source: src/boundary.cpp@ e2373df

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since e2373df was 7a51be, checked in by Frederik Heber <heber@…>, 14 years ago

new function FormatParserStorage::get to obtain specialized FormatParser instance.

  • Property mode set to 100644
File size: 61.9 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/** \file boundary.cpp
9 *
10 * Implementations and super-function for envelopes
11 */
12
13// include config.h
14#ifdef HAVE_CONFIG_H
15#include <config.h>
16#endif
17
18#include "CodePatterns/MemDebug.hpp"
19
20#include "BoundaryPointSet.hpp"
21#include "BoundaryLineSet.hpp"
22#include "BoundaryTriangleSet.hpp"
23#include "CandidateForTesselation.hpp"
24//#include "TesselPoint.hpp"
25#include "World.hpp"
26#include "atom.hpp"
27#include "bond.hpp"
28#include "boundary.hpp"
29#include "config.hpp"
30#include "element.hpp"
31#include "Helpers/helpers.hpp"
32#include "CodePatterns/Info.hpp"
33#include "linkedcell.hpp"
34#include "CodePatterns/Verbose.hpp"
35#include "CodePatterns/Log.hpp"
36#include "molecule.hpp"
37#include "tesselation.hpp"
38#include "tesselationhelpers.hpp"
39#include "World.hpp"
40#include "LinearAlgebra/Plane.hpp"
41#include "LinearAlgebra/RealSpaceMatrix.hpp"
42#include "RandomNumbers/RandomNumberGeneratorFactory.hpp"
43#include "RandomNumbers/RandomNumberGenerator.hpp"
44#include "Box.hpp"
45
46#include <iostream>
47#include <iomanip>
48
49#include<gsl/gsl_poly.h>
50#include<time.h>
51
52// ========================================== F U N C T I O N S =================================
53
54
55/** Determines greatest diameters of a cluster defined by its convex envelope.
56 * Looks at lines parallel to one axis and where they intersect on the projected planes
57 * \param *out output stream for debugging
58 * \param *BoundaryPoints NDIM set of boundary points defining the convex envelope on each projected plane
59 * \param *mol molecule structure representing the cluster
60 * \param *&TesselStruct Tesselation structure with triangles
61 * \param IsAngstroem whether we have angstroem or atomic units
62 * \return NDIM array of the diameters
63 */
64double *GetDiametersOfCluster(const Boundaries *BoundaryPtr, const molecule *mol, Tesselation *&TesselStruct, const bool IsAngstroem)
65{
66 Info FunctionInfo(__func__);
67 // get points on boundary of NULL was given as parameter
68 bool BoundaryFreeFlag = false;
69 double OldComponent = 0.;
70 double tmp = 0.;
71 double w1 = 0.;
72 double w2 = 0.;
73 Vector DistanceVector;
74 Vector OtherVector;
75 int component = 0;
76 int Othercomponent = 0;
77 Boundaries::const_iterator Neighbour;
78 Boundaries::const_iterator OtherNeighbour;
79 double *GreatestDiameter = new double[NDIM];
80
81 const Boundaries *BoundaryPoints;
82 if (BoundaryPtr == NULL) {
83 BoundaryFreeFlag = true;
84 BoundaryPoints = GetBoundaryPoints(mol, TesselStruct);
85 } else {
86 BoundaryPoints = BoundaryPtr;
87 DoLog(0) && (Log() << Verbose(0) << "Using given boundary points set." << endl);
88 }
89 // determine biggest "diameter" of cluster for each axis
90 for (int i = 0; i < NDIM; i++)
91 GreatestDiameter[i] = 0.;
92 for (int axis = 0; axis < NDIM; axis++)
93 { // regard each projected plane
94 //Log() << Verbose(1) << "Current axis is " << axis << "." << endl;
95 for (int j = 0; j < 2; j++)
96 { // and for both axis on the current plane
97 component = (axis + j + 1) % NDIM;
98 Othercomponent = (axis + 1 + ((j + 1) & 1)) % NDIM;
99 //Log() << Verbose(1) << "Current component is " << component << ", Othercomponent is " << Othercomponent << "." << endl;
100 for (Boundaries::const_iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
101 //Log() << Verbose(1) << "Current runner is " << *(runner->second.second) << "." << endl;
102 // seek for the neighbours pair where the Othercomponent sign flips
103 Neighbour = runner;
104 Neighbour++;
105 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
106 Neighbour = BoundaryPoints[axis].begin();
107 DistanceVector = (runner->second.second->getPosition()) - (Neighbour->second.second->getPosition());
108 do { // seek for neighbour pair where it flips
109 OldComponent = DistanceVector[Othercomponent];
110 Neighbour++;
111 if (Neighbour == BoundaryPoints[axis].end()) // make it wrap around
112 Neighbour = BoundaryPoints[axis].begin();
113 DistanceVector = (runner->second.second->getPosition()) - (Neighbour->second.second->getPosition());
114 //Log() << Verbose(2) << "OldComponent is " << OldComponent << ", new one is " << DistanceVector.x[Othercomponent] << "." << endl;
115 } while ((runner != Neighbour) && (fabs(OldComponent / fabs(
116 OldComponent) - DistanceVector[Othercomponent] / fabs(
117 DistanceVector[Othercomponent])) < MYEPSILON)); // as long as sign does not flip
118 if (runner != Neighbour) {
119 OtherNeighbour = Neighbour;
120 if (OtherNeighbour == BoundaryPoints[axis].begin()) // make it wrap around
121 OtherNeighbour = BoundaryPoints[axis].end();
122 OtherNeighbour--;
123 //Log() << Verbose(1) << "The pair, where the sign of OtherComponent flips, is: " << *(Neighbour->second.second) << " and " << *(OtherNeighbour->second.second) << "." << endl;
124 // now we have found the pair: Neighbour and OtherNeighbour
125 OtherVector = (runner->second.second->getPosition()) - (OtherNeighbour->second.second->getPosition());
126 //Log() << Verbose(1) << "Distances to Neighbour and OtherNeighbour are " << DistanceVector.x[component] << " and " << OtherVector.x[component] << "." << endl;
127 //Log() << Verbose(1) << "OtherComponents to Neighbour and OtherNeighbour are " << DistanceVector.x[Othercomponent] << " and " << OtherVector.x[Othercomponent] << "." << endl;
128 // do linear interpolation between points (is exact) to extract exact intersection between Neighbour and OtherNeighbour
129 w1 = fabs(OtherVector[Othercomponent]);
130 w2 = fabs(DistanceVector[Othercomponent]);
131 tmp = fabs((w1 * DistanceVector[component] + w2
132 * OtherVector[component]) / (w1 + w2));
133 // mark if it has greater diameter
134 //Log() << Verbose(1) << "Comparing current greatest " << GreatestDiameter[component] << " to new " << tmp << "." << endl;
135 GreatestDiameter[component] = (GreatestDiameter[component]
136 > tmp) ? GreatestDiameter[component] : tmp;
137 } //else
138 //Log() << Verbose(1) << "Saw no sign flip, probably top or bottom node." << endl;
139 }
140 }
141 }
142 Log() << Verbose(0) << "RESULT: The biggest diameters are "
143 << GreatestDiameter[0] << " and " << GreatestDiameter[1] << " and "
144 << GreatestDiameter[2] << " " << (IsAngstroem ? "angstrom"
145 : "atomiclength") << "." << endl;
146
147 // free reference lists
148 if (BoundaryFreeFlag)
149 delete[] (BoundaryPoints);
150
151 return GreatestDiameter;
152}
153;
154
155
156/** Determines the boundary points of a cluster.
157 * Does a projection per axis onto the orthogonal plane, transforms into spherical coordinates, sorts them by the angle
158 * and looks at triples: if the middle has less a distance than the allowed maximum height of the triangle formed by the plane's
159 * center and first and last point in the triple, it is thrown out.
