source: src/ellipsoid.cpp@ bf3817

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since bf3817 was bf3817, checked in by Frederik Heber <heber@…>, 15 years ago

Added ifdef HAVE_CONFIG and config.h include to each and every cpp file.

  • is now topmost in front of MemDebug.hpp (and any other).
  • Property mode set to 100644
File size: 17.2 KB
RevLine 
[6ac7ee]1/*
2 * ellipsoid.cpp
3 *
[042f82]4 * Created on: Jan 20, 2009
5 * Author: heber
[6ac7ee]6 */
7
[bf3817]8// include config.h
9#ifdef HAVE_CONFIG_H
10#include <config.h>
11#endif
12
[112b09]13#include "Helpers/MemDebug.hpp"
14
[357fba]15#include <gsl/gsl_multimin.h>
16#include <gsl/gsl_vector.h>
17
[f66195]18#include <iomanip>
19
20#include <set>
21
[d74077]22#include "BoundaryPointSet.hpp"
[357fba]23#include "boundary.hpp"
[6ac7ee]24#include "ellipsoid.hpp"
[f66195]25#include "linkedcell.hpp"
[952f38]26#include "Helpers/Log.hpp"
[f66195]27#include "tesselation.hpp"
[57f243]28#include "LinearAlgebra/Vector.hpp"
29#include "LinearAlgebra/Matrix.hpp"
[952f38]30#include "Helpers/Verbose.hpp"
[6ac7ee]31
32/** Determines squared distance for a given point \a x to surface of ellipsoid.
33 * \param x given point
34 * \param EllipsoidCenter center of ellipsoid
35 * \param EllipsoidLength[3] three lengths of half axis of ellipsoid
36 * \param EllipsoidAngle[3] three rotation angles of ellipsoid
37 * \return squared distance from point to surface
38 */
39double SquaredDistanceToEllipsoid(Vector &x, Vector &EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
40{
[042f82]41 Vector helper, RefPoint;
42 double distance = -1.;
[c94eeb]43 Matrix Matrix;
[042f82]44 double InverseLength[3];
45 double psi,theta,phi; // euler angles in ZX'Z'' convention
46
[e138de]47 //Log() << Verbose(3) << "Begin of SquaredDistanceToEllipsoid" << endl;
[042f82]48
49 for(int i=0;i<3;i++)
50 InverseLength[i] = 1./EllipsoidLength[i];
51
52 // 1. translate coordinate system so that ellipsoid center is in origin
[273382]53 RefPoint = helper = x - EllipsoidCenter;
[e138de]54 //Log() << Verbose(4) << "Translated given point is at " << RefPoint << "." << endl;
[042f82]55
56 // 2. transform coordinate system by inverse of rotation matrix and of diagonal matrix
57 psi = EllipsoidAngle[0];
58 theta = EllipsoidAngle[1];
59 phi = EllipsoidAngle[2];
[a679d1]60 Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
61 Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
62 Matrix.set(2,0, sin(psi)*sin(theta));
63 Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
64 Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
65 Matrix.set(2,1, -cos(psi)*sin(theta));
66 Matrix.set(0,2, sin(theta)*sin(phi));
67 Matrix.set(1,2, sin(theta)*cos(phi));
68 Matrix.set(2,2, cos(theta));
[5108e1]69 helper *= Matrix;
[1bd79e]70 helper.ScaleAll(InverseLength);
[e138de]71 //Log() << Verbose(4) << "Transformed RefPoint is at " << helper << "." << endl;
[042f82]72
73 // 3. construct intersection point with unit sphere and ray between origin and x
74 helper.Normalize(); // is simply normalizes vector in distance direction
[e138de]75 //Log() << Verbose(4) << "Transformed intersection is at " << helper << "." << endl;
[042f82]76
77 // 4. transform back the constructed intersection point
78 psi = -EllipsoidAngle[0];
