LCList linked cell list of all atoms
|
---|
| 378 | * \param N number of unique points in ellipsoid fit, must be greater equal 6
|
---|
| 379 | * \param number of fits (i.e. parameter sets in output file)
|
---|
| 380 | * \param *filename name for output file
|
---|
| 381 | */
|
---|
[e138de] | 382 | void FindDistributionOfEllipsoids(class Tesselation *T, class LinkedCell *LCList, int N, int number, const char *filename)
|
---|
[6ac7ee] | 383 | {
|
---|
[042f82] | 384 | ofstream output;
|
---|
| 385 | Vector *x = NULL;
|
---|
| 386 | Vector Center;
|
---|
| 387 | Vector EllipsoidCenter;
|
---|
| 388 | double EllipsoidLength[3];
|
---|
| 389 | double EllipsoidAngle[3];
|
---|
| 390 | double distance, MaxDistance, MinDistance;
|
---|
[a67d19] | 391 | DoLog(0) && (Log() << Verbose(0) << "Begin of FindDistributionOfEllipsoids" << endl);
|
---|
[042f82] | 392 |
|
---|
| 393 | // construct center of gravity of boundary point set for initial ellipsoid center
|
---|
| 394 | Center.Zero();
|
---|
| 395 | for (PointMap::iterator Runner = T->PointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
|
---|
[d74077] | 396 | Center += (Runner->second->node->getPosition());
|
---|
[042f82] | 397 | Center.Scale(1./T->PointsOnBoundaryCount);
|
---|
[a67d19] | 398 | DoLog(1) && (Log() << Verbose(1) << "Center is at " << Center << "." << endl);
|
---|
[042f82] | 399 |
|
---|
| 400 | // Output header
|
---|
| 401 | output.open(filename, ios::trunc);
|
---|
| 402 | output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
|
---|
| 403 |
|
---|
| 404 | // loop over desired number of parameter sets
|
---|
| 405 | for (;number >0;number--) {
|
---|
[a67d19] | 406 | DoLog(1) && (Log() << Verbose(1) << "Determining data set " << number << " ... " << endl);
|
---|
[042f82] | 407 | // pick the point set
|
---|
| 408 | x = NULL;
|
---|
[e138de] | 409 | //PickRandomPointSet(T, LCList, x, N);
|
---|
| 410 | PickRandomNeighbouredPointSet(T, LCList, x, N);
|
---|
[042f82] | 411 |
|
---|
| 412 | // calculate some sensible starting values for parameter fit
|
---|
| 413 | MaxDistance = 0.;
|
---|
[273382] | 414 | MinDistance = x[0].ScalarProduct(x[0]);
|
---|
[042f82] | 415 | for (int i=0;i<N;i++) {
|
---|
[273382] | 416 | distance = x[i].ScalarProduct(x[i]);
|
---|
[042f82] | 417 | if (distance > MaxDistance)
|
---|
| 418 | MaxDistance = distance;
|
---|
| 419 | if (distance < MinDistance)
|
---|
| 420 | MinDistance = distance;
|
---|
| 421 | }
|
---|
[e138de] | 422 | //Log() << Verbose(2) << "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << "." << endl;
|
---|
[273382] | 423 | EllipsoidCenter = Center; // use Center of Gravity as initial center of ellipsoid
|
---|
[042f82] | 424 | for (int i=0;i<3;i++)
|
---|
| 425 | EllipsoidAngle[i] = 0.;
|
---|
| 426 | EllipsoidLength[0] = sqrt(MaxDistance);
|
---|
| 427 | EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
|
---|
| 428 | EllipsoidLength[2] = sqrt(MinDistance);
|
---|
| 429 |
|
---|
| 430 | // fit the parameters
|
---|
[e138de] | 431 | if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
|
---|
[a67d19] | 432 | DoLog(1) && (Log() << Verbose(1) << "Picking succeeded!" << endl);
|
---|
[042f82] | 433 | // output obtained parameter set
|
---|
| 434 | output << number << "\t";
|
---|
| 435 | for (int i=0;i<3;i++)
|
---|
[0a4f7f] | 436 | output << setprecision(9) << EllipsoidCenter[i] << "\t";
|
---|
[042f82] | 437 | for (int i=0;i<3;i++)
|
---|
| 438 | output << setprecision(9) << EllipsoidLength[i] << "\t";
|
---|
| 439 | for (int i=0;i<3;i++)
|
---|
| 440 | output << setprecision(9) << EllipsoidAngle[i] << "\t";
|
---|
| 441 | output << endl;
|
---|
| 442 | } else { // increase N to pick one more
|
---|
[a67d19] | 443 | DoLog(1) && (Log() << Verbose(1) << "Picking failed!" << endl);
|
---|
[042f82] | 444 | number++;
|
---|
| 445 | }
|
---|
| 446 | delete[](x); // free allocated memory for point set
|
---|
| 447 | }
|
---|
| 448 | // close output and finish
|
---|
| 449 | output.close();
|
---|
| 450 |
|
---|
[a67d19] | 451 | DoLog(0) && (Log() << Verbose(0) << "End of FindDistributionOfEllipsoids" << endl);
|
---|
[6ac7ee] | 452 | };
|
---|