160 * \param *out output stream for debugging
161 * \param *mol molecule structure representing the cluster
162 * \param *&TesselStruct pointer to Tesselation structure
163 */
164Boundaries *GetBoundaryPoints(const molecule *mol, Tesselation *&TesselStruct)
165{
166 Info FunctionInfo(__func__);
167 PointMap PointsOnBoundary;
168 LineMap LinesOnBoundary;
169 TriangleMap TrianglesOnBoundary;
170 Vector *MolCenter = mol->DetermineCenterOfAll();
171 Vector helper;
172 BoundariesTestPair BoundaryTestPair;
173 Vector AxisVector;
174 Vector AngleReferenceVector;
175 Vector AngleReferenceNormalVector;
176 Vector ProjectedVector;
177 Boundaries *BoundaryPoints = new Boundaries[NDIM]; // first is alpha, second is (r, nr)
178 double angle = 0.;
179
180 // 3a. Go through every axis
181 for (int axis = 0; axis < NDIM; axis++) {
182 AxisVector.Zero();
183 AngleReferenceVector.Zero();
184 AngleReferenceNormalVector.Zero();
185 AxisVector[axis] = 1.;
186 AngleReferenceVector[(axis + 1) % NDIM] = 1.;
187 AngleReferenceNormalVector[(axis + 2) % NDIM] = 1.;
188
189 DoLog(1) && (Log() << Verbose(1) << "Axisvector is " << AxisVector << " and AngleReferenceVector is " << AngleReferenceVector << ", and AngleReferenceNormalVector is " << AngleReferenceNormalVector << "." << endl);
190
191 // 3b. construct set of all points, transformed into cylindrical system and with left and right neighbours
192 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
193 ProjectedVector = (*iter)->getPosition() - (*MolCenter);
194 ProjectedVector.ProjectOntoPlane(AxisVector);
195
196 // correct for negative side
197 const double radius = ProjectedVector.NormSquared();
198 if (fabs(radius) > MYEPSILON)
199 angle = ProjectedVector.Angle(AngleReferenceVector);
200 else
201 angle = 0.; // otherwise it's a vector in Axis Direction and unimportant for boundary issues
202
203 //Log() << Verbose(1) << "Checking sign in quadrant : " << ProjectedVector.Projection(&AngleReferenceNormalVector) << "." << endl;
204 if (ProjectedVector.ScalarProduct(AngleReferenceNormalVector) > 0) {
205 angle = 2. * M_PI - angle;
206 }
207 DoLog(1) && (Log() << Verbose(1) << "Inserting " << **iter << ": (r, alpha) = (" << radius << "," << angle << "): " << ProjectedVector << endl);
208 BoundaryTestPair = BoundaryPoints[axis].insert(BoundariesPair(angle, TesselPointDistancePair (radius, (*iter))));
209 if (!BoundaryTestPair.second) { // same point exists, check first r, then distance of original vectors to center of gravity
210 DoLog(2) && (Log() << Verbose(2) << "Encountered two vectors whose projection onto axis " << axis << " is equal: " << endl);
211 DoLog(2) && (Log() << Verbose(2) << "Present vector: " << *BoundaryTestPair.first->second.second << endl);
212 DoLog(2) && (Log() << Verbose(2) << "New vector: " << **iter << endl);
213 const double ProjectedVectorNorm = ProjectedVector.NormSquared();
214 if ((ProjectedVectorNorm - BoundaryTestPair.first->second.first) > MYEPSILON) {
215 BoundaryTestPair.first->second.first = ProjectedVectorNorm;
216 BoundaryTestPair.first->second.second = (*iter);
217 DoLog(2) && (Log() << Verbose(2) << "Keeping new vector due to larger projected distance " << ProjectedVectorNorm << "." << endl);
218 } else if (fabs(ProjectedVectorNorm - BoundaryTestPair.first->second.first) < MYEPSILON) {
219 helper = (*iter)->getPosition() - (*MolCenter);
220 const double oldhelperNorm = helper.NormSquared();
221 helper = BoundaryTestPair.first->second.second->getPosition() - (*MolCenter);
222 if (helper.NormSquared() < oldhelperNorm) {
223 BoundaryTestPair.first->second.second = (*iter);
224 DoLog(2) && (Log() << Verbose(2) << "Keeping new vector due to larger distance to molecule center " << helper.NormSquared() << "." << endl);
225 } else {
226 DoLog(2) && (Log() << Verbose(2) << "Keeping present vector due to larger distance to molecule center " << oldhelperNorm << "." << endl);
227 }
228 } else {
229 DoLog(2) && (Log() << Verbose(2) << "Keeping present vector due to larger projected distance " << ProjectedVectorNorm << "." << endl);
230 }
231 }
232 }
233 // printing all inserted for debugging
234 // {
235 // Log() << Verbose(1) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl;
236 // int i=0;
237 // for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
238 // if (runner != BoundaryPoints[axis].begin())
239 // Log() << Verbose(0) << ", " << i << ": " << *runner->second.second;
240 // else
241 // Log() << Verbose(0) << i << ": " << *runner->second.second;
242 // i++;
243 // }
244 // Log() << Verbose(0) << endl;
245 // }
246 // 3c. throw out points whose distance is less than the mean of left and right neighbours
247 bool flag = false;
248 DoLog(1) && (Log() << Verbose(1) << "Looking for candidates to kick out by convex condition ... " << endl);
249 do { // do as long as we still throw one out per round
250 flag = false;
251 Boundaries::iterator left = BoundaryPoints[axis].begin();
252 Boundaries::iterator right = BoundaryPoints[axis].begin();
253 Boundaries::iterator runner = BoundaryPoints[axis].begin();
254 bool LoopOnceDone = false;
255 while (!LoopOnceDone) {
256 runner = right;
257 right++;
258 // set neighbours correctly
259 if (runner == BoundaryPoints[axis].begin()) {
260 left = BoundaryPoints[axis].end();
261 } else {
262 left = runner;
263 }
264 left--;
265 if (right == BoundaryPoints[axis].end()) {
266 right = BoundaryPoints[axis].begin();
267 LoopOnceDone = true;
268 }
269 // check distance
270
271 // construct the vector of each side of the triangle on the projected plane (defined by normal vector AxisVector)
272 {
273 Vector SideA, SideB, SideC, SideH;
274 SideA = left->second.second->getPosition() - (*MolCenter);
275 SideA.ProjectOntoPlane(AxisVector);
276 // Log() << Verbose(1) << "SideA: " << SideA << endl;
277
278 SideB = right->second.second->getPosition() -(*MolCenter);
279 SideB.ProjectOntoPlane(AxisVector);
280 // Log() << Verbose(1) << "SideB: " << SideB << endl;
281
282 SideC = left->second.second->getPosition() - right->second.second->getPosition();
283 SideC.ProjectOntoPlane(AxisVector);
284 // Log() << Verbose(1) << "SideC: " << SideC << endl;
285
286 SideH = runner->second.second->getPosition() -(*MolCenter);
287 SideH.ProjectOntoPlane(AxisVector);
288 // Log() << Verbose(1) << "SideH: " << SideH << endl;
289
290 // calculate each length
291 const double a = SideA.Norm();
292 //const double b = SideB.Norm();
293 //const double c = SideC.Norm();
294 const double h = SideH.Norm();
295 // calculate the angles
296 const double alpha = SideA.Angle(SideH);
297 const double beta = SideA.Angle(SideC);
298 const double gamma = SideB.Angle(SideH);
299 const double delta = SideC.Angle(SideH);
300 const double MinDistance = a * sin(beta) / (sin(delta)) * (((alpha < M_PI / 2.) || (gamma < M_PI / 2.)) ? 1. : -1.);
301 //Log() << Verbose(1) << " I calculated: a = " << a << ", h = " << h << ", beta(" << left->second.second->Name << "," << left->second.second->Name << "-" << right->second.second->Name << ") = " << beta << ", delta(" << left->second.second->Name << "," << runner->second.second->Name << ") = " << delta << ", Min = " << MinDistance << "." << endl;
302 DoLog(1) && (Log() << Verbose(1) << "Checking CoG distance of runner " << *runner->second.second << " " << h << " against triangle's side length spanned by (" << *left->second.second << "," << *right->second.second << ") of " << MinDistance << "." << endl);
303 if ((fabs(h / fabs(h) - MinDistance / fabs(MinDistance)) < MYEPSILON) && ((h - MinDistance)) < -MYEPSILON) {
304 // throw out point
305 DoLog(1) && (Log() << Verbose(1) << "Throwing out " << *runner->second.second << "." << endl);
306 BoundaryPoints[axis].erase(runner);
307 runner = right;
308 flag = true;
309 }
310 }
311 }
312 } while (flag);
313 }
314 delete(MolCenter);
315 return BoundaryPoints;
316};
317
318/** Tesselates the convex boundary by finding all boundary points.
319 * \param *out output stream for debugging
320 * \param *mol molecule structure with Atom's and Bond's.
321 * \param *BoundaryPts set of boundary points to use or NULL
322 * \param *TesselStruct Tesselation filled with points, lines and triangles on boundary on return
323 * \param *LCList atoms in LinkedCell list
324 * \param *filename filename prefix for output of vertex data
325 * \return *TesselStruct is filled with convex boundary and tesselation is stored under \a *filename.