79 theta = -EllipsoidAngle[1];
80 phi = -EllipsoidAngle[2];
[1bd79e]81 helper.ScaleAll(EllipsoidLength);
[a679d1]82 Matrix.set(0,0, cos(psi)*cos(phi) - sin(psi)*cos(theta)*sin(phi));
83 Matrix.set(1,0, -cos(psi)*sin(phi) - sin(psi)*cos(theta)*cos(phi));
84 Matrix.set(2,0, sin(psi)*sin(theta));
85 Matrix.set(0,1, sin(psi)*cos(phi) + cos(psi)*cos(theta)*sin(phi));
86 Matrix.set(1,1, cos(psi)*cos(theta)*cos(phi) - sin(psi)*sin(phi));
87 Matrix.set(2,1, -cos(psi)*sin(theta));
88 Matrix.set(0,2, sin(theta)*sin(phi));
89 Matrix.set(1,2, sin(theta)*cos(phi));
90 Matrix.set(2,2, cos(theta));
[5108e1]91 helper *= Matrix;
[e138de]92 //Log() << Verbose(4) << "Intersection is at " << helper << "." << endl;
[042f82]93
94 // 5. determine distance between backtransformed point and x
[273382]95 distance = RefPoint.DistanceSquared(helper);
[e138de]96 //Log() << Verbose(4) << "Squared distance between intersection and RefPoint is " << distance << "." << endl;
[042f82]97
98 return distance;
[e138de]99 //Log() << Verbose(3) << "End of SquaredDistanceToEllipsoid" << endl;
[6ac7ee]100};
101
102/** structure for ellipsoid minimisation containing points to fit to.
103 */
104struct EllipsoidMinimisation {
[042f82]105 int N; //!< dimension of vector set
106 Vector *x; //!< array of vectors
[6ac7ee]107};
108
109/** Sum of squared distance to ellipsoid to be minimised.
110 * \param *x parameters for the ellipsoid
111 * \param *params EllipsoidMinimisation with set of data points to minimise distance to and dimension
112 * \return sum of squared distance, \sa SquaredDistanceToEllipsoid()
113 */
114double SumSquaredDistance (const gsl_vector * x, void * params)
115{
[042f82]116 Vector *set= ((struct EllipsoidMinimisation *)params)->x;
117 int N = ((struct EllipsoidMinimisation *)params)->N;
118 double SumDistance = 0.;
119 double distance;
120 Vector Center;
121 double EllipsoidLength[3], EllipsoidAngle[3];
122
123 // put parameters into suitable ellipsoid form
124 for (int i=0;i<3;i++) {
[0a4f7f]125 Center[i] = gsl_vector_get(x, i+0);
[042f82]126 EllipsoidLength[i] = gsl_vector_get(x, i+3);
127 EllipsoidAngle[i] = gsl_vector_get(x, i+6);
128 }
129
130 // go through all points and sum distance
131 for (int i=0;i<N;i++) {
132 distance = SquaredDistanceToEllipsoid(set[i], Center, EllipsoidLength, EllipsoidAngle);
133 if (!isnan(distance)) {
134 SumDistance += distance;
135 } else {
136 SumDistance = GSL_NAN;
137 break;
138 }
139 }
140
[e138de]141 //Log() << Verbose(0) << "Current summed distance is " << SumDistance << "." << endl;
[042f82]142 return SumDistance;
[6ac7ee]143};
144
145/** Finds best fitting ellipsoid parameter set in Least square sense for a given point set.
146 * \param *out output stream for debugging
147 * \param *set given point set
148 * \param N number of points in set
149 * \param EllipsoidParamter[3] three parameters in ellipsoid equation
150 * \return true - fit successful, false - fit impossible
151 */
[e138de]152bool FitPointSetToEllipsoid(Vector *set, int N, Vector *EllipsoidCenter, double *EllipsoidLength, double *EllipsoidAngle)
[6ac7ee]153{
[042f82]154 int status = GSL_SUCCESS;
[a67d19]155 DoLog(2) && (Log() << Verbose(2) << "Begin of FitPointSetToEllipsoid " << endl);
[042f82]156 if (N >= 3) { // check that enough points are given (9 d.o.f.)
157 struct EllipsoidMinimisation par;
158 const gsl_multimin_fminimizer_type *T = gsl_multimin_fminimizer_nmsimplex;
159 gsl_multimin_fminimizer *s = NULL;
160 gsl_vector *ss, *x;
161 gsl_multimin_function minex_func;
162
163 size_t iter = 0;
164 double size;
165
166 /* Starting point */
167 x = gsl_vector_alloc (9);
168 for (int i=0;i<3;i++) {
[0a4f7f]169 gsl_vector_set (x, i+0, EllipsoidCenter->at(i));
[042f82]170 gsl_vector_set (x, i+3, EllipsoidLength[i]);
171 gsl_vector_set (x, i+6, EllipsoidAngle[i]);
172 }
173 par.x = set;
174 par.N = N;
175
176 /* Set initial step sizes */
177 ss = gsl_vector_alloc (9);
178 for (int i=0;i<3;i++) {
179 gsl_vector_set (ss, i+0, 0.1);
180 gsl_vector_set (ss, i+3, 1.0);
181 gsl_vector_set (ss, i+6, M_PI/20.);
182 }
183
184 /* Initialize method and iterate */
185 minex_func.n = 9;
186 minex_func.f = &SumSquaredDistance;
187 minex_func.params = (void *)&par;
188
189 s = gsl_multimin_fminimizer_alloc (T, 9);
190 gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
191
192 do {
193 iter++;
194 status = gsl_multimin_fminimizer_iterate(s);
195
196 if (status)
197 break;
198
199 size = gsl_multimin_fminimizer_size (s);
200 status = gsl_multimin_test_size (size, 1e-2);
201
202 if (status == GSL_SUCCESS) {
203 for (int i=0;i<3;i++) {
[0a4f7f]204 EllipsoidCenter->at(i) = gsl_vector_get (s->x,i+0);
[042f82]205 EllipsoidLength[i] = gsl_vector_get (s->x, i+3);
206 EllipsoidAngle[i] = gsl_vector_get (s->x, i+6);
207 }
[a67d19]208 DoLog(4) && (Log() << Verbose(4) << setprecision(3) << "Converged fit at: " << *EllipsoidCenter << ", lengths " << EllipsoidLength[0] << ", " << EllipsoidLength[1] << ", " << EllipsoidLength[2] << ", angles " << EllipsoidAngle[0] << ", " << EllipsoidAngle[1] << ", " << EllipsoidAngle[2] << " with summed distance " << s->fval << "." << endl);
[042f82]209 }
210
211 } while (status == GSL_CONTINUE && iter < 1000);
212
213 gsl_vector_free(x);
214 gsl_vector_free(ss);
215 gsl_multimin_fminimizer_free (s);
216
217 } else {
[a67d19]218 DoLog(3) && (Log() << Verbose(3) << "Not enough points provided for fit to ellipsoid." << endl);
[042f82]219 return false;
220 }
[a67d19]221 DoLog(2) && (Log() << Verbose(2) << "End of FitPointSetToEllipsoid" << endl);
[042f82]222 if (status == GSL_SUCCESS)
223 return true;
224 else
225 return false;
[6ac7ee]226};
227
228/** Picks a number of random points from a LC neighbourhood as a fitting set.
229 * \param *out output stream for debugging
230 * \param *T Tesselation containing boundary points
231 * \param *LC linked cell list of all atoms
232 * \param *&x random point set on return (not allocated!)