326 */
327void FindConvexBorder(const molecule* mol, Boundaries *BoundaryPts, Tesselation *&TesselStruct, const LinkedCell *LCList, const char *filename)
328{
329 Info FunctionInfo(__func__);
330 bool BoundaryFreeFlag = false;
331 Boundaries *BoundaryPoints = NULL;
332
333 if (TesselStruct != NULL) // free if allocated
334 delete(TesselStruct);
335 TesselStruct = new class Tesselation;
336
337 // 1. Find all points on the boundary
338 if (BoundaryPts == NULL) {
339 BoundaryFreeFlag = true;
340 BoundaryPoints = GetBoundaryPoints(mol, TesselStruct);
341 } else {
342 BoundaryPoints = BoundaryPts;
343 DoLog(0) && (Log() << Verbose(0) << "Using given boundary points set." << endl);
344 }
345
346// printing all inserted for debugging
347 for (int axis=0; axis < NDIM; axis++) {
348 DoLog(1) && (Log() << Verbose(1) << "Printing list of candidates for axis " << axis << " which we have inserted so far." << endl);
349 int i=0;
350 for(Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++) {
351 if (runner != BoundaryPoints[axis].begin())
352 DoLog(0) && (Log() << Verbose(0) << ", " << i << ": " << *runner->second.second);
353 else
354 DoLog(0) && (Log() << Verbose(0) << i << ": " << *runner->second.second);
355 i++;
356 }
357 DoLog(0) && (Log() << Verbose(0) << endl);
358 }
359
360 // 2. fill the boundary point list
361 for (int axis = 0; axis < NDIM; axis++)
362 for (Boundaries::iterator runner = BoundaryPoints[axis].begin(); runner != BoundaryPoints[axis].end(); runner++)
363 if (!TesselStruct->AddBoundaryPoint(runner->second.second, 0))
364 DoLog(2) && (Log()<< Verbose(2) << "Point " << *(runner->second.second) << " is already present." << endl);
365
366 DoLog(0) && (Log() << Verbose(0) << "I found " << TesselStruct->PointsOnBoundaryCount << " points on the convex boundary." << endl);
367 // now we have the whole set of edge points in the BoundaryList
368
369 // listing for debugging
370 // Log() << Verbose(1) << "Listing PointsOnBoundary:";
371 // for(PointMap::iterator runner = PointsOnBoundary.begin(); runner != PointsOnBoundary.end(); runner++) {
372 // Log() << Verbose(0) << " " << *runner->second;
373 // }
374 // Log() << Verbose(0) << endl;
375
376 // 3a. guess starting triangle
377 TesselStruct->GuessStartingTriangle();
378
379 // 3b. go through all lines, that are not yet part of two triangles (only of one so far)
380 TesselStruct->TesselateOnBoundary(mol);
381
382 // 3c. check whether all atoms lay inside the boundary, if not, add to boundary points, segment triangle into three with the new point
383 if (!TesselStruct->InsertStraddlingPoints(mol, LCList))
384 DoeLog(1) && (eLog()<< Verbose(1) << "Insertion of straddling points failed!" << endl);
385
386 DoLog(0) && (Log() << Verbose(0) << "I created " << TesselStruct->TrianglesOnBoundary.size() << " intermediate triangles with " << TesselStruct->LinesOnBoundary.size() << " lines and " << TesselStruct->PointsOnBoundary.size() << " points." << endl);
387
388 // 4. Store triangles in tecplot file
389 StoreTrianglesinFile(mol, TesselStruct, filename, "_intermed");
390
391 // 3d. check all baselines whether the peaks of the two adjacent triangles with respect to center of baseline are convex, if not, make the baseline between the two peaks and baseline endpoints become the new peaks
392 bool AllConvex = true;
393 class BoundaryLineSet *line = NULL;
394 do {
395 AllConvex = true;
396 for (LineMap::iterator LineRunner = TesselStruct->LinesOnBoundary.begin(); LineRunner != TesselStruct->LinesOnBoundary.end(); LineRunner++) {
397 line = LineRunner->second;
398 DoLog(1) && (Log() << Verbose(1) << "INFO: Current line is " << *line << "." << endl);
399 if (!line->CheckConvexityCriterion()) {
400 DoLog(1) && (Log() << Verbose(1) << "... line " << *line << " is concave, flipping it." << endl);
401
402 // flip the line
403 if (TesselStruct->PickFarthestofTwoBaselines(line) == 0.)
404 DoeLog(1) && (eLog()<< Verbose(1) << "Correction of concave baselines failed!" << endl);
405 else {
406 TesselStruct->FlipBaseline(line);
407 DoLog(1) && (Log() << Verbose(1) << "INFO: Correction of concave baselines worked." << endl);
408 LineRunner = TesselStruct->LinesOnBoundary.begin(); // LineRunner may have been erase if line was deleted from LinesOnBoundary
409 }
410 }
411 }
412 } while (!AllConvex);
413
414 // 3e. we need another correction here, for TesselPoints that are below the surface (i.e. have an odd number of concave triangles surrounding it)
415// if (!TesselStruct->CorrectConcaveTesselPoints(out))
416// Log() << Verbose(1) << "Correction of concave tesselpoints failed!" << endl;
417
418 DoLog(0) && (Log() << Verbose(0) << "I created " << TesselStruct->TrianglesOnBoundary.size() << " triangles with " << TesselStruct->LinesOnBoundary.size() << " lines and " << TesselStruct->PointsOnBoundary.size() << " points." << endl);
419
420 // 4. Store triangles in tecplot file
421 StoreTrianglesinFile(mol, TesselStruct, filename, "");
422
423 // free reference lists
424 if (BoundaryFreeFlag)
425 delete[] (BoundaryPoints);
426};
427
428/** For testing removes one boundary point after another to check for leaks.
429 * \param *out output stream for debugging
430 * \param *TesselStruct Tesselation containing envelope with boundary points
431 * \param *mol molecule
432 * \param *filename name of file
433 * \return true - all removed, false - something went wrong
434 */
435bool RemoveAllBoundaryPoints(class Tesselation *&TesselStruct, const molecule * const mol, const char * const filename)
436{
437 Info FunctionInfo(__func__);
438 int i=0;
439 char number[MAXSTRINGSIZE];
440
441 if ((TesselStruct == NULL) || (TesselStruct->PointsOnBoundary.empty())) {
442 DoeLog(1) && (eLog()<< Verbose(1) << "TesselStruct is empty." << endl);
443 return false;
444 }
445
446 PointMap::iterator PointRunner;
447 while (!TesselStruct->PointsOnBoundary.empty()) {
448 DoLog(1) && (Log() << Verbose(1) << "Remaining points are: ");
449 for (PointMap::iterator PointSprinter = TesselStruct->PointsOnBoundary.begin(); PointSprinter != TesselStruct->PointsOnBoundary.end(); PointSprinter++)
450 DoLog(0) && (Log() << Verbose(0) << *(PointSprinter->second) << "\t");
451 DoLog(0) && (Log() << Verbose(0) << endl);
452
453 PointRunner = TesselStruct->PointsOnBoundary.begin();
454 // remove point
455 TesselStruct->RemovePointFromTesselatedSurface(PointRunner->second);
456
457 // store envelope
458 sprintf(number, "-%04d", i++);
459 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, number);
460 }
461
462 return true;
463};
464
465/** Creates a convex envelope from a given non-convex one.
466 * -# First step, remove concave spots, i.e. singular "dents"
467 * -# We go through all PointsOnBoundary.
468 * -# We CheckConvexityCriterion() for all its lines.
469 * -# If all its lines are concave, it cannot be on the convex envelope.
470 * -# Hence, we remove it and re-create all its triangles from its getCircleOfConnectedPoints()
471 * -# We calculate the additional volume.
472 * -# We go over all lines until none yields a concavity anymore.
473 * -# Second step, remove concave lines, i.e. line-shape "dents"
474 * -# We go through all LinesOnBoundary
475 * -# We CheckConvexityCriterion()
476 * -# If it returns concave, we flip the line in this quadrupel of points (abusing the degeneracy of the tesselation)
477 * -# We CheckConvexityCriterion(),
478 * -# if it's concave, we continue
479 * -# if not, we mark an error and stop
480 * Note: This routine - for free - calculates the difference in volume between convex and
481 * non-convex envelope, as the former is easy to calculate - VolumeOfConvexEnvelope() - it
482 * can be used to compute volumes of arbitrary shapes.
483 * \param *out output stream for debugging
484 * \param *TesselStruct non-convex envelope, is changed in return!
485 * \param *mol molecule
486 * \param *filename name of file
487 * \return volume difference between the non- and the created convex envelope
488 */
489double ConvexizeNonconvexEnvelope(class Tesselation *&TesselStruct, const molecule * const mol, const char * const filename)
490{
491 Info FunctionInfo(__func__);
492 double volume = 0;
493 class BoundaryPointSet *point = NULL;
494 class BoundaryLineSet *line = NULL;
495 bool Concavity = false;
496 char dummy[MAXSTRINGSIZE];
497 PointMap::iterator PointRunner;
498 PointMap::iterator PointAdvance;
499 LineMap::iterator LineRunner;
500 LineMap::iterator LineAdvance;
501 TriangleMap::iterator TriangleRunner;
502 TriangleMap::iterator TriangleAdvance;
503 int run = 0;
504
505 // check whether there is something to work on
506 if (TesselStruct == NULL) {
507 DoeLog(1) && (eLog()<< Verbose(1) << "TesselStruct is empty!" << endl);
508 return volume;
509 }
510
511 // First step: RemovePointFromTesselatedSurface
512 do {
513 Concavity = false;
514 sprintf(dummy, "-first-%d", run);
515 //CalculateConcavityPerBoundaryPoint(TesselStruct);
516 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, dummy);
517
518 PointRunner = TesselStruct->PointsOnBoundary.begin();
519 PointAdvance = PointRunner; // we need an advanced point, as the PointRunner might get removed
520 while (PointRunner != TesselStruct->PointsOnBoundary.end()) {
521 PointAdvance++;
522 point = PointRunner->second;
523 DoLog(1) && (Log() << Verbose(1) << "INFO: Current point is " << *point << "." << endl);
524 for (LineMap::iterator LineRunner = point->lines.begin(); LineRunner != point->lines.end(); LineRunner++) {
525 line = LineRunner->second;
526 DoLog(1) && (Log() << Verbose(1) << "INFO: Current line of point " << *point << " is " << *line << "." << endl);
527 if (!line->CheckConvexityCriterion()) {
528 // remove the point if needed
529 DoLog(1) && (Log() << Verbose(1) << "... point " << *point << " cannot be on convex envelope." << endl);
530 volume += TesselStruct->RemovePointFromTesselatedSurface(point);
531 sprintf(dummy, "-first-%d", ++run);
532 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, dummy);
533 Concavity = true;
534 break;
535 }
536 }
537 PointRunner = PointAdvance;
538 }
539
540 sprintf(dummy, "-second-%d", run);
541 //CalculateConcavityPerBoundaryPoint(TesselStruct);
542 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, dummy);
543
544 // second step: PickFarthestofTwoBaselines
545 LineRunner = TesselStruct->LinesOnBoundary.begin();
546 LineAdvance = LineRunner; // we need an advanced line, as the LineRunner might get removed
547 while (LineRunner != TesselStruct->LinesOnBoundary.end()) {
548 LineAdvance++;
549 line = LineRunner->second;
550 DoLog(1) && (Log() << Verbose(1) << "INFO: Picking farthest baseline for line is " << *line << "." << endl);
551 // take highest of both lines
552 if (TesselStruct->IsConvexRectangle(line) == NULL) {
553 const double tmp = TesselStruct->PickFarthestofTwoBaselines(line);
554 volume += tmp;
555 if (tmp != 0.) {
556 TesselStruct->FlipBaseline(line);
557 Concavity = true;
558 }
559 }
560 LineRunner = LineAdvance;
561 }
562 run++;
563 } while (Concavity);
564 //CalculateConcavityPerBoundaryPoint(TesselStruct);
565 //StoreTrianglesinFile(mol, filename, "-third");
566
567 // third step: IsConvexRectangle
568// LineRunner = TesselStruct->LinesOnBoundary.begin();
569// LineAdvance = LineRunner; // we need an advanced line, as the LineRunner might get removed
570// while (LineRunner != TesselStruct->LinesOnBoundary.end()) {
571// LineAdvance++;
572// line = LineRunner->second;
573// Log() << Verbose(1) << "INFO: Current line is " << *line << "." << endl;
574// //if (LineAdvance != TesselStruct->LinesOnBoundary.end())
575// //Log() << Verbose(1) << "INFO: Next line will be " << *(LineAdvance->second) << "." << endl;
576// if (!line->CheckConvexityCriterion(out)) {
577// Log() << Verbose(1) << "... line " << *line << " is concave, flipping it." << endl;
578//
579// // take highest of both lines
580// point = TesselStruct->IsConvexRectangle(line);
581// if (point != NULL)
582// volume += TesselStruct->RemovePointFromTesselatedSurface(point);
583// }
584// LineRunner = LineAdvance;
585// }
586
587 CalculateConcavityPerBoundaryPoint(TesselStruct);
588 StoreTrianglesinFile(mol, (const Tesselation *&)TesselStruct, filename, "");
589
590 // end
591 DoLog(0) && (Log() << Verbose(0) << "Volume is " << volume << "." << endl);
592 return volume;
593};
594
595
596/** Determines the volume of a cluster.
597 * Determines first the convex envelope, then tesselates it and calculates its volume.
598 * \param *out output stream for debugging
599 * \param *TesselStruct Tesselation filled with points, lines and triangles on boundary on return
600 * \param *configuration needed for path to store convex envelope file
601 * \return determined volume of the cluster in cubed config:GetIsAngstroem()
602 */
603double VolumeOfConvexEnvelope(class Tesselation *TesselStruct, class config *configuration)
604{
605 Info FunctionInfo(__func__);
606 bool IsAngstroem = configuration->GetIsAngstroem();
607 double volume = 0.;
608 Vector x;
609 Vector y;
610
611 // 6a. Every triangle forms a pyramid with the center of gravity as its peak, sum up the volumes
612 for (TriangleMap::iterator runner = TesselStruct->TrianglesOnBoundary.begin(); runner != TesselStruct->TrianglesOnBoundary.end(); runner++)
613 { // go through every triangle, calculate volume of its pyramid with CoG as peak
614 x = runner->second->getEndpoint(0) - runner->second->getEndpoint(1);
615 y = runner->second->getEndpoint(0) - runner->second->getEndpoint(2);
616 const double a = x.Norm();
617 const double b = y.Norm();
618 const double c = runner->second->getEndpoint(2).distance(runner->second->getEndpoint(1));
619 const double G = sqrt(((a + b + c) * (a + b + c) - 2 * (a * a + b * b + c * c)) / 16.); // area of tesselated triangle
620 x = runner->second->getPlane().getNormal();
621 x.Scale(runner->second->getEndpoint(1).ScalarProduct(x));
622 const double h = x.Norm(); // distance of CoG to triangle
623 const double PyramidVolume = (1. / 3.) * G * h; // this formula holds for _all_ pyramids (independent of n-edge base or (not) centered peak)
624 Log() << Verbose(1) << "Area of triangle is " << setprecision(10) << G << " "
625 << (IsAngstroem ? "angstrom" : "atomiclength") << "^2, height is "
626 << h << " and the volume is " << PyramidVolume << " "
627 << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl;
628 volume += PyramidVolume;
629 }
630 Log() << Verbose(0) << "RESULT: The summed volume is " << setprecision(6)
631 << volume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3."
632 << endl;
633
634 return volume;
635};
636
637/** Stores triangles to file.
638 * \param *out output stream for debugging
639 * \param *mol molecule with atoms and bonds
640 * \param *TesselStruct Tesselation with boundary triangles
641 * \param *filename prefix of filename
642 * \param *extraSuffix intermediate suffix
643 */
644void StoreTrianglesinFile(const molecule * const mol, const Tesselation * const TesselStruct, const char *filename, const char *extraSuffix)
645{
646 Info FunctionInfo(__func__);
647 // 4. Store triangles in tecplot file
648 if (filename != NULL) {
649 if (DoTecplotOutput) {
650 string OutputName(filename);
651 OutputName.append(extraSuffix);
652 OutputName.append(TecplotSuffix);
653 ofstream *tecplot = new ofstream(OutputName.c_str());
654 WriteTecplotFile(tecplot, TesselStruct, mol, -1);
655 tecplot->close();
656 delete(tecplot);
657 }
658 if (DoRaster3DOutput) {
659 string OutputName(filename);
660 OutputName.append(extraSuffix);
661 OutputName.append(Raster3DSuffix);
662 ofstream *rasterplot = new ofstream(OutputName.c_str());
663 WriteRaster3dFile(rasterplot, TesselStruct, mol);
664 rasterplot->close();
665 delete(rasterplot);
666 }
667 }
668};
669
670/** Creates multiples of the by \a *mol given cluster and suspends them in water with a given final density.
671 * We get cluster volume by VolumeOfConvexEnvelope() and its diameters by GetDiametersOfCluster()
672 * TODO: Here, we need a VolumeOfGeneralEnvelope (i.e. non-convex one)
673 * \param *out output stream for debugging
674 * \param *configuration needed for path to store convex envelope file
675 * \param *mol molecule structure representing the cluster
676 * \param *&TesselStruct Tesselation structure with triangles on return
677 * \param ClusterVolume guesstimated cluster volume, if equal 0 we used VolumeOfConvexEnvelope() instead.