233 * \param PointsToPick number of points in set to pick
234 */
[e138de]235void PickRandomNeighbouredPointSet(class Tesselation *T, class LinkedCell *LC, Vector *&x, size_t PointsToPick)
[6ac7ee]236{
[70c333f]237 size_t PointsLeft = 0;
238 size_t PointsPicked = 0;
[042f82]239 int Nlower[NDIM], Nupper[NDIM];
240 set<int> PickedAtomNrs; // ordered list of picked atoms
241 set<int>::iterator current;
242 int index;
[357fba]243 TesselPoint *Candidate = NULL;
[a67d19]244 DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
[042f82]245
246 // allocate array
247 if (x == NULL) {
248 x = new Vector[PointsToPick];
249 } else {
[58ed4a]250 DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
[042f82]251 }
252
253 do {
254 for(int i=0;i<NDIM;i++) // pick three random indices
255 LC->n[i] = (rand() % LC->N[i]);
[a67d19]256 DoLog(2) && (Log() << Verbose(2) << "INFO: Center cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " ... ");
[042f82]257 // get random cell
[734816]258 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[042f82]259 if (List == NULL) { // set index to it
260 continue;
261 }
[a67d19]262 DoLog(2) && (Log() << Verbose(2) << "with No. " << LC->index << "." << endl);
[042f82]263
[a67d19]264 DoLog(2) && (Log() << Verbose(2) << "LC Intervals:");
[042f82]265 for (int i=0;i<NDIM;i++) {
266 Nlower[i] = ((LC->n[i]-1) >= 0) ? LC->n[i]-1 : 0;
267 Nupper[i] = ((LC->n[i]+1) < LC->N[i]) ? LC->n[i]+1 : LC->N[i]-1;
[a67d19]268 DoLog(0) && (Log() << Verbose(0) << " [" << Nlower[i] << "," << Nupper[i] << "] ");
[042f82]269 }
[a67d19]270 DoLog(0) && (Log() << Verbose(0) << endl);
[042f82]271
272 // count whether there are sufficient atoms in this cell+neighbors
273 PointsLeft=0;
274 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
275 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
276 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]277 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[042f82]278 PointsLeft += List->size();
279 }
[a67d19]280 DoLog(2) && (Log() << Verbose(2) << "There are " << PointsLeft << " atoms in this neighbourhood." << endl);
[042f82]281 if (PointsLeft < PointsToPick) { // ensure that we can pick enough points in its neighbourhood at all.
282 continue;
283 }
284
285 // pre-pick a fixed number of atoms
286 PickedAtomNrs.clear();
287 do {
288 index = (rand() % PointsLeft);
289 current = PickedAtomNrs.find(index); // not present?
290 if (current == PickedAtomNrs.end()) {
[e138de]291 //Log() << Verbose(2) << "Picking atom nr. " << index << "." << endl;
[042f82]292 PickedAtomNrs.insert(index);
293 }
294 } while (PickedAtomNrs.size() < PointsToPick);
295
296 index = 0; // now go through all and pick those whose from PickedAtomsNr
297 PointsPicked=0;
298 current = PickedAtomNrs.begin();
299 for (LC->n[0] = Nlower[0]; LC->n[0] <= Nupper[0]; LC->n[0]++)
300 for (LC->n[1] = Nlower[1]; LC->n[1] <= Nupper[1]; LC->n[1]++)
301 for (LC->n[2] = Nlower[2]; LC->n[2] <= Nupper[2]; LC->n[2]++) {
[734816]302 const LinkedCell::LinkedNodes *List = LC->GetCurrentCell();
[e138de]303// Log() << Verbose(2) << "Current cell is " << LC->n[0] << ", " << LC->n[1] << ", " << LC->n[2] << " with No. " << LC->index << " containing " << List->size() << " points." << endl;
[042f82]304 if (List != NULL) {
305// if (List->begin() != List->end())
[e138de]306// Log() << Verbose(2) << "Going through candidates ... " << endl;
[042f82]307// else
[e138de]308// Log() << Verbose(2) << "Cell is empty ... " << endl;
[734816]309 for (LinkedCell::LinkedNodes::const_iterator Runner = List->begin(); Runner != List->end(); Runner++) {
[042f82]310 if ((current != PickedAtomNrs.end()) && (*current == index)) {
311 Candidate = (*Runner);
[d74077]312 DoLog(2) && (Log() << Verbose(2) << "Current picked node is " << (*Runner)->getName() << " with index " << index << "." << endl);
313 x[PointsPicked++] = Candidate->getPosition(); // we have one more atom picked
[042f82]314 current++; // next pre-picked atom
315 }
316 index++; // next atom nr.