678 * \param celldensity desired average density in final cell
679 */
680void PrepareClustersinWater(config *configuration, molecule *mol, double ClusterVolume, double celldensity)
681{
682 Info FunctionInfo(__func__);
683 bool IsAngstroem = true;
684 double *GreatestDiameter = NULL;
685 Boundaries *BoundaryPoints = NULL;
686 class Tesselation *TesselStruct = NULL;
687 Vector BoxLengths;
688 int repetition[NDIM] = { 1, 1, 1 };
689 int TotalNoClusters = 1;
690 double totalmass = 0.;
691 double clustervolume = 0.;
692 double cellvolume = 0.;
693
694 // transform to PAS by Action
695 Vector MainAxis(0.,0.,1.);
696 mol->RotateToPrincipalAxisSystem(MainAxis);
697
698 IsAngstroem = configuration->GetIsAngstroem();
699 BoundaryPoints = GetBoundaryPoints(mol, TesselStruct);
700 GreatestDiameter = GetDiametersOfCluster(BoundaryPoints, mol, TesselStruct, IsAngstroem);
701 LinkedCell *LCList = new LinkedCell(*mol, 10.);
702 FindConvexBorder(mol, BoundaryPoints, TesselStruct, (const LinkedCell *&)LCList, NULL);
703 delete (LCList);
704 delete[] BoundaryPoints;
705
706
707 // some preparations beforehand
708 if (ClusterVolume == 0)
709 clustervolume = VolumeOfConvexEnvelope(TesselStruct, configuration);
710 else
711 clustervolume = ClusterVolume;
712
713 delete TesselStruct;
714
715 for (int i = 0; i < NDIM; i++)
716 TotalNoClusters *= repetition[i];
717
718 // sum up the atomic masses
719 for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
720 totalmass += (*iter)->getType()->getMass();
721 }
722 DoLog(0) && (Log() << Verbose(0) << "RESULT: The summed mass is " << setprecision(10) << totalmass << " atomicmassunit." << endl);
723 DoLog(0) && (Log() << Verbose(0) << "RESULT: The average density is " << setprecision(10) << totalmass / clustervolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl);
724
725 // solve cubic polynomial
726 DoLog(1) && (Log() << Verbose(1) << "Solving equidistant suspension in water problem ..." << endl);
727 if (IsAngstroem)
728 cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_A - (totalmass / clustervolume)) / (celldensity - 1);
729 else
730 cellvolume = (TotalNoClusters * totalmass / SOLVENTDENSITY_a0 - (totalmass / clustervolume)) / (celldensity - 1);
731 DoLog(1) && (Log() << Verbose(1) << "Cellvolume needed for a density of " << celldensity << " g/cm^3 is " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl);
732
733 double minimumvolume = TotalNoClusters * (GreatestDiameter[0] * GreatestDiameter[1] * GreatestDiameter[2]);
734 DoLog(1) && (Log() << Verbose(1) << "Minimum volume of the convex envelope contained in a rectangular box is " << minimumvolume << " atomicmassunit/" << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl);
735 if (minimumvolume > cellvolume) {
736 DoeLog(1) && (eLog()<< Verbose(1) << "the containing box already has a greater volume than the envisaged cell volume!" << endl);
737 DoLog(0) && (Log() << Verbose(0) << "Setting Box dimensions to minimum possible, the greatest diameters." << endl);
738 for (int i = 0; i < NDIM; i++)
739 BoxLengths[i] = GreatestDiameter[i];
740 mol->CenterEdge(&BoxLengths);
741 } else {
742 BoxLengths[0] = (repetition[0] * GreatestDiameter[0] + repetition[1] * GreatestDiameter[1] + repetition[2] * GreatestDiameter[2]);
743 BoxLengths[1] = (repetition[0] * repetition[1] * GreatestDiameter[0] * GreatestDiameter[1] + repetition[0] * repetition[2] * GreatestDiameter[0] * GreatestDiameter[2] + repetition[1] * repetition[2] * GreatestDiameter[1] * GreatestDiameter[2]);
744 BoxLengths[2] = minimumvolume - cellvolume;
745 double x0 = 0.;
746 double x1 = 0.;
747 double x2 = 0.;
748 if (gsl_poly_solve_cubic(BoxLengths[0], BoxLengths[1], BoxLengths[2], &x0, &x1, &x2) == 1) // either 1 or 3 on return
749 DoLog(0) && (Log() << Verbose(0) << "RESULT: The resulting spacing is: " << x0 << " ." << endl);
750 else {
751 DoLog(0) && (Log() << Verbose(0) << "RESULT: The resulting spacings are: " << x0 << " and " << x1 << " and " << x2 << " ." << endl);
752 x0 = x2; // sorted in ascending order
753 }
754
755 cellvolume = 1.;
756 for (int i = 0; i < NDIM; i++) {
757 BoxLengths[i] = repetition[i] * (x0 + GreatestDiameter[i]);
758 cellvolume *= BoxLengths[i];
759 }
760
761 // set new box dimensions
762 DoLog(0) && (Log() << Verbose(0) << "Translating to box with these boundaries." << endl);
763 mol->SetBoxDimension(&BoxLengths);
764 mol->CenterInBox();
765 }
766 delete GreatestDiameter;
767 // update Box of atoms by boundary
768 mol->SetBoxDimension(&BoxLengths);
769 DoLog(0) && (Log() << Verbose(0) << "RESULT: The resulting cell dimensions are: " << BoxLengths[0] << " and " << BoxLengths[1] << " and " << BoxLengths[2] << " with total volume of " << cellvolume << " " << (IsAngstroem ? "angstrom" : "atomiclength") << "^3." << endl);
770};
771
772
773/** Fills the empty space around other molecules' surface of the simulation box with a filler.
774 * \param *out output stream for debugging
775 * \param *List list of molecules already present in box
776 * \param *TesselStruct contains tesselated surface
777 * \param *filler molecule which the box is to be filled with
778 * \param configuration contains box dimensions
779 * \param MaxDistance fills in molecules only up to this distance (set to -1 if whole of the domain)
780 * \param distance[NDIM] distance between filling molecules in each direction
781 * \param boundary length of boundary zone between molecule and filling mollecules
782 * \param epsilon distance to surface which is not filled
783 * \param RandAtomDisplacement maximum distance for random displacement per atom
784 * \param RandMolDisplacement maximum distance for random displacement per filler molecule
785 * \param DoRandomRotation true - do random rotiations, false - don't
786 */
787void FillBoxWithMolecule(MoleculeListClass *List, molecule *filler, config &configuration, const double MaxDistance, const double distance[NDIM], const double boundary, const double RandomAtomDisplacement, const double RandomMolDisplacement, const bool DoRandomRotation)
788{
789 Info FunctionInfo(__func__);
790 molecule *Filling = World::getInstance().createMolecule();
791 Vector CurrentPosition;
792 int N[NDIM];
793 int n[NDIM];
794 const RealSpaceMatrix &M = World::getInstance().getDomain().getM();
795 RealSpaceMatrix Rotations;
796 const RealSpaceMatrix &MInverse = World::getInstance().getDomain().getMinv();
797 Vector AtomTranslations;
798 Vector FillerTranslations;
799 Vector FillerDistance;
800 Vector Inserter;
801 double FillIt = false;
802 bond *Binder = NULL;
803 double phi[NDIM];
804 map<molecule *, Tesselation *> TesselStruct;
805 map<molecule *, LinkedCell *> LCList;
806
807 for (MoleculeList::iterator ListRunner = List->ListOfMolecules.begin(); ListRunner != List->ListOfMolecules.end(); ListRunner++)
808 if ((*ListRunner)->getAtomCount() > 0) {
809 DoLog(1) && (Log() << Verbose(1) << "Pre-creating linked cell lists for molecule " << *ListRunner << "." << endl);
810 LCList[(*ListRunner)] = new LinkedCell(*(*ListRunner), 10.); // get linked cell list
811 DoLog(1) && (Log() << Verbose(1) << "Pre-creating tesselation for molecule " << *ListRunner << "." << endl);
812 TesselStruct[(*ListRunner)] = NULL;
813 FindNonConvexBorder((*ListRunner), TesselStruct[(*ListRunner)], (const LinkedCell *&)LCList[(*ListRunner)], 5., NULL);
814 }
815
816 // Center filler at origin
817 filler->CenterEdge(&Inserter);
818 const int FillerCount = filler->getAtomCount();
819 DoLog(2) && (Log() << Verbose(2) << "INFO: Filler molecule has the following bonds:" << endl);
820 for(molecule::iterator AtomRunner = filler->begin(); AtomRunner != filler->end(); ++AtomRunner)
821 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); BondRunner != (*AtomRunner)->ListOfBonds.end(); ++BondRunner)
822 if ((*BondRunner)->leftatom == *AtomRunner)
823 DoLog(2) && (Log() << Verbose(2) << " " << *(*BondRunner) << endl);
824
825 atom * CopyAtoms[FillerCount];
826
827 // calculate filler grid in [0,1]^3
828 FillerDistance = MInverse * Vector(distance[0], distance[1], distance[2]);
829 for(int i=0;i<NDIM;i++)
830 N[i] = (int) ceil(1./FillerDistance[i]);
831 DoLog(1) && (Log() << Verbose(1) << "INFO: Grid steps are " << N[0] << ", " << N[1] << ", " << N[2] << "." << endl);
832
833 // initialize seed of random number generator to current time
834 RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator();
835 const double rng_min = random.min();
836 const double rng_max = random.max();
837 //srand ( time(NULL) );
838
839 // go over [0,1]^3 filler grid
840 for (n[0] = 0; n[0] < N[0]; n[0]++)
841 for (n[1] = 0; n[1] < N[1]; n[1]++)
842 for (n[2] = 0; n[2] < N[2]; n[2]++) {
843 // calculate position of current grid vector in untransformed box
844 CurrentPosition = M * Vector((double)n[0]/(double)N[0], (double)n[1]/(double)N[1], (double)n[2]/(double)N[2]);
845 // create molecule random translation vector ...