317 }
318// } else {
[e138de]319// Log() << Verbose(2) << "List for this index not allocated!" << endl;
[042f82]320 }
321 }
[a67d19]322 DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
[042f82]323 for (size_t i=0;i<PointsPicked;i++)
[a67d19]324 DoLog(2) && (Log() << Verbose(2) << x[i] << endl);
[042f82]325 if (PointsPicked == PointsToPick) // break out of loop if we have all
326 break;
327 } while(1);
328
[a67d19]329 DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
[6ac7ee]330};
331
332/** Picks a number of random points from a set of boundary points as a fitting set.
333 * \param *out output stream for debugging
334 * \param *T Tesselation containing boundary points
335 * \param *&x random point set on return (not allocated!)
336 * \param PointsToPick number of points in set to pick
337 */
[e138de]338void PickRandomPointSet(class Tesselation *T, Vector *&x, size_t PointsToPick)
[6ac7ee]339{
[70c333f]340 size_t PointsLeft = (size_t) T->PointsOnBoundaryCount;
341 size_t PointsPicked = 0;
[042f82]342 double value, threshold;
343 PointMap *List = &T->PointsOnBoundary;
[a67d19]344 DoLog(2) && (Log() << Verbose(2) << "Begin of PickRandomPointSet" << endl);
[042f82]345
346 // allocate array
347 if (x == NULL) {
348 x = new Vector[PointsToPick];
349 } else {
[58ed4a]350 DoeLog(2) && (eLog()<< Verbose(2) << "Given pointer to vector array seems already allocated." << endl);
[042f82]351 }
352
353 if (List != NULL)
354 for (PointMap::iterator Runner = List->begin(); Runner != List->end(); Runner++) {
355 threshold = 1. - (double)(PointsToPick - PointsPicked)/(double)PointsLeft;
356 value = (double)rand()/(double)RAND_MAX;
[e138de]357 //Log() << Verbose(3) << "Current node is " << *Runner->second->node << " with " << value << " ... " << threshold << ": ";
[042f82]358 if (value > threshold) {
[d74077]359 x[PointsPicked] = (Runner->second->node->getPosition());
[042f82]360 PointsPicked++;
[e138de]361 //Log() << Verbose(0) << "IN." << endl;
[042f82]362 } else {
[e138de]363 //Log() << Verbose(0) << "OUT." << endl;
[042f82]364 }
365 PointsLeft--;
366 }
[a67d19]367 DoLog(2) && (Log() << Verbose(2) << "The following points were picked: " << endl);
[042f82]368 for (size_t i=0;i<PointsPicked;i++)
[a67d19]369 DoLog(3) && (Log() << Verbose(3) << x[i] << endl);
[042f82]370
[a67d19]371 DoLog(2) && (Log() << Verbose(2) << "End of PickRandomPointSet" << endl);
[6ac7ee]372};
373
374/** Finds best fitting ellipsoid parameter set in least square sense for a given point set.