846 for (int i=0;i<NDIM;i++)
847 FillerTranslations[i] = RandomMolDisplacement*(random()/((rng_max-rng_min)/2.) - 1.);
848 DoLog(2) && (Log() << Verbose(2) << "INFO: Current Position is " << CurrentPosition << "+" << FillerTranslations << "." << endl);
849
850 // go through all atoms
851 for (int i=0;i<FillerCount;i++)
852 CopyAtoms[i] = NULL;
853
854 // have same rotation angles for all molecule's atoms
855 if (DoRandomRotation)
856 for (int i=0;i<NDIM;i++)
857 phi[i] = (random()/(rng_max-rng_min))*(2.*M_PI);
858
859 for(molecule::const_iterator iter = filler->begin(); iter !=filler->end();++iter){
860
861 // create atomic random translation vector ...
862 for (int i=0;i<NDIM;i++)
863 AtomTranslations[i] = RandomAtomDisplacement*(random()/((rng_max-rng_min)/2.) - 1.);
864
865 // ... and rotation matrix
866 if (DoRandomRotation) {
867 Rotations.set(0,0, cos(phi[0]) *cos(phi[2]) + (sin(phi[0])*sin(phi[1])*sin(phi[2])));
868 Rotations.set(0,1, sin(phi[0]) *cos(phi[2]) - (cos(phi[0])*sin(phi[1])*sin(phi[2])));
869 Rotations.set(0,2, cos(phi[1])*sin(phi[2]) );
870 Rotations.set(1,0, -sin(phi[0])*cos(phi[1]) );
871 Rotations.set(1,1, cos(phi[0])*cos(phi[1]) );
872 Rotations.set(1,2, sin(phi[1]) );
873 Rotations.set(2,0, -cos(phi[0]) *sin(phi[2]) + (sin(phi[0])*sin(phi[1])*cos(phi[2])));
874 Rotations.set(2,1, -sin(phi[0]) *sin(phi[2]) - (cos(phi[0])*sin(phi[1])*cos(phi[2])));
875 Rotations.set(2,2, cos(phi[1])*cos(phi[2]) );
876 }
877
878 // ... and put at new position
879 Inserter = (*iter)->getPosition();
880 if (DoRandomRotation)
881 Inserter *= Rotations;
882 Inserter += AtomTranslations + FillerTranslations + CurrentPosition;
883
884 // check whether inserter is inside box
885 Inserter *= MInverse;
886 FillIt = true;
887 for (int i=0;i<NDIM;i++)
888 FillIt = FillIt && (Inserter[i] >= -MYEPSILON) && ((Inserter[i]-1.) <= MYEPSILON);
889 Inserter *= M;
890
891 // Check whether point is in- or outside
892 for (MoleculeList::iterator ListRunner = List->ListOfMolecules.begin(); ListRunner != List->ListOfMolecules.end(); ListRunner++) {
893 // get linked cell list
894 if (TesselStruct[(*ListRunner)] != NULL) {
895 const double distance = (TesselStruct[(*ListRunner)]->GetDistanceToSurface(Inserter, LCList[(*ListRunner)]));
896 FillIt = FillIt && (distance > boundary) && ((MaxDistance < 0) || (MaxDistance > distance));
897 }
898 }
899 // insert into Filling
900 if (FillIt) {
901 DoLog(1) && (Log() << Verbose(1) << "INFO: Position at " << Inserter << " is outer point." << endl);
902 // copy atom ...
903 CopyAtoms[(*iter)->nr] = (*iter)->clone();
904 (*CopyAtoms[(*iter)->nr]).setPosition(Inserter);
905 Filling->AddAtom(CopyAtoms[(*iter)->nr]);
906 DoLog(1) && (Log() << Verbose(1) << "Filling atom " << **iter << ", translated to " << AtomTranslations << ", at final position is " << (CopyAtoms[(*iter)->nr]->getPosition()) << "." << endl);
907 } else {
908 DoLog(1) && (Log() << Verbose(1) << "INFO: Position at " << Inserter << " is inner point, within boundary or outside of MaxDistance." << endl);
909 CopyAtoms[(*iter)->nr] = NULL;
910 continue;
911 }
912 }
913 // go through all bonds and add as well
914 for(molecule::iterator AtomRunner = filler->begin(); AtomRunner != filler->end(); ++AtomRunner)
915 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); BondRunner != (*AtomRunner)->ListOfBonds.end(); ++BondRunner)
916 if ((*BondRunner)->leftatom == *AtomRunner) {
917 Binder = (*BondRunner);
918 if ((CopyAtoms[Binder->leftatom->nr] != NULL) && (CopyAtoms[Binder->rightatom->nr] != NULL)) {
919 Log() << Verbose(3) << "Adding Bond between " << *CopyAtoms[Binder->leftatom->nr] << " and " << *CopyAtoms[Binder->rightatom->nr]<< "." << endl;
920 Filling->AddBond(CopyAtoms[Binder->leftatom->nr], CopyAtoms[Binder->rightatom->nr], Binder->BondDegree);
921 }
922 }
923 }
924 for (MoleculeList::iterator ListRunner = List->ListOfMolecules.begin(); ListRunner != List->ListOfMolecules.end(); ListRunner++) {
925 delete LCList[*ListRunner];
926 delete TesselStruct[(*ListRunner)];
927 }
928};
929
930/** Rotates given molecule \a Filling and moves its atoms according to given
931 * \a RandomAtomDisplacement.
932 *
933 * Note that for rotation to be sensible, the molecule should be centered at
934 * the origin. This is not done here!
935 *
936 * \param &Filling molecule whose atoms to displace
937 * \param RandomAtomDisplacement magnitude of random displacement
938 * \param &Rotations 3D rotation matrix (or unity if no rotation desired)
939 */
940void RandomizeMoleculePositions(
941 molecule *&Filling,
942 double RandomAtomDisplacement,
943 RealSpaceMatrix &Rotations,
944 RandomNumberGenerator &random
945 )
946{
947 const double rng_min = random.min();
948 const double rng_max = random.max();
949
950 Vector AtomTranslations;
951 for(molecule::iterator miter = Filling->begin(); miter != Filling->end(); ++miter) {
952 Vector temp = (*miter)->getPosition();
953 temp *= Rotations;
954 (*miter)->setPosition(temp);
955 // create atomic random translation vector ...
956 for (int i=0;i<NDIM;i++)
957 AtomTranslations[i] = RandomAtomDisplacement*(random()/((rng_max-rng_min)/2.) - 1.);
958 (*miter)->setPosition((*miter)->getPosition() + AtomTranslations);
959 }
960}
961
962/** Removes all atoms of a molecule outside.
963 *
964 * If the molecule is empty, it is removed as well.
965 *
966 * @param Filling molecule whose atoms to check, removed if eventually left
967 * empty.
968 * @return true - atoms had to be removed, false - no atoms have been removed
969 */
970bool RemoveAtomsOutsideDomain(molecule *&Filling)
971{
972 bool status = false;
973 Box &Domain = World::getInstance().getDomain();
974 // check if all is still inside domain
975 for(molecule::iterator miter = Filling->begin(); miter != Filling->end(); ) {
976 // check whether each atom is inside box
977 if (!Domain.isInside((*miter)->getPosition())) {
978 status = true;
979 atom *Walker = *miter;
980 ++miter;
981 World::getInstance().destroyAtom(Walker);
982 } else {
983 ++miter;
984 }
985 }
986 if (Filling->empty()) {
987 DoLog(0) && (Log() << Verbose(0) << "Removing molecule " << Filling->getName() << ", all atoms have been removed." << std::endl);
988 World::getInstance().destroyMolecule(Filling);
989 }
990 return status;
991}
992
993/** Checks whether there are no atoms inside a sphere around \a CurrentPosition
994 * except those atoms present in \a *filler.
995 * If filler is NULL, then we just call LinkedCell::GetPointsInsideSphere() and
996 * check whether the return list is empty.
997 * @param *filler
998 * @param boundary
999 * @param CurrentPosition
1000 */
1001bool isSpaceAroundPointVoid(
1002 LinkedCell *LC,
1003 molecule *filler,
1004 const double boundary,
1005 Vector &CurrentPosition)
1006{
1007 size_t compareTo = 0;
1008 LinkedCell::LinkedNodes* liste = LC->GetPointsInsideSphere(boundary == 0. ? MYEPSILON : boundary, &CurrentPosition);
1009 if (filler != NULL) {
1010 for (LinkedCell::LinkedNodes::const_iterator iter = liste->begin();
1011 iter != liste->end();
1012 ++iter) {
1013 for (molecule::iterator miter = filler->begin();
1014 miter != filler->end();
1015 ++miter) {
1016 if (*iter == *miter)
1017 ++compareTo;
1018 }
1019 }
1020 }
1021 const bool result = (liste->size() == compareTo);
1022 if (!result) {
1023 DoLog(0) && (Log() << Verbose(0) << "Skipping because of the following atoms:" << std::endl);
1024 for (LinkedCell::LinkedNodes::const_iterator iter = liste->begin();
1025 iter != liste->end();
1026 ++iter) {
1027 DoLog(0) && (Log() << Verbose(0) << **iter << std::endl);
1028 }
1029 }
1030 delete(liste);
1031 return result;
1032}
1033
1034/** Fills the empty space of the simulation box with water.
1035 * \param *filler molecule which the box is to be filled with
1036 * \param configuration contains box dimensions
1037 * \param distance[NDIM] distance between filling molecules in each direction
1038 * \param boundary length of boundary zone between molecule and filling molecules
1039 * \param RandAtomDisplacement maximum distance for random displacement per atom
1040 * \param RandMolDisplacement maximum distance for random displacement per filler molecule
1041 * \param MinDistance minimum distance to boundary of domain and present molecules
1042 * \param DoRandomRotation true - do random rotations, false - don't
1043 */
1044void FillVoidWithMolecule(
1045 molecule *&filler,
1046 config &configuration,
1047 const double distance[NDIM],
1048 const double boundary,
1049 const double RandomAtomDisplacement,
1050 const double RandomMolDisplacement,
1051 const double MinDistance,
1052 const bool DoRandomRotation
1053 )
1054{
1055 Info FunctionInfo(__func__);
1056 molecule *Filling = NULL;
1057 Vector CurrentPosition;
1058 int N[NDIM];
1059 int n[NDIM];
1060 const RealSpaceMatrix &M = World::getInstance().getDomain().getM();
1061 RealSpaceMatrix Rotations;
1062 const RealSpaceMatrix &MInverse = World::getInstance().getDomain().getMinv();
1063 Vector FillerTranslations;
1064 Vector FillerDistance;
1065 Vector Inserter;
1066 double FillIt = false;
1067 Vector firstInserter;
1068 bool firstInsertion = true;
1069 const Box &Domain = World::getInstance().getDomain();
1070 map<molecule *, LinkedCell *> LCList;
1071 std::vector<molecule *> List = World::getInstance().getAllMolecules();
1072 MoleculeListClass *MolList = World::getInstance().getMolecules();
1073
1074 for (std::vector<molecule *>::iterator ListRunner = List.begin(); ListRunner != List.end(); ListRunner++)
1075 if ((*ListRunner)->getAtomCount() > 0) {
1076 DoLog(1) && (Log() << Verbose(1) << "Pre-creating linked cell lists for molecule " << *ListRunner << "." << endl);
1077 LCList[(*ListRunner)] = new LinkedCell(*(*ListRunner), 10.); // get linked cell list
1078 }
1079
1080 // Center filler at its center of gravity
1081 Vector *gravity = filler->DetermineCenterOfGravity();
1082 filler->CenterAtVector(gravity);
1083 delete gravity;
1084 //const int FillerCount = filler->getAtomCount();
1085 DoLog(2) && (Log() << Verbose(2) << "INFO: Filler molecule has the following bonds:" << endl);
1086 for(molecule::iterator AtomRunner = filler->begin(); AtomRunner != filler->end(); ++AtomRunner)
1087 for(BondList::iterator BondRunner = (*AtomRunner)->ListOfBonds.begin(); BondRunner != (*AtomRunner)->ListOfBonds.end(); ++BondRunner)
1088 if ((*BondRunner)->leftatom == *AtomRunner)
1089 DoLog(2) && (Log() << Verbose(2) << " " << *(*BondRunner) << endl);
1090
1091 // calculate filler grid in [0,1]^3
1092 FillerDistance = MInverse * Vector(distance[0], distance[1], distance[2]);
1093 for(int i=0;i<NDIM;i++)
1094 N[i] = (int) ceil(1./FillerDistance[i]);
1095 DoLog(1) && (Log() << Verbose(1) << "INFO: Grid steps are " << N[0] << ", " << N[1] << ", " << N[2] << "." << endl);
1096
1097 // initialize seed of random number generator to current time
1098 RandomNumberGenerator &random = RandomNumberGeneratorFactory::getInstance().makeRandomNumberGenerator();
1099 const double rng_min = random.min();
1100 const double rng_max = random.max();
1101 //srand ( time(NULL) );
1102
1103 // go over [0,1]^3 filler grid
1104 for (n[0] = 0; n[0] < N[0]; n[0]++)
1105 for (n[1] = 0; n[1] < N[1]; n[1]++)
1106 for (n[2] = 0; n[2] < N[2]; n[2]++) {
1107 // calculate position of current grid vector in untransformed box
1108 CurrentPosition = M * Vector((double)n[0]/(double)N[0], (double)n[1]/(double)N[1], (double)n[2]/(double)N[2]);
1109 // create molecule random translation vector ...
1110 for (int i=0;i<NDIM;i++) // have the random values [-1,1]*RandomMolDisplacement
1111 FillerTranslations[i] = RandomMolDisplacement*(random()/((rng_max-rng_min)/2.) - 1.);
1112 DoLog(2) && (Log() << Verbose(2) << "INFO: Current Position is " << CurrentPosition << "+" << FillerTranslations << "." << endl);
1113
1114 // ... and rotation matrix
1115 if (DoRandomRotation)
1116 Rotations.setRandomRotation();
1117 else
1118 Rotations.setIdentity();
1119
1120
1121 // Check whether there is anything too close by and whether atom is outside of domain
1122 FillIt = true;
1123 for (std::map<molecule *, LinkedCell *>::iterator ListRunner = LCList.begin(); ListRunner != LCList.end(); ++ListRunner) {
1124 FillIt = FillIt && isSpaceAroundPointVoid(
1125 ListRunner->second,
1126 (firstInsertion ? filler : NULL),
1127 boundary,
1128 CurrentPosition);
1129 FillIt = FillIt && (Domain.isInside(CurrentPosition))
1130 && ((Domain.DistanceToBoundary(CurrentPosition) - MinDistance) > -MYEPSILON);
1131 if (!FillIt)
1132 break;
1133 }
1134
1135 // insert into Filling
1136 if (FillIt) {
1137 Inserter = CurrentPosition + FillerTranslations;
1138 DoLog(1) && (Log() << Verbose(1) << "INFO: Position at " << Inserter << " is void point." << endl);
1139 // fill!
1140 Filling = filler->CopyMolecule();
1141 RandomizeMoleculePositions(Filling, RandomAtomDisplacement, Rotations, random);
1142 // translation
1143 Filling->Translate(&Inserter);
1144 // remove out-of-bounds atoms
1145 const bool status = RemoveAtomsOutsideDomain(Filling);
1146 if ((firstInsertion) && (!status)) { // no atom has been removed
1147 // remove copied atoms and molecule again
1148 Filling->removeAtomsinMolecule();
1149 World::getInstance().destroyMolecule(Filling);
1150 // and mark is final filler position
1151 Filling = filler;
1152 firstInsertion = false;
1153 firstInserter = Inserter;
1154 } else {
1155 // TODO: Remove when World has no MoleculeListClass anymore
1156 if (Filling)
1157 MolList->insert(Filling);
1158 }
1159 } else {
1160 DoLog(1) && (Log() << Verbose(1) << "INFO: Position at " << Inserter << " is non-void point, within boundary or outside of MaxDistance." << endl);
1161 continue;
1162 }
1163 }
1164
1165 // have we inserted any molecules?