375 * \param *out output stream for debugging
376 * \param *T Tesselation containing boundary points
377 * \param *LCList linked cell list of all atoms
378 * \param N number of unique points in ellipsoid fit, must be greater equal 6
379 * \param number of fits (i.e. parameter sets in output file)
380 * \param *filename name for output file
381 */
[e138de]382void FindDistributionOfEllipsoids(class Tesselation *T, class LinkedCell *LCList, int N, int number, const char *filename)
[6ac7ee]383{
[042f82]384 ofstream output;
385 Vector *x = NULL;
386 Vector Center;
387 Vector EllipsoidCenter;
388 double EllipsoidLength[3];
389 double EllipsoidAngle[3];
390 double distance, MaxDistance, MinDistance;
[a67d19]391 DoLog(0) && (Log() << Verbose(0) << "Begin of FindDistributionOfEllipsoids" << endl);
[042f82]392
393 // construct center of gravity of boundary point set for initial ellipsoid center
394 Center.Zero();
395 for (PointMap::iterator Runner = T->PointsOnBoundary.begin(); Runner != T->PointsOnBoundary.end(); Runner++)
[d74077]396 Center += (Runner->second->node->getPosition());
[042f82]397 Center.Scale(1./T->PointsOnBoundaryCount);
[a67d19]398 DoLog(1) && (Log() << Verbose(1) << "Center is at " << Center << "." << endl);
[042f82]399
400 // Output header
401 output.open(filename, ios::trunc);
402 output << "# Nr.\tCenterX\tCenterY\tCenterZ\ta\tb\tc\tpsi\ttheta\tphi" << endl;
403
404 // loop over desired number of parameter sets
405 for (;number >0;number--) {
[a67d19]406 DoLog(1) && (Log() << Verbose(1) << "Determining data set " << number << " ... " << endl);
[042f82]407 // pick the point set
408 x = NULL;
[e138de]409 //PickRandomPointSet(T, LCList, x, N);
410 PickRandomNeighbouredPointSet(T, LCList, x, N);
[042f82]411
412 // calculate some sensible starting values for parameter fit
413 MaxDistance = 0.;
[273382]414 MinDistance = x[0].ScalarProduct(x[0]);
[042f82]415 for (int i=0;i<N;i++) {
[273382]416 distance = x[i].ScalarProduct(x[i]);
[042f82]417 if (distance > MaxDistance)
418 MaxDistance = distance;
419 if (distance < MinDistance)
420 MinDistance = distance;
421 }
[e138de]422 //Log() << Verbose(2) << "MinDistance " << MinDistance << ", MaxDistance " << MaxDistance << "." << endl;
[273382]423 EllipsoidCenter = Center; // use Center of Gravity as initial center of ellipsoid
[042f82]424 for (int i=0;i<3;i++)
425 EllipsoidAngle[i] = 0.;
426 EllipsoidLength[0] = sqrt(MaxDistance);
427 EllipsoidLength[1] = sqrt((MaxDistance+MinDistance)/2.);
428 EllipsoidLength[2] = sqrt(MinDistance);
429
430 // fit the parameters
[e138de]431 if (FitPointSetToEllipsoid(x, N, &EllipsoidCenter, &EllipsoidLength[0], &EllipsoidAngle[0])) {
[a67d19]432 DoLog(1) && (Log() << Verbose(1) << "Picking succeeded!" << endl);
[042f82]433 // output obtained parameter set
434 output << number << "\t";
435 for (int i=0;i<3;i++)
[0a4f7f]436 output << setprecision(9) << EllipsoidCenter[i] << "\t";
[042f82]437 for (int i=0;i<3;i++)
438 output << setprecision(9) << EllipsoidLength[i] << "\t";
439 for (int i=0;i<3;i++)
440 output << setprecision(9) << EllipsoidAngle[i] << "\t";
441 output << endl;
442 } else { // increase N to pick one more
[a67d19]443 DoLog(1) && (Log() << Verbose(1) << "Picking failed!" << endl);
[042f82]444 number++;
445 }
446 delete[](x); // free allocated memory for point set
447 }
448 // close output and finish
449 output.close();
450
[a67d19]451 DoLog(0) && (Log() << Verbose(0) << "End of FindDistributionOfEllipsoids" << endl);
[6ac7ee]452};
Note: See TracBrowser for help on using the repository browser.