1166 if (firstInsertion) {
1167 // If not remove filler
1168 for(molecule::iterator miter = filler->begin(); !filler->empty(); miter = filler->begin()) {
1169 atom *Walker = *miter;
1170 filler->erase(Walker);
1171 World::getInstance().destroyAtom(Walker);
1172 }
1173 World::getInstance().destroyMolecule(filler);
1174 } else {
1175 // otherwise translate and randomize to final position
1176 if (DoRandomRotation)
1177 Rotations.setRandomRotation();
1178 else
1179 Rotations.setIdentity();
1180 RandomizeMoleculePositions(filler, RandomAtomDisplacement, Rotations, random);
1181 // translation
1182 filler->Translate(&firstInserter);
1183 // remove out-of-bounds atoms
1184 RemoveAtomsOutsideDomain(filler);
1185 }
1186
1187 DoLog(0) && (Log() << Verbose(0) << MolList->ListOfMolecules.size() << " molecules have been inserted." << std::endl);
1188
1189 for (std::map<molecule *, LinkedCell *>::iterator ListRunner = LCList.begin(); !LCList.empty(); ListRunner = LCList.begin()) {
1190 delete ListRunner->second;
1191 LCList.erase(ListRunner);
1192 }
1193};
1194
1195/** Tesselates the non convex boundary by rolling a virtual sphere along the surface of the molecule.
1196 * \param *out output stream for debugging
1197 * \param *mol molecule structure with Atom's and Bond's
1198 * \param *&TesselStruct Tesselation filled with points, lines and triangles on boundary on return
1199 * \param *&LCList atoms in LinkedCell list
1200 * \param RADIUS radius of the virtual sphere
1201 * \param *filename filename prefix for output of vertex data
1202 * \return true - tesselation successful, false - tesselation failed
1203 */
1204bool FindNonConvexBorder(const molecule* const mol, Tesselation *&TesselStruct, const LinkedCell *&LCList, const double RADIUS, const char *filename = NULL)
1205{
1206 Info FunctionInfo(__func__);
1207 bool freeLC = false;
1208 bool status = false;
1209 CandidateForTesselation *baseline = NULL;
1210 bool OneLoopWithoutSuccessFlag = true; // marks whether we went once through all baselines without finding any without two triangles
1211 bool TesselationFailFlag = false;
1212
1213 mol->getAtomCount();
1214
1215 if (TesselStruct == NULL) {
1216 DoLog(1) && (Log() << Verbose(1) << "Allocating Tesselation struct ..." << endl);
1217 TesselStruct= new Tesselation;
1218 } else {
1219 delete(TesselStruct);
1220 DoLog(1) && (Log() << Verbose(1) << "Re-Allocating Tesselation struct ..." << endl);
1221 TesselStruct = new Tesselation;
1222 }
1223
1224 // initialise Linked Cell
1225 if (LCList == NULL) {
1226 LCList = new LinkedCell(*mol, 2.*RADIUS);
1227 freeLC = true;
1228 }
1229
1230 // 1. get starting triangle
1231 if (!TesselStruct->FindStartingTriangle(RADIUS, LCList)) {
1232 DoeLog(0) && (eLog() << Verbose(0) << "No valid starting triangle found." << endl);
1233 //performCriticalExit();
1234 }
1235 if (filename != NULL) {
1236 if ((DoSingleStepOutput && ((TesselStruct->TrianglesOnBoundary.size() % SingleStepWidth == 0)))) { // if we have a new triangle and want to output each new triangle configuration
1237 TesselStruct->Output(filename, mol);
1238 }
1239 }
1240
1241 // 2. expand from there
1242 while ((!TesselStruct->OpenLines.empty()) && (OneLoopWithoutSuccessFlag)) {
1243 (cerr << "There are " << TesselStruct->TrianglesOnBoundary.size() << " triangles and " << TesselStruct->OpenLines.size() << " open lines to scan for candidates." << endl);
1244 // 2a. print OpenLines without candidates
1245 DoLog(1) && (Log() << Verbose(1) << "There are the following open lines to scan for a candidates:" << endl);
1246 for (CandidateMap::iterator Runner = TesselStruct->OpenLines.begin(); Runner != TesselStruct->OpenLines.end(); Runner++)
1247 if (Runner->second->pointlist.empty())
1248 DoLog(1) && (Log() << Verbose(1) << " " << *(Runner->second) << endl);
1249
1250 // 2b. find best candidate for each OpenLine
1251 TesselationFailFlag = TesselStruct->FindCandidatesforOpenLines(RADIUS, LCList);
1252
1253 // 2c. print OpenLines with candidates again
1254 DoLog(1) && (Log() << Verbose(1) << "There are " << TesselStruct->OpenLines.size() << " open lines to scan for the best candidates:" << endl);
1255 for (CandidateMap::iterator Runner = TesselStruct->OpenLines.begin(); Runner != TesselStruct->OpenLines.end(); Runner++)
1256 DoLog(1) && (Log() << Verbose(1) << " " << *(Runner->second) << endl);
1257
1258 // 2d. search for smallest ShortestAngle among all candidates
1259 double ShortestAngle = 4.*M_PI;
1260 for (CandidateMap::iterator Runner = TesselStruct->OpenLines.begin(); Runner != TesselStruct->OpenLines.end(); Runner++) {
1261 if (Runner->second->ShortestAngle < ShortestAngle) {
1262 baseline = Runner->second;
1263 ShortestAngle = baseline->ShortestAngle;
1264 DoLog(1) && (Log() << Verbose(1) << "New best candidate is " << *baseline->BaseLine << " with point " << *(*baseline->pointlist.begin()) << " and angle " << baseline->ShortestAngle << endl);
1265 }
1266 }
1267 // 2e. if we found one, add candidate
1268 if ((ShortestAngle == 4.*M_PI) || (baseline->pointlist.empty()))
1269 OneLoopWithoutSuccessFlag = false;
1270 else {
1271 TesselStruct->AddCandidatePolygon(*baseline, RADIUS, LCList);
1272 }
1273
1274 // 2f. write temporary envelope
1275 if (filename != NULL) {
1276 if ((DoSingleStepOutput && ((TesselStruct->TrianglesOnBoundary.size() % SingleStepWidth == 0)))) { // if we have a new triangle and want to output each new triangle configuration
1277 TesselStruct->Output(filename, mol);
1278 }
1279 }
1280 }
1281// // check envelope for consistency
1282// status = CheckListOfBaselines(TesselStruct);
1283//
1284// // look whether all points are inside of the convex envelope, otherwise add them via degenerated triangles
1285// //->InsertStraddlingPoints(mol, LCList);
1286// for (molecule::const_iterator iter = mol->begin(); iter != mol->end(); ++iter) {
1287// class TesselPoint *Runner = NULL;
1288// Runner = *iter;
1289// Log() << Verbose(1) << "Checking on " << Runner->Name << " ... " << endl;
1290// if (!->IsInnerPoint(Runner, LCList)) {
1291// Log() << Verbose(2) << Runner->Name << " is outside of envelope, adding via degenerated triangles." << endl;
1292// ->AddBoundaryPointByDegeneratedTriangle(Runner, LCList);
1293// } else {
1294// Log() << Verbose(2) << Runner->Name << " is inside of or on envelope." << endl;
1295// }
1296// }
1297
1298// // Purges surplus triangles.
1299// TesselStruct->RemoveDegeneratedTriangles();
1300//
1301// // check envelope for consistency
1302// status = CheckListOfBaselines(TesselStruct);
1303
1304 cout << "before correction" << endl;
1305
1306 // store before correction
1307 StoreTrianglesinFile(mol, TesselStruct, filename, "");
1308
1309// // correct degenerated polygons
1310// TesselStruct->CorrectAllDegeneratedPolygons();
1311//
1312// // check envelope for consistency
1313// status = CheckListOfBaselines(TesselStruct);
1314
1315 // write final envelope
1316 CalculateConcavityPerBoundaryPoint(TesselStruct);
1317 cout << "after correction" << endl;
1318 StoreTrianglesinFile(mol, TesselStruct, filename, "");
1319
1320 if (freeLC)
1321 delete(LCList);
1322
1323 return status;
1324};
1325
1326
1327/** Finds a hole of sufficient size in \a *mols to embed \a *srcmol into it.
1328 * \param *out output stream for debugging
1329 * \param *mols molecules in the domain to embed in between
1330 * \param *srcmol embedding molecule
1331 * \return *Vector new center of \a *srcmol for embedding relative to \a this
1332 */
1333Vector* FindEmbeddingHole(MoleculeListClass *mols, molecule *srcmol)
1334{
1335 Info FunctionInfo(__func__);
1336 Vector *Center = new Vector;
1337 Center->Zero();
1338 // calculate volume/shape of \a *srcmol
1339
1340 // find embedding holes
1341
1342 // if more than one, let user choose
1343
1344 // return embedding center
1345 return Center;
1346};
1347
Note: See TracBrowser for help on using the repository browser.